EMBEDDED WIRELESS SENSOR NETWORKS

II Semester: ECE(ES)									
Course Code	Category	Hours / Week		Credits	Maximum Marks				
BESC15	ELECTIVE	L	T	P	C	CIA	SEE	Total	
		3	0	0	3	30	70	100	
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil				Tot	Total Classes:45		

I. COURSE OVERVIEW:

This course introducing basic ideas of wireless, embedded, internetworked sensor/actuator systems, an emerging technology that can provide visibility into and control over complex physical processes. This course covers the overview of WSN, Architecture of wireless networks, sensor programming techniques, programming models and wireless sensor networks for different applications. Wireless sensor networks are a becoming an important application of embedded systems, giving scope for unique designs and applications.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. The characteristic requirements and sensor network scenarios to design the embedded wireless sensor networks
- II. The fundamentals of programming sensors and models are used to implement the wireless sensor networks.
- III. Develop program wireless sensor networks using embedded C for real time applications.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Relate the concept of wireless sensor networks with characteristic requirements involved in demonstrating of sensor nodes.	Understand
CO 2	Make use of energy consumption of sensor nodes to improve the life span of wireless sensor networks.	Apply
CO 3	Contrast sensor network scenarios for designing of large scalewireless sensor networks.	Analyze
CO 4	Identify the optimisation and figure of merit to measure the performance characteristics of sensor networks.	Apply
CO 5	Categorize tiny os programming for providing interfaces amongsensor nodes.	Analyze
CO 6	Utilize inter vehicle communication networks to enhance thesafety of moving vehicles.	Apply

IV. SYLLABUS:

MODULE – I: INTRODUCTION TO WSN (9)

Introduction to WSN, challenges for WSNs, characteristic requirements, required mechanisms, single node architecture, hardware components, energy consumption of sensor nodes, operating systems and execution environments, some examples of sensor nodes.

MODULE – II: NETWORK ARCHITECTURE (9)

Sensor network scenarios, optimization goals and figures of merit, design principles for WSNs, service interfaces of WSNs, gateway concepts.

MODULE – III: SENSOR NETWORK IMPLEMENTATION (9)

Sensor programming, introduction to tiny OS programming and fundamentals of programming sensors using nes C.

Algorithms for WSN: Techniques for protocol programming, Real world scenarios: Sensor Deployment Abstraction.

MODULE – IV: PROGRAMMING MODELS (9)

An introduction to the concept of cooperating objects and sensor networks, system architectures and programming models.

MODULE – V:CASE STUDIES (9)

Wireless sensor networks for environmental monitoring, wireless sensor networks with mobile nodes, autonomous robotic teams for surveillance and monitoring, Inter-vehicle communication networks.

V. TEXT BOOKS:

- 1 Holger karl, Andreas Willig, "Protocols and architectures for wireless sensor networks", John Wiley, 1st Edition, 2005.
- 2 LiljanaGavrilovska, SrdjanKrco, Veljko Milutinovic, Ivan Stojmenovic, Roman Trobec, "Application and Multidisciplinary Aspects of Wireless Sensor Networks", Springer, London Limited, 1st Edition, 2011.

VI. REFERENCE BOOKS:

- 1 Michel Banatre, Pedro Jose Marron, Anibal Ollero, A. Dam Wolisz, "Cooperating Embedded Systems and Wireless Sensor Networks", John Wiley & Sons, 1st Edition, 2008.
- 2 Seetharaman Iyengar, Nandhan, "Fundamentals of Sensor Network Programming Applications and Technology", John Wiley & Sons, 1st Edition, 2008.

VII. WEB REFERENCES:

- 1 https://www.youtube.com/watch?v=e Db58EEeAI
- 2 https://www.youtube.com/watch?v=LSRMmXCMlbQ

VIII. E-TEXT BOOKS:

- 1 https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470443521.fmatter3.
- 2 http://www.tfb.edu.mk/amarkoski/WSN/Kniga-w024.