MICROCONTROLLERS FOR EMBEDDED SYSTEM DESIGN

I Semester: ECE(ES)								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
BESC03	ELECTIVE	L	Т	P	С	CIA	SEE	Total
		3	0	0	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil				Total Classes:45		

I. COURSE OVERVIEW:

Microcontrollers are the key components in most of the modern embedded and system-on-chip designs. This course outlines the design and implementation of embedded systems using suitable hardware and software tools. The instruction set, Embedded C programming for I/O and memory interfacing techniques are covered. The knowledge acquired from this course will enable the students to develop embedded hardware projects and prototype models for engineering and scientific applications.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. The techniques essential to design and implementation of embedded systems using suitable hardware and software tools
- II. 8051, ARM and PIC microcontroller which has good capacity for processing real world signals with serial communication protocols.
- III. The Embedded C- language programming and interfacing various peripherals for designing of new embedded systems in the field of Communications, Electronic measurement, Control systems, Consumer electronics industry and other real-time systems.

III. COURSEOUTCOMES:

After successful completion of the course, students should be able to:

riter suct	cessiai completion of the course, statents should be able to:	
CO1	Summarize the concepts of Embedded Systems for system design with examples.	Understand
CO2	Compare the architecture and operation of RISC and ARM for designing embedded system	Analyze
CO3	Demonstrate 8051 microcontroller functionality using registers, memory and Hardware/Software interfacing	Understand
CO4	Construct programmable system on chip architecture using configurable analog and digital blocks	Create
CO5	Analyze interrupt latency, context switching time for development of device drivers	Analyze
CO6	Determine network protocols such as serial, ethernet, SDMA, IDMA for high- performance network communication	Evaluate

IV. SYLLABUS:

MODULE – I: INTRODUCTION TO EMBEDDED SYSTEMS (9)

Overview of embedded systems, processor embedded into a system, embedded hardware units and devices in system, embedded software, complex system design, design process in embedded system, formalization of system design, classification of embedded systems.

MODULE – II: MICROCONTROLLERS (9)

8051 architecture, input/output ports and circuits, external memory, counters and timers, PIC controllers; Interfacing processor 8051, PIC, memory interfacing, I/O devices, memory controller and memory arbitration

schemes.

MODULE – III: EMBEDDED RISC PROCESSORS (9)

Programmable system on chip architectures, continuous timer blocks, switched capacitor blocks, I/O blocks, digital blocks programming of PSOC.

Embedded RISC processor architecture, ARM processor architecture, registers set, modes of operation and overview of Instructions

MODULE – IV: INTERRUPTSANDDEVICEDRIVERS (9)

Exceptions and Interrupt handling Schemes, Context and periods for context switching, deadline and interrupt latency; Device driver using interrupt service routine, serial port device driver and device drivers for internal programmable timing devices.

MODULE - V: NETWORKPROTOCOLS (9)

Serial communication protocols, Ethernet protocol, SDMA, Channel and IDMA, external bus interface.

V. TEXT BOOKS:

- 1. RajKamal, "Embedded Systems, Architecture Programming and Design", Tata McGraw Hill, 2nd Edition, 2008.
- 2. Muhammad Ali Mazidi, RolinD. Mckinaly, Danny Causy, "PIC Microcontroller and Embedded Systems", Pearson Education, 1st Edition, 2008.
- 3. RobertAshpy, "Designers Guide to the Cypress PSOC", Elsevier, 1st Edition, 2005.

VI. REFERENCE BOOKS:

- 1. Jonathan W. Valvano Brookes / Cole, "Embedded Microcomputer Systems, Real Time Interfacing", Thomas Learning, 1st Edition, 1998.
- 2. Andrew N.Sloss, Dominic Symes, Chris Wright, "ARM Systems Developers Guides, Design & Optimizing System Software", Elsevier, 1st Edition, 2004.
- 3. John B.Peatman, "Designing with PIC Microcontrollers", PHInc, 1st Edition, 1998.

VII. WEB REFERENCES:

1. http://nptel.ac.in/syllabus/108102045/

VIII. E-TEXT BOOKS:

- 1. http://https://www.mistralsolutions.com/services/product-design-
- 2. 2. https://bookauthority.org/books/best-embedded-systems.