

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

MECHANICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. BDY SUNIL	Department:	Mechanical Engineering	
Regulation:	IARE - R20	Batch: 2022-2026		
Course Name:	Engineering Mechanics	Course Code:	ourse Code: AMEC01	
Semester:	II	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Identify the resultant and unknown forces by free body diagram to a given equilibrium force system through mechanics laws and derived laws	2.10	2.10	2.1	Attained
CO2	Interpret the static and dynamic friction laws for the equilibrium state of a wedge, ladder and screw jack.	2.10	2.20	2.1	Attained
CO3	Identify the centroid and centre of gravity for the simple and composite plane sections from the first principles.	1.70	2.10	1.8	Attained
CO4	Calculate moment of inertia and mass moment of inertia of a circular plate, cylinder, cone, sphere other composite sections from the first principles.	2.10	2.20	2.1	Attained
CO5	Apply D'Alembert's principle and work energy equations toa dynamic equilibrium system by introducing the inertia force for knowing the acceleration and forces involved in the system.	0.00	2.10	0.4	Not Attained
CO6	Develop the governing equation for momentum and vibratational phenomena of mechanical system by using energy principles for obtaining coefficient of restitution and circular frequency	2.10	2.10	2.1	Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO5: More assignments to be given on application of D'Alembert's principle and work energy equations.

Course Coordinator

Mentor

Head of the Department

Head of the Department
Mechanical Engineering
INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043