

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

ELECTRICAL POWER SYSTEMS

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	K. Venkata Siva Ras	Department:	Electrical Power Systems 2021-2023 BPSC13	
Regulation:	IARE - PG21	Batch:		
Course Name:	Digital Protection of Power System	Course Code:		
Semester:	II	Target Value:	80% (2.4)	

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Illustrate the significance of protection systems and elements involved in protection of the power system.	0.90	2.70	1.3	Not Attained
CO2	Develop the structures, mathematical models and formulae of digital relays for mathematical analysis of the system.	3.00	2.70	2.9	Attained
CO3	Identify the basic components of digital relay and signal conditioning subsystems for implementation of digital protection.	3.00	2.40	2.9	Attained
CO4	Develop the mathematical models for analysis of the relying algorithms to address the various types of faults in the power system.	3.00	1.80	2.8	Attained
CO5	Categorize the digital relying algorithms to minimize the transient deviations and steady state error to zero	2.10	2.70	2.2	Not Attained
CO6	Analyze the various algorithms applicable for protection of Transformers and transmission lines.	2.10	2.40	2.2	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: Need to solve more problems on protection in power system

CO5: Need to give assignments on steady state error

CO6: ELRV classes

Course Coordinator

Mentor

Head of the Department