IOT APPLICATIONS LABORATORY

I Semester: EPS									
Course Code	Category	Hours / Week		Credits	Maximum Marks				
BPSC12	Core	L	Т	Р	С	CIA	SEE	Total	
		0	0	4	2	30	70	100	
Contact Classes: Nil	Total Tutorials: Nil	Total Practical Classes: 36				Т	Total Classes: 36		

I. COURSE OVERVIEW:

The goal of the lab to fundamental understands of IoT using Arduino programming for different electrical digital apparatus. It will also explain the interfacing of data, I/O devices with Arduino UNO like Bluetooth, sensors, Webpage etc. It will also cover the digital protection schemes. A goal of the lab is to develop test-beds and experimental facilities, demonstrating the effects of ubiquitous IoT technology.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. The IoT using Arduino programming.
- **II.** Interfacing of data, I/O devices with Arduino UNO.
- **III.** Digital protection schemes in power system relays.

III. COURSE OUTCOME:

After s	After successful completion of the course, students will be able to:					
CO 1	Understand the concept of Internet of Things for implementation of digital measuring devices.	Understand				
CO 2	Develop the Arduino programming for controlling lightning appliances.	Apply				
CO 3	Analyze the characteristics of Bluetooth modules for controlling the performance of appliances.	Analyze				
CO 4	Analyze the features of various algorithms applicable for protection of Transformers and transmission lines.	Apply				
CO 5	Categorize the digital relying algorithms for protection of three phase induction motor.	Analyze				
CO 6	Analyze the various algorithms applicable for over current protection.	Analyze				

IV. LIST OF EXPERIMENTS:

EXPERIMENT –I: ARDUINO BASED DIGITAL VOLTMETER, AMMETER Design of digital voltmeter and ammeter using Arduino.

EXPERIMENT –II: ARDUINO BASED WATTMETER, ENERGY METER Design of digital wattmeter and energy meter using Arduino.

EXPERIMENT –III: CONROLLING RGB LED

Programming for Controlling RGB LED using Arduino and Wi-Fi module.

EXPERIMENT -IV: IOT TO CONTROL REMOTE LED

Programming for Internet of things with Android and Arduino. Build an Arduino based IoT to control a remote LED.

EXPERIMENT –V: INTERFACING BLUETOOTH MODULE

Programming for how to interface HC-05 Bluetooth module with Arduino UNO for control of small dc motor.

EXPERIMENT -VI: INTERFACING TO TEMPERATURE SENSOR

Programming to Interface temperature sensor and monitoring the room temperature using IoT with Arduino Uno and display the digital value on LCD screen.

EXPERIMENT – VII: INTERFCAING IR SENSOR

Programming to Interface IR sensors and Bluetooth for detecting obstacle using Arduino with android Application.

EXPERIMENT -VIII: INTERFACE TO MOTION AND GAS SENSOR

Programming to interface a motion sensor to use GPIO pins with a Raspberry Pi Programming to interface Gas sensor for detection and monitoring of harmful gases using Arduino and IoT.

EXPERIMENT – IX: SEND DATA FROM ARDUINO TO WEB PAGE

Programming for how to send data from Arduino to Webpage using Wi-Fi module.

EXPERIMENT –X: DIGITAL PROTECTION OF THREE PHASE INDUCTION MOTOR Studying the ON / OFF control strategies of small dc motor using IoT.

EXPERIMENT-XI: DIGITAL PROTECTION OF TRANSFORMERS AND TRANSMISSION LINES

Study the protection schemes of three phase induction motor against over current and under voltage at remote location through IoT.

EXPERIMENT-XII: OVER CURRENT RELAY

Design of over current relay in distribution system and displaying the tripping status of the relay through IoT

V. Reference Books:

1.

2.

Mark Torvalds, "Arduino Programming: Step-by-step guide to mastering arduino hardware and software (Arduino, Arduino projects, Arduinouno, Arduino starter kit, Arduino ide, Arduinoyun, Arduino mega, Arduinonano) Kindle 2ndEdition, 2001.

Michael J Pont,

"Embedded C", Pearson Education, 2ndEdition, 2008.

VI. Web References:

- 1. https://www.ee.iitkgp.ac.in
- 2. https://www.citchennai.edu.in
- 3. https://www.iare.ac.in
- 4. https://www.deltaww.com