

INFORMATION TECHNOLOGY

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Mr. B VENKATA KRISHNA PRASAD	Department:	Information Technology
Regulation:	IARE - R20	Batch:	2021-2025
Course Name:	Applied Physics	Course Code:	AHSC09
Semester:	II .	Target Value:	60% (1.8)

Attainment of COs:

Course Outcome		Direct attaiment	Indirect attaiment	Overall attaiment	Observation
CO1	Apply the concepts of dual nature of matter and Schrodinger wave equation for particle enclosed in simple systems.	2.30	2.30	2.3	Attained
CO2	Demonstrate the classification of solids and important aspects of semiconductors in terms of carrier concentration and Fermi level.	2.00	2.30	2.1	Attained
CO3	Make use of the key concepts of semiconductors to explain the basic working mechanism of optoelectronic device characteristics of light-emitting diodes, photodetectors and solar cells.	2.30	2.40	2.3	Attained
CO4	Illustrate the properties of dielectric and magnetic materials suitable for engineering applications.	2.30	2.30	2.3	Attained
C05	Compare the concepts of LASER and normal light in terms of mechanism and working principles for applications in different fields and scientific practice.	3.00	2.40	2.9	Attained
CO6	Explain functionality of components in optical fiber communication system by using the basics of signal propagation, attenuation and dispersion.	3.00	2.40	2.9	Attained

Action Taken:

Course Coordinator

Head of the Department