

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500043, Telangana

MECHANICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Mr. G ARAVIND REDDY	Department:	Mechanical Engineering		
Regulation: Course Name:	IARE - R20 Applied Thermodynamics	Batch:	2020-2024		
		Course Code:	AMEC13		
Semester:	IV	Target Value:	60% (1.8)		

Attainment of COs:

	Course Outcome		Indirect attaiment	Overall attaiment	Observation
CO1	Classify the fuel injection and ignition system to pretend the application of combustion chamber types such as T-head and overhead.	0.30	2.20	0.7	Not Attained
CO2	select normal and abnormal combustion which affects the importance of flame front and flame propagation and knocking of engine variables	0.30	2.30	0.7	Not Attained
CO3	Experiment with the testing and performance of an Internal combustion engine such as fuel consumption, power, efficiencies, and heat balance sheet	0.90	2.20	1.2	Not Attained
CO4	Explain the principle of operation related to the working of fan, blowers and compressors and their applications in industries/ factories and how do they differ with each other	0.30	2.30	0.7	Not Attained
CO5	Solve numerically related to the performance of all the variations in the velocity triangles pretended to single and multi-stage air compressors with industrial applications	0.30	2.20	0.7	Not Attained
CO6	Outline the basic concepts of refrigeration and vapor compression refrigeration systems with superheating and sub cooling to find out COP of refrigeration	0.30	2.20	0.7	Not Attained

Action Taken:

CO1: More assignments may be given on the working of fuel injection and ignition systems of various types of combustion chambers.

CO2: More assignments may be given on normal and abnormal combustion in engines that affects the flame front and flame propagation and knocking.

CO3: More problems may be solved in finding the fuel consumption, power, efficiencies, and heat balance sheet of internal combustion engines.

CO4: More assignments may be given on the working of fan, blowers, and compressors and their applications.

CO5: More problems may be solved on the performance of single and multi-stage air compressors.

CO6: More assignments may be given on finding the COP of vapor compression refrigeration systems.

Course Cooldinator

M, Sund Ross

Head of the Department/ Head of the Department

Mechanical Engineering
INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043