

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500043, Telangana

STRUCTURAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Mr. GUDE RAMA KRISHNA	Department:	Structural Engineering	
Regulation:	IARE - R18	Batch:	2020-2022	
Course Name:	THEORY OF THIN PLATES AND SHELLS	Course Code:	BSTB03	
Semester:	al I n	Target Value:	60% (1.8)	

Attainment of COs:

	Course Outcome	Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Analyse the analytical solutions for rectangular plates by using Navier and Levy's methods, distributed and concentrated loads	0.30	2.40	0.7	Not Attained
CO2	Explain Governing differential equations in polar coordinate system of a annular plate subjected to different loading conditions for the design of thin plates.	0.60	2.50	1	Not Attained
CO3	Examine the governing differential equation of rectangular plates on elastic foundations for the design of foundations.	0.90	2.40	1.2	Not Attained
CO4	Outline the general theory in bending of cylindrical shell, simplified method for analysis and design of the shells.	0.60	2.40	1	Not Attained
CO5	Solve the governing equation of plate bending under the combined action of in plane loading and lateral loads for the design of plates.	0.90	2.40	1.2	Not Attained
CO6	Examine the buckling of rectangular plates by compressive forces acting in one and two directions for the analysis of plates.	0.90	2.70	1.3	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

- CO1: Conducted classroom lectures explaining analytical solutions for rectangular plates using Navier and Levy's methods.
- CO2: Organized tutorials to explain boundary conditions specific to annular and circular plates.
- CO3: Explained the influence of foundation stiffness on plate behavior using practical engineering examples.
- CO4: Compared analytical and simplified design approaches to reinforce method selection for engineering practice.
- CO5: Demonstrated step-by-step solution procedures for computing deflections, bending moments, and shear forces.
- CO6: Conducted tutorials to reinforce understanding of buckling criteria and stability analysis.

Course Coordinator

Mentor

Head of the Department

MISTITUTE OF AERONAUTIC

Civil Engineering