

Dundigal, Hyderabad - 500043, Telangana

ELECTRICAL AND ELECTRONICS ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:

Ms. B PRAVEENA

Department:

Electrical and Electronics Engineering

Regulation:

IARE - R20

Batch:

2021-2025

Course Name:

Mathematical Transform Techniques

Course Code:

AHSC07

Semester:

п

Target Value:

60% (1.8)

Attainment of COs:

Attainm	ent of COs:				
	Course Outcome	Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Explain the properties of Laplace and inverse transform to various functions such as continuous, piecewise continuous, step, impulsive and complex variable functions.	0.60	2.30	0.9	Not Attained
CO2	Make use of the integral transforms which converts operations of calculus to algebra in solving linear differential equations	0.30	2.30	0.7	Not Attained
CO3	Apply the Fourier transform as a mathematical function that transforms a signal from the time domain to the frequency domain, non-periodic function up to infinity.	0.90	2.30	1.2	Not Attained
CO4	Apply the definite integral calculus to a function of two or more variables in calculating the area of solid bounded regions	0.60	2.30	0.9	Not Attained
CO5	Develop the differential calculus which transforms vector functions, gradients. Divergence, curl, and integral theorems to different bounded regions in calculating areas.	0.00	2.30	0.5	Not Attained
CO6	Solve Lagrange's linear equation related to dependent and independent variables the nonlinear partial differential equation by the method of Charpit concern to the engineering field	0.00	2.30	0.5	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: Additional inputs will be provided by explaining the properties of Laplace and inverse transform to various functions such as continuous, piecewise continuous, step, impulsive, and complex variable functions.

CO2: Giving assignments and conducting tutorials on making use of the integral transforms which convert operations of calculus to algebra in solving linear differential equations.

CO3: CO3: Provide more problems and assignments on applying the Fourier transform as a mathematical function that transforms a signal from the time domain to the frequency domain, a non-periodic function up to infinity.

CO4: Providing more information and assignments on concepts of applying the definite integral calculus to a function of two or more variables in calculating the area of solid bounded regions.

CO5: Providing more information and assignments on concepts of the differential calculus which transforms vector functions, gradients. Divergence, curl, and integral theorems to different bounded regions in calculating areas.

CO6: Conducting guest lectures on Lagrange's linear equation related to dependent and independent variables the nonlinear partial differential equation by the method of Charpit concern to the engineering field.