INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad– 500043

Mechanical Engineering

Attainment of Program Outcomes (POs) and Program Specific Outcomes (PSOs) of 2018 - 2022 batch (IARE - R18)

S.No	Subject	COURSE	Sub Code	P01	P02	P03	P04	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
1	Airframe Structural Design	C101	AAEB54	1.10	1.00													
2	Programming for Problem Solving	C102	ACSB01	1.30	1.50		1.20									2.10		
3	Programming for Problem Solving Laboratory	C103	ACSB02	1.00	1.00	0.50		0.80							0.70	2.20		0.70
4	DATA STRUCTURES	C104	ACSB03	2.30	2.30		2.30											
5	DATA STRUCTURES LABORATORY	C105	ACSB05	1.60				1.60					1.60					
6	Relational Database Management Systems	C106	ACSB34	2.00		2.00		2.00						2.00				2.00
7	Microprocessors and Interfacing	C107	AECB55										2.80					
8	Basic Electrical and Electronics Engineering	C108	AEEB04	1.70	0.90		1.20									0.90		
9	Basic Electrical and Electronics Engineering Laboratory	C109	AEEB08	0.80	1.00					1.20								
10	English	C110	AHSB01	0.50	0.40											0.40		

11	Linear Algebra and Calculus	C111	AHSB02									2.30	2.30					
12	Engineering Chemistry	C112	AHSB03	1.60	1.60													
13	Waves and Optics	C113	AHSB04	1.60	1.60	1.60		1.60										1.60
14	English Language and Communication Skills Laboratory	C114	AHSB08	2.30							2.30	2.30	2.30		2.30			
15	Engineering Chemistry Laboratory	C201	AHSB09	1.40	1.20		0.60									0.70		
16	Engineering Physics Laboratory	C202	AHSB10	1.60	1.90	1.30	2.10		2.10								1.60	
17	Mathematical Transform Techniques	C203	AHSB11	1.80	1.80	1.60	1.30		1.80	1.80						1.60		1.80
18	Probability and Statistics	C204	AHSB12	1.40	1.50		1.10											
19	Business Economics and Financial Analysis	C205	AHSB14	1.40	1.40	1.60	1.20	1.60					1.70		1.50			
20	Project Based Learning (Prototype / Design Building)	C206	AHSB15	2.10	2.10	2.10			2.10	2.10	2.10	2.10	2.10		2.10	2.10		2.10
21	Research Based Learning (Fabrication / Model Development)	C207	AHSB16		1.70	1.70	1.70	1.70				1.70	1.70			1.70		
22	Soft Skills and Interpersonal Communication	C208	AHSB18	1.60	1.60	1.60	1.60	1.60	1.60		1.60	1.60	1.60		1.60			
23	Workshop Manufacturing Practices Laboratory	C209	AMEB01	1.50	1.50		0.70											2.30
24	Engineering Graphics and Design Laboratory	C210	AMEB02	2.20	2.30	2.20	2.40										2.40	
25	Engineering Mechanics	C211	AMEB03	1.80	2.10	1.80	1.30	2.10		1.20	1.80		2.30	1.80	1.30	1.80		
26	Thermodynamics	C212	AMEB04	1.80	2.10	1.40									2.00	1.20		2.30
27	Manufacturing Processes	C213	AMEB05	2.30	2.30	2.40	2.60	2.60						2.30	2.30			2.20

28	MANUFACTURING PROCESSES LABORATORY	C214	AMEB06	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		2.00	
29	MACHINE DRAWING THROUGH CAD LABORATORY	C215	AMEB07	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		2.00
30	FLUID MECHANICS AND MACHINES	C216	AMEB08	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70		1.70
31	APPLIED THERMODYNAMICS - I	C217	AMEB09	2.60	2.90	2.60		2.40	2.40	2.40						2.60		
32	KINEMATICS OF MACHINES	C218	AMEB10	2.30	2.20	2.10			2.80	2.10	2.80					2.40	2.20	
33	MATERIALS AND MECHANICS OF SOLIDS	C301	AMEB11	2.50	2.50	2.90										1.80		
34	OPTIMIZATION TECHNIQUES	C302	AMEB12	2.60	2.80	2.60	2.40	2.90		2.90	2.20	2.20	2.90	2.20	2.40	2.20	2.40	
35	FLUID MACHINERY AND I.C ENGINES LABORATORY	C303	AMEB13	1.30	1.30	1.50	1.60		1.50	2.10					1.60		1.00	
36	MATERIALS AND MECHANICS OF SOLIDS LABORATORY	C304	AMEB14	0.80	0.80	0.70			0.70	0.70							0.80	
37	OPTIMIZATION TECHNIQUES LABORATORY	C305	AMEB15	2.40	2.50			1.70								2.40		
38	Manufacturing Technology	C306	AMEB16	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30
39	Dynamics of Machinery	C307	AMEB17	2.10	2.10			2.10	2.10	2.10	2.10	2.10	2.10		2.10	2.10		2.10
40	Applied Thermodynamics-II	C308	AMEB18	2.10	2.10	2.10	2.10	2.10		2.10	2.10	2.10	2.10	2.10	2.10	2.10		2.10
41	Manufacturing Technology Laboratory	C309	AMEB19	2.10	2.10	2.40	2.50									1.20	1.20	
42	Theory of Machines Laboratory	C310	AMEB20	1.30	1.30						0.90	1.00		1.10				

43	Heat Transfer	C311	AMEB21	1.00	0.90	0.90	0.90		0.90	0.90							0.90	
44	Finite Element Methods	C312	AMEB22	0.70	0.70	0.70	0.70	0.70							0.70		0.40	0.70
45	Design of Machine Elements	C313	AMEB23	0.90	0.60	1.00										0.80		0.80
46	Heat Transfer Laboratory	C314	AMEB24	1.10	1.10	1.10	1.40	1.30									1.20	1.40
47	Fluid Thermal Modeling and Simulation Laboratory	C315	AMEB25	0.40	0.40	0.40										0.40		
48	CAD/CAM	C316	AMEB26	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
49	Instrumentation and Control Systems	C317	AMEB27	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10		2.10	2.10
50	CAD/CAM Laboratory	C318	AMEB28	2.30	2.30	2.30	2.30	2.30	2.30		2.30	2.30	2.30	2.30	2.30		2.30	2.30
51	Instrumentation Control Systems and PDP Laboratory	C401	AMEB29	2.10	2.40	1.70		1.40		1.70				2.50	1.50	2.40		1.90
52	Automobile Engineering	C402	AMEB33	1.50	1.50	1.80			1.60						1.60		1.30	
53	Computational Fluid Dynamics	C403	AMEB35	1.40	1.40	1.90								1.40	1.40	1.40		1.40
54	Additive Manufacturing Processes	C404	AMEB39						1.20	1.20	1.20	1.20	1.20	1.20	1.20			
55	Advanced Machine Design	C405	AMEB42	1.40	1.40											1.40		
56	DESIGN FOR MANUFACTURING	C406	AMEB48	1.70	1.70	1.70	1.70	1.70	1.70	1.70		1.70	1.70	1.70	1.70	1.70	1.70	1.70
57	UNCONVENTIONAL MACHINING PROCESS	C407	AMEB50	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10
58	Production Planning and Control	C408	AMEB52	0.60	0.60	0.70			0.50					0.70	0.50	0.60		0.50
59	Project Work – (phase - I)	C409	AMEB58	0.70	0.80	0.80							0.80			0.50		
60	Project Work – (phase - II)	C410	AMEB59	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10

Direct Attainment Value	1.7	1.7	1.7	1.7	1.9	1.8	1.8	2	1.9	2	1.9	1.7	1.6	1.7	1.8

Overall Attainment

							Pro	ogram (Outcon	nes (POs))					
S.No	Assessment Components (Direct + Indirect)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
1	Direct Assessment (CIA + SEE + Course End Survey) (a)	1.7	1.7	1.7	1.7	1.9	1.8	1.8	2	1.9	2	1.9	1.7	1.6	1.7	1.8
2	Program Exit Survey (b)	2.5	2.5	2.5	2.4	2.4	2.4	2.5	2.2	2.2	2.3	2.3	2.4	2.3	2.2	2.2
3	Alumni Survey (c)	2.3	2.3	2.3	2.3	2.2	2.2	2.2	2.0	2.0	2.1	2.1	2.2	2.2	2.2	2.3
4	Employer Survey (d)	2.6	2.5	2.5	2.5	2.4	2.5	2.5	2.5	2.6	2.5	2.5	2.5	2.6	2.5	2.5
Final atta d*0.05	inment = a*0.8 + b*0.1 + c*0.05 +	1.9	1.9	1.9	1.8	2	2	2	2	2	2.1	2	1.8	1.8	1.8	1.9

Actions taken based on the results of evaluation of each of the POs &PSOs

Measures identified and implemented to improve POs & PSOs attainment levels.

POs Attainment Levels and Actions for improvement

POs	Target	Attainment	Observation
105	Level	Level	Observation
PO1: Engineering	Knowledge: Apply the knowledge of	of mathematics, scie	ence, engineering fundamentals, and an engineering
specialization to the	solution of complex engineering pro	oblems.	
PO1	2.0	1.9	Target level has been Achieved. The following observations are made: 1. Mechanical engineering curriculum requires the strong foundation of theoretical and practical knowledge of science and mathematics, which the students study during their entire programme, especially in their first year, but improvement in correlating the theoretical concepts with applications is required.

	2. Students should give more attention to solve the subjects having critical thinking.

- 1. The department encouraging the students to participate in Professional activities/ Design challenges such as, SAE-SUPRA (Formula Student Racing Car), CII design, Robotic challenge by Flipkart, SAE Aeromodelling Competitions and SAE student conventions which enhanced their Engineering knowledge with defined level of their standards.
- 2. Additional classes are conducted for enhancing the mathematical fundamentals.
- 3. More tutorial sessions conducted for core subjects such as Applied thermodynamics, Kinematics of Machinery, Design of Machine Members and Thermal Engineering for problem solving.
- 4. Assignments will be given for practice.

PO2:Problem analysis: Identify, formulate, review research literature,

and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO2	1.5	1.9	Target level has been Achieved. The following observations are made: 1. Students should focus on real world Problems
			2. Research exposure of the students to be enhanced.

Action:

- 1. More emphasize on tutorial classes for problem solving.
- 2. More problems of assignment and the observing the same on a regular basis.
- 3. Students are motivated to observe, their homes and surroundings to gain insight into real life engineering problems and think of possible approaches/solutions to these problems by interactive sessions.
- 4. Gained knowledge on complex engineering problems and solution on visiting field/ industry and internships.
- 5. Students are inspired to participate technical events like, Azadi ka Amrit Mahotsav and industry exhibitions air shows for developing an analytical mind which can work towards problem solving.
- 6. Students are encouraged to to do their final project works in the areas of sustainable development goals. i.e, Waste management and waste recycling

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

			Target level has been Achieved. The following observations are made:
PO3	1.4	1.9	Most of the projects developed by the student as course/mini projects/major projects (final year) are considering the social and environmental issues.

- 1. More design classes to be taught in tutorial classes.
- 2. More emphasis on mathematical basic to be given in the previous course
- 3. Students are motivated to include all standard parameters and constraints according to National and International safety norms and to address environmental concerns.
- 4. Practical approach of teaching to be adapted.
- 5. Stuents are encouraged to involve in the industry consultation activities and provide solutions in the diversified areas which include, pharmaceutical industries, power transmission industries.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

			Target level has been Achieved. The following observations are made:
PO4	1.4	1.8	 Develop the ability to experimentally analyze the problems through relevant softwares. Most of the project works are research based where students have to design experiments analyses and synthesis the data, produce results and derive specific conclusions.

Action:

- 1. Conducted expert talk on emerging technologies for employing complex problem-solving methods by Industry and academia experts.
- 2. Courses are included and syllabi updated to include and inculcate the analysis and research skills.

		-	resources, and modern engineering and IT tools including
prediction and model	ing to complex engineering activit	ties with an understa	<u>_</u>
			Target level has been Achieved. The following observations are made:
PO5	2.0	2.0	1. Students were needed to be encouraged to use the Design/Analysis tools for better opening for placements and/or higher studies.
			2. It is perceived that Up-gradations of tools and resources are essential to meet the industry standards and research.
4 .0			

- 1. Conducted hands on training and certification programmes on modelling and simulation tools like, ANSYS, MATLAB, QForm, Fusion 360, Revit, Solid works and CATIA.
- 2. Conducted workshop on CNC Programming to prepare online and offline program techniques.
- 3. Training programs on basic Electro hydraulic and pneumatic technologies using trainer kits.
- 4. Students are taught with modern modes and methods of teaching like using interactive and digital boards and learning in smart class rooms equipped with real time lecture facilities.

PO6: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and

5. The students are insisted to develop python coding for the mathematical modelling of their project work.

PO6

1.6

2.0

Target level has been Achieved. The following observations are made:

1. Exploration of problems faced by society were addressed.

2. The students are found to be less active as far as social activities were concerned; also, they are sensitized about the basic health and safety issues with engineering point of view.

3. Students need to be giving more significance to these

			dimensions in the professional career.	
Action:				
1. Students are encouraged to take up the project works on environment, health and social problems which include examples related to Desktop				
oil extraction Machine, Pharmaceutical Blending Machine, Rice planting and paddy cutting machines, Milk Extraction Machine, Rescue Robot				
	ent, and assistance in Mask design in			
		ents visited industry to	expand their practical knowledge with the effect of improved	
practices in engineer		***		
	perimental investigation of Effective	Waste Recovery from	Automotive	
Exhausts.				
DOZ E	1	·	. 1	
	•		essional engineering solutions in societal and	
environmental contex	xts, and demonstrate the knowledg	e of, and need for su		
			Target level has been Achieved. The following observations are made:	
DO	1.0	2.0	1. The issues of global and environmental responsiveness among the student should be	
PO7	1.6	2.0		
			improved.	
			2. The concept of sustainability should reach the	
A 49			students.	
Action:	1	-:-1- C-1	and a late of the Calam Darkins and a late of the Calam	
(Bio fuel).	iged to do projects on composite mate	riais, Soiar energy ope	rated vehicle, Solar Refrigeration system. and alternate fuels	
,	actures that deal with environmental	and cuctainability iccu	es, have been introduced with the aim of understanding the	
			es, have been introduced with the aim of understanding the sets and understanding the need for bringing about	
sustainability in over		a chvironinichtar conte.	and understanding the need for orniging about	
•	*	cs in the areas of susta	inable development goals. i.e, Waste management and waste	
recycling				
PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.				
	, . ,		Target level has been Achieved. The following	
			observations are made:	
PO8	1.6	2.0		
			1. The students are doing better in improving the	

			s on com	mun	d of engineering dications and engine engine.	_	
	2.	Ethical implemen	1	of	engineering	system	is

- 1. Guest lectures are conducted to improve the moral values.
- 2. Students are enthused and made aware about the demands of engineering profession, duties towards society & fellow human beings and importance of honesty and ethics.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

			Target level has been Achieved. The following
			observations are made:
PO9	1.6	2.0	The students seem ready for working both as
			individuals and in a team work.

Action:

- 1. Group of students participated in the national level competitions such as, SAE SUPRA, SAE student convention, SAE Aero modelling, Flipkart Robotic challenge, Design challenges at various National Level Institutes.
- 2. The laboratory work of the students is conducted by framing student groups so that students learn to work in a team environment.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO10	1.6	2.1	Target level has been Achieved. The following observations are made: The communication, presentation and report writing skills are to be further enhanced among the students.
Action:			

- 1.Soft skill training is imparted to students to develop various expressions of communication or technical talks by group discussion, Business presentations, Budget estimations and new learning outcomes.
- 2. Students that are seen to be weak in communication skills are encouraged to undergo relevant courses and are also referred to language lab for improving their communication skills.
- 3. In the present curriculum students are presenting Teck-Talk and concept videos as a part of continuous internal assessment to improve their communication skills

P11: Project management and finance: Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

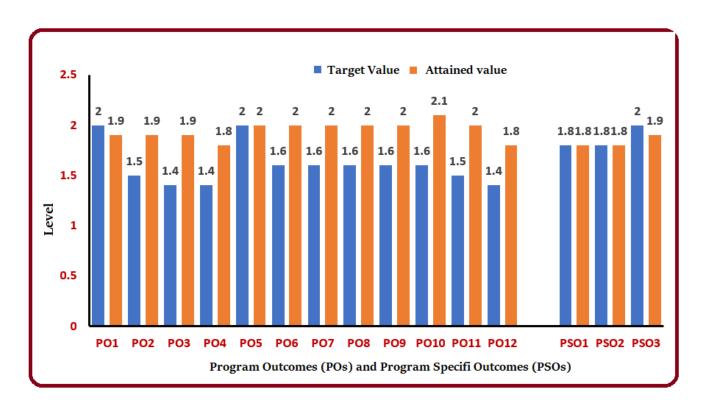
			Target level has been Achieved. The following
	1.5	2.0	observations are made:
			Few courses of curriculum give information of
PO11			Management principle and applying managerial
			principles to his/her work including financial inferences
			and to manage the project in multidisciplinary
			environments.

Action 1::

- 1. The Project based learning and Research based Learning also studied for implementing their projects.
- 2. The awareness is created among the student regarding the management principles and managing projects. The relevant courses are revised and upgraded regularly to cater to latest techniques and trends in the area.

P12:Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

			Target level has been Achieved. The following
			observations are made:
			The pre final year and final year courses of the program
PO12	1.4	1.9	are demonstrating the resource for contemporary issues
			and lifelong learning.


Action:

- 1.Expert talks for different topics were conducted in our institutions
- 2. Students are encouraged to take-up field visits, internships. Inplant training and field practisms to get the awareness on current industrial challenges.

PSOs Attainment Levels and Actions for improvement

PSOs	Target Level	Attainment Level	Observation	
	on Ideation and Resear simulation and high sp	<u>e</u>	ufacturing in Product development using Additive manufacturing, Computer Numerical	
PSO1	1.5	1.8	Target level has been Achieved. The following observations are made: Different manufacturing methods and designs are used to develop implement, test, validate and maintain the Mechanical engineering foundation for industry. Publish/ exhibit/ innovate through conferences journals etc.	
2. Concepts of l3. Students are	Rapid prototyping and	en to students with real new developments are i e real life problems dur		
PSO2: Formu	late and Evaluate conce	epts of Thermo-Fluid Sy	stems to provide solutions for Inter Disciplinary Engineering Applications.	
PSO2	1.8	1.8	Target level has been Achieved. The following observations are made: Concepts of Thermo-fluid systems provide various solutions through modelling and optimization methods.	
Action:		I		
		topics such as ANSYS e simulation knowledge	CFD simulations, QForm for metal forming simulations, Aerodynamic testing of wing e.	
2. Academic wo	orkshops and conference	es are coming into pictu	are to apply more knowledge in terms of conduction of experiments and analysis as	
PSO3 : Make Studies.	use of Computational a	and Experimental tools	for Building Career Paths towards Innovation Startups, Employability and Higher	
			Target level has been Achieved. The following observations are made: Computational and Experimental knowledge / skills to be transferred to the Mechanical engineers.	
PSO3	1.6	2.0		
Action:				

- 1. Students are encouraged to participate in lectures conduced by MSME Govt of India and NIT Ahmedabad to take up entrepreneurship and focus on Higher education and Research.
- 2. Project works are encouraged that involve the usage of modern tools and techniques of Data Collection/ Analysis/ Implementing

Head of the Department
Mechanical Engineering
INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043