

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	OBJEC	OBJECT ORIENTED ANALYSIS AND DESIGN PATTERNS				
Course Code	ACS01	5				
Programme	B.Tech					
Semester	VI	CSE	,			
Course Type	Core	Core				
Regulation	IARE - R16					
Theory Practic				cal		
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits
	3		1	4	3	2
Chief Coordinator	Mr. C Raghavendra, Assistant Professor					
Course Faculty	Mr. R M Noorullah, Associate Professor Dr. Y Mohanaroopa, Professor Ms. N Shalini, Assistant Professor					

I. COURSE OVERVIEW:

The Unified Modeling Language is a graphical language for visualizing, specifying, constructing and documenting the artifacts of a software intensive system. The UML gives you a standard way to write systems blueprints covering conceptual things such as business processes and system functions as well as concrete things such as classes written in a specific programming language database schemas and reusable software components. Learn what the UML is what it is not and why the UML is relevant to the process of developing software intensive systems.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACS003	III	Object Oriented Programming through JAVA	4
UG	ACS008	V	Software Engineering	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Object Oriented Analysis And Design Patterns	70 Marks	30 Marks	100

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experim	ments					

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessm	ent pattern	for	CIA
------------------	-------------	-----	-----

Component		Total Marks		
Type of Assessment	sessment CIE Exam Quiz / AAT		Total Warks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Assignments
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	3	Seminars
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/development of solutions: Design solutions for	2	5 minutes video
	complex engineering problems and design system components		
	or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural,		
	societal, and environmental considerations		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.	2	Seminars
PSO 2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.	3	Assignments
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	1	5 minutes video

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The o	The course should enable the students to:		
Ι	Develop the skills to analyze and design object-oriented problems.		
II	Create design patterns to solve problems based on object oriented concepts.		
III	Understand the various processes and techniques for building object-oriented software systems.		
IV	Prepare unified modeling techniques for case studies.		

IX. COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

S. No.	Description
ACS015.01	Able to show the importance of modeling concept for object oriented development in
ACS015.02	Demonstrate the Conceptual model of UML and SDLC.
ACS015.03	Able to understand the role and function of each UML model in software development
	using object-oriented approach.
ACS015.04	Illustrate the importance of classes and their associated relationships by understanding
	various common mechanisms.

AC\$015.05	Able to differentiate advance abject ariented annuage from the traditional annuage for
ACS015.05	Able to differentiate advance object-oriented approach from the traditional approach for
	design and development of System.
ACS015.06	Analyze the Objects and Classes are required for the development of software system.
ACS015.07	Creation of interaction diagram that model the dynamic aspects of a software system.
ACS015.08	Use case and activity studies to illustrate the analysis and design concepts.
ACS015.09	Identify, analyze, and model behavioral concepts of the system and also know the
	importance of events and signals and their modeling techniques.
ACS015.10	Analyze and understand the uses of process and threads and time and space to model and
	development of a system.
ACS015.11	Demonstrate state machines and state chart diagrams and their modeling techniques.
ACS015.12	Illustrate the uses of component and deployment diagram and their modeling techniques.
ACS015.13	Understands how to apply the pattern based analysis and design to the software to be
ACS015.14	Describe how design patterns facilitate development and list several of the most popular
ACS015.15	Identify and describe design patterns and their application in a software design project.
ACS015.16	An Ability to refactor poorly designed solutions by using the appropriate design patterns.
ACS015.17	Develop UML models for design patterns using currently available software modeling
ACS015.18	Evaluate and apply design patterns, architectural patterns and enterprise patterns to the development of software systems.
ACS015.19	Assess the use of Design patterns in the design of software systems and the refactoring of existing systems.
ACS015.20	Analyze software components and case studies of system architecture and determine how integration with new and existing systems may be achieved.

X. COURSE LEARNING OUTCOMES (CLOs):

CO Number	Course Outcome	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
CO 1	Understand Object Oriented and UML concepts	CLO 1	Able to show the importance of modeling concept for object oriented development in system.	PO 1	3
		CLO 2	Demonstrate the Conceptual model of UML and SDLC.	PO 1	3
		CLO 3	Able to understand the role and function of each UML model in software development using object-oriented approach.	PO 1	3
		CLO 4	Illustrate the importance of classes and their associated relationships by understanding various common mechanisms.	PO 1	3
		CLO 5	Able to differentiate advance object-oriented approach from the traditional approach for design and development of System.	PO 2	3
CO 2	Apply advanced behavioral modelling techniques in design and drawing UML diagrams	CLO 6	Analyze the Objects and Classes are required for the development of software system.	PO 2	3
	for various systems	CLO 7	Creation of interaction diagram that model the dynamic aspects of a software system.	PO 1	2
		CLO 8	Use case and activity studies to illustrate the analysis and design concepts.	PO 1, PO 2, PO 3	2
CO 3	Apply architectural modelling techniques in design and drawing UML diagrams for	CLO 9	Identify, analyze, and model behavioral concepts of the system and also know the importance of	PO 1, PO 2	3

CO Number	Course Outcome	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
	different systems		events and signals and their		
			modeling techniques.		
		CLO	Analyze and understand the uses	PO 2	3
		10	of process and threads and time		
			and space to model and		
		CT O	development of a system.	DO 1	
		CLO	Demonstrate state machines and	PO I	3
		11	modeling techniques		
		CLO	Illustrate the uses of component	PO 1	3
		12	and deployment diagram and their		
			modeling techniques.		
CO 4	Create design solutions for	CLO	Understands how to apply the	PO 1	3
	design problems by using	13	pattern based analysis and design		
	ERASP and GOF patterns		to the software to be developed.		
		CLO	Describe how design patterns	PO 1,	3
		14	facilitate development and list	PO 2	
			several of the most popular		
			patterns.		
		CLO	Identify and describe design	PO 1	2
		15	patterns and their application in a		
		CT O	software design project.	DO 0	
		CLO	Ability to refactor poorly designed	PO 3	2
		16	solutions by using the appropriate		
		CLO	design patterns.	DO 1	2
		17 CLO	Develop UNIL models for design	PO I,	2
		17	software modeling tools	PO 2	
CO 5	Apply design patterns for some	CLO	Evaluate and apply design	PO 1	2
005	case studies	18	patterns architectural patterns and	PO 1, PO 2	2
	cuse studies	10	enterprise patterns to the	PO 3	
			development of software systems.	105	
		CLO	Assess the use of Design patterns	PO 1.	3
		19	in the design of software systems	PO2	_
			and the refactoring of existing		
			systems.		
		CLO	Analyze software components	PO 1,	3
		20	and case studies of system	PO 2	
			architecture and determine how		
			integration with new and existing		
			systems may be achieved		

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(COs)		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	2											2		
CO 2	2	3	2											3	
CO 3	2	3											2		1

CO 4	2	2	3								3	
CO 5	3	3	3									2

3 = **High**; **2** = **Medium**; **1** = **Low**

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

					Progra	am Ou	itcome	es (PO:	s)				Prog Outc	ram Sp omes (1	oecific PSOs)
(CLOS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												2		
CLO 2	3													3	
CLO 3	3												2		1
CLO 4	3													3	
CLO 5		3											2		
CLO 6		3												3	
CLO 7	2												2		1
CLO 8	2	2												3	
CLO 9	2	2											2		
CLO 10		3												3	
CLO 11	3												2		
CLO 12	3													3	
CLO 13	3													3	
CLO 14	2	2											2		1
CLO 15	2												2		
CLO 16			2										2		
CLO 17	2	2											2		
CLO 18	2	2	2										2		
CLO 19	3	3												3	
CLO 20	3	3													1

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams PO 1, PO 2, PO 3, PSO 1,	EEE Exams PO 1, PO 2, PO 3, PSO 1,	Assignments	PO 1, PSO 2	Seminars	PO 2, PSO 1
---	--	-------------	----------------	----------	----------------

	PSO 2		PSO 2				
Laboratory Practices	PO 1, PO 2, PO 3, PSO 2	Student Viva	_	Mini Project	-	Certification	-
Term Paper	-						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

SYLLABUS	
UNIT-I	STRUCTURAL MODELLING
Introduction conceptual m common mec	to UML: Importance of modeling, principles of modeling, object oriented modeling, nodel of the UML, architecture, software development life cycle; Classes, relationships, hanisms and diagrams.
UNIT -II	ADVANCED BEHAVIORAL MODELING
Modeling tec case diagrams	hniques for class and object diagrams; Interactions: Interaction diagrams; Use cases: Use s, activity diagrams.
UNIT -III	ARCHITECTURAL MODELING
Events and si State chart dia	gnals, state machines, processes and threads, time and space. agrams, component diagrams, deployment diagrams.
UNIT -IV	DESIGN PATTERN
GRASP: Des creational, fac	igning objects with responsibilities, creator, low coupling, high cohesion, design patterns, ctory method, structural, behavioral, strategy.
UNIT -V	APPLYING DESIGN PATTENS
System seque Case study: T	ence diagrams, logical architecture refinement; domain models, domain model refinement The next gen POS system, inception.
Text Books:	
 Grady Bo Pearson E Enrich Ga 2nd Edition 	och, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Language User Guide", ducation, 2 nd Edition, 2004. mma, Richard Helm, Ralph Johnson, John Vlissides, "Design Patterns", Pearson Education, n, 2009.
3. Craig Lar	nan, "Applying UML and Patterns", 3 rd Edition, 2011.
Reference B	ooks:
1. Simon Be Using UN	ennett, Steve Mc Robb and Ray Farmer, "Object Oriented Systems Analysis and Design ML", McGraw-Hill Education, 4 th Edition, 2010.

2. Pascal Roques, "Modeling Software Systems Using UML2", WILEY- Dreamtech India Pvt. Ltd, 2nd Edition, 2007.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Importance of modeling, principles of modeling, object oriented	CLO 1	T1:1.1

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
	modeling,		
3-4	Conceptual model of the UML	CLO 2	T1:2.3
5-9	Classes	CLO 4	T1:4.1
10-11	Relationships	CLO 4	T1:5.1
12-13	Common mechanisms	CLO 4	T1:6.1
14-15	Diagrams	CLO 2	T1:7.1.1
16-17	Interfaces, types and roles,	CLO 4	T1:11.4
18	Packages, terms, concepts,	CLO 4	T1:12.5
19-20	Modeling techniques for class and object diagrams;	CLO 6	T1:14.3
21	Interactions: Interaction diagrams;	CLO 7	T1:15.1
22-23	Use cases: Use case diagrams, activity diagrams.	CLO 8	T1:16.4
24-25	Events and signals	CLO 9	T1:20.5
26-27	State machines, processes and threads	CLO 10	T1:21.4
28	Time and space	CLO 10	T1:23.6
29-30	State chart diagrams	CLO 11	T1:23.1
31-32	Component diagrams	CLO 12	T1:29.3
33-34	Deployment diagrams.	CLO 12	T1:30.7
35	GRASP: Designing objects with responsibilities	CLO 13	T2:1.1
36-37	creator, information expert	CLO 13	T2:3.6
38-39	low coupling, high cohesion	CLO 14	T2:27.12
40	Design patterns	CLO 13	T2:27.12
41-42	Creational, factory method	CLO 15	T2:27.12
43-44	Structural, bridge	CLO 18	T2:4.2
45	Adaptor	CLO 16	T2:4.1
46	Behavioral, strategy	CLO 19	T2:5.1
47	System sequence diagrams	CLO 7	T2:27.17
48-50	Relation between sequence diagrams and use cases logical architecture and UML package diagram	CLO 7	T2:27.18
51-54	Case study: The next gen POS system	CLO 17	T2:27.19
55	Inception, use case modeling	CLO 8	T1:17.3
56-57	Relating use cases	CLO 8	T1:16.4
58	Include, extend and generalization	CLO 20	T1:10.3
59-60	Domain models	CLO 20	T3:31.1
61-62	Domain model refinement	CLO 20	T3:31.2

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S. NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Usage of software tools to build right	Seminars /	PO 1	PSO 1
	product	NPIEL		
2	Real time Online Transform System	Seminars /	PO 3	PSO 1
		Guest /		
		Lectures		
3	Case study of next gen POS system	Seminars /	PO 2	PSO 1
	and other applications	Laboratory		
		Practices		

Prepared by: Mr. C Raghavendra, Assistant Professor