

(Autonomous) Dundigal, Hyderabad - 500043, Telangana

INFORMATION TECHNOLOGY

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Ms. S CHARVANI	Department:	Information Technology	on Technology	
Regulation:	IARE - R18	Batch:	2019-2023		
Course Name:	Semiconductor Physics	Course Code:	AHSB13		
Semester:	11	Target Value:	60% (1.8)		

Attainment of COs:

Course Outcome		Direct attaiment	Indirect attaiment	Overall attaiment	Observation
CO1	Apply the concepts of dual nature of matter and Schrodinger wave equation to a particle enclosed in simple systems.	3.00	2.70	2.9	Attained
CO2	Demonstrate the classification of Solids and important aspects of semiconductors in terms of carrier concentration and Fermi level.	3.00	2.70	2.9	Attained
CO3	Make use of the key concepts of semiconductors to explain the basic working mechanism of optoelectronic device characteristics of lightemitting diodes, photodetectors and solar cells.	2.30	2.80	2.4	Attained
CO4	Illustrate the properties of dielectric and magnetic materials suitable for engineering applications.	1.30	2.70	1.6	Not Attained
CO5	Compare the concepts of LASER and normal light in terms of mechanism and working principles for applications in different fields and scientific practices.	2.40	2.70	2.5	Attained
CO6	Explain functionality of components in optical fiber communication system by using the basics of signal propagation, attenuation and dispersion.	2.70	2.70	2.7	Attained

Action Taken:

CO4: Need to discuss properties of dielectric and magnetic materials suitable for engineering applications with examples.

Course Coordinator

Mentor

Head of the Department Kolod

xxeddy