

INSTITUTEOFAERONAUTICALENGINEERING

(Autonomous)

Dundigal, Hyderabad-500043 **MECHANICAL ENGINEERING** ATTAINMENT OF COURSE OUTCOME-ACTION TAKEN REPORT

Name of the faculty:	Dr. B.D.Y Sunil	Department:	ME	
Regulation:	IARE-R16	Batch:	2016 -2020	
Course Name:	Finite Element Modelling	Course Code:	AME014	
Semester:	VI	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct attainmen t	Indirect attainment	Overall attainment	Observation
CO1	Explain the discretization concepts and shape functions of structural members for computing displacements and stresses.	1.30	2.30	1.5	Attainment target not reached
CO2	Make use of shape functions of truss and beam elements for obtaining stiffness matrix and load vector to compute nodal displacement, stresses.	1.60	2.30	1,7	Attainment target not reached
CO3	Apply the discrete models of CST element for estimating displacement and stress.	0.90	2.30	1.2	Attainment target not reached
CO4	Make use of axi-symmetric modelling concepts to solids of revolution for stress approximation.	0.90	2.30	1.2	Attainment target not reached
CO5	Apply numerical techniques for heat transfer problems to compute the temperature gradients under various thermal boundary conditions.	0.90	1.80	1.1	Attainment target not reached
CO6	Develop the governing equations for the dynamic systems to estimate circular frequency and mode shapes, in correlation with modern tools.	0.90	2.20	1.2	Attainment target not reached

Action taken report:

- CO1: More assignments have to be solved shape functions of structural members for computing displacements and
- CO2: More assignments have to be solved for obtaining stiffness matrix.
- CO3: Additional tutorial hours required to practice discrete models of CST element problems.
- CO4: More assignments have to be practiced for axisymmetric solids subjected to axisymmetric loading with triangular elements.
- CO5: More exercise has to be given for Steady state heat transfer analysis problems
- CO6: Additional exercise required to solve the Dynamic analysis problems

Course Coordinator

Mentor

Mechanica Hopneer INSTITUTE OF AERONAUTICAL ENGINEERIN Dundigal, Hyderabad - 500 043