ADVANCED MATHEMATICS IN AEROSPACE ENGINEERING

I Semester: AE								
Course Code	Category	Hours /Week Credits Maximum Marks			larks			
BAEC02	Core	L	Т	Р	С	CIA	SEE	Total
		3	0	0	3	30	70	100
ContactClasses:45	Tutorial Classes: Nil	Practical Classes: Nil				TotalClasses:45		

I. COURSE OVERVIEW:

The course focuses on more advanced Engineering Mathematics topics which provide the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes root-finding techniques, Interpolation, and its applications, parabolic equations, Hyperbolic equations, Elliptic equations with applications. The mathematical skills derived from this course form a necessary base for analytical and design concepts encountered in the program.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. The numerical methods of interpolation and approximation of solutions for Ordinary Differential Equations.
- II. The mathematical approximation techniques of solutions for Partial Differential Equations.
- III. The concept of Parabolic, Hyperbolic and Elliptic equations.

III. COURSE OUTCOMES:

After successful completion of the course, students will be able to:

CO 1	Calculate the unknown values of given equal and unequal spaced data by using Numerical methods.	
CO 2	Make use of Lagrange's method and method of separation of variables for solving linear and nonlinear partial differential equations.	Apply
CO 3	Interpret the boundary conditions for functions of Parabolic equations by using partial derivatives.	Apply
CO 4	Solve the Parabolic equations by using Crank-Nicholson implicit method.	Apply
CO 5	Compute the numerical solution of the Hyperbolic Equations by using method of characteristics.	Apply
CO 6	Apply the properties of Elliptic Equations for curved boundary analysis by the five- point approximation to Polman's equation.	Apply

IV. COURSE SYLLABUS:

MODULE-I: INTERPOLATION (09)

Interpolation: Finite differences, forward differences, backward differences and central differences; Symbolic relations; Newton's forward interpolation, Newton's backward interpolation; Gauss forward central difference formula, Gauss backward central difference formula; Interpolation of unequal intervals: Lagrange's interpolation.

MODULE-II: PARTIAL DIFFERENTIAL EQUATIONS (09)

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equation by Lagrange method; method of separation of variables.

MODULE-III: PARABOLIC EQUATIONS (09)

Introduction to finite difference formula; Parabolic equations: Introduction, explicit finite difference approximation to one dimensional equation, Crank-Nicholson implicit method, derivation for boundary conditions.

MODULE-IV: HYPERBOLIC EQUATIONS (09)

Analytical solution of first order quasi linear equation. Numerical integration along a characteristic lax wenderoff explicit method. CFI condition Wenderoff's implicit approximation, propagation of discontinues numerical solution by the method of characteristics.

MODULE-V: ELLIPTIC EQUATIONS (09)

Introduction, finite differences in polar co-ordinates, formulas for derivative near a curved boundary analysis of the discretization error of the five point approximation to polman's equation over a rectangle.

V. TEXT BOOKS:

- 1. G. D. Smith, "Numerical Solution of partial differential equations, finite Differences methods", Brunel University, Clarandon Press Oxford, 3rd Edition, 1985.
- 2. Joe D. Hoffman, "Numerical Methods for Engineers and scientists", Tata McGraw Hill, 2nd Edition, 2001.

VI. REFERENCE BOOKS:

- 1. A. R. Mitchel and D. F. Griffiths, "The Finite Difference Methods in Partial Differential equation", John Wiley, 1st Edition, 1980.
- 2. Larry J. Segerlind, "Applied Finite Element Analysis", John Wiley, 2nd Edition, 1984.

VII. WEB REFERENCES:

- 1. http://www.efunda.com/math/math_home/math.cfm
- 2. http://www.ocw.mit.edu/resourcs/#Mathematics
- 3. http://www.sosmath.com
- 4. http://www.mathworld.wolfram.com

VIII. E-TEXT BOOKS:

- 1. http://www.keralatechnologicaluniversity.blogspot.in/2015/06/erwin-kreyszig-advanced-engineering-mathematics-ktu-ebook-download.html
- 2. http://www.faadooengineers.com/threads/13449-Engineering-Maths-II-eBooks