CYBER SECURITY LABORATORY

II Semester: CSE										
Course Code	Category	Hours / Week			Credits	Maximum Marks				
BCSC24	Core	L	Т	Р	С	CIA	SEE	Total		
		0	0	4	2	30	70	100		
Contact Classes: Nil	Total Tutorials: Nil	Total Practical Classes: 36			Total Classes: 36					

I. COURSE OVERVIEW:

This course covers advanced techniques for writing exploits and patching vulnerabilities, taught through an intense, hands-on security laboratory. It deals about the cyber attackers, their tactics, social engineering, and high-profile case studies. This course covers a variety of topics including reverse engineering, exploitation, binary analysis, and web.

II. COURSE OBJECTIVES:

The students will try to learn:

- 1 How to implement the cryptographic algorithms.
- 2 How to identify, analyze, and remediate computer security breaches.
- 3 The key cyber security vendors in the marketplace.
- 4 The importance of digital signatures algorithms

III. COURSE OUTCOMES:

After successful completion of the course, students will be able to:

CO 1	Implement encryption and decryption techniques for providing security solutions.	Apply
CO 2	Analyze the impact of public key cryptosystems for secure exchange of information.	Understand
CO 3	Experiment a signature scheme using Digital signature standard.	Apply
CO 4	Use of hashing and authentication for implementing data integrity.	Apply
CO 5	Use firewall mechanism for restricting user activities over network.	Apply

IV. SYLLABUS

Week-1: CIPHER ALGORITHM

Implementation of symmetric cipher algorithm (AES and RC4)

Week-2: RANDOM NUMBER GENERATION

Random number generation using a subset of digits and alphabets.

Week-3: RSA ALGORITHM

Implementation of RSA based signature system

Week-4: RANDOM NUMBER GENERATION Implementation of Subset sum of numbers

Week-5: WEB TRANSACTIONS

Implementation of a trusted secure web transaction.

Week-6: HASH ALGORITHM

Authenticating the given signature using MD5 hash algorithm.

Week-7: DIFFIE-HELLMAN ALGORITHM

Implementation of Diffie-Hellman algorithm

Week-8: CRYPTOSYSTEM Implementation EIGAMAL cryptosystem.

Week-9: PUBLIC KEY SYSTEM Implementation of Goldwasser-Micali probabilistic public key system

Week-10: CRYPTOSYSTEM Implementation of Rabin Cryptosystem.

Week-11: KERBEROS Implementation of Kerberos cryptosystem

Week-12: FIREWALL IMPLEMENTATION Firewall implementation and testing.

V. REFERENCE BOOKS

- 1. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.
- 2. Principles of Information Security, Whitman, Thomson.

VI. WEB REFERENCES:

- 1. https://www.iiitm.ac.in/index.php/en/information-security-lab
- 2. https://omscs.gatech.edu/cs-6265-information-security-lab
- 3. https://www.iitr.ac.in/departments/CSE/pages/Facilities+Information_Security_Lab.html
- 4. https://isec.unige.ch/