

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500043, Telangana

INFORMATION TECHNOLOGY

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. RAVI KUMAR POLURU	Department:	Information Technology		
Regulation:	IARE - R18	Batch:	2019-2023	;	
Course Name:	Machine Learning	Course Code:	ACSB21		
Semester:	V	Target Value:	60% (1.8)		

Attainment of COs:

Course Outcome		Direct attaiment	Indirect attaiment	Overall attaiment	Observation
CO1	Demonstrate the design of concept learning that best fits training datasets in machine learning applications	0.90	2.40	1.2	Not Attained
CO2	Develop decision tree and instance-based learning algorithms for classification or regression-based problems in machine learning applications.	0.90	2.40	1.2	Not Attained
CO3	Make use of artificial neural networks algorithms to train the system using synapses, notes and communication links.	0.90	2.40	1.2	Not Attained
CO4	Construct Bayesian learning classifiers in extracting crucial information from small datasets and in preprocessing.	2.30	2.40	2.3	Attained
CO5	Build reinforcement-based learning algorithms to optimize in healthcare and recommendation systems.	0.90	2.40	1.2	Not Attained
CO6	Categorize mathematical models and predictions using machine learning algorithms to perform various real-time tasks.	0.90	2.40	1.2	Not Attained

Action Taken:

CO1: We need to discuss more about datasets in machine learning applications.

CO2: In this detailed discussion, we discuss decision trees and instance based learning algorithms for machine learning applications.

CO3: Artificial neural networks algorithms need to be improved and discussed

CO5: Reinforcement based learning algorithms have to be discussed with more use cases in healthcare systems.

CO6: Mathematical models and predictions must be discussed in real time applications.

Course Coordinator

Mentor

Head of the Department