FRACTURE MECHANICS OF CONCRETE STRUCTURES

III Semester: ST										
Course Code	Category	Hour	s / We	ek	Credits	dits Maximum Marks				
BSTC28	Elective	L	T	P	C	CIA	SEE	Total		
		3	0	0	3	30	70	100		
Contact Classes: 45	Total Tutorials: Nil	Total Practical Classes: N			asses: Nil	Total Classes: 45				

I. COURSE OVERVIEW:

Over the last twenty years, many theoretical, numerical and experimental methods have evolved in the field of Fracture Mechanics of Concrete. These have led to practical applications in reinforced-concrete design, assessment, monitoring and retrofitting, as well as innovative high-performance and durable cementations materials. Although Fracture Mechanics of Concrete is now mature as a framework for defining and solving a variety of engineering problems, there is still much work to be done in improving previous theoretical and numerical models, and for re-interpreting established phenomena. In particular, there are new developments in the treatment of scale effects; the implementation of 3D-discretisation; and the combination of continuous and discontinuous models. Other areas of rapid progress are the development of innovative testing techniques; the proposal of non-local and anisotropic constitutive laws; the formulation of lattice and multistage models, and the development of coupled multifold theories.

II. COURSE OBJECTIVES:

The student will try to learn:

- I. The concepts and principles of fracture mechanics for the analysis of structural components.
- II. The analytical and computational tools needed to solve the idealized problems.
- III. The fracture and fatigue behavior of different materials to focus on research in this area.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:				
CO 1	Describe the fracture types and micro mechanism for concrete structures	Analyze		
CO 2	Explain the energy concepts in crack and crack resistance for the analysis of structural components.	Evaluate		
CO 3	Demonstrate the linear elastic fracture mechanics for the propagation of cracks.	Analyze		
CO 4	Interpret the importance of Crack tip plastic zone for durable concrete structures.	Analyze		
CO 5	Explain micromechanics and various models in crack for fracture mechanics models.	Analyze		
CO 6	Describe the crack propagation concepts for the applications of concrete structures.	Evaluate		

IV.COURSE SYLLABUS:

MODULE-I: INTRODUCTION (09)

Fracture mechanics, crack in a structure, mechanisms of fracture and crack growth, cleavage fracture

MODULE-II: CRACKING MECHANISM (09)

Ductile fracture, fatigue cracking, environment assisted cracking, service failure analysis

MODULE-III: STRESS AT CRACK TIP (09)

Stress at crack tip, linear elastic fracture mechanics, Griffith's criteria, stress intensity factors.

Crack tip plastic zone, Erwin's plastic zone correction, R curves, compliance, J integral, concept of CTOD and CMD.

MODULE-IV: MATERIAL MODELS (09)

General concepts, crack models, band models, models based on continuum damage mechanics

MODULE-V: APPLICATIONS TO CONCRETE STRUCTURES (09)

Applications to High Strength Concrete, Fibre Reinforced Concrete, Crack Concepts and Numerical Modeling

V.TEXT BOOKS:

- 1. Suri C. T. and Jin Z.H., "Fracture Mechanics", Elsevier Academic Press, 1st Edition, 2012.
- 2. BroekDavid, "Elementary Engineering Fracture Mechanics", Springer, 3rd Rev, 1982.
- 3. Elfgreen L, "Fracture Mechanics of Concrete Structures Theory and Applications", RILEM Report, Chapman and Hall, 1989.

VI. REFERENCE BOOKS:

1. Victor, Li C., Bazant Z. P, "Fracture Mechanics – Applications to Concrete", ACI SP 118, ACI Detroit, 1989.

VII. WEB REFERENCES:

1. http://www.nptel.ac.in/courses/112106065/#

VIII. E-TEXT BOOKS:

1. http://www.civil.northwestern.edu/people/bazant/PDFs/Papers/P90.pdf