PULSE AND DIGITAL CIRCUITS

IV Semester: ECE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AEC006	Foundation	L	Т	Р	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil			Total Classes: 60			

OBJECTIVES:

The course should enable the students to:

- I. Be proficient in the use of linear and non linear wave shaping circuits for sinusoidal, pulse and ramp inputs.
- II. Construct various multivibrators using transistors, and design sweep circuits and sampling gates.
- III. Evaluate the methods to achieve frequency synchronization and division using uni-junction transistors, multivibrators and symmetric circuits.
- IV. Realize logic gates using diodes and transistors and distinguish between various logic families.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand the response of high pass RC and low pass RC circuits to different non sinusoidal inputs with different time constants and identify RC circuit's applications.
- 2. Understand the various clipper circuits using switching components like diodes, transistors and design various clipper circuits with and without reference voltages.
- 3. Formulate clamping circuit theorem and design practical clamping circuits by understanding the different diode clamper circuits.
- 4. Illustrate the bistable multi with various triggering methods and apply design procedures to different bistable multivibrator circuits.
- 5. Evaluate triggering points, hysteresis width of Schmitt trigger circuit and also design practical Schmitt trigger circuit.
- 6. Analyze the monostable, astable multivibrator circuits with applications and evaluate time, frequency parameters.
- 7. Understand the different types of sampling gates with operating principles using diodes, transistors and also evaluate various parameters of sampling gates.
- 8. Implement different methods to generate time base waveforms using various sweep circuits like Bootstrap and Miller circuits.
- 9. Apply the various time base generator circuits in applications like cathode ray oscilloscope and television circuits.
- 10. Understand the concept of frequency division, synchronization and pulse synchronization of various Relaxation circuits.
- 11. Analyze the frequency division with sweep circuits and various relaxation circuits like Astable multi, Monostable multi circuits.
- 12. Implement the synchronization of different sweep circuits with symmetrical signals and sinusoidal signals.
- 13. Understand and analyze the different bipolar, unipolar logic families like DTL, RTL, DCTL, TTL, MOS and CMOS.

14. Unders immun 15. Unders	ity and compare various logic families. tand and analyze the tri state logic and interfacing of transistor transistor logic	and
comple	ementary metal oxide semi conductor logic families.	
Unit-I	WAVE SHAPING CIRCUITS	Classes: 10
Linear wave different tim characteristi clippers, clip	shaping circuits: High pass RC and low pass RC circuits, response to impulse and pulse constants, high pass RC circuit as a differentiator, low pass RC circuit as an integrate cs of diode; Non-linear wave shaping circuits: Clipping circuits, diode clippers, shunt copping at two independent levels; Clamping circuits: Clamping theorem.	se inputs with or, switching clippers, series
Unit -II	MULTIVIBRATORS	Classes: 10
Multivibrato symmetrical trigger; Mor Collector co	brs: Introduction, classification; Bistable multivibrator: Fixed bias, self bias, unsymmetric triggering; Schmitt trigger: Upper trigger point, lower trigger point, hysteresis, applicationstable multivibrator: Collector coupled, triggering of monostable Multivibrator. Astal upled, voltage to frequency converter.	rical triggering, tions of Schmitt ble multivibrator:
Unit -III	SAMPLING GATES AND TIME BASE GENERATORS	Classes: 08
Sampling ga	ttes: basic operating principle of sampling gate, uni and bi directional sampling gates.	
Time base Exponential circuit. Boot	generators: General features of a time base signal; Methods of generating a time sweep circuits, sweep circuit using uni junction transistor, Miller sweep circuit and estrap sweep circuit.	base waveform: Bootstrap sweep
Unit -IV	SYNCHRONIZATION AND FREQUENCY DIVISION	Classes: 09
Synchroniza circuits, oth dividers, sta synchroniza	tion and frequency division: Pulse synchronization of relaxation devices, frequency diver a stable relaxation circuits, synchronization of a stable multivibrator, monostable relativity of relaxation dividers; Synchronization of a sweep circuit with symmetrical station signals and sine wave frequency division with a sweep circuit.	vision with sweep axation circuits as ignals: Sinusoidal
Unit -V	DIGITAL LOGIC FAMILIES	Classes: 08
Bipolar log	ic families: RTL, DTL, DCTL, HTL, TTL, ECL, MOS, and CMOS logic famili of CMOS and TTL families.	es, tristate logic;
Text Book	S:	
 A. Anar David A David J. 	nd Kumar, "Pulse and Digital Circuits", PHI learning, 2nd Edition, 2005. A. Bell, "Solid State Pulse circuits", PHI learning, 4th Edition, 2002. Comer, "Digital Logic State Machine Design", Oxford University Press, 3rd E	dition, 2008.
Reference	Books:	
 Ronald Millman 	J. Tocci, "Fundamentals of Pulse and Digital Circuits", PHI learning, 3rd Edition J., Taub, "Pulse, Digital and Switching Waveforms", Tata McGraw-Hill, 2nd	on, 2008. Edition, 2007.
Web Refer	rences:	
 www.np notes.sp surkur.b https://b 	otel.ac.in ecworld.in/pdc-pulse-and-digital-circuits logspot.in/p/pdc.html ooks.google.co.in/books?isbn=8131721353	
2 Page		

E-Text Books:				
1. http:// www.introni.it/pdf/Millman-Taub- Pulse and Digital Switching Waveforms 1965.pdf				
2. https://www.jntubook.com/pulse-digital-circuits-textbook-free-download/				