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COURSE OBJECTIVES (COs):

I: Learn fundamentals of linear programming through optimization.

II: Apply the mathematical results and numerical techniques of

optimization theory to concrete Engineering Problems

III: Understand and apply optimization techniques to industrial

applications.

IV: Apply the dynamic programming and quadratic approximation to 

electrical and  electronic problems and applications



CLO 1: Explain the various characteristics and phases of linear

programming.

CLO 2: Formulate the various linear programming problems by

using graphical and simplex methods.

CLO 3: Understand the artificial variable techniques like two

phase and Big-M methods

CLO 4: Explain Transportation problem and the formulation of the 

problem by using optimal solution.

CLO 5: Solve the assignment problems by using optimal solutions 

and the variance of assignment problems.

COURSE LEARNING OUTCOMES



CLO 6: Describe the travelling sales man problem by using

assignment method.

CLO 7: Explain the sequencing and the types of sequencing

methods.

CLO 8: Use n jobs through two machines and n jobs through three

machines to solve an appropriate problem.

CLO 9: Use two jobs through m machines to solve an appropriate

problem.

CLO 10: Understand theory of games and the terminologies used

in theory of games concept.



CLO 11: Determine appropriate technique to solve to a given 

problem.

CLO 12: Solve the problems by using dominance principle and 

Graphical method.

CLO 13: Understand the Bellman’s principle of optimality.

CLO 14:  Describe heuristic problem-solving methods with stages.

CLO 15: Understand the mapping of real-world problems to

algorithmic solutions.

CLO16:List out the various applications of dynamic programming.

CLO17:Define the shortest path problem with approximate

solutions.



CLO 18: Explain the linear programming problem with
approximate solutions

CLO 19: Define the various quadratic approximation methods for 
solving constraint problems.

CLO 20: Explain the direct quadratic approximation for solving
the constraint problems.

CLO 21: Explain the quadratic approximation method by using
lagrangian function.

CLO 22: Describe the variable metric methods for constrained
optimization.



UNIT -I

7



Running outcomes
CLO 1: Explain the various characteristics and phases of linear

programming.

CLO 2: Formulate the various linear programming problems by

using graphical and simplex methods.

CLO 3: Understand the artificial variable techniques like two phase

and Big-M methods



Operations Research

9

• Operations Research is an Art and Science

• It had its early roots in World War II and is flourishing in

business and industry with the aid of computer

• Primary applications areas of Operations Research include

forecasting, production scheduling, inventory control, capital

budgeting, and transportation.



What is Operations Research?
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Operations

• The activities carried out in an organization.

Research

• The process of observation and testing characterized by the  

scientific method. Situation, problem statement, model  

construction, validation, experimentation, candidate solutions.

• Operations Research is a quantitative approach to decision  
making based on the scientific method of problem solving.



• Operations Research is the scientific approach to execute  

decision making, which consists of:

– The art of mathematical modeling of complex situations

– The science of the development of solution techniques

used to solve these models

– The ability to effectively communicate the results to the  

decision maker

11



What do Wedo
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1. OR professionals aim to provide rational bases for decision

making by seeking to understand and structure complex

situations and to use this understanding to predict system

behavior and improve system performance.

2. Much of this work is done using analytical and numerical

techniques to develop and manipulate mathematical and

computer models of organizational systems composed of

people, machines, and procedures.



Terminology

13

• The British/Europeans refer to ―Operational Research", the  

Americans to ―Operations Research" - but both are often  

shortened to just "OR".

• Another term used for this field is ―Management Science"

("MS"). In U.S. OR and MS are combined together to form

"OR/MS" or "ORMS".

• Yet other terms sometimes used are ―Industrial Engineering"  

("IE") and ―Decision Science" ("DS").



History of OR

14

• OR is a relatively new discipline.

• 70 years ago it would have been possible to study

mathematics, physics or engineering at university it would not  

have been possible to study OR.

• It was really only in the late 1930's that operationas research  

began in a systematic way.



Features/Characteristics of OR
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• Decision-Making

• ScientificApproach

• Inter-Disciplinary TeamApproach

• SystemApproach

• Use of Computers

• Objectives

• Human Factors



Scope of OR
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The scope of OR is not only confined to any specific agency
like defense services but today it is widely used in all
industrial organizations.

It can be used to find the best solution to any problem be it
simple or complex. It is useful in every field of human
activities. Thus, it attempts to resolve the conflicts of interest
among the components of organization in a way that is best for
the organization as a whole.



Limitations Of OR

17

• Magnitude of Computation

• Non-Quantifiable Factors

• Distance between User andAnalyst

• Time and Money Costs

• Implementation



Model
6 verific ationand  

validation

Yes

7

Experimentaldesign

5

Coding

4

Data analysis

3
Data collection

2

Model building

1

Pr oblem formulation

8

Analysis of results

Steps in ORStudy

No
Fine-tune  

model
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What you Should Know about OR

19

• How decision-making problems are characterized

• OR terminology

• What a model is and how to assess its value

• How to go from a conceptual problem to a quantitative  

solution



Simplex Method

20

• Simplex: a linear-programming algorithm that can solve
problems having more than two decision variables.

• The simplex technique involves generating a series of
solutions in tabular form, called tableaus. By inspecting the
bottom row of each tableau, one can immediately tell if it
represents the optimal solution. Each tableau corresponds to a
corner point of the feasible solution space. The first tableau
corresponds to the origin. Subsequent tableaus are developed
by shifting to an adjacent corner point in the direction that
yields the highest (smallest) rate of profit (cost). This process
continues as long as a positive (negative) rate of profit (cost)
exists.



Simplex Algorithm

The key solution concepts

• Solution Concept 1:

method
the  

focuseson

simplex

CPF

concept 2: the

solutions.

• Solution  

algorithm (a systematic

simplex method is an iterative  

solution procedure that keeps

repeating a fixed series of steps, called, an iteration, until a  

desired result has been obtained) with the following structure:



Simplex algorithm

16

• Solution concept 3: whenever possible, the initialization of the
simplex method chooses the origin point (all decision variables
equal zero) to be the initial CPF solution.

• Solution concept 4: given a CPF solution, it is much quicker
computationally to gather information about its adjacent CPF
solutions than about other CPF solutions. Therefore, each time
the simplex method performs an iteration to move from the
current CPF solution to a better one, it always chooses a CPF
solution that is adjacent to the current one.



• Solution concept

17

5: After the current CPF solution is

identified, the simplex method examines each of the edges of

the feasible region that emanate from this CPF solution. Each

of these edges leads to an adjacent CPF solution at the other

end, but the simplex method doesn‘t even take the time to

solve for the adjacent CPF solution. Instead it simply identifies

the rate of improvement in Z that would be obtained by

moving along the edge. And then chooses to move along the

one with largest positive rate of improvement.



• Solution concept 6: A positive rate of improvement in Z

implies that the adjacent CPF solution is better than the current

one, whereas a negative rate of improvement in Z implies that

the adjacent CPF solution is worse. Therefore, the optimality

test consists simply of checking whether any of the edges give

a positive rate of improvement in Z. if none do, then the

current CPF solution is optimal.

18



Simplex method in tabular form

19

2. Test for optimality:

Case 1: Maximization problem

the current BF solution is optimal if every coefficient in the  

objective function row is nonnegative

Case 2: Minimization problem

the current BF solution is optimal if every coefficient in the  

objective function row is no positive.



3. Iteration

Step 1: determine the entering basic variable by selecting the

variable (automatically a non basic variable) with the most

negative value (in case of maximization) or with the most

positive (in case of minimization) in the last row (Z-row). Put

a box around the column below this variable, and call it the

―pivot column‖

20
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UNIT-II
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Running outcomes
CLO 4: Explain Transportation problem and the formulation of the 

problem by using optimal solution.

CLO 5: Solve the assignment problems by using optimal solutions 

and the variance of assignment problems.

CLO 6: Describe the travelling sales man problem by using

assignment method.



Introduction
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• A sequence is the order in which the jobs are processed.

Sequence problems arise when we are concerned with

situations where there is a choice in which a number of tasks

can be performed. A sequencing problem could involve:

• Jobs in a manufacturing plant.

• Aircraft waiting for landing and clearance.

• Maintenance scheduling in a factory.

• Programmes to be run on a computer.

• Customers in a bank & so-on



Terms used:
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• Job : The jobs or items or customers or orders are the primary

stimulus for sequencing. There should be a certain number of

jobs say ‗n‘ to be processed or sequenced.

• Number of Machines : A machine is characterized by a

certain processing capability or facilities through which a job

must pass before it is completed in the shop. It may not be

necessarily a mechanical device. Even human being assigned

jobs may be taken as machines. There must be certain number

of machines say ‗k‘ to be used for processing thejobs.

• Processing Time : Every operation requires certain time at

each of machine. If the time is certain then the determination

of schedule is easy. When the processing times are uncertain

then the schedule is complex.



Terms used:

24

• Total Elapsed Time : It is the time between starting the first

job and completing the last one.

• Idle time : It is the time the machine remains idle during the

total elapsed time.

• Technological order : Different jobs may have different

technological order. It refers to the order in which various

machines are required for completing the jobs.



Types of sequencingproblems:

25

• There can be many types of sequencing problems which are as  

follows:

• Problem with ‗n‘ jobs through one machine.

• Problem with ‗n‘ jobs through two machines.

• Problem with ‗n‘ jobs through three machines.

• Here the objective is to find out the optimum sequence of the

jobs to be processed and starting and finishing time of various

jobs through all the machines.

• No passing rule: it implies that passing is not allowed i.e. the  

same order of jobs is maintained over each machine

• Static arrival pattern. If all the jobs arrive simultaneously.

• Dynamic arrival pattern. Where the jobs arrive continuously.



BasicAssumptions:

26

Following are the basic assumptions underlying a sequencing  

problem:

• No machine can process more than one job at a time.

• The processing times on different machines are independent of  

the order in which they are processed.

• The time involved in moving a job from one machine to  

another is negligibly small.

• Each job once started on a machine is to be performed up to  

completion on that machine.

• All machines are of different types.

• All jobs are completely known and are ready for processing.

• A job is processed as soon as possible but only in the order  

specified.



n jobs through two machines
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•

• Let there be ‗n‘ jobs each of which is to be processed through

two machines say A & B, in the order AB. That is each job will

go to machine A first and then to B in other words passing off

is not allowed.

All ‗n‘ jobs are to be processed on A without any idle time.

On the other hand the machine B is subject to its remaining

idle at various stages.

• Let A1 A2………….An & B1 B2……..Bn be the expected

processing time of n jobs on these two machines.



Steps for n jobs through twomachines:
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• Step 1: Select the smallest processing time occurring in list Ai

or Bi, if there is a tie select either of the smallest processing

time.

• Step 2: If the smallest time is on machine A, then place it at

first place if it is for the B machine place the corresponding

job at last. Cross off that job.

• Step 3: If there is a tie for minimum time on both the

machines then select machine A first & machine B last and if

there is tie for minimum on machine A (same machine) then

select any one of these jobs first and if there is tie for

minimum on machine B among and select any of these job in

the last.



• Step 4: Repeat step 2 & 3 to the reduced set of processing times

obtained by deleting the processing time for both the machines

corresponding to the jobs already assigned

• Step 5: Continue the process placing the job next to the last and so

on till all jobs have been placed and it is called optimum sequence.

• Step 6: after finding the optimum sequence we

can find the

•

followings

• Total elapsed time = Total time between starting the first job of the

optimum sequence on machine A and completing the last job on

machine B.

Idle time in machine A = Time when the last job in the optimum

sequence is completed on Machine B – Time when the last job in the

optimum sequence is completed on MachineA.



Problem:

• In a factory, there are six jobs to process, each of which should

go to machines A & B in the order AB. The processing timings

in minutes are given, determine the optimal sequencing & total

elapsed time.

30



Solution:

• Step 1: the least of all the times given in for job 6 in machine

B. so perform job 6 in the end. It is last in the sequences. Now  

delete this job from the given data.

• Step 2: Of the remaining timings now the minimum is for job  

3 on machine A. so do the job . Now delete this job 3 also.

• Step 3: Now the smallest time is 3 minutes for job first on  

machine B. thus perform job 1 at the second last before job 6.

31



n jobs through two machines

32

• Example 2:Suppose we have five jobs, each of which has to be

processed on two machines A & B in the order AB. Processing

times are given in the following table:

Job Machine A Machine B

1 6 3

2 2 7

3 10 8

4 4 9

5 11 5

Determine an order in which these jobs should be processed so  

as to minimize the total processing time.



Solution:

The minimum time in the above table is 2, which corresponds to  

job 2 on machine A.

33

2

Now we eliminate job 2 from further consideration. The reduced  

set of processing times are as follows:

Job Machine A Machine B

1 6 3

3 10 8

4 4 9

5 11 5



The minimum time is 3 for job 1 on machine B. Therefore, this job  

would be done in last. The allocation of jobs till this stage would be

34

2 1

After deletion of job 1, the reduced set of processing times are as  

follows:

Job Machine A Machine B

3 10 8

4 4 9

5 11 5



Similarly, by repeating the above steps, the optimal sequence is as  

follows:

35

2 4 3 5 1

Once the optimal sequence is obtained, the minimum elapsed time  

may be calculated as follows:

Job Machine A Machine B

Time in Time out Time in Time out

2 0 2 2 9

4 2 6 9 18

3 6 16 18 26

5 16 27 27 32

1 27 33 33 36



• Idle time for machineA

= total elapsed time - time when the last job is out of machine A

= 36-33=3hours.

• Idle time for machine B = 2 + (9 - 9) + (18 - 18) + (27 - 26) + (33

- 32) = 4 hours.

36



Example3 :Strong Book Binder has one printing machine, one

binding machine, and the manuscripts of a number of different

books. Processing times are given in the following table:

37

Book Time In Hours

Printing Binding

A 5 2

B 1 6

C 9 7

D 3 8

E 10 4

We wish to determine the order in which books should be

processed on the machines, in order to minimize the total time

required.



B

38

Solution.

The minimum time in the above table is 1, which corresponds to  

the book B on printing machine.

Now book B is eliminated. The reduced set of processing times is  

as follows:

Book Time In Hours

Printing Binding

A 5 2

C 9 7

D 3 8

E 10 4



The minimum time is 2 for book A on binding machine.

Therefore, this job should be done in last. The allocation of jobs

till this stage is:

39

B A

The reduced set of processing times is as follows:

Book Time In Hours

Printing Binding

C 9 7

D 3 8

E 10 4



• Similarly, by repeating the above steps, the optimal sequence  

is as follows

Once the optimal sequence is obtained, the minimum elapsed  

time may be calculated as follows:

40

Book Printing Binding

Time in Time out Time in Time out

B 0 1 1 7

D 1 4 7 15

C 4 13 15 22

E 13 23 23 27

A 23 28 28 30

B D C E A



• Idle time for printing process = total elapsed time - time when

the last job is out of machine A 30- 28=2hours.

• Idle time for binding process = 1 + (7 - 7) + (15 - 15) + (23 -

22) + (28 - 27) = 3 hours

41
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Running outcomes
CLO 7: Explain the sequencing and the types of sequencing

methods.

CLO 8: Use n jobs through two machines and n jobs through three

machines to solve an appropriate problem.

CLO 9: Use two jobs through m machines to solve an appropriate

problem.

CLO 10: Understand theory of games and the terminologies used in

theory of games concept.

CLO 11: Determine appropriate technique to solve to a given 

problem.

CLO 12: Solve the problems by using dominance principle and 

Graphical method.



n jobs through threemachines
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Processing n jobs on 3 Machines:

• There is no solution available for the general sequencing

problems of n jobs through 3 machines. However we do have

a method under the circumstance that no passing of jobs is

permissible and if either or both the following conditions are

satisfied.

• 1)The minimum time on machine A is greater than or equal to

the maximum time on machine B.

• 2)The minimum time on machine C is greater than or equal to

the maximum time on machine B

• Or both are satisfied that the following method can be applied



Method of Procedure:

• Step1: First of all, the given problem is replaced with an

equivalent problem involving n jobs and 2 fictitious machines

G and H .define the corresponding processing times Gi and Hi

by

• Gi=AI+BI

• Hi=Bi+Ci

• Step2: to the problem obtained step1 above ,the method for

processing n jobs through 2 machines is applied .The optimal

sequence resulting this shall also be optimal for the given

problem.

44



Example 1: There are five jobs which must go through these
machines A,B and C the order ABC .Processing times of the
jobs on different machines given below.

45

Jobs A B C

1 7 5 6

2 8 5 8

3 6 4 7

4 5 2 4

5 6 1 3

•

• Determine a sequence for 5 jobs which will minimize elapsed  
time(T) .



Solution: according to given information
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Min.Ai=Max.Ci, the first of the conditions is

Min.Ai=5

Max.Bi=5

Min.Ci=3

Here since  
satisfied.

We shall now determines Gi and Hi and from them find the  
optimal sequence.

In accordance with the rules for determining optimal sequence in
respect of n jobs processi ng on 2 machines , the sequence for
above shall be:

3 2 1 4 5



Total elapsed time (T) =40 hours.

47



n jobs through threemachines
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Example 2: The MDH Masala company has to process five items

on three machines:- A, B & C. Processing times are given in the

following table:

Find the sequence that minimizes the total elapsed time.

Solution:

Here, Min. (Ai) = 3, Max. (Bi) = 6 and Min. (Ci) = 6. Since the

condition of Max. (Bi) ≤ Min. (Ci) is satisfied, the problem can

be solved by the above procedure. The processing times for the

new problem are given below.

Item Ai Bi Ci

1 4 4 6

2 9 5 9

3 8 3 11

4 6 2 8

5 3 6 7



Item Gi = Ai +Bi Hi = Bi + Ci

1 8 10

2 14 14

3 11 14

4 8 10

5 9 13

49

The optimal sequence is

1 4 5 3 2



Item Machine A Machine B Machine C

Time in Time out Time in Time out Time in Time out

1 0 4 4 8 8 14

4 4 10 10 12 14 22

5 10 13 13 19 22 29

3 13 21 21 24 29 40

2 21 30 30 35 40 49

50

Total elapsed time = 49.

Idle time for machine A = 49 – 30 = 19 hours.

Idle time for machine B = 4 + (10 - 8) + (13 - 12) + (21 - 19)+

(30 - 24) + (49 - 35) = 29 hours.

Idle time for machine C = 8 + (14 - 14) + (22 - 22) + (29 - 29)+

(40 - 40) = 8 hours.



n jobs through threemachines
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Example 3: Shahi Export House has to process five items

through three stages of production, via, cutting, sewing &

pressing. Processing times are given in the following table:

Item
Cutting  

(Ai)

Sewing  

(Bi)

Pressing  

(Ci)

1 3 3 5

2 8 4 8

3 7 2 10

4 5 1 7

5 2 5 6



Determing an order in which these items should be processed so  

as to minimize the total processing time.

Solution:

The processing times for the new problem are given below.

52

Item Gi = Ai +Bi Hi = Bi + Ci

1 6 8

2 12 12

3 9 12

4 6 8

5 7 11



• Thus, the optimal sequence may be formed in any of the two  

ways.

53

1 4 5 3 2

4 1 5 3 2

Item Cutting Sewing Pressing

Time in Time out Time in Time out Time in Time out

1 0 3 3 6 6 11

4 3 8 8 9 11 18

5 8 10 10 15 18 24

3 10 17 17 19 24 34

2 17 25 25 29 34 42



• Total elapsed time = 42

• Idle time

54

for cutting process = 42 – 25 = 17 hours.
Idle time for sewing process = 3 + (8 - 6) + (10 - 9) + (17 -

15)+ (25 - 19) + (42 - 29) = 27 hours.

Idle time for pressing process = 6 + (11 - 11) + (18 - 18) + (24

- 24)+ (34 - 34) = 6 hours.



Processing n jobs through mmachines
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• This section focuses on the sequencing problem of processing  

two jobs through m machines. Problems under this category  

can be solved with the help of graphical method. The graphical  

method below is explained with the help of the following  

example.

• Two jobs are to be performed on five machines A, B, C, D, and

E. Processing times are given in the following table.

Job 1

Machine

Seque  

nce
: A B C D E

Time : 3 4 2 6 2

Job 2

Seque  

nce
: B C A D E

Time : 5 4 3 2 6



Use graphical method to obtain the total minimum elapsed time.

Solution:  

Steps

Mark the processing times of job 1 & job 2 on X-axis & Y-axis  

respectively.

Draw  the  rectangular  blocks  by pairing the same machines as  

shown in the following figure.

56



• Starting from origin O, move through the 450 line until a point  

marked finish is obtained.

• The elapsed time can be calculated by adding the idle time for  

either job to the processing time for that job.

• Idle time for job 1 is 5 hours.

• Elapsed time = processing time for job 1+Idle tome of job 1

= (3+4+2+6+2)+5=22 hours.

• Likewise idle time of job 2 is 2 hours.

• Elapsed time =processing time of job 2+Idle time of job 2

= (5+4+3+2+6)+2=22 hours.

57



• Example 2:There are 4 job ABCD are required to be processed  
on four machine M1, M2,M3, M4 in that order. Determine  
optimal sequence and total elapsed time.

58

Job M1 M2 M3 M4

A 13 8 7 14

B 12 6 8 19

C 9 7 5 15
D 8 5 6 15

Given
Job M1 M2 M3 M4

A 13 8 7 14

B 12 6 8 19

C 9 7 5 15

D 8 5 6 15



• Step 1- 1st we have to convert this problem into two machine  
problem. For that we have to check following condition:

• Min M1 or Min M4 >= Max M2 or Max M3

• here Min M1=8, Min M4=14, Max M2=7, Max M3=8.

• therefore 8=8

• Min M1=Max M3

• Consolidation or Conversion Table:

59

JOB MACHINES 5  

P(M1+M2+M3) NEWTIME

MACHINES 6  

P(M2+M3+M4) NEWTIME

A 13+8+7 28 8+7+14 29

B 12+6+8 26 6+8+19 33

C 9+7+5 21 7+5+15 27

D 8+5+6 19 5+6+15 26



• New job timing According toConsolidation Table:

60

Job A B C D

New M/c 5 28 26 21 19

New M/c 6 29 33 27 26

• Sequencing According to consolidation Table:

• Consolidated table:

A B C DJob

New M/c 5
New M/c 6

• Jobsequence:

JOB

28 26 21 19
29 33 27 26

D B A C



61



• Total Elapsed time= 82 hrs.

• Idle Time for M/c 1=Total Elapsed Time- Total time of M/c 1

=82-42= 40hrs.

• Idle Time for M/c 2=Total Elapsed Time- Total time of M/c 2

=82-26= 56hrs.

• Idle Time for M/c 3=Total Elapsed Time- Total time of M/c 3

= 82-26= 56hrs.

• Idle Time for M/c 4=Total Elapsed Time- Total time of M/c 4

=82-63=19hrs.

62



Characteristics of Games
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Introduction to Game Theory:

Game theory is a kind of decision theory in which one's  

alternative action is determined after taking into consideration  

all possible alternatives available to an opponent playing the  

similar game, rather than just by the possibilities of various  

outcome results. Game theory does not insist on how a game  

must be played but tells the process and principles by which a  

particular action should be chosen. Therefore it is a decision  

theory helpful in competitive conditions.

• Properties of a Game

• There are finite number of competitors known as 'players'

• All the strategies and their impacts are specified to the players  

but player does not know which strategy is to be selected.



• A game is played when every player selects one of his

64

strategies. The strategies are supposed

simultaneously with an outcome such

to be prepared  

that no player

recognizes his opponent's strategy until he chooses his own  

strategy.

• The figures present as the outcomes of strategies in a matrix

form are known as 'pay-off matrix'.

• The game is a blend of the strategies and in certain units which

finds out the gain or loss.

• The player playing the game always attempts to select the best

course of action which results in optimal pay off known as

'optimal strategy'.



Characteristics of GameTheory:
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1. Competitive game:

• A competitive situation is known as competitive game if it has

the four properties

• There are limited number of competitors such that n ≥ 2. In the

case of n = 2, it is known as two-person game and in case of n

> 2, it is known as n-person game.

• Each player has a record of finite number of possible actions.

• A play is said to takes place when each player selects one of

his activities. The choices are supposed to be made

simultaneously i.e. no player knows the selection of the other

until he has chosen on his own.

• Every combination of activities finds out an outcome which

results in a gain of payments to every player, provided each

player is playing openly to get as much as possible.



• 2. Strategy

• The strategy of a player is the determined rule by which player chooses his  

strategy from his own list during the game. The two types of strategy are

• Pure strategy

• Mixed strategy

• Pure Strategy

• If a player knows precisely what another player is going to do, a

deterministic condition is achieved and objective function is to maximize

the profit. Thus, the pure strategy is a decision rule always to choose a

particular startegy.

• Mixed Strategy

• If a player is guessing as to which action is to be chosen by the other on

any particular instance, a probabilistic condition is achieved and objective

function is to maximize the expected profit. Hence the mixed strategy is a

choice among pure strategies with fixed probabilities.

66



Repeated Game Strategies

• In repeated games, the chronological nature of the relationship

permits for the acceptance of strategies that are dependent on

the actions chosen in previous plays of the game.

• Most contingent strategies are of the kind called as "trigger"

strategies.

• For Example trigger strategies

• In prisoners' dilemma: At start, play doesn't confess. If your

opponent plays Confess, then you need to play Confess in the

next round. If your opponent plays don't confess, then go for

doesn't confess in the subsequent round. This is called as the

"tit for tat" strategy.

• In the investment game, if you are sender: At start play Send.  

Play Send providing the receiver plays Return.
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3. Number of persons

When the number of persons playing is 'n' then the game is  

known as 'n' person game. The person here means an  

individual or a group aims at a particular objective.

Two-person, zero-sum game

• A game with just two players (player A and player B) is known  

as 'two-person, zero-sum game', if the losses of one player are  

equal to the gains of the other one so that the sum total of their  

net gains or profits is zero.

• Two-person, zero-sum games are also known as rectangular  

games as these are generally presented through a payoff matrix  

in a rectangular form.

4. Number of activities

The activities can be finite or infinite.
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5. Payoff

Payoff is referred to as the quantitative measure of  

satisfaction a person obtains at the end of each play

6. Payoff matrix

• Assume the player A has 'm' activities and the player B has 'n'

activities. Then a payoff matrix can be made by accepting the

following rules

• Row designations for every matrix are the activities or actions

available to playerA

• Column designations for every matrix are the activities or

actions available to player B

• Cell entry Vij is the payment to player A in A's payoff matrix

when A selects the activity i and B selects the activityj.
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7. Value of the game

Value of the game is the maximum guaranteed game to player

A (maximizing player) when both the players utilizes their best

strategies. It is usually signifies with 'V' and it is unique.
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Game Models, Terminology
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Classification of Games:

Simultaneous vs. Sequential Move Games

• Games where players select activities simultaneously are  

simultaneous move games.

- Examples: Sealed-Bid Auctions, Prisoners' Dilemma.

- Must forecast what your opponent will do at this point,  

finding that your opponent is also doing the same.

• Games where players select activities in a particular series or  

sequence are sequential move games.

- Examples: Bargaining/Negotiations, Chess.

- Must look forward so as to know what action to select now.

- Many sequential move games have deadlines on moves.



One-Shot versus Repeated Games:

One-shot: play of the game takes place once.

- Players likely not know much about each another.

- Example - tipping on vacation

• Repeated: play of the game is recurring with the same players.

- Finitely versus Indefinitely repeated games

- Reputational concerns do matter; opportunities for cooperative  

behavior may emerge.

Advise: If you plan to follow an aggressive strategy, ask yourself

whether you are in a one-shot game or in repeated game. If a

repeated game then think again.
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• Usually games are divided into:

• Pure strategy games

• Mixed strategy games

• The technique for solving these two types changes. By solving  

a game, we require to determine best strategies for both the  

players and also to get the value of the game. Saddle point  

method can be used to solve pure strategy games.

• The diverse methods for solving a mixed strategy game are

• Dominance rule

• Analytical method

• Graphical method

• Simplex method
73



• Basic Game Theory Terms:

74

: Description of the situation includes the rules of

: Decision makers in the game.

: Expected rewards enjoyed at the end of the

• Game

the game.

• Players

• Payoffs  

game.

• Actions

• Strategies

: Possible choices made by the player.

: Specified plan of action for every contingency

played by other players.



Rule for Game theory( with saddle point and withoutsaddle  

point)
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• Rules for Game theory (with saddle point and without saddle  

point):

• Rule 1: Look for pure strategy (saddle point)

• Rule 2:Reduce game by Dominance.

• If no pure strategies exist,the next step is to eliminate certain  

strategies (row/column) by law of Dominance.

• Rule 3:Solve for mixed strategy.



A mixed strategy can be solved by different solution method,  

such as

1. Arithmetic method

2. Algebraic method

3. Graphical method

4. Matrix method

5. Short cut method
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Running outcomes
CLO 13: Understand the Bellman’s principle of optimality.

CLO 14:  Describe heuristic problem-solving methods with stages.

CLO 15: Understand the mapping of real-world problems to

algorithmic solutions.

CLO16:List out the various applications of dynamic programming.

CLO17:Define the shortest path problem with approximate

solutions.

CLO 18: Explain the linear programming problem with

approximate solutions



2X2 Games Problems
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Pure Strategies (with saddle points):

• In a zero-sum game, the pure strategies of two players constitute a saddle
point if the corresponding entry of the payoff matrix is simultaneously a
maximum of row minima and a minimum of column maxima. This
decision-making is referred to as the minimax-maximin principle to
obtain the best possible selection of a strategy for the players.

• In a pay-off matrix, the minimum value in each row represents the
minimum gain for player A. Player A will select the strategy that gives him
the maximum gain among the row minimum values. The selection of
strategy by player A is based on maximin principle. Similarly, the same
pay-off is a loss for player B. The maximum value in each column
represents the maximum loss for Player B. Player B will select the strategy
that gives him the minimum loss among the column maximum values.

• The selection of strategy by player B is based on minimax principle. If the
maximin value is equal to minimax value, the game has a saddle point (i.e.,
equilibrium point). Thus the strategy selected by player A and player B are
optimal



Example 1: Consider the example to solve the game whose pay-

off matrix is given in the following table as follows:

79



• The game is worked out using minimax procedure. Find the

smallest value in each row and select the largest value of these

values. Next, find the largest value in each column and select

the smallest of these numbers. The procedure is shown in the

following table.

Minimax Procedure
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• If Maximum value in row is equal to the minimum value in  

column, then saddle point exists.

Max Min = Min Max  

1 = 1

• Therefore, there is a saddle point.  

The strategies are,

Player A plays Strategy A1, (AA1).  

Player B plays Strategy B1, (B B1).

• Value of game = 1.
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• Example 2: Check whether the following game is given in  

Table, determinable and fair.
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Solution: The game is solved using maximin criteria as shown in  

Table.

Maximin Procedure

The game is strictly neither determinable nor fair.
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• Example 3: Identify the optimal strategies for player A and

player B for the game, given below in Table. Also find if the

game is strictly determinable and fair.
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• The game is strictly determinable and fair. The saddle point

exists and the game has a pure strategy. The optimal strategies

are given in the following table.

• Optimal Strategies
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2X2 Games Problems

• Analytical Method:[No saddle point exists so using

analytical method]

• A 2 x2 payoff matrix where there is no saddle point can be  

solved by analytical method.

• Given the matrix

Value of the game is
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• With the coordinates

Alternative procedure to solve the strategy

▪Find the difference of two numbers in column 1 and enter the  

resultant under column 2. Neglect the negative sign if it occurs.

•Find the difference of two numbers in column 2 and enter the  

resultant under column 1. Neglect the negative sign if it occurs.

•Repeat the same procedure for the two rows
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• Example 1:

Solution:

It is a 2 x 2 matrix and no saddle point exists. We can solve by  

analytical method
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• Example2:

Solution:
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Benefits of flow shopsequencing

90

• Improved process efficiency.

• Improved machine utilization.

• Increased production rate.

• Reduced total processing time.

• Minimum or Zero Ideal Time.

• Potential increase in profits and decrease in costs.



• Idle time for machine A = total elapsed time - time when the  

last job is out of machine A

36-33=3hours.

• Idle time for machine B = 2 + (9 - 9) + (18 - 18) + (27 - 26) +

(33 - 32) = 4 hours.

Example3 :Strong Book Binder has one printing machine,  

one binding machine, and the manuscripts of a number of  

different books. Processing times are given in the following  

table:
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Book Time In Hours

Printing Binding

A 5 2

B 1 6

C 9 7

D 3 8

E 10 4



3X3 Games Problems

• Example 1: Solve the game with the pay-off matrix for player  

A as given in table.

in rows and largestSolution: Find the smallest element  

elements in columns as shown in table.

Minimax Procedure
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Select the largest element in row and smallest element in column.  

Check for the minimax criterion,

Max Min = Min Max  

1 = 1

Therefore, there is a saddle point and it is a pure strategy.  

Optimum Strategy:

Player A A2 Strategy
93



Player B B1 Strategy

The value of the game is 1.

Example 2: Solve the game with the payoff matrix given in table  

and determine the best strategies for the companies A and B and  

find the value of the game for them.
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Solution: The matrix is solved using maximin criteria, as shown  
in table below.

• Maximin Procedure
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• Therefore, there is a saddle point.  

Optimum strategy for company A is A1and

Optimum strategy for company B is B1 or B3.
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3X3 Games Problems
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Example 1: A and B play a game in which each has three coins, a

5 paisa, 10 paisa and 20 paisa coins. Each player selects a coin

without the knowledge of the other‘s choice. If the sum of the

coins is an odd amount, A wins B‘s coins. If the sum is even, B

wins A‘s coins. Find the optimal strategies for the players and the

value of the game.

Solution:

The pay of matrix for the given game is: Assume 5 paisa as the I

strategy, 10 paisa as the II strategy and the 20 paisa as the III

strategy.



In the problem it is given when the sum is odd, A wins B‘s coins

and when the sum is even, B will win A‘s coins. Hence the

actual pay of matrix is:
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The problem has no saddle point. Column I and II are dominating

the column III. Hence it is removed from the game. The reduced

matrix is:



The problem has no saddle point. Considering A, row III is

dominated by row II, hence row III is eliminated from the

matrix. The reduced matrix is:
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No saddle point. By application of formulae:

x1 = (a22 – a21 ) / (a11 + a22) – (a12 + a21) or = 1 – x2 = (–10 – 5) / [–5 + (–

10)] – (10 – 5)

= –15 / (–15 – 5) = (–15 / –20) = (15 / 20) = 3 / 4, hence x2 = 1 – (3 / 4) = 1 / 4  

y1 = (a22 – a12) / (a11 + a22) – (a12 + a21) or = 1 – y2 = (–10 – 10) / –20 =

20 / 20 = 1 and

y2 = 0

Value of the game = v = (a11 a22 – a12 a21) / (a11 + a22) – (a12 + a21) = (50

– 50) / – 20 = 0 Answer is A ( 3/ 4, 1 / 4, 0), B ( 1, 0, 0) , v = 0.
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• Idle time for machine A = total elapsed time - time when the last job is out  

of machine A

36-33=3hours.

• Idle time for machine B = 2 + (9 - 9) + (18 - 18) + (27 - 26) + (33 - 32) = 4  

hours.

Example3 :Strong Book Binder has one printing machine, one binding  

machine, and the manuscripts of a number of different books. Processing  

times are given in the following table:
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Book Time In Hours

Printing Binding

A 5 2

B 1 6

C 9 7

D 3 8

E 10 4



2Xn Games or mX2 Games Problems
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2*n game problem:

When we can reduce the given payoff matrix to 2 × 3 or 3 × 2 we

can get the solution by method of sub games. If we can reduce

the given matrix to 2 × n or m × 2 sizes, then we can get the

solution by graphical method. A game in which one of the

players has two strategies and other player has number of

strategies is known as 2 × n or m × 2 games. If the game has

saddle point it is solved. If no saddle point, if it can be reduced to

2 × 2 by method of dominance, it can be solved. When no more

reduction by dominance is possible, we can go for Method of Sub

games or Graphical method. We have to identify 2 × 2 sub games

within 2 × n or m × 2 games and solve the game.



Problem 1:Solve the game whose payoff matrix is:

No saddle point.  

The sub games are:  

Sub game I:
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No saddle point. First let us find the value of the sub games by applying the

formula. Then compare the values of the sub games; which ever is favorable

for the candidate, that sub game is to be selected. Now here as A has only two

strategies and B has three strategies, the game, which is favorable to B, is to

be selected.

Value of the game = v1 = (a11 a22 – a12 a21) / (a11 + a22) – (a12 + a21)

= (–4 × –4) – (3 × 6) / [(–4 + –4] – (3 + 6) = 2 / 17
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2Xn Games or mX2 Games Problems
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m*2 game problem:

When we can reduce the given payoff matrix to 2 × 3 or 3 × 2

we can get the solution by method of sub games. If we can

reduce the given matrix to 2 × n or m × 2 sizes, then we can get

the solution by graphical method. A game in which one of the

players has two strategies and other player has number of

strategies is known as 2 × n or m × 2 games. If the game has

saddle point it is solved. If no saddle point, if it can be reduced to

2 × 2 by method of dominance, it can be solved. When no more

reduction by dominance is possible, we can go for Method of Sub

games or Graphical method. We have to identify 2 × 2 sub games

within 2 × n or m × 2 games and solve the game.



Problem 1:Solve the following 2 × n sub game:
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Solution: The given game is m × 2 game.

No saddle point. Hence A‘s Sub games are:

A‘s sub game No.1.
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The game has saddle point and hence value of the game is v1 = 3 A's sub  

game No.2.
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Graphical method for 2Xn Games or mX2Games

110

Graphical method: The graphical method is used to solve the games whose payoff

matrix has

•Two rows and n columns (2 xn)

•m rows and two columns (m x2)

Algorithmfor solving2 xnmatrix games:

•Draw two vertical axes1 unit apart. The two lines are x1= 0,x1= 1

•Take the points of the first row in the payoff matrix on the vertical line x1= 1 and

the points of the second row in the payoff matrix on the vertical line x1= 0.

•The point a1jon axis x1= 1 is then joined to the point a2jon the axis x1= 0 to give

a straight line. Draw ‘n’ straight lines for j=1, 2... n and determine the highest

point of the lower envelope obtained. This will be the maximin point.

•The two or more lines passing through the maximin point determines the

required 2 x 2 payoff matrix. This in turn gives the optimum solution by making

useof analytical method.



Example 1: Solve by graphical method

Solution:
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Solution:
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V = 8/7

SA= (3/7, 4 /7)  

SB= (2/7, 0, 5 /7)
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Graphical method for 2Xn Games or mX2Games
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Algorithm for solving m x 2 matrix games:

•Draw two vertical axes 1 unit apart. The two lines arex1=0, x1= 14

•Take the points of the first row in the payoff matrix on the vertical line x1= 1

and the points of the second row in the payoff matrix on the vertical line x1=

0.

•The point a1jon axis x1= 1 is then joined to the point a2jon the axis x1= 0 to

give a Straight line. Draw ‘n’ straight lines for j=1, 2... n and determine the

lowest point of the upper envelope obtained. This will be the minimax point.

•The two or more lines passing through the minimax point determines the

required 2 x 2 payoff matrix. This in turn gives the optimum solution by

making useof analytical method.



Example 1: Solve by graphical method
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Solution:
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V = 3/9 = 1/3

SA= (0, 5 /9, 4/9, 0)  

SB= (3/9, 6/9)
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Example 2: Solve by graphical method
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Solution:
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Running outcomes
CLO 19: Define the various quadratic approximation methods for 

solving constraint problems.

CLO 20: Explain the direct quadratic approximation for solving the

constraint problems.

CLO 21: Explain the quadratic approximation method by using

lagrangian function.

CLO 22: Describe the variable metric methods for constrained

optimization.



QUADRATICAPPROXIMATION

• Quadratic approximation is an extension of linear

approximation, where we are adding one more term, which is

related to the second derivative. The formula fo r the quadratic

approximation of a function f(x) for values of x near x"0" is :

• Compare this to the old formula for the linear approximation  
of f:

• We got from the linear approximation to the quadratic one by  
adding one more term that is related to the second derivatives:
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QUADRATICAPPROXIMATION

125

• These are more complicated and so are only used when higher  

accuracy is needed.

• The quadratic approximation also uses the point x=a to

approximate nearby values, but uses a parabola instead of just  

a tangent line to do so.

• This gives a closer approximation because the parabola stays  

closer to the actual function.



QUADRATICAPPROXIMATION
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Algorithm to Convert a CFG into GNF
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Algorithm to Convert a CFG into Greibach Normal Form

Step 1 − If the start symbol S occurs on some right side, create a  

new start symbol S’ and a new production S’ → S.

Step 2 − Remove Null productions. (Using the Null production  

removal algorithm discussed earlier)

Step 3 − Remove unit productions. (Using the Unit production  

removal algorithm discussed earlier)

Step 4 − Remove all direct and indirect left-recursion.

Step 5 − Do proper substitutions of productions to convert it into  

the proper form of GNF.



EXAMPLE1
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• Example: Convert the following grammar G into Greibach Normal  

Form (GNF).

S→ X A|BB

B → b|SB  

X → b

A → a

• To write the above grammar G into GNF, we shall follow the  

following steps:

• Rewrite G in Chomsky Normal Form (CNF) It is already in CNF.

• Re-label the variables  

S with A1

X with A2

A withA3  

B withA4



EXAMPLE1

129

• After re-labeling the grammar looks like:  

A1 → A2A3|A4A4

A4 → b|A1 A4  

A2 → b

A3 → a

• Identify all productions which do not conform to any of the  

types listed below:

Ai → Aj xk such that j > I  

Zi → Aj xk such that j ≤ n

Ai → axk such that xk ∈V ∗ and a ∈T



EXAMPLE1
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A4 → A1 A4............................identified

we will use the substitution rule A1 → A2

A4 → A1 A4 |b.

• To eliminateA1 

A3|A4A4 .

• Therefore, we have A4 → A2 A3A4 |A4A4A4|b

• The above two productions still do not conform to any of the  

types in step 3.

Substituting for A2 → b  

A4 → bA3 A4  |A4A4A4 |b

• Now we have to remove left recursive production  

A4 → A4A4A4

A4 → bA3 A4 |b|bA3A4Z|bZ  

Z → A4 A4 |A4A4Z



EXAMPLE1
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At this stage our grammar now looks like  

A1 → A2A3|A4A4

A4 → bA3 A4 |b|bA3A4Z|bZ  

Z → A4 A4 |A4A4Z

A2 → b  

A3 → a

All rules now conform to one of the types in step 3.

But the grammar is still not in Greibach Normal Form!



EXAMPLE1

A3 → a
132

All productions for A2 , A3 and A4 are in GNF  

for A1 → A2 A3|A4A4

Substitute for A2 and A4 to convert it to GNF

A1 → bA3 |bA3 A4A4 |bA4 |bA3A4 Z A4|bZ A4

for Z → A4 A4 |A4A4Z

Substitute for A4 to convert it to GNF

Z → bA3 A4 A4 |bA4|bA3 A4 Z A4|bZ A4 |bA3A4 A4 Z|bA4Z|bA3 A4Z A4

Z|bZ A4Z 8. Finally the grammar in GNF is  

A1 → bA3 |bA3 A4A4 |bA4 |bA3A4 Z A4|bZ A4

A4 → bA3 A4 |b|bA3 A4Z|bZ

Z → bA3 A4 A4 |bA4|bA3 A4 Z A4|bZ A4 |bA3A4 A4 Z|bA4Z|bA3 A4Z A4  

Z|bZ A4Z

A2 → b



EXAMPLE2
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• Convert the following CFG into CNF

• S → XY | Xn | p

• X → mX | m

• Y → Xn | o

• Solution

• Here, S does not appear on the right side of any production  

and there are no unit or null productions in the production rule  

set. So, we can skip Step 1 to Step 3.

• Step 4

• Now after replacing

• X in S → XY | Xo | p

• with

• mX | m



EXAMPLE2
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• we obtain

• S → mXY | mY | mXo | mo | p.

• And after replacing

• X in Y → Xn | o with the right side of

• X → mX | m

• we obtain

• Y → mXn | mn | o.

• Two new productions O → o and P → p are added to the production  

set and then we came to the final GNF as the following −

• S → mXY | mY | mXC | mC | p

• X → mX | m

• Y → mXD | mD | o

• O → o

• P → p



TYPES OF NON-LINEAR PROGRAMMINGPROBLEMS
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Types of Non-Linear Programming Problems:-

• In the preceding two chapters we considered a number of alternative

strategies for exploiting linear approximations to nonlinear problem

functions.

• In general we found that, depending upon the strategy employed,

linearizations would either lead to vertex points of the linearized

constraint sets or generate descent directions for search.

• In either case, some type of line search was required in order to

approach the solution of non-corner-point constrained problems.

• Based upon our experience with unconstrained problems, it is

reasonable to consider the use of higher order approximating

functions since these could lead directly to better approximations of

non-corner-point solutions.



TYPES OF NON-LINEAR PROGRAMMINGPROBLEMS
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• For instance, in the single-variable case we found that a quadratic
approximating function could be used to predict the location of
optima lying in the interior of the search interval.

• In the multivariable case, the use of a quadratic approximation (e.g.,
in Newton‘s method) would yield good estimates of unconstrained
minimum points.

• Furthermore, the family of quasiNewton methods allowed us to reap
some of the benefits of a quadratic approximation without explicitly
developing a full second-order approximating function at each
iteration.

• In fact, in the previous chapter we did to some extent exploit the
acceleration capabilities of quasi-Newton methods by introducing
their use within the direction generation mechanics of the reduced
gradient and gradient projection methods.



TYPES OF NON-LINEAR PROGRAMMINGPROBLEMS
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• Thus, much of the discussion of the previous chapters does

point to the considerable algorithmic potential of using higher

order, specifically quadratic, approximating functions for

solving constrained problems.

• In this chapter we examine in some detail various strategies for

using quadratic approximations.

considering the consequence

We begin by briefly  

of direct quadratic

approximation, the analog of the successive LP strategy.

• Then we investigate the use of the second derivatives and

Lagrangian constructions to formulate quadratic programming

(QP) subproblems, the analog to Newton‘s method.



TYPES OF NON-LINEAR PROGRAMMINGPROBLEMS
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• Finally, we discuss the application of quasi-Newton formulas

to generate updates of quadratic terms.

• We will find that the general NLP problem can be solved very

efficiently via a series of sub problems consisting of a

quadratic objective function and linear constraints, provided a

suitable line search is carried out from the solution of each

such sub problem.

• The resulting class of exterior point algorithms can be viewed

as a natural extension of quasi-Newton methods to constrained

problems.



DIRECT QUADRATICAPPROXIMATION
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• The solution of the general NLP problem is by simply

replacing each nonlinear function by its local quadratic

approximation at the solution estimate x0 and solving the

resulting series of approximating sub problems.

• If each function ƒ(x) is replaced by its quadratic approximation

then the sub problem becomes one of minimizing a quadratic

function subject to quadratic equality and inequality

constraints.

• While it seems that this sub problem structure ought to be

amendable to efficient solution, in fact, it is not.

• To be sure, the previously discussed strategies for constrained

problems can solve this sub problem but at no real gain over

direct solution of the original problem.
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• The For a sequential strategy using sub problem solutions to
be effective, the sub problem solutions must be substantially
easier to obtain than the solution of the original problem.

• Recall the problems with a quadratic positive-definite
objective function and linear constraints can be solved in a

•

finite number of reduced gradient iterations provided that
quasi-Newton or conjugate gradient enhancement of the
reduced gradient direction vector is used.

Of course, while the number of iterations is finite, each
iteration requires a line search, which strictly speaking is itself
not a finite procedure.



QUADRATICAPPROXIMATION
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• However, as there are specialized methods for these so-called

QP problems that will obtain a solution in a finite number of

iterations without line searching, using instead simplex like

pivot operations.

• Given that QP problems can be solved efficiently with truly

finite procedures, it appears to be desirable to formulate our

approximating sub problems as quadratic programs.

• Thus, assuming that the objective function is twice

continuously differentiable, a plausible solution strategy would  

consist of the following steps:
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DIRECT SUCCESSIVE QUADRATIC PROGRAMMING  

SOLUTION

Given x0, an initial solution estimate, and a suitable method for  

solving QP subproblems.

Step 1: Formulate the QP problem  

Step 2: Solve the QP problem and

Step 3: Check for convergence. If not converged, repeat step 1.



QUADRATICAPPROXIMATION

Example

Solve the problem

• from the initial feasible estimate x0 = (2, 1) using the direct  

successive QP strategy.

• At x0, ƒ(x 0) = 12.25, h(x0) = 0, and g(x 0) = 2 > 0. The derivatives  

required to construct the QP sub problem are
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QUADRATICAPPROXIMATION

• Thus, the first QP subproblem will be
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QUADRATICAPPROXIMATION

• Since the first constraint can be used to eliminate one of the  

variables, that is,

d1 = - 2d2

• the resulting single-variable problem can be solved easily  

analytically to give

• Thus, the new point becomes

at which point
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• Note that the objective function value has improved
substantially but that the equality constraint is violated.
Suppose we continue with the solution procedure. The next
sub problem is
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• Note that both the objective function value and the equality
constraint violation are reduced. The next two iterations
produce the results.

x(3) = (1.00108, 1.99313) ƒ(x(3)) = 5.00457 h(x(3)) = -
4.7 * 10-3

x(4) = (1.00014, 1.99971) ƒ(x(4)) = 5.00003 h(x(4)) = -
6.2 * 10-6

• The exact optimum is x* (1, 2) with ƒ(x*) 5.0; a very accurate
solution has been obtained in four iterations. As is evident
from Figure 10.1, the constraint linearizations help to define
the search directions, while the quadratic objective function
approximation effectively fixes the step length along that
direction.
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Example 2:-

• Suppose the objective function and equality constraint of  

Example 10.1 are interchanged. Thus, consider the problem

• The optimal solution to this problem is identical to that of

Example 10.1. With the starting point x0 = (2, 1) the first sub

problem becomes
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• The solution to this sub problem is d0 = (1.7571, 0.24286), at
which both constraints are tight. Thus, a sub problem corner
point is reached.

• The resulting intermediate solution is

x1 = x0 + d0 = (0.24286, 0.75714)

with

ƒ(x(1)) = 0.18388 h(x(1)) = 9.7619 g(x(1)) = 0
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• Although the objective function value decreases, the equality  

constraint vio- lation is worse. The next subproblem becomes

• The resulting new point is

x(2) = (0.32986, 0.67015)

ƒ(x(2)) = 0.2211 h(x(2)) = 4.1125 g(x(2)) = 0
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• Again, g(x) is tight. The next few points obtained in this  
fashion are

x(3) = (0.45383, 0.54618)

x(4) = (—0.28459, 1.28459)

x(5) = (—0.19183, 1.19183)

• These and all subsequent iterates all lie on the constraint g(x) =

0. Since the objective function decreases toward the origin, all
iterates will be given by the intersection of the local
linearization with g(x) = 0.

• Since the slope of the linearization becomes larger or smaller
than -1 depending upon which side of the constraint ‗ elbow‘‘
the linearization point lies, the successive iterates simply
follow an oscillatory path up and down the surface g(x)=0.
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• Evidently the problem arises because the linearization cannot

take into account the sharp curvature of the constraint h(x) = 0

in the vicinity of the optimum.

• Since both the constraint and the objective function shapes

serve to define the location of the optimum, both really ought

to be taking into ac-count.
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QUADRATIC APPROXIMATION OF THE LAGRANGIAN  

FUNCTION

• The examples of the previous section suggest that it is

desirable to incorporate into the sub problem definition not

only the curvature of the objective function but also that of the

constraints.

• However, based on computational considerations, we also

noted that it is preferable to deal with linearly constrained

rather than quadratically constrained sub problems.

• Fortunately, this can be accomplished by making use of the

Lagrangian function, as will be shown below.
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• For purposes of this discussion, we first consider only the  
equality- constrained problem.

• The extension to inequality constraints will follow in a
straightforward fashion.  

Consider the problem

Minimize  

Subject to

ƒ(x)

h(x) = 0

• Recall that the necessary conditions for a point x* to be a local  

minimum are that there exist a multiplier v* such that

Qx L(x*, v*) = Qƒ* — v*T Qh* = 0 and h(x*) = 0  

(Ex-1)
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• Sufficient conditions for x* to be a local minimum are that

conditions (Ex-1) hold and that the Hessian of the Lagrangian

function,

satisfies

for all d such that (Qh)*Td = 0 (Ex-2)

• Given some point , we construct the following sub  
problem expressed in terms of the variables d:
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• We now observe that if d* = 0 is the solution to the problem
consisting of (10.3) and (10.4), then x must satisfy the
necessary conditions for a local minimum of the original
problem.

• First note that if d* = 0 solves the sub- problem, then form
(10.4) it follows that h(x) = 0; in other words, x is a feasible
point.

• Next, there must exist some v* such that the sub problem func-
tions satisfy the Lagrangian necessary conditions at d* = 0.
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• Thus, since the gradient of the objective function (10.3) with

respect to d at d* = 0 is Qƒ(x) and that of (10.4) is Qh(x), it

follows that

• Note that the second derivative with respect to d of (10.4) is
zero, since it is a linear function in d.

• Consequently, the above inequality implies that d T Qx2L( ,
v*)d is positive also.

• Therefore, the pair ( , v*) satisfies the sufficient conditions for
a local minimum of the original problem.
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This demonstration indicates that the sub problem consisting of  

(10.3) and (10.4) has the following very interesting features:

1. If no further corrections can be found, that is, d = 0, then the
local minimum of the original problem will have been
obtained.

2. The Lagrange multipliers of the sub problem can be used
conveniently as estimates of the multipliers used to formulate
the next sub problem.

3. For points sufficiently close to the solution of the original
problem the quadratic objective function is likely to be
positive definite, and thus the solution of the QP sub problem
will be well behaved.
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By making use of the sufficient conditions stated for both

equality and in- equality constraints, it is easy to arrive at a QP

subproblem formulation for the general case involving K equality

and J inequality constraints. If we let

161



LAGRANGIANFUNCTION

162

• The algorithm retains the basic steps outlined for the direct QP  

case.

• Namely, given  an  initial estimate x 0 as well asu0 and v0

(the latter could be set equal to zero, we formulate the sub  

problem [Eqs. (10.7), (10.8a), and (10.8b)];

• solve it; set x(t+1) = x(t) + d; check for convergence; and

repeat, using as next estimates of u and v the corresponding

multipliers obtained at the solution of the sub problem.
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Example 3

Repeat the solution of the problem of Example 10.1 using the

Lagrangain QP sub problem with initial estimates x0 = (2, 1)T, u0 =  

0, and v0 = 0. The first sub problembecomes

This is exactly the same as the fist sub problem of Example 1,

because with the initial zero estimates of the multipliers of the

constraint terms of the Lagrangian will vanish.
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• The sub problem solution is thus, as before,

d0 = (—0.92079, 0.4604)T

• Since the inequality constraint is loose at this solution, u(1)  
must equal zero.

•

• The equality constraint multiplier can be found from the
solution of the Lagrangian necessity conditions for the sub
problem.
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• Namely,

• Thus, v(1) = 2.52723. Finally, the new estimate of the problem  

solution will be x(1) = x0 + d0, or

x(1) = (1.07921, 1.4604)T ƒ(x(1)) = 5.68779 h(x(1)) = - 0.42393
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as was the case before.

• The second subproblem requires the gradients
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• The quadratic term is therefore equal to

• The complete problem becomes
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• The solution is d(1) = (0.00614, 0.38450). Again, since g˜(d(1);

x(1) )> 0, u(2) = 0, and the remaining equality constraint
multiplier can be obtained from  

or

Thus,  

with

• Continuing the calculations for a few more iterations, the  
results obtained are

168



LAGRANGIANFUNCTION

and

• It is interesting to note that these results are essentially

comparable to those obtained in Example 1 without the

inclusion of the constraint second derivative terms.

• This might well be expected, because at the optimal solution

(1, 2) the constraint contribution to the second derivative of the

Lagrangian is small:
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• The basic algorithm illustrated in the preceding example can

be viewed as an extension of Newton‘s method to

accommodate constraints.

• Specifically, if no constraints are present, the subproblem

reduces to
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Example 10.4

• Consider the problem of Example 10.2 with the initial estimate

x0 = (2, 2.789) and u = v = 0. The first sub problem will be

given by

• solution is d 0 = (-1.78316, -2.00583). The inequality

constraint is tight, so both constraint multipliers must be

computed. The result of solving the system is v(1) = -0.00343

and u(1) = 0.28251.
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At the corresponding intermediate point,

x (1) = (0.21683, 0.78317)T

We have

ƒ(x(1)) = 0.1698 h(x(1)) = 13.318 g(x(1)) = 0

• Note that the objective function decreases substantially, but the  

equality constraint violation becomes very large. The next sub

problem constructed at x(1) with multiplier estimates u(1) and  

v(1) is
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• The sub problem solution is d (1) = (+0.10434,-0.10434)T, and  

the multipliers are v(2) = -0.02497, u(2) = 0.38822.

• At the new point x(2) = (0.40183,0.59817)T, the objective  

function value is 0.24036 and the constraint value is 2.7352.

• The results of the next iteration,

x(3)  = (0.74969, 0.25031)T ƒ(x(3)) = 0.18766 h(x(3)) = 13.416
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• indicate that the constraint violation has increased

considerably while the objective function value has decreased  

somewhat.

• Comparing the status at x(1) and x(3), it is evident that the

iterations show no real improvement.

• In fact, both the objective function value and the equality

constraint violation have increased in proceeding from x(1) to  

x(3).

• The solution to the problem of unsatisfactory convergence is,

as in the unconstrained case, to perform a line search from the

previous solution estimate in the direction obtained from the

current QP sub problem solution.
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• However, since in the constrained case both objective function

improvement and reduction of the constraint infeasibilities

need to be taken into account, the line search must be carried

using some type of penalty function.

• For instance, as in the case of the SLP strategy advanced by  

Palacios-Gomez, an exterior penalty function of the form

could be used along with some strategy for adjusting the

penalty parameter R. This approach is illustrated in the next

example.
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EXAMPLE

Consider the application of the penalty function line search to

the problem of Example 10.4 beginning with the point x(2) and

the direction vector d(2) = (0.34786, -0.34786)T which was

previously used to compute the point x(3) directly.

Suppose we use the penalty function

P(x, R) = ƒ(x) + 10{h(x)2 + [min(0, g(x)]2 }

and minimize it along the line
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• Note that at P 75.05, while at 1, P 1800.0. Therefore, a  

minimum ought to be found in the range 0 1.

• Using any convenient line search method, the approximate

minimum value P 68.11 can be found with 0.1. The resulting

point will be

x(3) = (0.43662, 0.56338)T  

with ƒ(x(3)) = 0.24682 and h(x(3)) = 2.6053.

• To continue the iterations, updated estimates of the multipliers

are required. Since is no longer the optimum solution of the

previous sub problem, this value of d cannot be used to

estimate the multipliers.

• The only available updated multiplier

are
values  

those
associated with d (2), namely v(3) = 0.005382 and u(3)= 0.37291.
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• The results of the next four iterations obtained using line searches of
the penalty function after each sub problem solution are shown in
Table 10.1.

• As is evident from the table, the use of the line search is successful

in forcing convergence to the optimum from poor initial estimates.

• The useof the quadratic approximation to the

Lagrangian was  

proposed by Wilson.

• Although the idea was pursued by Beale and by Bard and Greeted, it

has not been widely adopted in its direct form.

• As with Newton‘s method, the barriers to the adoption of this
approach in engineering applications have been two fold: first the
need to provide second derivative values for all model functions
and, second, the sensitivity solution estimates.
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Table 10.1 Results for Example 10.5

170



QUADRATIC APPROXIMATION OF THE  
LAGRANGIANFUNCTION

180

relevance to defining a good search direction. (For instance,

Table 10.1, v(3) = -5.38 x 10-3, while v* = -2.)

Thus, during the initial block of iterations, the considerable

computational burden of evaluating all second derivatives may

be entirely wasted.

A further untidy feature of the above algorithm involves the

strategies required to adjust the penalty parameter of the line

search penalty function.

First, a good initial estimate of the parameter must somehow

be supplied; second, to guarantee convergence, the penalty

parameter must in principle be increased to large values.
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Variable metric methods for Constrained optimization:-

• The desirable improved convergence rate of Newton‘s method

could be approached by using suitable update formulas to

approximate the matrix of second derivatives.

• Thus, with the wisdom of hindsight, it is not surprising that, as

first shown by Garcia Palomares and Mangasarian, similar

constructions can be applied to approximate the quadratic

portion of our Lagrangian sub problems.

• The idea of approximating using quasi-Newton update

formulas that only require differences of gradients of the

Lagrangian function was further developed by Han and

Powell.
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• The basic variable metric strategy proceeds as follows.

Constrained Variable Metric Method:-

• Given initial estimates x 0, u0, v0 and a symmetric positive-definite  

matrix H0.

Step 1: Solve the problem
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• Step 2: Select the step size along d(t) and set x(t +1) = x(t) + d (t).

• Step 3: Check for convergence.

• Step 4: Update H(t) using the gradient difference in such a way  

that H(t +1) remains positive definite.

• The key choices in the above procedure involve the update

formula for H(t) and the manner of selecting. Han considered

the use of several well known update formulas, particularly

DFP.



CONSTRAINED VARIABLE METRICMETHOD

• Here it is also showed that if the initial point is sufficiently

close, then convergence will be achieved at a superlinear rate

without a step-size procedure or line search by setting = 1.

• However, to assure convergence from arbitrary points, a line

search is required.

• Specifically, Han recommends the use of the penalty function
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• where R and are suitably selected positive numbers.

• Powell, on the other hand, suggests the use of the BFGS

formula together with a conservative check that ensures that

H(t) remains positive definite. Thus, if

and

• Then define

• and calculate
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• Finally, this value of w is used in the BFGS updating formula,

• Note that the numerical value 0.2 is selected empirically and

that the normal BFGS update is usually stated in terms of y

rather than w.

• On the basis of empirical testing, Powell proposed that the

step-size procedure be carried out using the penalty function
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• where for the first iteration

• and for all subsequent iterations t

• The line search could be carried out by selecting the largest

value of , 0 <= <=1, such that

• However, Powell prefers the use of quadratic interpolation to

generate a sequence of values of k until the more conservative

condition is met.
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• It is interesting to note, however, that examples have been

found for which the use of Powell‘s heuristics can lead to

failure to converge.

• Further refinements of the step-size procedure have been

reported, but these details are beyond the scope of the present

treatment.

• We illustrate the use of a variant of the constrained variable

metric (CVM) method using update (10.11), penalty function

(10.12), and a simple quadratic interpolation-based step-size

procedure.
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OPTIMIZATION

Variable metric methods for Constrained optimization:-

Example

Solve the problem

using the CVM method with initial metric H0 = I.  

At the initial point (2, 1), the function gradients are
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• Therefore, the first sub problem will take the form

• It is easy to show that the problem solution lies at the

intersection of the two constraints. Thus, d0 = (-4, 2)T, and the

multipliers at this point are solutions of the system
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or

• For the first iteration, we use the penalty parameters

• The penalty function (10.12) thus take the form

• We now conduct a one-parameter search of P on the line
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• Suppose we conduct a bracketing search with

Then P(0 + 0.1) = 9.38875 and p(0.1 + 2(0.1)) = 13.78

• Clearly, the minimum on the line has been bounded.

• Using quadratic interpolation on the three trial points of = 0,

0.1, 0.3, we obtain dash = 0.1348 with P( ) = 9.1702. Since

this is a reasonable improvement over P(0), the search is

terminated with this value of . The new point is
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• The new point is

X(1) = (2, 1)T +(0.1348)(-4, 2) = (1.46051, 1.26974)

• We now must proceed to update the matrix H. Following  

Powell, we calculate

z = x(1) – x0 (-0.53949, 0.26974)T

• Then
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• Note that both gradients are calculated using the same  

multiplier values u(1) ,v(1). By definition,,
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• Note that H(1) is positivedefinite.

• This completes on iteration. We will carry out the second in  

abbreviated form only.

The sub problem at x(1) is

The solution of the quadratic program is

d(1) = ( -0.28911, 0.35098)
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• At this solution, the inequality is loose, and hence u(2) = 0. The  

other multiplier value is v(2) = 4.8857.

• The penalty function multipliers are updated using (10.13) and  

(10.14):

• The penalty function now becomes
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• where
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• The iterations continue with an update of H(1) .The details will

not be elaborated since they are repetitious. The results of the

next four iterations are summarized below.

• Recall that in Example 10.3, in which analytical second

derivatives were used to formulate the QP sub problem,

comparable solution accuracy was attained in four iterations.
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• Thus, the quasi-Newton result obtained using only first

derivatives is quite satisfactory, especially in view of the fact

that the line searches were all carried out only approximately.

• It should be reemphasized that the available convergence

results (super linear rate) [6, 11] assume that the penalty

function parameters remain unchanged and that exact line

searches are used.

• Powell‘s modifications (10.13) and (10.14) and the use of

approximate searches thus amount to useful heuristics justified

solely by numerical experimentation.

• Finally, it is noteworthy that an alternative formulation of the

QP sub problem has been reported by Biggs as early as 1972.
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• The primary differences of that approach lie in the use of an

active constraint strategy to select the inequality constraints

that are linearized and the fact that the quadratic

approximation appearing in the sub problem is that of a

penalty function.

• In view of the overall similarity of that approach to the

Lagrangian-based construction, we offer no elaboration here,

but instead invite the interested reader to study the recent

exposition of this approach offered in reference 13 and the

references cited therein.

.



References

A Ravindran, “Engineering Optimization”, JohnWiley&Sons
Publications, 4thEdition, 2009.


