

# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

### **MECHANICAL ENGINEERING**

### **COURSE DESCRIPTOR**

| Course Title      | OPTIN    | OPTIMIZATION TECHNIQUES            |                  |              |            |         |  |  |
|-------------------|----------|------------------------------------|------------------|--------------|------------|---------|--|--|
| Course Code       | AMEB     | AMEB12                             |                  |              |            |         |  |  |
| Programme         | B. Tech  | B. Tech.                           |                  |              |            |         |  |  |
| Semester          | IV       | IV ME                              |                  |              |            |         |  |  |
| Course Type       | Core     | Core                               |                  |              |            |         |  |  |
| Regulation        | IARE -   | IARE - R18                         |                  |              |            |         |  |  |
|                   |          |                                    | Theory           |              | Practio    | cal     |  |  |
| Course Structure  | Lectu    | res                                | Tutorials        | Credits      | Laboratory | Credits |  |  |
|                   | 3        | 3 - 3 2 1                          |                  |              |            |         |  |  |
| Chief Coordinator | Dr. Paid | Dr. Paidi Raghavulu, Professor, ME |                  |              |            |         |  |  |
| Course Faculty    | Dr. Pai  | Dr. Paidi Raghavulu, Professor, ME |                  |              |            |         |  |  |
|                   | Mrs. T   | . Var                              | naja Assistant P | rofessor, ME |            |         |  |  |

### I. COURSE OVERVIEW:

The Optimization Techniques is also called Operations research for short and it is a scientific approach to decision making which seeks to determine how best to design and operate a system under conditions requiring allocation of scarce resources. Optimization Technique as a research field, primarily has a set or collection of algorithms which act as tools for problems solving in chosen application areas. OT has extensive applications in engineering, business and public systems and is also used by manufacturing and service industries to solve their day to day problems. This course facilitates to learn various models to optimize a problem.

### II. COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites                          | Credits |
|-------|-------------|----------|----------------------------------------|---------|
| UG    | AHSB02      | I        | Linear Algebra and Calculus            | 4       |
| UG    | AHSB11      | II       | Mathematical Transformation Techniques | 4       |

### III. MARKS DISTRIBUTION:

| Subject                 | SEE Examination | CIA<br>Examination | Total Marks |
|-------------------------|-----------------|--------------------|-------------|
| OPTIMIZATION TECHNIQUES | 70 Marks        | 30 Marks           | 100         |

### IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| × | Chalk & Talk           | > | Quiz     | <b>'</b> | Assignments  | × | MOOCs  |  |
|---|------------------------|---|----------|----------|--------------|---|--------|--|
| ~ | LCD / PPT              | > | Seminars | ×        | Mini Project | ~ | Videos |  |
| ~ | Open Ended Experiments |   |          |          |              |   |        |  |

### V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

**Semester End Examination** (**SEE**): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

| 50 % | To test the objectiveness of the concept.                                                    |
|------|----------------------------------------------------------------------------------------------|
| 50 % | To test the analytical skill of the concept OR to test the application skill of the concept. |

### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

| Component          | oonent Theory |      |     |             |
|--------------------|---------------|------|-----|-------------|
| Type of Assessment | CIE Exam      | Quiz | AAT | Total Marks |
| CIA Marks          | 20            | 05   | 05  | 30          |

### **Continuous Internal Examination (CIE):**

Two CIE exams shall be conducted at the end of the 8<sup>th</sup> and 16<sup>th</sup> week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

### **Ouiz - Online Examination**

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

### **Alternative Assessment Tool (AAT)**

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

### VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes (POs)                                                                                                                                                                                                                                                                           | Strength | Proficiency<br>assessed by              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|
| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                         | 3        | Presentation on real-<br>world problems |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences                                                         | 2        | Seminar                                 |
| PO 3 | <b>Design/development of solutions:</b> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | 2        | Assignments                             |
| PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                              | 1        | Term Paper                              |

3 = High; 2 = Medium; 1 = Low

### VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes (PSOs)                                                                                                                               | Strength | Proficiency assessed<br>by |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PSO 1 | <b>Professional Skills:</b> To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams. | 1        | Seminar                    |
| PSO 2 | <b>Problem Solving Skills:</b> ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.        | -        | -                          |
| PSO 3 | <b>Successful Career and Entrepreneurship:</b> To build the nation, by imparting technological inputs and managerial skills to become technocrats.             | -        | -                          |

**<sup>3 =</sup> High; 2 = Medium; 1 = Low** 

# **VIII. COURSE OBJECTIVES:**

| The cou | The course should enable the students to:                                                               |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| I       | Formulate the mathematical model of real time problems and optimize with LLP techniques.                |  |  |  |  |  |  |
| II      | Establish the problem formulation and optimization by using transportation, assignment models.          |  |  |  |  |  |  |
| III     | Apply Sequencing and replacement models for optimized decisions                                         |  |  |  |  |  |  |
| IV      | Apply Game theory, Inventory models for effective operational control.                                  |  |  |  |  |  |  |
| V       | Visualize application of Waiting line, Dynamic programming, Simulation models in real time applications |  |  |  |  |  |  |

# IX. COURSE OUTCOMES (COs):

| COs  | Course Outcome                                       | CLOs  | Course Learning Outcome                                                                          |
|------|------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------|
| CO 1 | Formulate the mathematical model of                  | CLO 1 | Understand the characteristics, phases, types of operation research models and its applications. |
|      | real time problems and optimize with LLP techniques. | CLO 2 | Visualize modeling principles scope, decision making, general methods for solving OR models.     |
| te   |                                                      | CLO 3 | Understand linear programming concepts, problem formulation and graphical models.                |
|      |                                                      | CLO 4 | Understand simplex method and artificial variable techniques.                                    |
|      |                                                      |       | Comprehend two-phase method and Big-M method of linear programming.                              |
| CO 2 | Establish the problem formulation and                | CLO 6 | Apply to build and solve transportation models of balanced.                                      |
|      | optimization by using transportation, assignment     | CLO 7 | Understand the degeneracy model problem of transportation, unbalanced type-maximization.         |
|      | models                                               | CLO 8 | Apply to build assignment models for optimal solution.                                           |
|      |                                                      | CLO 9 | Understand variants of assignment model and travelling salesman model.                           |

| COs  | Course Outcome                                 | CLOs   | Course Learning Outcome                                                                                                               |
|------|------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------|
| CO 3 | Apply Sequencing and replacement models for    | CL10   | Understand the flow shop sequencing model of 'n' jobs through two machines and three machines.                                        |
|      | optimized decisions.                           | CLO 11 | Comprehend job shop sequencing of two jobs through 'm' machines.                                                                      |
|      |                                                | CLO 12 | Understand the concept of replacement of items that deteriorate with time when money value is not counted .                           |
|      |                                                | CLO 13 | Understand the concept of replacement of items that deteriorate with time when money value is n counted.                              |
|      |                                                | CLO 14 | Visualize the replacement of items that fail completely and group replacement.                                                        |
| CO 4 | Apply Game theory,<br>Inventory models for     | CLO 15 | Understand minimax (maximini) criterion, optimal strategy, solution od games with saddle point                                        |
|      | effective operational control.                 | CLO 16 | Visualize dominance principle while solving game theory problem.                                                                      |
|      |                                                | CLO 17 | Apply to solve m * 2 , 2 *n model of games and graphical method.                                                                      |
|      |                                                | CLO 18 | Understand the concepts of deterministic inventory model and purchase inventory model with one price break and multiple price breaks. |
|      |                                                | CLO 19 | Visualize stochastic inventory models – demand may be discrete variable or continuous variable.                                       |
| CO 5 | Visualize application of Waiting line, Dynamic | CLO 20 | Understand the concepts of waiting line model of single channel and multi server model.                                               |
|      | programming, Simulation models in real time    | CLO 21 | Visualize dynamic programming concepts and models                                                                                     |
|      | applications                                   | CLO 22 | Comprehend the simulation models, phases of simulation, application of simulation                                                     |
|      |                                                | CLO 23 | Visualize the application of simulation for inventory and queuing problems.                                                           |

# X. COURSE LEARNING OUTCOMES (CLOs):

| CLO       | CLO's  | At the end of the course, the student will have                                          | PO's   | Strength of |
|-----------|--------|------------------------------------------------------------------------------------------|--------|-------------|
| Code      |        | the ability to:                                                                          | Mapped | Mapping     |
| AMEB12.01 | CLO 1  | Understand the characteristics, phases, types of                                         | PO 1,  | 3           |
|           |        | operation research models and its applications.                                          | PO 2   |             |
| AMEB12.02 | CLO 2  | Visualize modeling principles scope, decision                                            |        | 2           |
|           |        | making, general methods for solving OR models.                                           | PO 2   |             |
| AMEB12.03 | CLO 3  | Understand linear programming concepts,                                                  | PO 1,  | 3           |
|           |        | problem formulation and graphical models.                                                | PO 2   |             |
| AMEB12.04 | CLO 4  | Understand simplex method and artificial variable techniques.                            | PO 3   | 3           |
| AMEB12.05 | CLO 5  | Comprehend two-phase method and Big-M                                                    | PO 2,  | 2           |
|           |        | method of linear programming.                                                            | PO 3   |             |
| AMEB12.06 | CLO 6  | Apply to build and solve transportation models of balanced .                             | PO 2   | 2           |
| AMEB12.07 | CLO 7  | Understand the degeneracy model problem of transportation, unbalanced type-maximization. | PO 3   | 3           |
| AMEB12.08 | CLO 8  | Apply to build assignment models for optimal                                             | PO 1,  | 2           |
|           |        | solution.                                                                                | PO 2   |             |
| AMEB12.09 | CLO 9  | Understand variants of assignment model and travelling salesman model.                   | PO 2   | 1           |
| AMEB12.10 | CLO 10 | 1 1 0                                                                                    | PO 1,  | 2           |
|           |        | 'n' jobs through two machines and three machines.                                        | PO 6   |             |

| AMEB12.11 | CLO 11 | Comprehend job shop sequencing of two jobs through 'm' machines.                                                                      | PO 1,<br>PO 2          | 2 |
|-----------|--------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|---|
|           |        | Understand the concept of replacement of items that deteriorate with time when money value is not counted                             | PO 1<br>PO 6           | 3 |
| AMEB12.13 | CLO 13 | Understand the concept of replacement of items that deteriorate with time when money value is n counted.                              | PO 1,<br>PO 3          | 3 |
| AMEB12.14 | CLO 14 | Visualize the replacement of items that fail completely and group replacement.                                                        | PO 6                   | 3 |
| AMEB12.15 | CLO 15 | Understand minimax (maximini) criterion, optimal strategy, solution od games with saddle point                                        | PO 1,<br>PO 2,<br>PO 3 | 3 |
| AMEB12.16 | CLO 16 | Visualize dominance principle while solving game theory problem.                                                                      | PO 1,<br>PO 2,<br>PO 3 | 3 |
| AMEB12.17 | CLO 17 | Apply to solve m * 2, 2 *n model of games and graphical method.                                                                       | PO 1,<br>PO 2,<br>PO 6 | 3 |
| AMEB12.18 | CLO 18 | Understand the concepts of deterministic inventory model and purchase inventory model with one price break and multiple price breaks. | PO 1,<br>PO 2          | 3 |
| AMEB12.19 | CLO 19 | Visualize stochastic inventory models – demand may be discrete variable or continuous variable.                                       | PO 2                   | 3 |
| AMEB12.20 | CLO 20 | Understand the concepts of waiting line model of single channel and multi server model.                                               | PO 2                   | 2 |
| AMEB12.21 | CLO 21 | Visualize dynamic programming concepts and models                                                                                     | PO 3,<br>PO 6          | 2 |
| AMEB12.22 | CLO 22 | Comprehend the simulation models, phases of simulation, application of simulation                                                     | PO 2,<br>PSO 1         | 2 |
| AMEB12.23 | CLO 23 | Visualize the application of simulation for inventory and queuing problems.                                                           | PO1,<br>PO 3           | 2 |

**3= High; 2 = Medium; 1 = Low** 

# XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

| Course<br>Outcomes (COs) | Program Outcomes and Program Specific Outcomes |      |      |      |       |       |  |  |  |
|--------------------------|------------------------------------------------|------|------|------|-------|-------|--|--|--|
| Outcomes (COs)           | PO 1                                           | PO 2 | PO 3 | PO 6 | PSO 1 | PSO 2 |  |  |  |
| CO 1                     | 3                                              | 2    | 3    |      | 2     | 2     |  |  |  |
| CO 2                     | 2                                              | 3    |      | 3    | 2     | 2     |  |  |  |
| CO 3                     | 2                                              | 2    | 2    | 3    | 2     | 2     |  |  |  |
| CO 4                     | 3                                              |      | 3    | 2    | 2     | 2     |  |  |  |
| CO 5                     | 3                                              | 2    | 3    | 1    | 2     | 2     |  |  |  |

**3= High; 2 = Medium; 1 = Low** 

# XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course          | Program Outcomes (POs) |     |     |     |     |     |            |      |         | Program Specific Outcomes (PSOs) |      |      |      |      |      |
|-----------------|------------------------|-----|-----|-----|-----|-----|------------|------|---------|----------------------------------|------|------|------|------|------|
| Learning        |                        |     |     |     |     |     |            | Outc | omes (l | PSOs)                            |      |      |      |      |      |
| Outcomes (CLOs) | PO1                    | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8  | PO9     | PO10                             | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|                 |                        |     |     |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 1           | 3                      | 3   |     |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 2           | 2                      | 2   |     |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 3           |                        | 3   |     |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 4           |                        |     | 3   |     |     |     |            |      |         |                                  |      |      | 1    |      |      |
| CLO 5           |                        | 2   | 2   |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 6           |                        | 2   |     |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 7           |                        |     | 3   |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 8           | 2                      |     | 2   |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 9           |                        | 3   |     |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 10          | 3                      |     |     |     |     | 3   |            |      |         |                                  |      |      |      |      |      |
| CLO 11          | 2                      | 2   |     |     |     |     |            |      |         |                                  |      |      | 1    |      |      |
| CLO 12          | 3                      |     |     |     |     | 3   |            |      |         |                                  |      |      | 1    |      |      |
| CLO 13          | 2                      |     | 2   |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 14          |                        |     |     |     |     | 2   |            |      |         |                                  |      |      |      |      |      |
| CLO 15          | 3                      | 3   | 3   |     |     |     |            |      |         |                                  |      |      |      |      |      |
| CLO 16          | 2                      | 2   | 2   |     |     |     |            |      |         |                                  |      |      | 1    |      |      |
| CLO 17          | 3                      | 3   |     |     |     | 3   |            |      |         |                                  |      |      | 1    |      |      |
| CLO 18          |                        | 2   |     |     |     | 2   |            |      |         |                                  |      |      | 1    |      |      |
| CLO 19          |                        | 2   |     |     |     |     |            |      |         |                                  |      |      | 1    |      |      |
| CLO 20          |                        | 2   |     |     |     |     |            |      |         |                                  |      |      | 1    |      |      |
| CLO 21          |                        |     | 2   |     |     | 2   |            |      |         |                                  |      |      |      |      |      |
| CLO 22          |                        | 2   |     |     |     |     |            |      |         |                                  |      |      | 1    |      |      |
| CLO 23          | 2<br>3 – H             |     | 2   |     |     |     |            |      |         |                                  |      |      |      |      |      |

3 =High; 2 =Medium; 1 =Low

### XIII. ASSESSMENT METHODOLOGIES - DIRECT

| CIE Exams               | PO1, PO2,<br>PO3,PO6,<br>PS01 | SEE<br>Exams    | PO1, PO2,<br>PO3,PO6,<br>PS01 | Assignments  | - | Seminars      | PO1, PO2,<br>PO3,PO6,<br>PS01 |
|-------------------------|-------------------------------|-----------------|-------------------------------|--------------|---|---------------|-------------------------------|
| Laboratory<br>Practices | -                             | Student<br>Viva | -                             | Mini Project | - | Certification | -                             |
| Term<br>Paper           | PO1, PO2,<br>PO3,PO6,<br>PS01 |                 |                               |              |   |               |                               |

### XIV. ASSESSMENT METHODOLOGIES - INDIRECT

| • | Early Semester Feedback                | • | End Semester OBE Feedback |  |
|---|----------------------------------------|---|---------------------------|--|
| × | Assessment of Mini Projects by Experts |   |                           |  |

#### XV. SYLLABUS

### Module-I DEVELOPMENT OF O.R AND ALLOCATION

Development, definition, characteristics and phases, types of operation research models, applications; Allocation: linear programming, problem formulation, graphical solution, simplex method, artificial variables techniques, two-phase method, big-M method.

### Module-II TRANSPORTATION AND ASSIGNMENT PROBLEM

Transportation problem: Formulation, optimal solution, unbalanced transportation problem, Degeneracy; Assignment problem, formulation, optimal solution, variants of assignment problem, traveling salesman problem.

### Module-III SEQUENCING AND REPLACEMENT

Sequencing: Introduction, flow, shop sequencing, n jobs through two machines, n jobs through three machines, job shop sequencing, two jobs through 'm' machines.

Replacement: Introduction: Replacement of items that deteriorate with time, when money value is not counted and counted, replacement of items that fail completely, group replacement.

## Module-IV THEORY OF GAMES AND INVENTORY

Theory Of Games: Introduction – Terminology, Solution of games with saddle points and without saddle points, 2×2 games, dominance principle, m X 2 & 2 X n games, Graphical method. Inventory: Introduction, Single item, Deterministic models, Purchase inventory models with one price

break and multiple price breaks, Stochastic models, demand may be discrete variable or continuous variable, Single period model and no setup cost.

### Module-V WAITING LINES, DYNAMIC PROGRAMMING AND SIMULATION

Waiting Lines: Introduction, Terminology, Single Channel, Poisson arrivals and exponential service times with infinite population and finite population models, Multichannel, Poisson arrivals and exponential service times with infinite population.

Dynamic Programming: Introduction, Terminology, Bellman"s Principle of optimality, Applications of

dynamic programming, shortest path problem, linear programming problem. Simulation: Introduction, Definition, types of simulation models, steps involved in the simulation process - Advantages and Disadvantages, Application of Simulation to queuing and inventory.

### **Text Books:**

- 1. J. K. Sharma, "Operations Research", Macmillan, 5th Edition, 2012.
- 2. R. Pannerselvan, "Operations Research", 2nd Edition, PHI Publications, 2006.

### **Reference Books:**

- 1. A. M. Natarajan, P. Balasubramani, A. Tamilarasi, "Operations Research", Pearson Education, 2013.
- 2. Maurice Saseini, Arhur Yaspan, Lawrence Friedman, "Operations Research: Methods & Problems", 1st Edition, 1959.
- 3. Hamdy A. Taha, "Introduction to O.R", PHI, 8th Edition, 2013.
- 1. Harvey M. Wagner, "Operations Research", PHI Publications, 2nd Edition, 1980.

### **Web References:**

- 1. https://www.aicte-india.org/flipbook/p&ap/Vol.%20II%20UG/UG\_2.html#p=8
- 2. https://www.britannica.com/topic/operations-research

### XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Lecture<br>No | Topic's to be covered                                                                                                | Course<br>Learning<br>Outcomes<br>(CLOs) | Reference            |
|---------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|
| 1             | Understand Introduction – Definition– Characteristics and Phases – Types of operation Research models                | CLO 1                                    | T1: 1.1- 1.5         |
| 2             | Understand Modeling in operations research, principles and application                                               | CLO 2                                    | T1: 1.6 – 1.15       |
| 15            | Remember Allocation - Linear Programming Problem formulation                                                         | CLO 3                                    | T1: 2.7 – 2.86       |
| 5-6           | Understand concepts of Graphical solution                                                                            | CLO 3                                    | T1: 3.1- 3.4.2       |
| 6-7           | Remember concepts of Simplex method                                                                                  | CLO 4                                    | T1: 4.1- 4.62        |
| 8-9           | Understand Artificial variables techniques                                                                           | CLO 4                                    | T1: 4.4.1            |
| 10-11         | Understand concepts of Two-phase method                                                                              | CLO5                                     | T1: 4.4.1            |
| 12-13         | Remember concepts of Big-M method                                                                                    | CLO5                                     | T1: 14.1- 14.2       |
| 14-16         | Understand Transportation model Formulation-Optimal solution balanced model                                          | CLO6                                     | T1: 9.1 – 9.4        |
| 17-20         | Understand Formulation-Optimal solution balanced and unbalanced and transportation models                            | CLO6                                     | T1: 9.5 – 9.6.1      |
| 21-23         | Analyze Degeneracy type transportation model                                                                         | CLO7                                     | T1: 9.6.2 – 9.7      |
| 24-25         | Understand concepts of Assignment problem- Formulation – Optimal solution                                            | CLO8                                     | T1: 10.1 –<br>10.3.1 |
| 26-28         | Understand concepts of variants of Assignment Problem, travelling salesman problem                                   | CL09                                     | T1:10.4 –<br>10.4.6  |
| 29-30         | Remember the concepts of Introduction-Flow-Shop sequencing-n jobs through two machines-n jobs through three machines | CLO10                                    | T1: 111-11.4         |
| 31-32         | Understand concepts of Job shop sequencing – two jobs                                                                | CLO11                                    | T1: 11.5 – 11.8      |

|       | through "m: machines                                                                                                      |       |                        |
|-------|---------------------------------------------------------------------------------------------------------------------------|-------|------------------------|
| 33-34 | Remember concepts of replacement of items that deteriorate with time-when money value is not counted                      | CLO12 | T1: 17.1 – 17.2        |
| 35-36 | Understand the concept of replacement of items that deteriorate with time-when money value is counted                     | CLO13 | T1: 17.3               |
| 37-39 | Remember the concept of replacement of items that fail completely, group replacement. Group replacement                   | CLO14 | T1: 17.4               |
| 40    | Understand the concepts of Game theory terminology,<br>Solution of games with saddle points                               | CLO15 | T1: 12.1 – 12.3        |
| 41    | Understand the concepts of Rectangular games without saddle points-2 x 2 games conductivity gauges                        | CLO15 | T1: 12.4 – 12.6        |
| 42-43 | Remember the concept of Dominance principle for solving Transportation problem                                            | CLO16 | T1: 12.5               |
| 44-45 | Remember concept of *2 & 2 * n games -graphical method                                                                    | CLO17 | T1: 12.6.4 – 2.6.5     |
| 46-47 | Understand the concepts of Inventory: Introduction-Single item, Derive the formula for Inventory models                   | CLO18 | T1: 14.1 – 14.7        |
| 48-49 | Understand the concepts of Purchase inventory models with one price break and multiple price breaks                       | CLO18 | T1: 14.10              |
| 50-51 | Understand the concepts of Stochastic Models                                                                              | CLO19 | T1: 14.11 –<br>14.12.5 |
| 52-53 | Understand the concepts of demand may be discrete variable or continuous variable – Single period model and no setup cost | CLO19 | T1:15.2 – 15.3         |
| 54-55 | Remember the concepts of Waiting Lines, Introduction-Single Channel- Poisson arrivals                                     | CLO20 | T1: 16.1 – 16.6        |
| 55-56 | Understand the concept of Multichannel-Poisson arrivals                                                                   | CLO20 | T1: 16.7 – 16.9        |
| 57-59 | Remember the concepts of e dynamic programming concepts and models                                                        |       |                        |
| 60    | Understand the concepts of Simulation, types of Simulation models-phases of simulation-applications of simulation         | CLO21 | T1: 19.1 – 19.4        |
| 61-62 | Understand advantages and disadvantages and application of simulation to queuing and inventory.                           | CLO22 | T1: 19.5 – 19.8        |

# XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S NO | DESCRIPTION                                     | PROPOSED<br>ACTIONS                       | RELEVANCE<br>WITH POs | RELEVANCE<br>WITH PSOs |
|------|-------------------------------------------------|-------------------------------------------|-----------------------|------------------------|
| 1    | Advanced Simulation practices                   | Seminars and<br>Laboratory Practice       | PO2                   | PSO1                   |
| 2    | Advanced topics                                 | Guest Lectures and<br>Laboratory Practice | PO3                   | PSO2                   |
| 3    | Recommended practices in optimization processes | Seminars and<br>Laboratory<br>Practice    | PO3                   | PSO2                   |

**Prepared by:** Dr. Paidi Raghavulu, Professor Mrs. T Vinaja, Assistant Professor

HOD, ME