

## INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500043, Telangana

## INFORMATION TECHNOLOGY

## ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

| Name of the faculty: | Dr. C R KESAVULU | Department: Information Technology |           |  |
|----------------------|------------------|------------------------------------|-----------|--|
| Regulation:          | IARE - BT23      | Batch:                             | 2023-2027 |  |
| Course Name:         | Applied Physics  | Course Code:                       | AHSD07    |  |
| Semester:            | II               | Target Value:                      | 60% (1.8) |  |

## Attainment of COs:

|     | Course Outcome                                                                                                                                                       |      | Indirect<br>Attainment | Overall<br>Attainment | Observation |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------|-----------------------|-------------|
| CO1 | Use the general rules of indexing of directions and planes in lattices to identify the crystal systems and the Bravais lattices.                                     | 3.00 | 2.20                   | 2.8                   | Attained    |
| CO2 | Extend the principles of dual nature of matter and Schrodinger wave equation to a particle enclosed in simple systems.                                               | 2.00 | 2.30                   | 2.1                   | Attained    |
| CO3 | Analyze the concepts of laser with normal light in terms of mechanism for applications in different fields and scientific practices.                                 | 2.40 | 2.20                   | 2.4                   | Attained    |
| CO4 | Comprehend the knowledge on functionality of components in optical fiber communication system by using the basics of signal propagation, attenuation and dispersion. | 2.40 | 2.30                   | 2.4                   | Attained    |
| CO5 | Gain knowledge on properties of magnetic and superconducting materials suitable for engineering applications.                                                        | 3.00 | 2.30                   | 2.9                   | Attained    |
| CO6 | Formulate the principle factors, fabrication, characterization techniques and the applications of nanomaterials.                                                     | 3.00 | 2.30                   | 2.9                   | Attained    |

Action Taken Report: (To be filled by the concerned faculty / course coordinator)