

#### INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500043, Telangana

### STRUCTURAL ENGINEERING

## ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

| Name of the faculty: | Mr. GUDE RAMA KRISHNA            | NA Department: |           |  |
|----------------------|----------------------------------|----------------|-----------|--|
| Regulation:          | IARE - R18                       | Batch:         | 2018-2020 |  |
| Course Name:         | THEORY OF THIN PLATES AND SHELLS | Course Code:   | BSTB03    |  |
| Semester:            | r                                | Target Value:  | 60% (1.8) |  |

#### Attainment of COs:

|     | Course Outcome                                                                                                                                                  |      | Indirect<br>Attainment | Overall<br>Attainment | Observation  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------|-----------------------|--------------|
| CO1 | Analyse the analytical solutions for rectangular plates by using Navier and Levy's methods, distributed and concentrated loads                                  | 2.00 | 2.40                   | 2.1                   | Attained     |
| CO2 | Explain Governing differential equations in polar coordinate system of a annular plate subjected to different loading conditions for the design of thin plates. | 2.70 | 2.40                   | 2.6                   | Attained     |
| CO3 | Examine the governing differential equation of rectangular plates on elastic foundations for the design of foundations.                                         | 0.30 | 2.50                   | 0.7                   | Not Attained |
| CO4 | Outline the general theory in bending of cylindrical shell, simplified method for analysis and design of the shells.                                            | 0.90 | 2.40                   | 1.2                   | Not Attained |
| CO5 | Solve the governing equation of plate bending under the combined action of in plane loading and lateral loads for the design of plates.                         | 3.00 | 2.50                   | 2.9                   | Attained     |
| CO6 | Examine the buckling of rectangular plates by compressive forces acting in one and two directions for the analysis of plates.                                   | 0.90 | 2.60                   | 1.2                   | Not Attained |

# Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO3: Provided numerical worksheets and assignments focused on evaluating deflections and bending moments of plates on elastic media. CO4: Conducted classroom demonstrations explaining the fundamentals of cylindrical shell bending theory and shell geometry. CO6: Organized guided problem-solving sessions where students evaluated critical buckling loads for rectangular plates with various boundary conditions.

Course Coordinator

Mentor

Head of the Department

Civil Engineering
\*NSTITUTE OF AERONAUTICAL ENGINE

Dundigal Hydership