ARTIFICIAL INTELLIGENCE IN POWER SYSTEM LABORATORY

II Semester: EPS								
Course Code	Category	Hours / Week Credits		Credits	Maximum Marks			
BPSC23	Core	L	T	P	С	CIA	SEE	Total
		-	-	4	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 36			Total Classes: 36			

I. COURSEOVERVIEW:

This course deals with the load flow analysis, state estimation and other power system problems. It will also evaluate the economic dispatch of coordinated thermal unit. This course also concludes with artificial intelligence technique like fuzzy logic artificial neural networks and GA algorithms.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. Different state estimation techniques.
- II. Artificial intelligence technique for a given Power System problem.
- III. Economic dispatch of coordinated thermal unit
- IV. Modern tools like fuzzy logic, artificial neural networks and ANFIS for power system problems
- V. Various evolutionary algorithms to power system problems.

III. COURSE OUTCOMES:

After successful completion of the course, students will be able to:

After successful completion of the course, students will be able to:					
CO 1	Develop a neural network based model for Load flow analysis	Remember			
	Analyze the state estimations using neural network.				
CO 3	Analyze contingencytechniquetopredicttheeffectofoutageslikefailuresofe quipment, transmission line using ANN	Remember			
	quipment, transmission line using ANN				
	Apply the power system security using neural network.				
CO 5	Determine automatic Generation Control for singlear easy stem and two area systems using Fuzzy Logic Method.	Analyse			
CO 6	Analyze the transient and small signal stability analysis of Single-Machine-Infinite Bus(SMIB) system using Fuzzy Logic	Apply			
	Machine-Infinite Bus(SMIB) system using Fuzzy Logic	·			

IV. LIST OF EXPERIMENTS

EXPERIMENT -I: LOAD FLOW ANALYSIS

Load flow analysis using neural network.

EXPERIMENT -II: STATE ESTIMATIONS

State estimations using neural network.

EXPERIMENT -III: CONTINGENCY ANALYSIS

Contingency analysis using neural network.

EXPERIMENT -IV: POWER SYSTEM SECURITY

Power system security using neural network.

EXPERIMENT -V: AGC - SINGLE AREA SYSTEM / TWO AREA SYSTEM

Fuzzy logic based AGC for single area system and two area systems.

EXPERIMENT -VI: SMALL SIGNAL STABILITY ANALYSIS

Fuzzy logic based small signal stability analysis.

EXPERIMENT -VII: ECONOMIC DISPATCH THERMAL UNITS

Economic dispatch of thermal units using conventional and ANN algorithms.

EXPERIMENT -VIII: ECONOMIC DISPATCH THERMAL UNITS

Economic dispatch of thermal units using conventional and GA algorithms.

EXPERIMENT -IX: ECONOMIC DISPATCH THERMAL UNITS

Economic dispatch of thermal units using conventional and Fuzzy logic.

EXPERIMENT -X: ECONOMIC DISPATCH OF THERMAL PLANTS

EXPERIMENT -XI: ECONOMIC DISPATCH OF THERMAL PLANTS

Economic dispatch of thermal plants using conventional and GA algorithms. Economic dispatch of thermal plants using conventional and ANN algorithms.

EXPERIMENT -XII: ECONOMIC DISPATCH OF THERMAL PLANTS

Economic dispatch of thermal plants using conventional and Fuzzy logic.

V. References:

- 1. Chakrabarti, Abhijit, "Power System Dynamics and Simulation", PHI Learning, 2nd Edition, 2012.
- 2. Barret J P, "Power System Simulation", Chapman and Hall, 2nd Edition, 2013.

VI. Web Reference:

1. http://www.iare.ac.in