
PROGRAMMING FOR PROBLEM SOLVING
Course Code:ACSB01

I B.Tech II Semester
BY

Mr. P Ravinder
Assistant Professor

Electrical and Electronics Engineering
Institute of Aeronautical Engineering

(Autonomous)

Dundigal, Hyderabad -500043
1 1

CO’s Course outcomes
CO1 Describe the concept of computer system, analyze a given

problem, develop an algorithm, fundamental
programming constructs, identify data representation
formats, describe operators and their precedence,
associativity.

CO2 Understanding branching and loop statements.

CO3 Describe the concept of homogeneous derives data types,
strings and functions

CO4 Understanding pointers and heterogeneous data types.

CO5 Describe the concept of file system.

Running Course Outcomes

1 2

MODULE – I
INTRODUCTION

1 3

CLOs Course Learning Outcomes

CLO1 Describe the concept of file system.

CLO2 Analyze a given problem and develop an algorithm
to solve the problem.

CLO3 Describe the fundamental programming constructs
and articulate how they are used to develop a
program with a desired runtime execution flow.

CLO4 Gain knowledge to identify appropriate C language
constructs to write basic programs.

Running Course Learning Outcomes

1 4

CLOs Course Learning Outcome

CLO5 Identify the right data representation formats based
on the requirements of the problem.

CLO6 Describe the operators, their precedence and
associativity while evaluating expressions in program
statements.

1 5

Computer systems

Definition:

A Computer is an electronic device that stores, manipulates and

retrieves the data.

The following are the objects of computer System

1. User (A person who uses the computer)

2. Hardware

3. Software
4. Output Devices(O/P)
5. KEYBOARD

1 6

Computer system components

 Hardware:Hardware of a computer system can be referredas
anything which we can touchand feel.

Example : Keyboard and Mouse
 The hardware of a computer system canbeclassifieds

 Input Devices(I/P)-Keyboard, scanner,mouse

 Processing Devices(CPU)-ALU,CU,MU

 Output Devices(O/P) -Monitor, printer,speakersetc

 ALU: It performs the Arithmetic and Logical Operations such as CU:
Every Operation such as storing , computing and retrieving the data
should be governed by the control unit.

MU: The Memory unit is used for storing the data.

1 7

Memory Unit

The Memory unit is classified into two types.
They are:

1. Primary Memory
2. Secondary Memory

Primary memory:The following are the types of memories which are
treated as primary

ROM: It represents Read Only Memory that stores data and instructions
even when the computer is turned off. The Contents in the ROM are
modified if they are written . It is used to store the BIOS information.
RAM: It represents Random Access Memory that stores data and
instructions when the computer is turned on. The contents in the RAM
can be modified any no. of times by instructions. It is used to store the
programs under execution.
Secondary Memory: The following are the different kinds of memories
Magnetic Storage: The Magnetic Storage devices store information
that can be read, erased and rewritten a number of times.
Example: Floppy Disks, Hard Disks, Magnetic Tapes

1 8

Software classification:

Software is classified into two categories:

1. System Software

2.Applicationsoftware

 System Software consists of programs that manage thehardware
resources of a computer and perform required information
processing tasks. These programs are divided into threeclasses:

 Ex: operating system, System support software , system

development software

1 9

Application software

 Application software is broken in to two classes: general-purpose
software and application –specificsoftware.

 General purpose software is purchased from a software
developer and can be used for more than one application.

 Application –specific software can be used only for its intended
purpose. A general ledger system used by accountants and a material

requirements planning system used by a manufacturing organization

are examples of application-specificsoftware.

1 10

Relationship between system software and applicationsoftware

each circle represents an interface point .The inner core is hard ware. The
user is represented by the out layer. To work with the system, the typical user
uses some form of application software. The application software in turn
interacts with the operating system, which is a part of the system software
layer. The system software provides the direct interaction with the hard
ware.

1 11

ComputingEnvironments

1. The following are the different kinds of computing
environments available.

2. Personal Computing Environment.

3. Time Sharing Environment.

4. Client/Server Environment.

5. Distributed Computing Environment.

1 12

Personal Computing Environment

In 1971, Marcian E. Hoff, working for INTEL combined basic elements the of the
central processing unit into the microprocessor. If we are using a personal
computer then all the computer hardware components are tied together. This
kind of computing is used to satisfy the needs of a single user, who uses the
computer for the personal tasks.

1 13

Distributed Computing

A distributed computing environment
computing functions between

provides a seamless
different servers

and clients.
integration of

A client not just a requestor for processing the

information from the server. The client also has the capability to
process information. All the machines Clients/Servers share the
processing task.

1 14

Computer languages

Computer languages

To write a program (tells what to do) for a computer, we must use a
computer language. Over the years computer languages have

languages. Theevolved from machine languages to natural
following is the summary of computer languages

1. 1940’s -- Machine Languages

1. 1950’s -- Symbolic Languages

1. 1960’s -- High Level Languages

1 15

Machine Language

 In the earliest days of computers, the only programming languages
available were machine languages.

 Each computer has its own machine language which is made of
streams of 0’s and 1’s. The instructions in machine language must be
in streams of 0’s and 1’s.

 This is also referred as binary digits.

 These are so named as the machine can directly understood the
programs

1 16

Symbolic Languages (or) Assembly

 In the early 1950’s Admiral Grace Hopper, a mathematician and naval
officer, developed the concept of a special computer program that
would convert programs into machine language.

 These early programming languages simply mirrored the machine
languages using symbols or mnemonics to represent the various
language instructions.

 These languages were known as symbolic languages. Because a

computer does not understand symbolic language it must be
translated into the machine language.

1 17

High-Level Languages

 The symbolic languages greatly improved programming
efficiency they still required programmers to concentrate on the

languages
had to be

hardware that they were using working with symbolic
was also very tedious because each machine instruction
individually coded.

 The desire to improve programmer efficiency and to change the
focus from the computer to the problems being solved led to the
development of High level languages.

 High level languages are portable to many different computer

allowing the programmer to concentrate on the application
problem at hand rather than the intricacies of the computer.

1 18

Language Translators

These are the programs which are used for converting the programs
in one language into machine language instructions, so that they can
be excuted by the computer.

Compiler: It is a program which is used to convert the high level
language programs into machine language

Assembler: It is a program which is used to convert the
assembly level language programs into machinelanguage

Interpreter: It is a program, it takes one statement of a high level
language program, translates it into machine language instruction.

1 19

Creating And Running Programs

 The procedure for turning a program written in C into machine
Language.

 The process is presented in a straightforward, linear fashion but you
shuld recognize that these steps are repeated many times during
development to correct errors and make improvements to the code.

The following are the four steps in this process

1. Writing and Editing theprogram

2. Compiling theprogram

3. Linking the program with the required modules

4. Executing theprogram

1 20

Creating And Running Programs

1 21

Writing and Editing Programs

1. The software used to write programs is known as a text editor.

2. A text editor helps us enter, change and store character data.

3. Once we write the program in the text editor we save it using
a filename stored with an extension of .C.

4. This file is referred as source code file.

1 22

Compiling Programs

 The code in a source file stored on the disk must be translated

into machine language.

 This is the job of the compiler.

 The Compiler is a computer program that translates the source

code written in a high- level language into the corresponding

object code of the low-level language.

 This translation process is called compilation.

 The entire high level program is converted into the executable

machine code file.

1 23

Executing Programs

 To execute a program we use an operating system command, such

as run, to load the program into primary memory and execute it.

 Getting the program into memory is the function of an operating

system program known as the loader.

 It locates the executable program and reads it into memory.

 When everything is loaded the program takes control and it begins

execution.

1 24

Algorithm

 Precise step-by-step plan for a computational procedure that begins with

an input value and yields an output value in a finite number of steps.

 It is an effective method which uses a list of well-defined instructions to

complete a task, starting from a given initial state to achieve the desired

end state.

 An algorithm is written in simple English and is not a formal document.

 An algorithm must: Be lucid, precise and unambiguous Give the correct

solution in all cases

1 25

Properties of algorithms

Finiteness:

an algorithm terminates after a finite numbers of steps.

Definiteness:

each step in an algorithm is unambiguous. This means that the
action specified by the step cannot be interpreted in multiple ways
& can be performed without any confusion.

Input:

An algorithm accepts zero or more inputs.

Output:

It produces at least one output.

Effectiveness:

-It consists of basic instructions that are realizable. This means that the
instructions can be performed by using the given inputs in a finite amount
of time.

1 26

Flowchart

 A flowchart is a type of diagram, that represents an algorithm or

process, showing the steps as boxes of various kinds, and their order by

connecting these with arrows.

 This diagrammatic representation can give a step- by- step solution to
a problem.

 Data is represented in the boxes, and arrows connecting them

represent direction of flow of data.

 Flowcharts are used in analyzing, designing, documenting or managing

a process or program in various fields .

1 27

Common Flowchart Symbols

and ending points of aTerminator: Shows the starting

program

Data Input or output: Allows the user to

input data or to display the results .

Processing: Indicates an operation
performed by the computer, such as a variable
Assignment or mathematical operation

Decision: A diamond has two flow lines going out. One
is labeled as “Yes ” Branch and the other as “No”
branch.

1 28

previously definedPredefined Process. Denotes a groupof
statements.

Connector. Connectors avoid crossing flowlines, Connectors
come in pairs, one with a flowline in and the other with a
flowline out.

Off Page Connector: Come in Pairs, Extends Flow

charts to more than a page

Flowline. Flowlines connect the flowchart symbols and show
the sequence of operations during the programexecution.

Common Flowchart Symbols

1 29

Examples

Example 1: Finding the sum of two numbers.

Variables:

– A: FirstNumber

– B: SecondNumber

– C: Sum(A+B)

Algorithm:

– Step 1 – Start

– Step 2 – InputA

– Step 3 – InputB

– Step 4 – Calculate C = A + B

– Step 5 – OutputC

– Step 6 – Stop

1 30

Flowchart

38

Start

ReadA

ReadB

C=A+B PrintC Stop

1 31

Example 2

Find the difference and the division of two numbers and display
the results.

Variables:

• N1: Firstnumber

• N2: Secondnumber

• D : Difference

• V : Division

Algorithm:

* Step 1:Start

* Step 2: InputN1

* Step 3: InputN2

* Step 4:D=N1–N2

* Step 5: V=N1/N2

* Step 6: OutputD

* Step 7: OutputV

* Step 8:Stop

1 32

Flowchart

Start

Read N1

Read N2

D=N1-N2

V=N1/N2 PrintD PrintV Stop

401 33

Example 3

Work on the algorithm and the flow chart of the problem of
calculating the roots of the equation Ax2 + Bx + C = 0
Variables:

A: Coefficient of X2

B: Coefficient of X

C: Constant term

delta: Discriminant of theequation

X1: First root of theequation

X2: Second root of theequation

411 34

Algorithm:

Step 1: Start
Step 2: Input A, B and C
Step 3: Calculate delta = B2 – 4AC

Step 4: If delta<0 go to step 6, otherwise go to 5

Step 5: If delta>0 go to step 7, otherwise go to 8

Step 6:Output ―Complex roots . Go to step 13

Step 7: Output ―real roots . Go to step 9

Step 8:Output ―eƋual ƌoots . Go to step 9

Step 9: Calculate X1=(-b+√delta)/(2*A)

Step 10: Calculate X2=(-b-√delta)/(2*A)

1 35

Flowchart

Start Read

A,B,C

“ComplexRoots”

Delta=B*B- 4*A*C

Yes
No

Delta < 0

Yes
Delta>0

“RealRoots”

X1=(-b+√delta)/(2*A)

No

“EqualRoots”

X2=(-b-√delta)/(2*A)

Print X1 PrintX2 Stop

431 36

History of C language

History of C language is interesting to know. Here we are
going to discuss brief history of c language.

by Dennis
Telephone &

C programming language was developed in 1972
Ritchie at bell laboratories of AT&T (American
Telegraph), located in U.S.A.

Dennis Ritchie is known as the founder of c language.
It was developed to overcome the problems of previous languages
such as B, BCPL etc.
Initially, C language was developed to be used in UNIX operating system.
It inherits many features of previous languages such as B and BCPL.
Let's see the programming languages that were developed before C
language.

1 37

Language Year Developed By

Algol 1960 International Group

BCPL 1967 Martin Richard

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

K & R C 1978 Kernighan & Dennis

Ritchie

ANSI C 1989 ANSI Committee

ANSI/ISO C 1990 ISO Committee

C99 1999 Standardization

Committee

1 38

Structure Of C Program

1 39

Preprocessor directives:

 Every C program is made of one or more Preprocessor directives
or commands.

 They are special instructions to the preprocessor that tell it how
to prepare the program for compilation.

 The preprocessor directives are commands that giveinstructions
to the C preprocessor.

 A preprocessor directive begins with a number symbol (#) as its
first non-blank character.

 Preprocessor commands can start in any column, but they
traditionally start in column 1.

Ex: #include <stdio.h>

1 40

Global Declaration Section:

Contains declarations that are visible to all parts of the program

Declaration section :

It is at the beginning of the function. It describes the data that will be

used in the function. Declarations in a function are known as local

declarations as they are visible only to the function that contains

them.

1 41

Statements:

Statements follows the declaration section.It the contains instructions

to the computer. Every statement ends with a semicolon.

Comments:

1. Comment about the program should be enclosed within /**/.

2. Any number of comments can be written at any place in the
program.

3. Comments in the code helps to understand the code
4. Comments cannot be nested.

1 42

main():

The executable part of the program begins with the function always.
All statements that belong to main are enclosed in a pair of braces {
}.

First C Program

#include <stdio.h>
void main ()
{
Printf(“Hello World!”);
}

1 43

Process of compiling and running C
program

The steps involved in Creating and Running Programs are:

Writing and EditingPrograms
 Compiling Programs
 Linking Programs
 Executing Programs

1 44

To solve a particular problem a Program has to be created as a file
using text editor / word processor. This is called source file.

The program has to be written as
rules defined by the high-level language that is used

per the structure and
for

writing the program (C, JAVAetc).

Writing and Editing Programs

1 45

Compiling Programs

to the high-level language
program for the correct

will scan
grammar

The compiler corresponding
the source file, checks the
(syntax) rules of the language.

If the program is syntactically correct, the compiler generates an
output file called Object File which will be in a binary format and
consists of machine language instructions corresponding to the
computer on which the program gets executed.

1 46

Linking Programs

Linker program combines the Object File with the required library
functions to produce another file called ― executable file. Object file
will be the input to the linkerprogram.

The executable file is created on disk. This file has to be put
into (loaded) the memory.

1 47

Executing Programs:

Loader program loads the executable file from disk into the
memory and directs the CPU to start execution.

The CPU will start execution of the program that is loaded into the
memory .

1 48

Building a C Program

1 49

C tokens

 C tokens are the basic buildings blocks in C language which are
constructed together to write a C program.

 Each and every smallest individual unit in a C program is known as
C tokens. C tokens are of six types. They are

Keywords

Identifiers

Constants

Strings

Operators

(eg: int, while),

(eg: main, total),

(eg: 10, 20),

(eg: ―total, ―hello, Special Symbols;eg: (), {}),

(eg: +, /,-,*)

1 50

C Keywords

 C keywords are the words that convey a special meaningto
the c compiler.

 The keywords cannot be used as variablenames.

 The list of C keywords is givenbelow:

1 51

 auto
 continue
 enum
 if
 short
 switch
 volatile
 break
 default
 extern
 int
 Signed
 const
 else
 Goto
 void

 Typedef
 While
 case
 do
 float
 long
 sizeof
 union
 char
 double
 for
 register
 static
 Unsigned
 return
 struct

1 52

C Identifiers

 Identifiers are used as the general terminology for the names
of variables, functions and arrays.

 There are certain rules that should be followed while naming c
identifiers:

 They must begin with a letter or underscore (_).

1 53

 They must consist of only letters, digits, orunderscore.
No other special character is allowed.

 It should not be akeyword.

 It must not contain whitespace.

 It should be up to 31 characters long as only first31
characters are significant.

1 54

C Constants

A C constant refers to the data items that do not change their
value during the program execution. Several types of C constants
that are allowed in C are:

Integer Constants

Integer constants are whole numbers without any fractional part.

It must have at least one digit and may contain either + or – sign. A

number with no sign is assumed to be positive.

There are three types of integer constants:

1 55

Decimal Integer Constants

of digits, 0 through 9,Integer constants consisting of a set
preceded by an optional – or + sign.

Example of valid decimal integer constants

341, -341, 0, 8972

Octal Integer Constants

Integer constants consisting of sequence of digits from the set

0 through 7 starting with 0 is said to be octal integer constants.

Example of valid octal integer constants

010, 0424, 0, 0540

1 56

Hexadecimal Integer Constants

 Hexadecimal integer constants are integer constants having sequence
of digits preceded by 0x or 0X. They may also include alphabets from
A to F representing numbers 10 to 15.

 Example of valid hexadecimal integer constants 0xD, 0X8d, 0X, 0xbD

 It should be noted that, octal and hexadecimal integer constants
are rarely used in programming.

1 57

Real Constants

The numbers having fractional parts are called real or floating
point constants.

These may be represented in one of the two forms called
fractional form or the exponent form and may also have either + or
– sign preceding it.

Example of valid real constants in fractional form or decimal
notation 0.05, -0.905, 562.05, 0.015

1 58

Representing a real constant in exponent form

The general format in which a real number may be represented in
exponential or scientific form is

mantissa e exponent

The mantissa must be either an integer or a real number
expressed in decimal notation.

The letter e separating the mantissa and the exponent can also
be written in uppercase i.e. E And, the exponent must be an
integer.

1 59

Character Constants

A character constant contains one single character enclosed within
single quotes. Examples of valid character constants

a‘ , Z‘, 5‘

It should be noted that character constants have numerical values
known as ASCII values, for example, the Value of A‘ is 65 which is its
ASCII value.

1 60

characters in charactergraphic
Escape Characters/ Escape Sequences

C allows us to have certain non

constants.

Non graphic characters are those characters that cannot be typed
directly from keyboard, for example, tabs, carriage return, etc.

These non graphic characters can be represented by using escape
sequences represented by a backslash() followed by one or more
characters.

NOTE: An escape sequence consumes only one byte of
space as it represents a single character.

1 61

String Constants
 String constants are sequence of characters enclosed within double

quotes. For example,

―hello|
―abc|
―hello911|

• Every sting constant is automatically terminated with a special
end ofcharacter „‟ called thenull character which represents the

the string.
• For example, ―hello| will represent―hello| in thememory.
•Thus, the size of the string is the total number of characters
plus one for the null character.

1 62

Special Symbols

 The following special symbols are used in C having some special
meaning and thus, cannot be used for some other purpose.

*+ ;() ,- , ; : * … = #

 Braces{}: These opening and ending curly braces marks the start
and end of a block of code containing more than one executable
statement.

 Parentheses(): These special symbols are used to indicate function
calls and function parameters.

 Brackets[]: Opening and closing brackets are used as array element
reference. These indicate single and multidimensional subscripts.

1 63

Variables

 A variable is nothing but a name given to a storage area that our
programs can manipulate.

 Each variable in C has a specific type, which determines the size and
layout of the variable's memory; the range of values that can be
stored within that memory; and the set of operations that can be
applied to the variable.

 The name of a variable can be composed of letters, digits, and the
underscore character.

 It must begin with either a letter or an underscore. Upper and
lowercase letters are distinct because C is case-sensitive.

1 64

Type Description

Char Typically a single octet(one byte). This is an
integer type.

Int The most natural size of integer for the
machine.

Float A single-precision floating point value.

Double A double-precision floating point value.

void Represents the absence of type.

1 65

Data types

 Data types specify how we enter data into our programs and
what type of data we enter.

 C language has some predefined set of data types to handle
various kinds of data that we can use in our program.

 These datatypes have different storage capacities.

1 66

C language supports 2 different type of data types:

Primary data types:

These are fundamental data types in C namely integer(int),
floating point(float), character(char) and void.

Derived data types:

Derived data types are nothing but primary data types but a little
twisted or grouped together like array, structure, union and pointer.
These are discussed in details later.

1 67

1 68

Integer type
Integers are used to store whole numbers.

Size and range of Integer type on 16-bit machine:

Type Size(bytes) Range

int or signed int 2 -32,768 to 32767

unsigned int 2 0 to 65535

short int or signed short
int

1 -128 to 127

unsigned short int 1 0 to 255

long int or signed long int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295

1 69

Floating point type
Floating types are used to store real numbers.

Size and range of Integer type on 16-bit machine

Float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to
1.7E+308

long double 10 3.4E-4932 to
1.1E+4932

1 70

Character type

Character types are used to store characters value.

Size and range of Integer type on 16-bit machine

char or signed char 1 -128 to 127

unsigned char 1 0 to 255

1 71

void type

 void type means no value.

 This is usually used to specify the type of functions which returns
nothing.

 We will get acquainted to this datatype as we start learning more
advanced topics in C language, like functions, pointers etc.

1 72

Operators

 C language offers many types of operators. Theyare,

1. Arithmetic operators

2. Assignment operators

3. Relationaloperators

4. Logical operators

5. Bit wise operators

6. Conditional operators (ternaryoperators)

7. Increment/decrementoperators

8. Special operators

1 73

Arithmetic Operators

C Arithmetic operators are used to perform mathematical
calculations like addition, subtraction, multiplication, division and
modulus in C programs.

S.no Arithmetic

Operators

Operation Example

1 + Addition A+B

2 – Subtraction A-B

3 * multiplication A*B

4 / Division A/B

5 % Modulus A%B

1 74

Assignment operators

 The following table lists the assignment operators supported by
the C language −

Operator Description

= Simple assignment operator. Assigns values from right side

operands to left side operand

+= Add AND assignment operator. It adds the right operand to

the left operand and assign the result to the left operand.

-= Subtract AND assignment operator. It subtracts the right

operand from the left operand and assigns the result to the

left operand.

*= Multiply AND assignment operator. It multiplies the right

operand with the left operand and assigns the result to the

left operand.

<<= Left shift AND assignment operator.

>>= Right shift AND assignment operator.

1 75

Relational operators

 The following table shows all the relational operators supported by
C language. Assume variable A holds 10 and variable B holds 20
then −

Operator Description

== Checks if the values of two operands are equal or not. If yes,

then the condition becomes true.

!= Checks if the values of two operands are equal or not. If the

values are not equal, then the condition becomes true.

> Checks if the value of left operand is greater than the value of

right operand. If yes, then the condition becomes true.

< Checks if the value of left operand is less than the value of right

operand. If yes, then the condition becomes true.

>= Checks if the value of left operand is greater than or equal to the

value of right operand. If yes, then the condition becomes true.

<= Checks if the value of left operand is less than or equal to the

value of right operand. If yes, then the condition becomes true.

1 76

Logical operators

 Following table shows all the logical operators supported by C
language. Assume variable A holds 1 and variable B holds 0, then −

Operator Description

&& Called Logical AND operator. If both the operands are non-zero,

then the condition becomes true.

|| Called Logical OR Operator. If any of the two operands is non-

zero, then the condition becomes true.

! Called Logical NOT Operator. It is used to reverse the logical state

of its operand. If a condition is true, then Logical NOT operator

will make it false.

1 77

Bit wise operators

& Binary AND Operator copies a bit to the result
if it exists in both operands.

| Binary OR Operator copies a bit if it exists in
either operand.

^ Binary XOR Operator copies the bit if it is set in
one operand but not both

~ Binary Ones Complement Operator is unary and
has the effect of 'flipping'bits.

<< Binary Left Shift Operator. The left operands
value is moved left by the number of bits
specified by the right operand.

>> Binary Right Shift Operator. The left operands
value is moved right by the number of bits
specified by the right operand

1 78

Conditional operators
(ternary operators)

 Conditional operators return one value if condition is true and

returns another value is condition is false.

 This operator is also called as ternary operator.

Syntax : (Condition?true_value:false_value)

 In above example, if A is greater than 100, 0 is returned else 1 is

returned. This is equal to if else conditional statements.

1 79

Increment/decrement operators

 Increment operators are used to increase the value of the variable
by one and decrement operators are used to decrease the value of
the variable by one in C programs.

Syntax:

Increment operator: ++var_name; (or) var_name++;

decrement operator: --var_name; (or) var_name--;

1 80

Special operators

S.no Operators Description

1 & This is used to get the address of the variable.

Example : &a will give addressof a.

2 * This is used as pointer to a variable.

Example : * a where, * is pointer to thevariablea.

3 Sizeof () This gives the size of the variable.

Example : size of (char) will give us 1.

1 81

Expressions

 Arithmetic expression in C is a combination of variables, constants
and operators written in a proper syntax.

 C can easily handle any complex mathematical expressions but
these mathematical expressions have to be written in a proper
syntax.

 Some examples of mathematical expressions written in proper
syntax of C are

 Note: C does not have any operator for exponentiation.

1 82

C Operator Precedence And
Associativity

 C operators in order of precedence (highest to lowest).

 Their associativity indicates in what order operators of equal
precedence in an expression areapplied.

(), [] --- Left to Right

*, /, % ---Left to Right

+, - ----Left to Right

>, < , >=, <= ---Left to Right

1 83

MODULE – II
CONTROL STRUCTURES

1 84

CLOs Course Learning Outcome

CLO7 Understand branching statements, loop statements and use them in

problem solving.

CLO8 Learn homogenous derived data types and use them to solve

statistical problems.

CLO9 Learn homogenous derived data types and use them to solve

statistical problems.

CLO10 Understand procedural oriented programming using functions

1 85

CLOs Course Learning Outcome

CLO11 Understand how recursion works and write programs using recursion

to solve problems.

CLO13 Differentiate call by value and call by reference parameter passing

mechanisms.

1 86

Running Course Outcomes

The course will enable the students to:

CLO 7 Understand branching statements, loop statements and use them
in problem solving.

1 87

Decision Statements - if Statement

 Syntax of if statement:

The statements inside the body of “if” only execute if the given
condition returns true. If the condition returns false then the
statements inside “if” are skipped

if (condition)

{

//Block of C statements here

//These statements will only execute if the condition is true

}

1 88

Flow Diagram of if statement

1 89

Example of if statement

#include <stdio.h>

int main()

{

int x = 20;

int y = 22;

if (x<y)

{

printf("Variable x is less than y");

}

return 0;

}

1 90

If else statement

 Syntax of if else statement:

if(condition) {

// Statements inside body of if

}

else {

//Statements inside body of else

}

1 91

 If condition returns true then the statements inside the body of “if”
are executed and the statements inside body of “else” are skipped.

 If condition returns false then the statements inside the body of “if”
are skipped and the statements in “else” are executed.

1 92

Flow diagram of if else statement

1 93

#include <stdio.h>

int main()

{

int age;

printf("Enter your age:");

scanf("%d",&age);

if(age >=18)

printf("You are eligible for voting");

else

printf("You are not eligible for voting");

return 0;

}

Program for checking eligible

for voting or not

1 94

Nested If..else statement

Syntax of Nested if else statement:

if(condition) {

//Nested if else inside the body of "if"

if(condition2) {

//Statements inside the body of nested "if"

}

else {

//Statements inside the body of nested "else"

}

}

else {

//Statements inside the body of "else"

}

1 95

Example of nested if..else

#include <stdio.h>

int main()

{

int var1, var2;

printf("Input the value of var1:");

scanf("%d", &var1);

printf("Input the value of var2:");

scanf("%d",&var2);

if (var1 != var2)

{

printf("var1 is not equal to var2\n");

//Nested if else

1 96

if (var1 > var2)

{

printf("var1 is greater than var2\n");

}

else

{

printf("var2 is greater than var1\n");

}}

else

{

printf("var1 is equal to var2\n");

}

return 0;

}
1 97

else..if statement
Syntax of else..if statement:

if (condition1)

{

//These statements would execute if the condition1 is true

}

else if(condition2)

{

//These statements would execute if the condition2 is true

}

.

.

else

{//These statements would execute if all the conditions returnfalse.}

1 98

Example of else..if statement

#include <stdio.h> int

main()

{

int var1, var2;

printf("Input the value of var1:");

scanf("%d", &var1);

printf("Input the value of var2:");

scanf("%d",&var2);

if (var1 !=var2)

{

printf("var1 is not equal to var2\n");

}

else if (var1 > var2) 1 99

{

printf("var1 is greater than var2\n");

}

else if (var2 > var1)

{

printf("var2 is greater than var1\n");

}

else

{

printf("var1 is equal to var2\n");

}

return 0;

}

1 100

Switch statement

A switch statement allows a variable to be tested for equality against
a list of values. Each value is called a case, and the variable being
switched on is checked for each switchcase.

Syntax

The syntax for a switch statement in C programming language is as
follows −

1 101

switch(expression)
{

case constant-expression :

statement(s);

break; /* optional */

case constant-expression :

statement(s);

break; /* optional */

/* you can have any number of case statements */

default : /* Optional */

statement(s);

}

1 102

The following rules apply to a switch statement −

 The expression used in a switch statement must have an integral or
enumerated type, or be of a class type in which the class has a single
conversion function to an integral or enumeratedtype.

 You can have any number of case statements within a switch. Each
case is followed by the value to be compared to and a colon.

 The constant-expression for a case must be the same data type as
the variable in the switch, and it must be a constant or a literal.

1 103

 When the variable being switched on is equal to a case, the
statements following that case will execute until a break statement is
reached.

 When a break statement is reached, the switch terminates, and the
flow of control jumps to the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow
of control will fall through to subsequent cases until a break is
reached.

 A switch statement can have an optional default case, which must
appear at the end of the switch.

1 104

Flow Diagram of switch

1 105

Example

#include <stdio.h>

int main () {

/* local variable definition */

char grade = 'B'; switch(grade) {

case 'A' :

printf("Excellent!\n");

break;

case 'B' :

case 'C' :

printf("Well done\n");

1 106

break;

case 'D' :

printf("You passed\n");

break;

case 'F' :

printf("Better try again\n");

break;

default :

printf("Invalid grade\n");

}

printf("Your grade is %c\n", grade);

return 0;

} 1 107

Loop control statements - While loop

A while loop in C programming repeatedly executes a target
statement as long as a given condition is true.

Syntax

The syntax of a while loop in C programming language is –

while(condition) {

statement(s);

}

1 108

 Here, statement(s) may be a single statement or a block of
statements. The condition may be any expression, and true is any
nonzero value. The loop iterates while the condition is true.

 When the condition becomes false, the program control passes to
the line immediately following the loop.

 Here, the key point to note is that a while loop might not execute at
all. When the condition is tested and the result is false, the loop
body will be skipped and the first statement after the while loop will
be executed.

1 109

Flow Diagram

1 110

Example

#include <stdio.h>

int main () {

/* local variable definition */

int a = 10;

/* while loop execution */

while(a < 20) {

printf("value of a: %d\n", a);

a++;

}

return 0;

}

1 111

Do-while loop

 A do while loop is similar to while loop with one exception that it
executes the statements inside the body of do-while before checking
the condition.

 On the other hand in the while loop, first the condition is checked and
then the statements in while loop areexecuted.

 So you can say that if a condition is false at the first place then the do
while would run once, however the while loop would not run at all.

1 112

Syntax of do-while loop

do

{

//Statements

}while(condition test);

1 113

Flow diagram of do while loop

1 114

Example of do while loop

#include <stdio.h>

int main()

{

int j=0;

do

{

printf("Value of variable j is: %d\n", j);

j++;

}while (j<=3);

return 0;

}

1 115

For loop

 C Language provides us different kind of looping statements such as
For loop, while loop and do- whileloop.

 In order to do certain actions multiple times, we use loop control
statements.

 For loop can be implemented in different verities of using for loop –

 Single Statement inside For Loop

 Multiple Statements inside For Loop

 No Statement inside For Loop

 Semicolon at the end of For Loop

 Multiple Initialization Statement insideFor

1 116

Syntax:

for (initialization expr; test expr; update expr)

{

// body of the loop

// statements we want to execute

}

1 117

Steps are repeated till exit condition comes.

 Initialization Expression: In this expression we have to initialize the
loop counter to some value. for example: int i=1;

 Test Expression: In this expression we have to test the condition. If the
condition evaluates to true then we will execute the body of loop and
go to update expression otherwise we will exit from the for loop. For
example: i <= 10;

 Update Expression: After executing loop body this expression
increments/decrements the loop variable by some value. for
example: i++;

1 118

1 119

Example: for loop

#include <stdio.h>

int main() {

int num, count, sum = 0;

printf("Enter a positive integer: ");

scanf("%d", &num);

// for loop terminates when n is less than count

for(count = 1; count <= num; ++count)

{

sum += count;

}

printf("Sum = %d", sum);

return 0; }

1 120

Jump statements-break

 Break Statement Simply Terminate Loop and takes control out of
the loop.

Break in For Loop :

for(initialization ; condition ; incrementation)

{

Statement1;

Statement2;

break;

}

1 121

Break in While Loop :

initialization ;

while(condition)

{

Statement1;

Statement2;

incrementation

break;

}

1 122

Example
#include <stdio.h>

int main () {

/* local variable definition */

int a = 10;

/* while loop execution */

while(a < 20)

{

printf("value of a: %d\n", a);

a++;

if(a > 15) {

/* terminate the loop using break statement */ break;

} } return 0; }

1 123

Continue statement

 The continue statement in C programming works somewhat like
the breakstatement.

 Instead of forcing termination, it forces the next iteration of the
loop to take place, skipping any code in between.

 For the for loop, continue statement causes the conditional test
and increment portions of the loop to execute.

 For the while and do...whileloops, continue statement causes the
program control to pass to the conditional tests.

1 124

Example

#include <stdio.h>

int main () {

/* local variable definition */

int a = 10;

/* do loop execution */

do { if(a == 15) {

/* skip the iteration */

a = a + 1;

continue;

} printf("value of a: %d\n", a);

a++;

} while(a < 20); return 0; }

1 125

Goto statement

 A goto statement in C programming provides an unconditional jump
from the 'goto' to a labeled statement in the same function.

 NOTE − Use of goto statement is highly discouraged in any
programming language because it makes difficult to trace the control
flow of a program, making the program hard to understand and hard
to modify.

 Any program that uses a goto can be rewritten to avoid them.

1 126

Example
#include <stdio.h>

int main () {

/* local variable definition */

int a = 10;

/* do loop execution */

LOOP:

do { if(a == 15) {

/* skip the iteration */

a = a + 1;

goto LOOP;

} printf("value of a: %d\n", a); a++;

}while(a < 20); return 0; }

1 127

MODULE – III
ARRAYS AND FUNCTIONS

1 128

Running Course Learning Outcomes

CLOs COURSE LEARING OUTCOMES
CLO 8 Learn homogenous derived data types and use them to solve

statistical problems.

CLO 9 Identify the right string function to write string programs.

CLO 10 Understand procedural oriented programming using functions.

CLO 11 Understand how recursion works and write programs using
recursion to solve problems.

CLO 12 Differentiate call by value and call by reference parameter passing
mechanisms.

CLO13 Understand storage classes and preprocessor directives for
programming

1 129

Array

C Array is a collection of variables belongings to the same data type.
You can store group of data of same data type in an array.

1. Array might be belonging to any of the data types

2. Array size must be a constant value.

3. Always, Contiguous (adjacent) memory locations are used to store
array elements in memory.

4. It is a best practice to initialize an array to zero or null while
declaring, if we don’t assign any values to array.

1 130

TYPES OF C ARRAYS:

There are 2 types of C arrays. They are,

1. One dimensional array

2. Multi dimensional array

3. Two dimensional array

4. Three dimensional array

5. four dimensional array etc…

1 131

Array declaration, initialization and
accessing

Array declaration syntax:

data_type arr_name [arr_size];

Array initialization

data_type arr_name *arr_size+=(value1, value2,value3,….);

Array accessing syntax:

arr_name[index];

1 132

ONE DIMENSIONAL ARRAY

Integer array example:

int age [5];

int age[5]={0, 1, 2, 3, 4};

age[0]; /*0 is accessed*/

age[1]; /*1 is accessed*/

age[2]; /*2 is accessed*/

1 133

Character array example:

char str[10];

char str*10+=,‘H’,‘a’,‘i’-;

str[0]; /*H is accessed*/

str[1]; /*a is accessed*/

str[2]; /*i is accessed*/

1 134

Example Program For One Dimensional
Array In C:

#include<stdio.h>

int main()

{

int i;

int arr[5] = {10,20,30,40,50};

// declaring and Initializing array in C

//To initialize all array elements to 0, use int arr[5]={0};

/* Above array can be initialized as below also

arr[0] = 10; to

arr[4] = 50; */

for (i=0;i<5;i++)

{// Accessing each variableprintf("value of arr[%d] is %d \n", i, arr[i]);}

}
1 135

Two dimensional array

 The two dimensional array in C language is represented in the form
of rows and columns, also known as matrix. It is also known as array
of arrays or list of arrays.

 The two dimensional, three dimensional or other dimensional arrays
are also known as multidimensional arrays.

1 136

Declaration of two dimensional Array in C

We can declare an array in the c language in the following way.

data_type array_name[size1][size2];

A simple example to declare two dimensional array is given below.

int twodimen[4][3];

Here, 4 is the row number and 3 is the column number.

1 137

Two dimensional array example in C

#include<stdio.h>

int main(){

int i=0,j=0;

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

//traversing 2D array

for(i=0;i<4;i++){

for(j=0;j<3;j++){

printf("arr[%d] [%d] = %d \n",i,j,arr[i][j]);

}//end of j

}//end of i

return 0;

}

1 138

Strings

In C programming, array of characters or collection of characters is
called a string. A string always recognized in double quotes. A string
is terminated by a null character /0.

For example:

“String”

Here, “String” is a string. When, compiler encounters strings, it
appends a null character /0 at the end of string.

1 139

Example

#include<stdio.h>

#include<conio.h>

#include<string.h> void main ()

{

char str1[20]; charstr2[20];

printf(“Enter First Name”); scanf(“%s”

,&str1); printf(“Enter last Name”);

scanf(“%s” ,&str2); puts(str1);

puts(str2);

}

1 140

String Handling Functions in C

These String functions are:

1. strlen().

2. strupr().

3. strlwr().

4. strcmp().

5. strcat().

6. strcpy().

7. strrev().

1 141

strlen()

size_t strlen(const char *str);

The function takes a single argument, i.e, the string variable whose
length is to be found, and returns the length of the string passed.

The strlen() function is defined in <string.h> header file

1 142

#include <stdio.h> #include

<string.h> int main()

{

char a*20+=”Program”

char b*20+=,‘P’,’r’,’o’,’g’,’r’,’a’,’m’,’\0’-;

char c[20];

printf(“Enter string: “); gets(c);

printf(“Length of string a = %d \n”, strlen(a)); printf(“Length

printf(“Length of string c =of string b = %d \n”, strlen(b));

%d \n”, strlen(c));

return 0;}

Program finding length of a string

1 143

strupr()
 strupr() function convertsa given string into uppercase. Syntax

for strupr() function is given below.

#include<stdio.h>

#include<string.h>

int main()

{

char str[] = "Modify This String To Upper";

printf("%s\n",strupr(str));

return 0;

}

Output: MODIFY THIS STRING TO UPPER

1 144

strlwr()

strlwr() function converts a given string into lowercase. Syntax for
strlwr() function is given below.

#include<stdio.h>

#include<string.h>

int main()

{

char str[] = "MODIFY This String To LOwer";

printf("%s\n",strlwr (str));

return 0;

}

OUTPUT: modify this string to lower
1 145

strcmp()
strcmp() function in C compares two given strings and returns zero if

they are same.

#include <stdio.h>

#include <string.h>

int main()

{char str1[] = "fresh" ;

char str2[] = "refresh" ;

int i, j, k ;

i = strcmp (str1, "fresh") ;

j = strcmp (str1, str2) ;

k = strcmp (str1, "f") ;

printf ("\n%d %d %d", i, j, k) ;return 0;}

1 146

strcat()

strcat() function in C language concatenates two given strings. It
concatenates source string at the end of destination string.

#include <stdio.h>

#include <string.h>

int main()

{

char source[] = " fresh2refresh" ;

char target[]= " C tutorial" ;

printf ("\nSource string = %s", source) ;

printf ("\nTarget string = %s", target) ;

strcat (target, source) ;

printf ("\nTarget string after strcat() = %s", target) ;}

1 147

strcpy()

strcpy() function copies contents of one string into another string

#include <stdio.h>

#include <string.h>

int main()

{

char source[] = "fresh2refresh" ;

char target[20]= "" ;

printf ("\nsource string = %s", source) ;

printf ("\ntarget string = %s", target) ;

strcpy (target, source) ;

printf ("\ntarget string after strcpy() = %s", target) ;

return 0;

}

1 148

strrev()

strrev() function reverses a given string in C language

#include<stdio.h>

#include<string.h>

int main()

{

char name[30] = "Hello";

printf("String before strrev() : %s\n",name);

printf("String after strrev() : %s",strrev(name));

return 0;

}

1 149

Arrays of strings

 A string is a 1-D array of characters, so an array of strings is a 2-D
array of characters.

 Just like we can create a 2-D array of int, float etc; we can also
create a 2-D array of character or array of strings.

Here is how we can declare a 2-D array of characters.

char ch_arr[3][10] = {

{'s', 'p', 'i', 'k', 'e', '\0'},

{'t', 'o', 'm','\0'},

{'j', 'e', 'r', 'r', 'y','\0'}

};
1 150

 It is important to end each 1-D array by the null character
otherwise, it's just an array of characters. We can't use them as
strings.

 Declaring an array of string this way is a tedious and error-prone
process that's why C provides a more compact way to it. This above
initialization is equivalentto:

char ch_arr[3][10] = {

"spike",

"tom",

"jerry"

};

1 151

The following program demonstrates how to
print an array of strings.

#include<stdio.h>

int main()

{

int i;

char ch_arr[3][10] = {"spike","tom","jerry"};

printf("1st way \n\n");

for(i = 0; i < 3; i++)

{

printf("string = %s \t address = %u\n", ch_arr + i, ch_arr + i);

}

signal to operating system program ran fine return 0;

}

1 152

Introduction to functions

 A function is a group of statements that together perform a task.
Every C program has at least one function, which is main(), and all
the most trivial programs can define additionalfunctions.

 You can divide up your code into separate functions. How you divide
up your code among different functions is up to you, but logically the
division is such that each function performs a specific task.

 A function declaration tells the compiler about a function's name,
return type, and parameters. A function definition provides the
actual body of the function.

1 153

 The C standard library provides numerous built-in functions that your
program can call. For example, strcat() to concatenate two strings,
memcpy() to copy one memory location to another location, and
many more functions.

 A function can also be referred as a method or a sub-routine or a
procedure, etc.

Defining a Function

 The general form of a function definition in C programming language
is as follows −

1 154

return_type function_name(parameter list) {

body of the function

}

A function definition in C programming consists of a function header
and a function body. Here are all the parts of a function−

 Return Type − A function may return a value. The return_type is the
data type of the value the function returns. Some functions perform
the desired operations without returning a value. In this case, the
return_type is the keywordvoid.

1 155

 Function Name − This is the actual name of the function. The
function name and the parameter list together constitute the function
signature.

 Parameters − A parameter is like a placeholder. When a function is
invoked, you pass a value to the parameter. This value is referred to as
actual parameter or argument. The parameter list refers to the type,
order, and number of the parameters of a function. Parameters are
optional; that is, a function may contain no parameters.

 Function Body − The function body contains a collection of
statements that define what the function does.

1 156

Example

Given below is the source code for a function called max(). This
function takes two parameters num1 and num2 and returns the
maximum value between the two −

/* function returning the max between two numbers */

int max(int num1, int num2) {

/* local variable declaration */

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

} 1 157

Function Declarations

• A function declaration tells the compiler about a function name and
how to call the function. The actual body of the function can be
defined separately.

• A function declaration has the following parts −

return_type function_name(parameter list);

• For the above defined function max(), the function declaration is as
follows −

int max(int num1, int num2);

• Parameter names are not important in function declaration only
their type is required, so the following is also a valid declaration−

int max(int, int);

1 158

Function prototype

• A function prototype is simply the declaration of a function that
specifies function's name, parameters and return type. It doesn't
contain function body.

• A function prototype gives information to the compiler that the
function may later be used in the program.

returnType functionName(type1 argument1, type2 argument2,...);

• In the above example, int addNumbers(int a, int b); is the function
prototype which provides following information to thecompiler:

name of the function is addNumbers()

return type of the function is int

two arguments of type int are passed to the function

1 159

Category of functions:

• A function depending an whether the arguments are present or not
and whether a value is returned or not, may belong to one of
following categories

 Function with no return values, no arguments

 Functions with arguments, no return values

 Functions with arguments and return values

 Functions with no arguments and return values.

1 160

• Function with no return values, no arguments

• In this category, the function has no arguments. It does not receive
any data from the calling function. Similarly, it doesn’t return any
value. The calling function doesn’t receive any data from the called
function. So, there is no communication between calling and called
functions.

• Functions with arguments, no return values

• In this category, function has some arguments . it receives data from
the calling function, but it doesn’t return a value to the calling
function. The calling function doesn’t receive any data from the called
function. So, it is one way data communication between called and
calling functions.

1 161

• Functions with arguments and return values

• In this category, functions has some arguments and it receives data
from the calling function. Simillarly, it returns a value to the calling
function. The calling function receives data from the called function.
So, it is two-way data communication between calling and called
functions.

• Functions with no arguments and return values.

• In this category, the functions has no arguments and it doesn’t receive
any data from the calling function, but it returns a value to the calling
function. The calling function receives data from the called function.
So, it is one way data communication between calling and called
functions.

1 162

Inter Function communication

• When a function gets executed in the program, the execution control
is transferred from calling function to called function and executes
function definition, and finally comes back to the calling function.

called functions• In this process, both calling and
haveto

communicate each other to exchange information.

• The process of exchanging information between calling and called
functions is called as inter function communication.

1 163

• In C, the inter function communication is classified asfollows...

 Downward Communication

 Upward Communication

 Bi-directional Communication

1 164

• Downward Communication

• In this type of communication, the data is transferred from calling
function to called function but not from called function to calling
function.

• The function with parameters and without return value are
considered under Downward communication.

1 165

#include <stdio.h>

#include<conio.h>

void main(){

int num1, num2 ;

void addition(int, int) ; // function declaration

clrscr() ;

num1 = 10 ;

num2 = 20 ;

printf("\nBefore swap: num1 = %d, num2 = %d", num1, num2);
addition(num1, num2) ; // calling function

getch() ;

}

void addition(int a, int b) // called function

{printf("SUM = %d", a+b) ;}

Example Program for swapping
using function

1 166

Upward Communication

• In this type of communication, the data is transferred from called
function to calling function but not from calling function to called
function.

• The function without parameters and with return value are
considered under Upward communication.

1 167

#include <stdio.h>

void main(){

int result ;

int addition() ; // function declaration

result = addition() ; // calling function printf("SUM = %d",

result) ;

getch() ;

}

int addition() // called function

{

int num1, num2 ;

num1 = 10;num2 = 20;

return (num1+num2) ;}

Example Program on
Upward Communication

1 168

Bi-Directional Communication

• In this type of communication, the data is transferred from called
function to calling function and also from callingfunction to called
function.

• The function with parameters and with return value are considered
under Bi-Directional communication.

1 169

#include <stdio.h>

void main(){

int num1, num2, result ;

int addition(int, int) ; // function declaration

num1 = 10 ;

num2 = 20 ;

result = addition(num1, num2) ; // calling function

printf("SUM = %d", result) ;

getch() ;

}

int addition(int a, int b) // called function

{

return (a+b) ;

}

Example Program on
Bidirectional Communication

1 170

Function Calls

 There are two ways that a C function can be called from a program.
They are,

1. Call by value

2. Call by reference

 Note:

• Actual parameter – This is the argument which is used infunction
call.

• Formal parameter – This is the argument which is used in function
definition

1 171

Call by Value

 In call by value method, the copy of actual parameter values are
copied to formal parameters and these formal parameters are used in
called function.

 The changes made on the formal parameters does not effect the
values of actual parameters. That means, after the execution control
comes back to the calling function, the actual parameter values
remains same.

 For example consider the followingprogram...

1 172

#include <stdio.h>

void main(){

int num1, num2 ;

void swap(int,int) ; // function declaration num1 = 10;

num2 = 20 ;

printf("\nBefore swap: num1 = %d, num2 = %d", num1, num2);

swap(num1, num2) ; // calling function

printf("\nAfter swap: num1 = %d\nnum2 = %d", num1, num2);

}

void swap(int a, int b) // called function

{

int temp ; temp = a ; a = b ;

b = temp ;

}

Example Program on
Call by value

1 173

Call by Reference

• In Call by Reference parameter passing method, the memory
location address of the actual parameters is copied to formal
parameters.

•This address is used to access the memory locations of the actual
parameters in called function.

•In this method of parameter passing, the formal parametersmust
be pointer variables.

• The changes made on the formal parameters effects the values of
actual parameters. For example consider the following program...

1 174

#include <stdio.h>

void main(){

int num1, num2 ;

void swap(int *,int *) ; // function declaration num1 = 10;

num2 = 20 ;

printf("\nBefore swap: num1 = %d, num2 = %d", num1, num2);

swap(&num1, &num2) ; // calling function

printf("\nAfter swap: num1 = %d, num2 = %d", num1, num2);

}

*contd…+

Example Program on
Call by Reference

1 175

void swap(int *a, int *b) // called function

{

int temp ;

temp = *a ;

*a = *b ;

*b = temp ;

}

1 176

Parameter Passing Mechanism

In C Programming we have different ways of parameter
passing schemes such as Call by Value and Call by Reference.

Function is good programming style in which we can writereusable
code that can be called whenever require.

Whenever we call a function then sequence of executable statements
gets executed. We can pass some of the information to the function
for processing calledargument.

Two Ways of Passing Argument to Function in C Language

Call by Reference

Call by Value

1 177

#include<stdio.h>
void interchange(int number1,int number2)
{
int temp;
temp = number1;
number1 = number2;
number2 = temp;}

int main() {
int num1=50,num2=70; interchange(num1,num2);

printf("\nNumber 1 : %d",num1);
printf("\nNumber 2 : %d",num2);
return(0);
}

Example Program on
Parameter passing

1 178

Output :
Number 1 :50
Number 2 :70

of originalWhile Passing Parameters using call by value , xerox copy
parameter is created and passed to the called function.

Any update made inside method will not affect the original value of
variable in callingfunction.

In the above example num1 and num2 are the original values and xerox
copy of these values is passed to the function and these values are copied
into number1,number2 variable of sum functionrespectively.

1 179

1 180

A. Call by Reference/Pointer/Address :

#include<stdio.h>

void interchange(int *num1,int *num2)
{
int temp;
temp = *num1;
*num1 = *num2;
*num2 = temp;
}
int main() {
int num1=50,num2=70;
interchange(&num1,&num2);
printf("\nNumber 1 : %d",num1); printf("\nNumber 2 : %d",num2);
return(0);
}

1 181

Output :
Number 1 :70
Number 2 :50

While passing parameter using call by address scheme , we are passing
the actual address of the variable to the called function.

Any updates made inside the called function will modify the original copy
since we are directly modifying the content of the exact memory location

1 182

1 183

Recursion

• Recursion is the process of repeating items in a self-similarway.

• In programming languages, if a program allows you to call a function
inside the same function, then it is called a recursive call of the
function.

void recursion()

{

recursion();/* function calls itself */

}

int main()

{

recursion();

}

1 184

• The C programming language supports recursion, i.e., a function to
call itself.

• But while using recursion, programmers need to be careful to define
an exit condition from the function, otherwise it will go into an infinite
loop.

• Recursive functions are very useful to solve many mathematical
problems, such as calculating the factorial of a number, generating
Fibonacci series, etc.

1 185

Example: Factorial

#include <stdio.h>

unsigned long long int factorial(unsigned int i) {

if(i <= 1) {

return 1;

}

return i * factorial(i - 1);

}

int main() {

int i = 12;

printf("Factorial of %d is %d\n", i, factorial(i));

return 0;

}

1 186

Passing arrays to function

• Whenever we need to pass a list of elements as argument to any
function in C language, it is prefered to do so using an array.

Declaring Function with array as a parameter

• There are two possible ways to do so, one by using call by value

and other by using call by reference.

We can either have an array as a parameter.

int sum (int arr[]);

Or,

we can have a pointer in the parameter list, to hold the base address

of our array.

int sum (int* ptr);

1 187

Returning an Array from a function

• We don't return an array from functions, rather we return a pointer
holding the base address of the array to be returned.

int* sum (int x[])

{

// statements return x ;

}

1 188

Passing a single array element to a
function

#include<stdio.h>

void giveMeArray(int a);
int main()
{

int myArray[] = { 2, 3, 4 };
giveMeArray(myArray[2]);
return 0;
}

void giveMeArray(int a)
{
printf("%d", a);
}
Output: 4

1 189

Passing a single array element
to function (Call by value)

#include <stdio.h>
void disp(charch)
{
printf("%c ", ch);
}
int main()
{
char arr[] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'};
for (int x=0; x<10; x++)
{
disp (arr[x]);
}
return 0;
}
OUTPUT: a b c d e f g h i j

1 190

Passing array to function using call
byreference
#include <stdio.h>

void disp(int *num)

{
printf("%d ", *num);
disp(&arr[i]);

}

int main()

{

int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9,0};

for (int i=0; i<10; i++)return0;

}
OUTPUT:

1 2 3 4 5 6 7 8 9 0

1 191

Passing String to a Function

• Function declaration to accept one dimensional string

We know that strings are saved in arrays so, to pass an one
have the followingdimensional array to a function we will

declaration.

returnType functionName(char str[]);

• Example:

void displayString(char str[]);

• In the above example we have a function by the name displayString
and it takes an argument of type char and the argument is an one
dimensional array as we are using the []square brackets.

1 192

Passing one dimensional string to a function

• To pass a one dimensional string to a function as an argument we
just write the name of the string array variable.

• In the following example we have a stringarray
variable message and it is passed to the displayString function.

1 193

#include <stdio.h>

void displayString(char []); int main(void)

{

// variables

char message[] = "Hello World";

// print the string message

displayString(message); return 0;

}

void displayString(char str[])

{

printf("String: %s\n", str);

}

Example Program on
Passing one dimensional array

1 194

Storage Classes

 Every Variable in a program has memory associated withit.

 Memory Requirement of Variables is different for different types of
variables.

 In C, Memory is allocated & released at differentplaces

1 195

Scope Region or Part of Program in which

Variable is accessible

Extent Period of time during which memory is

associated with variable

Storage Class Manner in which memory is allocated by

the Compiler for Variable DifferentStorage

Classes

1 196

Storage class of variable Determines following things

 Where the variable isstored

 Scope of Variable

 Default initial value of theVariable

 Lifetime of variable

1 197

Where the variable is stored:

Class determines the location of variable, where it isStorage
declared.

 Variables declared with auto storage classes are declared inside main
memory whereas variables declared with keyword register are stored
inside the CPU Register.

1 198

Scope of Variable

Scope of Variable tells compile about the visibility of Variable inthe
block.

 Variable may have Block Scope, Local Scope and External Scope.

 A scope is the context within a computer program in which a variable
name or other identifier is valid and can be used, or within which a
declaration haseffect.

1 199

Default Initial Value of the Variable

 Whenever we declare a Variable in C, garbage value is assignedto
the variable.

 Garbage Value may be considered as initial value of thevariable.

 C Programming have different storage classes which has different
initial values such as Global Variable have Initial Value as 0 while the
Local auto variable have default initial garbagevalue.

1 200

Lifetime of variable

 Lifetime of the = Time Of variable Declaration - Time ofVariable
Destruction

 Suppose we have declared variable inside main function then
variable will be destroyed only when the control comes out of the
main .i.e end of the program.

1 201

Different Storage Classes:

 Auto Storageclass

 Static storageclass

 Extern storageclass

 Register storageclass

1 202

This is default storage class

All variables declared are of type Auto by default

In order to Explicit declaration of variable use ‗auto‘ keyword auto

int num1 ; // Explicit Declaration

Storage

Scope

Life time

: Memory

: Local / BlockScope

: Exists as long as Control remains in the block

Default initial Value : Garbage

Automatic (Auto) storage class

1 203

External (extern) storage class

and are

•Variables of this storage class are ―Globalvariables

•Global Variables are declared outside the function
accessible to all functions in theprogram

•Generally , External variables are declared again in the function
using keyword extern In order to Explicit declaration of variable use
‗extern‘ keyword

extern int num1 ; // ExplicitDeclaration

1 204

Storage : Memory

Scope : Global / File Scope

Life time : Exists as long as variable is running Retains value within the
function

Default initial Value : Zero

1 205

Static Storage Class

The static storage class instructs the compiler to keep a local variable
in existence during the life-time of the program instead of creating and
destroying it each time it comes into and goes out of scope.

Therefore, making local variables static allows them to maintain their
values between function calls.

The static modifier may also be applied to globalvariables.

When this is done, it causes that variable's scope to be restricted to
the
file in which it is declared.

static int count = 5; /* global variable

1 206

Register keyword is used to define local variable. Local variable are
stored in register instead of RAM.
 As variable is stored in register, the Maximum size of variable =

Maximum Size of Register unary operator [&] is not associated with
it because Value is not stored in RAM instead it is stored in Register.

 This is generally used for faster access. Common use is ―Counter―

Syntax
{
register int count;
}

Register Storage Class

1 207

Preprocessor directives

 The C preprocessor is a macro processor that is used automatically by
the C compiler to transform your program before actual
compilation(Proprocessor direcives are executed before
compilation.).

 It is called a macro processor because it allows you to define macros,
which are brief abbreviations for longerconstructs.

 A macro is a segment of code which is replaced by the valueof
macro. Macro is defined by #define directive.

1 208

 Preprocessing directives are lines in your program that start with #.
The # is followed by an identifier that is the directive name. For
example, #define is the directive that defines a macro. Whitespace is
also allowed before and after the #.

 The # and the directive name cannot come from a macro expansion.
For example, if foo is defined as a macro expanding to define, that
does not make #foo a valid preprocessing directive.

 All preprocessor directives starts with hash #symbol.

1 209

List of preprocessor directives:

1. #include

2. #define

3. #undef

4. #ifdef

5. #ifndef

6. #if

7. #else

8. #elif

9. #endif

10. #error

11. #pragma

1 210

#include

 The #include preprocessor directive is used to paste code of given
file into current file. It is used include system- defined and user-
defined header files. If included file is not found, compiler renders
error. It has three variants:

#include <file>

 This variant is used for system header files. It searches for a file
named file in a list of directories specified by you, then in a standard
list of system directories.

#include "file"

1 211

Macro's (#define)

 Let's start with macro, as we discuss, a macro is a segment of code
which is replaced by the value of macro. Macro is defined by
#define directive.

 Syntax

#define token value

1 212

#undef

 To undefine a macro means to cancel its definition. This isdone
with the #undef directive. Syntax:

#undef token

define and undefine example

#include <stdio.h>

#define PI 3.1415

#undef PI

main() { printf("%f",PI);

}

1 213

#ifdef

 The #ifdef preprocessor directive checks if macro is definedby
#define. If yes, it executes thecode.

Syntax:

#ifdef MACRO

//code

#endif

1 214

#ifndef

 The #ifndef preprocessor directive checks if macro is not definedby
#define. If yes, it executes thecode.

Syntax:

#ifndef MACRO

//code

#endif

1 215

#if

 The #if preprocessor directive evaluates the expressionor condition.
If condition is true, it executes thecode.

Syntax:
#if expression

//code

#endif

1 216

#else

 The #else preprocessor directive evaluates the expression or
condition if condition of #if is false. It can be used with #if, #elif,
#ifdef and #ifndef directives.

Syntax:

#if expression

//if code

#else

//else code

#endif
1 217

Syntax with #elif

#if expression

//if code

#elif expression

//elif code

#else

//else code

#endif

1 218

#error

 The #error preprocessor directive indicates error. The compiler
gives fatal error if #error directive is found and skips further
compilation process.

C #error example

#include<stdio.h>

#ifndef MATH_H

#error First include then compile
#else
void main()
{ float a; a=sqrt(7); printf("%f",a);
}
#endif

1 219

#pragma

The #pragma preprocessor directive is used to provide additional
information to the compiler.

 The #pragma directive is used by the compiler to offer machine or
operating-system feature. Different compilers can provide different
usage of #pragma directive.

1 220

 Syntax:

#pragma token

Example:

#include<stdio.h>

#include<conio.h>

void func() ;

#pragma startup func

#pragma exit func

1 221

void main()

{

printf("\nI am in main");

getch();

}

void func()

{

printf("\nI am in func");

getch();

}

Example Program on pragma

1 222

MODULE – IV
STRUCTURES, UNIONS AND

POINTERS

1 223

CLOs COURSE LEARNING OUTCOMES

CLO 14 Understand pointers conceptually and apply them in C programs.

CLO 15 Distinguish homogenous and heterogeneous data types and apply
them in solving data processing applications.

1 224

Need of Structures

• For example: You want to store some information about a person:
his/her name, citizenship number and salary. You can easily create
different variables name, citNo, salary to store these information
separately.

• However, in the future, you would want to store information about
multiple persons. Now, you'd need to create different variables for
each information per person: name1, citNo1, salary1, name2,
citNo2, salary2

• You can easily visualize how big and messy the code would look. Also,
since no relation between the variables (information) would exist, it's
going to be a daunting task.

1 225

• A better approach will be to have a collection of all related
information under a single name Person, and use it for every person.

• Now, the code looks much cleaner, readable and efficient as well.

• This collection of all related information under a single name Person
is a structure.

1 226

Structure Basics

Structure Definition

•Structure is a collection of variables of different types under a single
name.

•Keyword struct is used for creating a structure.

1 227

Syntax of structure
struct structure_name
{
data_type member1;
data_type member2;
.
.
data_type memeber;
};

Note: Don't forget the semicolon }; in the endingline.

We can create the structure for a person as mentioned above as:

1 228

struct person

{

char name[50];

int citNo;

float salary;

};

This declaration above creates the derived data type struct person.

1 229

Structure variable declaration

When a structure is defined, it creates a user-defined type but, no
storage or memory is allocated.

For the above structure of a person, variable can be declared as:

struct person

{

char name[50];

int citNo;

float salary;

};

1 230

int main()

{

struct person person1, person2, person3[20];
return 0;
}
Another way of creating a structure variable is:
struct person
{
char name[50];
int citNo;
float salary;
} person1, person2, person3[20];
In both cases, two variables person1, person2 and an

array person3 having 20 elements of type struct person are created.

Example Program

1 231

Accessing members of a structure

• There are two types of operators used for accessing members of a
structure.

 Member operator(.)

 Structure pointer operator(->)

• Any member of a structure can be accessed as:

structure_variable_name.member_name

• Suppose, we want to access salary for variable person2. Then, it
can be accessed as:

person2.salary

1 232

 Write a C program to add two distances entered by user.
Measurement of distance should be in inch and feet. (Note: 12
inches = 1 foot)

#include <stdio.h>
struct Distance
{ int feet;
float inch;
} dist1, dist2, sum;
int main()
{
printf("1st distance\n");
// Input of feet for structure variable dist1

Example Program on structure

1 233

printf("Enter feet: ");

scanf("%d", &dist1.feet);

// Input of inch for structure variable dist1

printf("Enter inch: ");

scanf("%f", &dist1.inch);

printf("2nd distance\n");

// Input of feet for structure variable dist2

printf("Enter feet: ");

scanf("%d", &dist2.feet);

// Input of feet for structure variabledist2

printf("Enter inch: ");

Example Program on structure

1 234

scanf("%f", &dist2.inch);

sum.feet = dist1.feet + dist2.feet;

sum.inch = dist1.inch +dist2.inch;

if (sum.inch > 12)

{

//If inch is greater than 12, changing it to feet.

• ++sum.feet;

sum.inch = sum.inch - 12;

} // printing sum of distance dist1 and dist2

printf("Sum of distances = %d\'-%.1f\"", sum.feet, sum.inch);
return 0;

}

1 235

Output

1st distance

Enter feet: 12

Enter inch: 7.92

2nd distance

Enter feet: 2

Enter inch: 9.8

Sum of distances = 15'-5.7"

1 236

Structure Initialization

is not allocated forWhen we declare a structure, memory
un-initialized variable.

Let us discuss very familiar example of structure student ,
we can initialize structure variable in different ways –

1 237

Way1: Declare and Initialize

struct student

{

char name[20];

int roll;

float marks;

}std1 = { "Pritesh",67,78.3};

1 238

 In the above code snippet, we have seen that structure is declared
and as soon as after declaration we have initialized the structure
variable.

std1 = { "Pritesh",67,78.3}

1 239

Way2: Declaring and Initializing
MultipleVariables

struct student

{

char name[20];

int roll;

float marks;

}

std1 = {"Pritesh",67,78.3};

std2 = {"Don",62,71.3};

In this example, we have declared two structure variables in above
code. After declaration of variable we have initialized two variable.

std1 = {"Pritesh",67,78.3};

std2 = {"Don",62,71.3};

1 240

Way3: Initializing single member

struct student

{

int mark1; int

mark2; int

mark3;

} sub1={67};

1 241

• Though there are three members of structure,only one is initialized.
• Then remaining two members are initialized withZero.
• If there are variables of other data type then their initial values will

be

Data Type Default value if not initialized

integer 0

float 0.00

char NULL

1 242

Way4: Initializing inside main

struct student

{

int mark1; int mark2;

int mark3;

};

void main()

{

Struct student s1={89,54,65};

- - - --

- - - --

- - - --

};

 When we declare a structure then
memory won’t be allocated for the
structure. i.e only writing below
declaration statement will never allocate
memory

1 243

struct student

{

int mark1; int mark2; int mark3;

};

We need to initialize structure variable to allocate some memory to
the structure.

struct student s1 = {89,54,65};

1 244

Accessing Structure Members

• Array elements are accessed using the Subscript variable , Similarly
Structure members are accessed using dot [.] operator.

• (.) is called as “Structure member Operator”.

• Use this Operator in between “Structure name” & “member
name”.

1 245

#include<stdio.h>

struct stud

{

char name[20];

char fname[10];

};

struct stud s;

main()

{

scanf("%s%s",&s.name,&s.fname);

printf("%s%s",s.name,s.fname);

}

Output:vedha srinivas Vedhasrinivas

Example Program

1 246

struct employee

{

char name[100]; int age;

float salary;

char department[50];

} employee_one = {"Jack", 30, 1234.5, "Sales"};

int age = employee_one.age;

float salary= employee_one.salary;

char department= employee_one.department;

1 247

Accessing array of structure elements

STRUCT STUD

{

Datatype member1; Datatype member2;

.

.

} struct stud s[50];

Members of structures are accessed through dot operator.

1 248

Nested Structures

• A structure can be nested inside another structure. In other words,
the members of a structure can be of any other type including
structure.

• Here is the syntax to create nested structures.

1 249

structure tagname_1

{

member1; member2; member3;...

Member n; structure tagname_2

{

member_1; member_2; member_3;...

member_n;

},var1

} var2;

Example Program

1 250

• To access the members of the inner structure, we write a variable
name of the outer structure, followed by a dot(.) operator, followed
by the variable of the inner structure, followed by a dot(.) operator,
which is then followed by the name of the member we want to
access.

• var2.var1.member_1 - refers to the member_1 of structure
tagname_2 var2.var1.member_2 - refers to the member_2 of
structure tagname_2

1 251

Example

struct student

{

struct person

{

char name[20];

int age;

char dob[10];

} p ;

int rollno;

float marks;

} stu;

1 252

• It is important to note that structure person doesn't exist on its own.
We can't declare structure variable of type struct person anywhere
else in the program.

• Instead of defining the structure inside another structure. We could
have defined it outside and then declare it's variable inside the
structure where we want to use it. For example:

struct person

{

char name[20];

int age;

char dob[10];

};

1 253

• We can use this structure as a part of a bigger structure.

struct student

{

struct person info;

int rollno;

float marks;

}

1 254

Initializing nested Structures

• Nested structures can be initialized at the time of declaration. For
example:

struct person

{

char name[20]; int age; char dob[10];

};

struct student

{

struct person info; int rollno; float marks[10];

}

struct student student_1 = {{"Adam", 25,1990},101,90};

1 255

The following program demonstrates how we can use nested
structures

#include<stdio.h>

struct person

{

char name[20]; int age; char dob[10];};

struct student

{

struct person info; int roll_no; float marks;

};

int main()

{

struct student s1;printf("Details of student: \n\n");
1 256

printf("Enter name: "); scanf("%s", s1.info.name);

printf("Enter age: "); scanf("%d", &s1.info.age);

printf("Enter dob: "); scanf("%s", s1.info.dob);

printf("Enter roll no: "); scanf("%d", &s1.roll_no);

printf("Enter marks: "); scanf("%f", &s1.marks);

printf("\n*******************************\n\n");

printf("Name: %s\n", s1.info.name);

printf("Age: %d\n", s1.info.age);

printf("DOB: %s\n", s1.info.dob);

printf("Roll no:

%d\n", s1.roll_no);

printf("Marks: %.2f\n", s1.marks);

// signal to operating system program ran fine return 0;

}
1 257

Array of structures:

Need of array of structures:

•Structure is collection of different data type. An object of structure
represents a single record in memory, if we want more than one record
of structure type, we have to create an array of structure or object.

collection of similar type, thereforean•As we know, an array is a
array can be of structure type.

•Structure is used to store the information of One particular object but
if we need to store such 100 objects then Array of Structure is used.

1 258

Syntax:

Struct struct-name
{

datatypevar1;
datatype var2;

datatype varN
};
Struct struct-name obj[size]

1 259

Initializing Array of Structure:

Alternative 1:

struct Book
{
char bname[20];
int pages;
char author[20];
float price;
} b1[3] = {
{"Let us C",700,"YPK",300.00},
{"Wings of Fire",500,"APJ Abdul Kalam",350.00},
{"Complete C",1200,"Herbt Schildt",450.00}

};

1 260

Initializing Array of Structure:

Alternative 2:

struct Book
{
char bname[20];
int pages;
char author[20];
float price;

};
void main()
{
struct Book b1[3] = {{"Let usC",700,"YPK",300.00},

{"Wings of Fire",500,"Abdul Kalam",350.00},
{"Complete C",1200,"Herbt Schildt",450.00}

};
}

1 261

Important Points:

Note 1: All Structure Members need not be initialized

#include<stdio.h>

struct Book

{

char bname[20];

int pages;

char author[20];

float price;

}b1[3] = {

{"Book1",700,"YPK"},

{"Book2",500,"AAK",350.00},

{"Book3",120,"HST",450.00}}}

1 262

void main()

{

printf("\nBook Name : %s",b1[0].bname);

printf("\nBook Pages : %d",b1[0].pages);

printf("\nBook Author : %s",b1[0].author);

printf("\nBook Price : %f",b1[0].price);

struct Book
{
char bname[20];
int pages;
char author[20];
float price;
}b1[3] =
{
{},
{"Book2",500,"AAK",350.00},
{"Book3",120,"HST",450.00}

};

1 263

Output

• Book Name
• Book Pages

• Book Price

:
: 0 Book Author

: 0.000000

It is clear from above output , Default values for different data types.

Data Type
• Integer
• Float
• Character

Default InitializationValue
0

0.0000
Blank

1 264

Structures and functions

Structure can be passed to functions by twomethods

1. Passing by value (passing actual value asargument)

2. Passing by reference (passing address of asargument)

1 265

Passing structure by value

passed to the function as an•A structure variable can be
argument as a normal variable.

•If structure is passed by value, changes made to the structure
variable inside the function definition does not reflect in the
originally passed structure variable.

1 266

Passing structure by reference

•The memory address of a structure variable is passed to function
while passing it by reference.

•If structure is passed by reference, changes made to the structure
variable inside function definition reflects in the originally passed
structure variable.

1 267

Structures and pointers

Structures can be created and accessed using pointers. A pointer
variable of a structure can be created as below:

struct name {

member1;

member2;

.

.

};

int main()

{

struct name *ptr;

}

Here, the pointer variable of type struct name is created.
1 268

Accessing structure's member through pointer

• A structure's member can be accesssed through pointer in two
ways:

• Referencing pointer to another address to accessmemory

• Using dynamic memory allocation

1 269

1. Referencing pointer to another address to access the memory
Consider an example to access structure's member through pointer.
#include <stdio.h>
typedef struct person
{
int age;
float weight;
};

int main()
{
struct person *personPtr, person1;
personPtr = &person1; // Referencing pointer to memory address of

person1
printf("Enter integer: ");
scanf("%d",&(*personPtr).age);

1 270

printf("Enter number: ");
scanf("%f",&(*personPtr).weight);
printf("Displaying: ");
printf("%d%f",(*personPtr).age,(*personPtr).weight);
return 0;
}

In this example, the pointer variable of type struct person is
referenced to the address of person1. Then, only the structure
member through pointer can can accessed.

Using -> operator to access structure pointer member

Structure pointer member can also be accessed using -> operator.
(*personPtr).age is same as personPtr->age
(*personPtr).weight is same as personPtr->weight

1 271

2. Accessing structure member through pointer using dynamic
memory allocation

To access structure member using pointers, memory can be
allocated dynamically using malloc() function defined under
"stdlib.h" header file

Syntax to use malloc()

ptr = (cast-type*) malloc(byte-size)

1 272

https://www.programiz.com/c-programming/c-dynamic-memory-allocation

Example

Example to use structure's member through pointer using

malloc() function.

#include <stdio.h>

#include <stdlib.h>

struct person {

int age;
float weight;

char name[30];

};

int main()

{

struct person *ptr;

1 273

int i, num;

printf("Enter number of persons:");
scanf("%d", &num);
ptr = (struct person*) malloc(num * sizeof(structperson));
// Above statement allocates the memory for n structureswith

pointer personPtr pointing to base address */
for(i = 0; i < num; ++i)
{
printf("Enter name, age and weight of the person respectively:\n");

scanf("%s%d%f", &(ptr+i)->name, &(ptr+i)->age,&(ptr+i)-
>weight);

}•

1 274

printf("Displaying Infromation:\n");

for(i = 0; i < num; ++i)

printf("%s\t%d\t%.2f\n", (ptr+i)->name, (ptr+i)->age, (ptr+i)-
>weight);

return 0;

}

1 275

Output
Enter number of persons:2

Enter name, age and weight of the person respectively:
Adam

2

3.2

Enter name, age and weight of the personrespectively:
Eve

6

2.3

Displaying Information:
Adam

Eve 6

1 276

Structure and Functions

• In C, structure can be passed to functions by twomethods:

 Passing by value (passing actual value asargument)

 Passing by reference (passing address of an argument)

• Passing structure by value

 A structure variable can be passed to the function as an argument
as a normal variable.

 If structure is passed by value, changes made to the structure
variable inside the function definition does not reflect in the
originally passed structure variable.

1 277

Example 1

C program to create a structure student, containing name and roll
and display the information.

#include <stdio.h>

struct student

{

char name[50];

int roll;

};

void display(struct student stu);

// function prototype should be below to the structuredeclaration
otherwise compiler shows error

1 278

Example Contd
int main()

{

struct student stud;

printf("Enter student's name: ");

scanf("%s", &stud.name);

printf("Enter roll number:");

scanf("%d", &stud.roll);

// passing structure variable stud as argumentdisplay(stud);

return 0;

}

void display(struct student stu){

printf("Output\nName: %s",stu.name);

printf("\nRoll: %d",stu.roll);

} 1 279

Example Contd

Enter student's name: Kevin Amla

Enter roll number: 149

Output

Name: Kevin Amla

Roll: 149

Passing structure by reference

The memory address of a structure variable is passed to function
while passing it by reference.

If structure is passed by reference, changes made to the structure
variable inside function definition reflects in the originally passed
structure variable.

1 280

Self Referencial Structures

Self referential structures contain a pointer member thatpoints
to a structure of the same structuretype.

In other words, a self-referential C structure is the onewhich
includes a pointer to an instance of itself.

struct demo

{

Data_type member1, member2;

struct demo *ptr1,*ptr2;

}
1 281

Unions

• A union, is a collection of variables of different types, just like a
structure. However, with unions, you can only store information in
one field at any one time

• You can picture a union as like a chunk of memory that is used to
store variables of different types.

• Once a new value is assigned to a field, the existing data is wiped
over with the new data

1 282

•A union can also be viewed as a variable type that can contain many
different variables (like a structure), but only actually holds one of
them at a time (not like a structure).

•This can save memory if you have a group of data where only one
of the types is used at a time.

•The size of a union is equal to the size of it's largest data or
element

1 283

Union Declaration

union union-type-name

{

type variable-names;

type variable-names;

…

... }[union variable];

1 284

Union Intialization

union student

{

char name[20];

int marks;

- union student s=,“surya”,560-;

Members of union are accessed as s.name and s.marks

1 285

1 286

1 287

1 288

Bit Fields

• Bit field
– Member of a structure whose size (in bits) has been specified
– Enable better memory utilization
– Must be defined as int or unsigned
– Cannot access individualbits

• Defining bit fields
– Follow unsigned or int member with a colon (:) and aninteger

constant representing the width of the field
– Example:

– struct BitCard {
– unsigned face : 4;
– unsigned suit : 2;
– unsigned color : 1;

– };

1
1 289

• Unnamed bit field

– Field used as padding in thestructure

– Nothing may be stored in thebits

– struct Example {

– unsigned a : 13;

– unsigned : 3;

– unsigned b : 4;

– }

– Unnamed bit field with zero width aligns next bit field to anew
storage unit boundary

2
1 290

Example

For example, consider the following declaration of date withoutuse of
bit fields.

#include <stdio.h>

// A simple representation of date

struct date

{

unsigned int d;

unsigned int m;

unsigned int y;

};

int main()

{

1 291

printf("Size of date is %d bytes\n", sizeof(structdate));

struct date dt = {31, 12, 2014};

printf("Date is %d/%d/%d", dt.d, dt.m,dt.y);

Output:

Size of date is 12 bytes

Date is 31/12/2014

1 292

typedef and enumerators

typedef:

• The C programming language provides a keyword called typedef,
which you can use to give a type, a newname.

Syntax:

typedef data_type new_name;

• typedef: It is a keyword.
• data_type: It is the name of any existing type or user defined type

created using structure/union.
• new_name: alias or new name you want to give to anyexistingtype

or user defined type.

1 293

Example for typedef:

• typedef unsigned char BYTE;

• After this type definition, the identifier BYTE can be used as an
abbreviation type unsigned char, for example.. For the BYTE
b1, b2;

1 294

Example program on typedef

#include <stdio.h>
#include <string.h>
typedef struct Books {
char title[50]; char
author[50]; char
subject[100]; int
book_id;
} Book;
int main()
{
Book book;

strcpy(book.title, "C
Programming"); strcpy(
book.author, "Nuha Ali"); strcpy(
book.subject, "C

Programming Tutorial");

book.book_id = 6495407; printf(
"Book title : %s\n",

book.title);
printf("Book author : %s\n",
book.author);
printf("Book subject : %s\n",

book.subject);
printf("Book book_id : %d\n",
book.book_id);return 0;
}

1 295

Structures with typedef:

• structstudent
{

int mark [2];
char name [10];
float average;

}
Variable for the above structure can be declared intwoways

1st way :
• struct student record; /* for normal variable */

struct student *record; /* for pointer variable*/

2nd way :
• typedef struct studentstatus;

1 296

Struct with typedef:

• {

•status record; record.id=1;

strcpy(record.name, "Raju");

record.percentage = 86.5; printf("

Id is: %d \n", record.id);

•printf(" Name is: %s \n",
record.name);

•printf(" Percentage is: %f \n",
record.percentage);

• return 0;

• }

// Structure using typedef:

#include <stdio.h>

#include <string.h>

typedef struct student

{

int id;

char name[20]; float percentage;

} status;

int main()

1 297

Enumeration data type:

• An enumeration is a user-defined data type that consists ofintegral
constants. To define an enumeration, keyword enum isused.

Syntax:

enum flag ,const1, const2,……constN};

• Here, name of the enumeration is flag. Constants like const1,
const2,...., constN are values of type flag. By default, const1 is 0,
const2 is 1 and so on. You can change default values of enum
elements during declaration (if necessary).

// Changing the default value of enum elements

enum suit{

club=0; diamonds=10; hearts=20; spades=3;

};

1 298

Declaration of enumerated variable

enum boolean
{
false;
true;
};

enum boolean check;

Here, a variable check is declared which is of type enum

boolean.

1 299

Example of enumerated type

#include <stdio.h>

enum week{ sunday, monday, tuesday, wednesday, thursday,
friday, saturday};
int main()
{
enum week today;
today=wednesday;
printf("%d day",today+1);
return 0;
}
Output 4 day

1 300

Pointer Basics

Pointer Definition and syntax

A pointer is a variable whose value is the address of another variable,
i.e., direct address of the memory location.

Syntax:

Data_type *variable_name;

• Asterisk is called as Indirection Operator. It isalso called as Value at
Address Operator

• It Indicates Variable declared is of Pointer type. pointer_name must
follow the rules ofidentifier.

1 301

Examples of pointer declaration

/* pointer to an integer*/• int *ip;

• double*dp;

• float *fp;

• char *ch

/* pointer to a double */

/* pointer to a float */

/* pointer to a character */

Diff Between pointer and normal variable:

• int*ptr;

• int ptr;

//Here ptr is Integer PointerVariable

//Here ptr is Normal IntegerVariable

1 302

Pointer concept with diagrams

• int i;

• int*j;

• j=&i;

1 303

Pointer Basic Example:

#include <stdio.h>
int main()
{
int *ptr, i; i = 11;
/* address of i is assigned to ptr */

ptr = &i;
/* show i's value using ptr variable */

printf("Value of i : %d", *ptr);
return 0;
}
OUTPUT:
Value of i is 11.

1 304

Program on Reference and
De-reference operator

#include <stdio.h>
int main()
{
int* pc; int c; c=22;
printf("Address of c:%u\n",&c); printf("Value of
c:%d\n\n",c); pc=&c;
printf("Address of pointer pc:%u\n",pc);
printf("Content of pointer pc:%d\n\n",*pc); c=11;
printf("Address of pointer pc:%u\n",pc);
printf("Content of pointer pc:%d\n\n",*pc);
*pc=2; printf("Address of c:%u\n",&c);
printf("Value of c:%d\n\n",c);
return 0;
}

1 305

OUTPUT:

• Address of c: 2686784

• Value of c: 22

• Address of pointer pc:2686784

• Content of pointer pc: 22

• Address of pointer pc:2686784

• Content of pointer pc: 11

• Address of c: 2686784

• Value of c: 2

1 306

Pointer Arithmetic

• Pointer is a variable that points to a memory location. Memory
addresses are numeric value that ranges from zero to maximum
memory size in bytes.

• These addresses can be manipulated like simple variables. You can
increment, decrement, calculate or compare these addresses
manually.

• C language provides a set of operators to perform arithmetic and
comparison of memory addresses.

• Pointer arithmetic and comparison in C is supported byfollowing
operators -

1 307

• Increment and decrement ++ and --

• Addition and Subtraction + and-

• Comparison <, >, <=, >=, ==, !=

Pointer increment and decrement

• Increment operator when used with a pointer variable returns next
address pointed by the pointer. The next address returned is the sum
of current pointed address and size of pointer datatype

• Or in simple terms, incrementing a pointer will cause the pointer to
point to a memory location skipping Nbytes from current pointed
memory location. Where N is size of pointer data type.

• Similarly, decrement operator returns the previous address pointed
by the pointer. The returned address is the difference of current
pointed address and size of pointer data type.

1 308

Pointer addition and subtraction

• Pointer increment operation increments pointer by one. Causing it
to point to a memory location skipping N bytes (where N is size of
pointer data type).

• We know that increment operation is equivalent to addition by one.
Suppose an integer pointer int * ptr. Now, ptr++ is equivalent to ptr
= ptr + 1. Similarly, you can add or subtract any integer value to a
pointer.

• Adding K to a pointer causes it to point to a memory location
skipping K * N bytes. Where K is a constant integer and N is size of
pointer data type.

• Let us revise the above program to print array usingpointer

1 309

#include <stdio.h>

#define SIZE 5

int main()

{

int arr[SIZE] = {10, 20, 30, 40, 50};

int *ptr;

int count;

ptr = &arr[0]; // ptr points to arr[0]

count = 0;

printf("Accessing array elements using pointer \n");

1 310

while(count < SIZE)

{

printf("arr[%d] = %d \n", count, *(ptr + count));

count++;

}

return 0;

}

1 311

Pointer comparison

• In C, you can compare two pointers using relational operator.You
can perform six different type of pointer

comparison <, >, <=, >=, == and !=.

• Note: Pointer comparison compares two pointer addresses towhich
they point to, instead of comparing their values.

• Pointer comparisons are less used when compared to pointer
arithmetic. However, I frequently use pointer comparison when
dealing with arrays.

• Pointer comparisons are useful,

1 312

If you want to check if two pointer points to same location. For
example,

int main()

{

int num = 10;

// ptr1 points to num

// ptr2 also points to num

int *ptr1 = #

int *ptr2 = #

if(ptr1 == ptr2)

{

// Both pointers points to same memory location

// Do some task

}

return 0;}

1 313

Pointer to pointer

• Pointers are used to store the address of other variables of similar
datatype. But if you want to store the address of a pointer variable,
then you again need a pointer to store it. Thus, when one pointer
variable stores the address of another pointer variable, it is known
as Pointer to Pointer variable or Double Pointer

1 314

Syntax:

int **p1;

• Here, we have used two indirection operator(*) which stores and
points to the address of a pointer variable i.e, int *. If we want to
store the address of this (double pointer) variable p1, then the
syntax would become:

1 315

• Simple program to represent Pointer to a Pointer

#include <stdio.h>

int main()

{

int a = 10;

//this can store the address of variableaint *p1;

int **p2;

/*

this can store the address of pointer variable p1 only.

It cannot store the address of variable 'a'

*/

p1 = &a;

p2 = &p1;

1 316

printf("Address of a = %u\n", &a);

printf("Address of p1 = %u\n", &p1);

printf("Address of p2 = %u\n\n", &p2);

// below print statement will give the address of 'a'

printf("Value at the address stored by p2 = %u\n", *p2);

printf("Value at the address stored by p1 = %d\n\n", *p1);

printf("Value of **p2 = %d\n", **p2); //read this *(*p2)

/*

This is not allowed, it will give a compile time error-

p2 = &a;

printf("%u", p2);

*/return 0;}

1 317

While dereferencing a void or Generic pointer, the C compiler does
not have any clue about type of value pointed by the void pointer.

Hence, dereferencing a void pointer is illegal in C. But, a pointer
will become useless if you cannot dereference it back.

 To dereference a void pointer you must typecast it to a valid
pointer type.

1 318

void or Generic pointer

 void or Generic pointer arithmetic is illegal in C programming, due to
the absence of type. However, some compiler supports void pointer
arithmetic by assuming it as a charpointer.

 To perform pointer arithmetic
typecast to other type.

on void pointer you must first

1 319

Here is some code using a void
pointer:

#include <stdio.h>

#include<string.h> intmain()

{

int num[3] = {10,20,30};

char name[30] = "Welcome to C World";

int *pint = NULL;

void *pvoid = NULL; int i;

pint = #

1 320

Example for array of pointer

1 321

Array of Pointers

• In the second approach memory wastage is more, hence it is
preferred to use pointer in such cases.

• When we say memory wastage, it doesn't means that the strings will
start occupying less space, no, characters will take the same space,
but when we define array of characters, a contiguos memory space is
located equal to the maximum size of the array, which is a wastage,
which can be avoided if we use pointers instead

1 322

Advantages

• An array of pointers in C: it sets each pointer in one array to point to
an integer in another and then prints the values of the integers by
dereferencing the pointers (printing the value in memory that the
pointers point to).

1 323

1 324

Example

1 325

Arrays in C

int array[10];

int b;

array[0] =3;

array[9] =4;

All elements of same type – homogenous

Unlike Java, array size in declaration

Compare: C: int array[10];

Java: int[] array = newint[10];
First element (index 0)
Last element (index size - 1)

array[10] = 5;

array[-1] = 6N; o bounds checking!

Allowed – usually causes no obvious error array[10]

may overwrite b

Arrays and Pointers 11 326

Array Representation

Homogeneous Each element same size – s bytes

– An array of m data values is a sequence of msbytes

– Indexing: 0th value at byte s0, 1st value at byte s1, …

m and s are not part of representation

– Unlike in some other languages

– s known by compiler – usually irrelevant toprogrammer

– m often known by compiler – if not, must be saved by
programmer

0x1008

0x1004

0x1000

Arrays and Pointers 2

int a[3];

a[2]

a[1]

a[0]

1 327

Memory Addresses

Storage cells are typically viewed as being byte-sized

–Usually the smallest addressable unit of memory

• Few machines can directly address bits individually

–Such addresses are sometimes called byte-addresses

Memory is often accessed as words

–Usually a word is the largest unit of memory access by a single
machine instruction

• CLEAR’s word size is 8 bytes (= sizeof(long))

–A word-address is simply the byte-address of the word’s first byte

Arrays and Pointers 31 328

Pointers

Special case of bounded-size natural numbers

– Maximum memory limited by processor word-size

– 232 bytes = 4GB, 264 bytes = 16exabytes

A pointer is just another kind of value

– A basic type in C

The variable “ptr” stores a pointer toan“int”.

Arrays and Pointers 4

int *ptr;

1 329

Pointer Operations in C

Returns variable’s memory address

Returns contents storedataddress

Creation

& variable

Dereference

* pointer

Indirectassignment

*pointer = val Stores value ataddress

Of course, stillhave...

Assignment

pointer = ptr Stores pointer in anothervariable

Arrays and Pointers 51 330

Using Pointers

0x1014

0x1010

0x100C

0x1008

0x1004

0x1000

Arrays and Pointers 6

… 0x1000

ptr2:

… 0x1000

ptr1:

i2: 32

i1: 31

int i1;

int i2; int *ptr1; int

*ptr2;

i1 = 1;

i2 = 2;

ptr1 = &i1; ptr2 =

ptr1;

*ptr1 = 3;

i2 = *ptr2;

1 331

Using Pointers (cont.)

int int1

int int2
= 1036; /* some data to point to */

= 8;

int *int_ptr1 = &int1; /* get addresses of data */

int *int_ptr2 = &int2;

*int_ptr1 = int_ptr2;

*int_ptr1 =int2;
What happens?

Type check warning: int_ptr2 is not an int

int1 becomes 8

Arrays and Pointers 71 332

Using Pointers (cont.)

int int1

int int2
= 1036; /* some data to point to

= 8;

*/

int *int_ptr1 = &int1; /* get addresses of data */

int *int_ptr2 = &int2;

int_ptr1 = *int_ptr2;

int_ptr1 =int_ptr2;
What happens?

Type check warning: *int_ptr2 is not an int *

Changes int_ptr1– doesn’t change int1

Arrays and Pointers 81 333

int

foo(int array[],

unsigned int size)

{

… array*size - 1]…

}

int

main(void)

{

int a[10], b[5];

… foo(a, 10)… foo(b, 5) …

}

Arrays and Pointers

Dirty “secret”:

Array name a pointer to the initial (0th)
array element

a[i] *(a +i)

An array is passed to a function asa
pointer

– The array size is lost!

Usually bad style to interchange arrays
and pointers

– Avoid pointer arithmetic!

Arrays andPointers

Really int*array

Passing arrays:

Must explicitly
pass the size

91 334

int i;

int array[10];

int *p;

int array[10];

for (i = 0; i <

{

array[i] = …;

}

10; i++) for (p = array; p < &array[10]; p++)

{

*p = …;

}

These two blocks of code are functionally equivalent

Arrays and Pointers 111 335

Pointers as function arguments

Pointer preliminaries:

Pointer Definition:

A pointer is a variable whose value is the address of another variable,
i.e., direct address of the memory location. Like any variable or
constant, you must declare a pointer before using it to store any
variable address.

Function basics:

A function is a group of statements that together perform a task.
Every C program has at least one function, which is main(), and all the
most trivial programs can define additionalfunctions.
A function declaration tells the compiler about a function's name,
return type, and parameters. A function definition providestheactual
body of the function.

1 336

Function Parameter passing methods:

Call by value

into the formalThis method copies the actual value of an
argument parameter of the function.

In this case, changes made to the parameter inside the function
have no effect on the argument.

Syntax:

Datatype function_name(datatype variable_name);

1 337

Call by value example:

#include <stdio.h>
void swap(int i, int j)
{
int t; t=i; i=j; j=t;
}
void main()
{
int a,b;
a=5; b=10;
printf("%d %d\n", a, b);
swap(a,b);
printf("%d %d\n", a, b);
}

1 338

Function Parameter passing methods:

argument into the formal

Call by reference:

This method copies the address of an
parameter.

access the actualInside the function, the address is used to
argument used in the call.

This means that changes made to the parameter affect the
argument.

Syntax:

datatype function_name(datatype *variable_name);

1 339

Call by reference Example

#include <stdio.h> void swap(int

*i, int *j)

{

int t; t = *i;

*i = *j;

*j = t;

}

void main()

{

int a,b; a=5; b=10;

printf("%d %d\n",a,b);
swap(&a,&b); printf("%d
%d\n",a,b);

}

1 340

Pointers as function arguments:

 When we pass a pointer as an argument instead of a variable then
the address of the variable is passed instead of thevalue.

 So any change made by the function using the pointer is
permanently made at the address of passed variable.

1 341

Functions used in Dynamic Memory allocation

malloc()

Allocates requested size of bytes and returns a pointer first byte of
allocated space

Syntax of malloc()

ptr=(cast-type*)malloc(byte-size)

1 342

Example for passing pointer to
function

#include <stdio.h>

void salaryhike(int *var, int b)
{
*var = *var+b;
}
int main()
{
int salary=0, bonus=0;
printf("Enter the employee current salary:");
scanf("%d", &salary);
printf("Enter bonus:");
scanf("%d", &bonus);
salaryhike(&salary, bonus);
printf("Final salary: %d", salary);
return 0;
} 1 343

Functions of returning pointers

It is also possible for functions to return a function pointer as a

value.

 This ability increases the flexibility ofprograms.

In this case you must be careful, because local variables of function

doesn't live outside the function. They have scope only inside the

function.

Hence if you return a pointer connected to a local variable,

that pointer will be pointing to nothing when the function ends

1 344

Pointer to functions

It is possible to declare a pointer pointing to a function which
canthen

be used as an argument in another function.

A pointer to a function is declared asfollows

type (*pointer-name)(parameter);

A function pointer can point to a specific function when it is assigned

the name of that function.

int sum(int, int); int (*s)(int, int); s = sum;
1 345

Pointer to functions

Example of function pointers as returnedvalues

#include <stdio.h>

int* larger(int*, int*);

void main()
{
int a = 15; int b = 92; int *p;
p = larger(&a, &b);
printf("%d is larger",*p);
}

int* larger(int *x, int *y)
{

if(*x > *y) return x;
else
return y;
}

1 346

Pointer to functions

Either use argument with functions. Because argument passed to

the functions are declared inside the calling function, hence they will

live outside the function as well.

1. use static local variables inside the function and returnthem.

2. As static variables have a lifetime until the main() function exits,

therefore they will be available throughout theprogram.

1 347

Dynamic memory allocation

Dynamic memory management refers to manual
memory management.

This allows to obtain more memory when required and release
it when not necessary.

1 348

Functions used in Dynamic Memory allocation

calloc()

Allocates space for an array elements, initializes to zero and then
returns a pointer to memory

Syntax of calloc()

ptr=(cast-type*)calloc(n,element-size);

1 349

free()

dellocate the previously allocated space syntax of free()

free(ptr);

realloc()

Change the size of previously allocated space

1 350

MODULE – V
FILE HANDLING AND
BASICALGORITHMS

1 351

CLOs Course Learning Outcome

CLO16 Explain the concept of file system for handling data
storage and apply it for solving problems.

CLO17 Differentiate text files and binary files and write the
simple C programs using file handling functions.

CLO18 Apply the concepts to solve real-time applications
using the features of C language.

CLO19 Gain knowledge to identify appropriate searching and
sorting techniques by calculating time complexity for
problem solving.

CLO20 Possess the knowledge and skills for employability
and to succeed in national and international level
competitive examinations.

1 352

Files and Streams

File:

A file represents a sequence of bytes on the disk where a group of
related data is stored.

File is created for permanent storage of data. It is a ready made
structure.

1 353

Stream:

 In C, the stream is a common, logical interface to the various
devices that comprise the computer.

 In its most common form, a stream is a logical interface to a file. As
C defines the term "file", it can refer to a disk file, the screen, the
keyboard, a port, a file on tape, and so on.

 Although files differ in form and capabilities, all streams are the
same. The stream provides a consistent interface and to the
programmer one hardware device will look much likeanother.

1 354

 A stream is linked to a file using an open operation. A stream is
disassociated from a file using a close operation.

 The current location, also referred to as the current position, is the
location in a file where the next file access will occur.

 There are two types of streams: text (used with ASCII characters
some character translation takes place, may not be one-to-one
correspondence between stream and what's in the file) and
binary (used with any type of data, no character translation, one-
to-one between stream and file).

1 355

File I/O Streams in C ProgrammingLanguage
:

 In C all input and output is done withstreams

 Stream is nothing but the sequence of bytes ofdata

 A sequence of bytes flowing into program is called input stream

 A sequence of bytes flowing out of the program is calledoutput
stream

 Use of Stream make I/O machineindependent.

1 356

Predefined Streams:

stdin Standard Input

stdout Standard Output

stderr Standard Error

1 357

Standard Input Stream Device:

1. stdin stands for (StandardInput)

2. Keyboard is standard input device.

3. Standard input is data (Often Text) going intoaprogram.

4. The program requests data transfers by use of the readoperation.

5. Not all programs requireinput.

1 358

Standard Output Stream Device:

1. stdout stands for (StandardOutput)

2. Screen(Monitor) is standard output device.

3. Standard output is data (Often Text) going out fromaprogram.

4. The program sends data to output device by using write
operation.

1 359

1 360

Difference between Standard Input and Standard Output
Stream Device:

Point Std i/p Stream Device
Standard o/p Stream

Device

Stands For Standard Input Standard Output

Example Keyboard Screen/Monitor

Data Flow

Data (Often Text) going

into a program

data (Often Text) goingout

from a program

Operation Read Operation Write Operation

1 361

Some Important Summary

Point Input Stream Output Stream

Standard Device 1 Keyboard Screen

Standard Device 2 Scanner Printer

IO Function scanf and gets printf and puts

IO Operation Read Write

Data Data goes from stream data comes into stream

1 362

File Operations

 In C, you can perform four major operations on the file,either
text or binary:

1. Creating a new file
2. Opening an existing file
3. Closing a file
4. Reading from and writing information to a file

1 363

Working with files

Writing a file

When working with files, you need to declare a pointer of type file.

This declaration is needed for communication between the file and
program.

FILE *fp;

1 364

Opening a file - for creation and edit

Opening a file is performed using the library function in
the "stdio.h" header file:fopen().

The syntax for opening a file in standard I/O is:

fp = fopen("fileopen","mode")
For Example:

fopen("newprogram.txt","w");

1 365

Opening Modes in Standard I/O

File Mode Meaning of Mode During Inexistence of file

r Open for reading. If the file does not exist, fopen()
returns NULL.

w Open for writing.
If the file exists, its contents are

overwritten. If the file does not

exist, it will be created.

a
Open for append. i.e, Data is

added to end of file. If the file does not exists, it will
be created.

r+ Open for both reading and
writing.

If the file does not exist, fopen()
returns NULL.

w+ Open for both reading and
writing.

If the file exists, its contents are

overwritten. If the file does not

exist, it will be created.

a+ Open for both reading and
appending.

If the file does not exists, it will
be created.

1 366

Readind and writing a text file

functions fprintf() andFor reading and writing to a text file, we use the
fscanf().
They are just the file versions of printf() and scanf(). The only difference is
that, fprint and fscanf expects a pointer to the structureFILE.

We can also use fgetc function to read the contents of a file.

Syntax:

Ch=fgetc(fp);

1 367

Closing a file

need toThe file that is opened should be closed after work is over we
create close the file after reading or writing.

Syntax:

Fclose(fp);
Fcloseall();// for multiple files

1 368

Files

Programs and data are stored on disk in structures calledfiles

Examples

Turbo C++ - binary file Word 4.0 - binary file lab1.c - text file

lab1.data - text file term-paper - text file

1 369

Text Files

 All files are coded as long sequences of bits (0s and 1s)

 Some files are coded as sequences

of ASCII character (referred to as text files)

values

– files are organized as bytes, with each byte being an ASCII

character

 Other files are generally referred to as binaryfiles

1 370

File Terms

 Buffer - a temporary storage area used to transfer data back and

forth between memory and auxiliary storagedevices

 Stream - files are manipulated in C with streams, a stream is a

mechanism that is connected to a file that allows you to access one

element at a time

1 371

File Pointers

 Each stream in C is manipulated with the filepointertype

 FILE *stream

– FILE is a type containing multipleparts

• file for stream, current element in file, etc.

– FILE * is the address where the FILE type is located inmemory

– FILEs always manipulated as FILE*

1 372

fopen Command

Syntax: fopen(“FileName”,”mode”);

• File Name is an appropriate name for a file on the computer youare

working on, example: “C:\My Files\lab.dat”

• Mode indicates the type of stream:

“r” - file is opened for reading characters

“w” - file is opened for writing characters (existing file deleted)

“a” - file opened for writing characters (appended to the end of

the existing file)

1 373

fclose Command

Syntax:

fclose(FilePointer)

• The file pointer must be a stream opened using fopen (that
remains open)

• fclose returns

– 0 if the the fclose command is successful

– special value EOF if the fclose command is unsuccessful

1 374

Open/Closing File

int main() {
FILE *stream;
if ((stream = fopen(“lab.data”,”r”)
== NULL) {

printf(“Unable to open lab.data\n”);
return(1);
}

/* Read data from lab.data using FILE *
variable stream */
if (fclose(stream) == EOF) , printf(“Error
closing lab.data\n”); return(2);
}
}

1 375

fprintf Command

Syntax:
fprintf(filep, “Format”, ValueList);

• Works similarly to printf, but data sent to file rather than screen

– printf(“Format”,ValueList) is a shorthand for

fprintf(stdout,”Format”,ValueList)

• fprintf returns the number of characters printed or EOF (-1) if an

error occurs

• File pointer should be write/append stream

1 376

fscanf Command

Syntax:
• fscanf(filep, “Format”, AddrList);

 Works similarly to scanf, but data received from file rather than

keyboard

scanf(“Format”,AddrList) is a shorthand for

fscanf(stdin,”Format”,AddrList)

fscanf returns the number of successful data conversions or EOF if

end-of-file reached

• File pointer should be a read stream

1 377

fscanf/fprintf Example

if ((ins = fopen(“part.data”,”r”)) == NULL)

{

printf(“Unable to open part.data\n”); return(-1);

}

if ((outs = fopen(“sumpart.data”,”w”)) == NULL)

{

printf(“Unable to open sumpart.data\n”);

return(-1);

}

while (fscanf(ins,”%d%d%d%d”,&id,&p1,&p2,&p3) == 4)

fprintf(outs,”%3d %3d\n”,id,(p1 + p2 + p3));

fclose(ins);

fclose(outs);
1 378

File opening modes

When working with files, you need to declare a pointer of type file.
This declaration is needed for communication between the file and
program.

FILE *fptr;

Opening a file is performed using the library function in the
"stdio.h" header file: fopen().

The syntax for opening a file in standard I/O is:

ptr = fopen("fileopen","mode")

1 379

In C Programming we can open file in different modes such as reading
mode,writing mode and appending mode depending on purpose of
handling file. Following are the different Opening modes of File :

File opening modes

1 380

File Opening Mode Chart

1 381

Types of file

1 382

Example to Open a File

#include<stdio.h>
int main()
{

FILE *fp;
char ch;
fp = fopen("INPUT.txt","r")

//Open file in Read mode

fclose(fp);

// Close File after Reading
return(0);
}

1 383

Different modes:

 Reading Mode

fp = fopen("hello.txt","r");

 Writing Mode

fp = fopen("hello.txt","w");

 Append Mode

fp = fopen("hello.txt","a");

1 384

Another Example To Open File:

#include<stdio.h>
void main()
{
FILE *fp; char ch;
fp = fopen("INPUT.txt","r"); // Open file in Read mode

while(1)
{
ch = fgetc(fp); // Read a Character
if(ch == EOF) // Check for End of File break ;

printf("%c",ch);
}
fclose(fp); // Close File after Reading
}

1 385

Ways of Detecting End of File

In Text File :

detected.

Special Character EOF denotes the end of File

•As soon as Character is read, End of the File can be
•EOF is defined in stdio.h

-1•Equivalent value of EOF is
•Printing Value of EOF :
•void main()
{
printf("%d", EOF);
}

1 386

Ways of Detecting End of File (Contd..)
In Binary File :
 feof function is used to detect the end of file
 It can be used in textfile

 feof Returns TRUE if end of file is reached

Syntax :
int feof(FILE *fp);

Way of Writing feof Function :
Way1: with if statement :

if(feof(fptr) == 1) // as if(1) is TRUE
printf("End of File");
Way 2 : with While Loop
•while(!feof(fptr))
{
--- - --}

1 387

File reading with fsacnf function

#include <stdio.h> main()

{

FILE *fp;

char buff[255];

fp = fopen("/tmp/test.txt", "r");

fscanf(fp, "%s", buff);

printf("1 : %s\n", buff);

fgets(buff, 255, (FILE*)fp);

printf("2: %s\n", buff);

fgets(buff, 255, (FILE*)fp);

printf("3: %s\n", buff); fclose(fp);

}

1 388

File i/o functions

When working with files, we need to declare a pointer of type file.

This declaration is needed for communication between thefile
and program.

FILE *fptr;

C provides functions that helps to perform basic fileoperations.

1 389

fopen() :
create a new file or open a existing file

*fp = FILE *fopen(const char *filename, const char *mode);

fclose() :

function is used to close an already opened file.

int fclose(FILE *fp);

1 390

getc() and putc() are the simplest functions which can be used to
read and write individual characters to a file.

fprintf() function directly writes into thefile

fscanf() function reads from the file, which can then be printed on
the console using standard printf() function

1 391

fseek() Contd

Stream: pointer to a file.
Offset: Number of bytes or characters from the origin.
Origin: The original position is set here. From this position, usingthe
offset, the file pointer is set to a new position. Generally, three
positions are used as origin:

SEEK_SET - Beginning of file
SEEK_CUR - Current position of the file pointer
SEEK_END - End of file

Return

Type: Integer
Value: On success Zero(0)
On failure Non-Zero

1 392

fseek() example

Code:
int main () {
FILE * fp;

fp = fopen ("file.txt" , "w");
if (fp==NULL)
printf ("Error in opening file"); else
{ fputs ("I am supporter of France." , fp); fseek (fp , 18 , SEEK_SET);
fputs ("Brazil" , fp);
fseek(fp , 0 , SEEK_CUR); fputs (" and Portugal" , fp); fclose (fp);
}
return 0;}

• Then using SEEK_SET and offset, the word France is replaced by
Brazil. Then by using SEEK_CUR, and position is appended with
the string.

1 393

ftell()

• ftell()

It is used to get current position of the file pointer. The function
prototype
is:

long int ftell (FILE * stream);

Parameters

stream: Pointer to a file.

Return

Type: long integer.
Value: On success value of current position or offsetbytes
On failure -1. System specific error no isset

1 394

ftell() Example

Code:

int main () {

FILE * fp;

long int len;

fp = fopen ("file.txt","r");

if (fp==NULL)

printf ("Error in opening file"); else {

fseek (fp, 0, SEEK_END);

len=ftell (fp);

fclose (fp);

printf ("The file contains %ld characters.\n",len);

}

return 0;

}

1 395

ftell() Example Contd.

•In this example, file.txt is opened and using fseek(), file pointer is set
to the end of the file.

•Then, ftell() is used to get the currentposition, i.e. offset from the
beginning of the file.

1 396

rewind()

rewind()

It is used to set the file pointer at the beginning of the file. Function
prototype:

void rewind (FILE * stream);

Parameters

stream: Pointer to a file.

In any stage of the program, if we need to go back to the starting point
of the file, we can use rewind() and send the file pointer as the
parameter.

1 397

int main () {
int n;
FILE * fp;
fp = fopen ("file.txt","w+");

if (fp==NULL)

printf ("Error in opening file");

else { fputs ("France is my favorite team",fp);

rewind (fp);

fputs("Brazil",fp);

fclose (fp);

}

r}eturn 0;

1 398

File position functions

 The C library function int fseek(FILE *stream, long int offset, int
whence) sets the file position of the stream to the given offset.

 Following is the declaration for fseek()function.

int fseek(FILE *stream, long int offset, int whence)

1 399

Example

#include <stdio.h>

int main ()

{

FILE *fp;

fp = fopen("file.txt","w+");

fputs("This is tutorialspoint.com", fp);

fseek(fp, 7, SEEK_SET);

fputs(" C Programming Language", fp);

fclose(fp);

return(0);

}

1 400

 Let us compile and run the above program that will create a file
file.txt with the following content. Initially program creates the file
and writes This is tutorialspoint.com but later we had reset the write
pointer at 7th position from the beginning and used puts() statement
which over-write the file with the following content–

Output : This is C Programming Language

1 401

Command Line Arguments

 It is possible to pass some values from the command line to your C
programs when they are executed.

 These values are called command line argumentsand many times
they are important for your program especially when you want to
control your program from outside instead of hard coding those
values inside the code

1 402

 The command line arguments are handled using main() function
arguments where argc refers to the number of arguments passed,
and argv[] is a pointer array which points to each argument passed to
the program.

 Following is a simple example which checks if there is any argument
supplied from the command line and take action accordingly−

1 403

#include <stdio.h>

int main(int argc, char *argv[])

{

if(argc == 2)

{

printf("The argument supplied is %s\n", argv[1]);

}

else if(argc > 2) {

printf("Too many arguments supplied.\n");

}

else {

printf("One argument expected.\n"); }

}

Example Program

1 404

When the above code is compiled and executed withoutpassing
any argument, it produces the following result.

$./a.out

One argument expected

 It should be noted that argv[0] holds the name of the program itself
and argv[1] is a pointer to the first command line argument supplied,
and *argv[n] is the last argument. If no arguments are supplied, argc
will be one, and if you pass one argument then argc is set at 2.

1 405

Searching

• Searching is one of the most common problems that arise in
computing. Searching is the algorithmic process of finding a
particular item in a collection of items. A search typically answers
either True or False as to whether the item is present. On occasion it
may be modified to return where the item is found. Search
operations are usually carried out on a key field.

• Well, to search an element in a given array, there are two popular
algorithms available:

 Linear Search

 Binary Search

1 406

Linear Search

 Linear search is a very basic and simple search algorithm. In Linear
search, we search an element or value in a given array by traversing
the array from the starting, till the desired element or value is found.

 It compares the element to be searched with all the elements
present in the array and when the element is matched successfully,
it returns the index of the element in the array, else it return -1.

 Linear Search is applied on unsorted or unordered lists, when there
are fewer elements in a list.

1 407

 Features of Linear Search Algorithm

 It is used for unsorted and unordered small list of elements.

 It has a time complexity of O(n), which means the time is linearly
dependent on the number of elements, which is not bad, but not
that good too.

 It has a very simple implementation.

1 408

Binary Search

 Binary Search is used with sorted array or list. In binary search, we
follow the following steps:

 We start by comparing the element to be searched with the
element in the middle of the list/array.

 If we get a match, we return the index of the middle element.

 If we do not get a match, we check whether the element to be
searched is less or greater than in value than the middle element.

 If the element/number to be searched is greater in value than the
middle number, then we pick the elements on the right side of the
middle element(as the list/array is sorted, hence on the right, we
will have all the numbers greater than the middle number), and
start again from the step 1.

 If the element/number to be searched is lesser in value than the
middle number, then we pick the elements on the left side of the
middle element, and start again from the step 1.

1 409

 Features of Binary Search

 It is great to search through large sortedarrays.

 It has a time complexity of O(log n) which is a very good time
complexity

 It has a simple implementation.

1 410

Sorting

 Sorting is the basic operation in computer science. Sorting is the
process of arranging data in some given sequence or order (in
increasing or decreasing order).

 For example you have an array which contain 10 elementsas
follow;
10, 3 ,6 12, 4, 17, 5, 9

 After shorting value mustbe;
3, 4, 5, 6, 9, 10, 12, 17

1 411

 Above value sort by apply any sorting technique. C languagehave
following technique to sort values;

1. Bubble Sort

2. SelectionSort

3. InsertionSort

1 412

 Bubble Sort in C

1. Bubble sort is a simple sorting algorithm in which each element is
compared with adjacent element and swapped if their position is
incorrect. It is named as bubble sort because same as like bubbles
the lighter elements come up and heavier elements settle down.

2. Both worst case and average case complexity is O(n2).

1 413

 Selection Sort in C

1. One of the simplest techniques is a selection sort.

2. As the name suggests, selection sort is the selection of an
element and keeping it in sorted order. In selection sort, the
strategy is to find the smallest number in the array and exchange
it with the value in first position of array.

3. Now, find the second smallest element in the remainder of array
and exchange it with a value in the second position, carry on till
you have reached the end of array. Now all the elements have
been sorted in ascendingorder.ep

1 414

 The selection sort algorithm is performed using following steps...

1. Step 1: Select the first element of the list (i.e., Element at first
position in the list).

1. Step 2: Compare the selected element with all other elements
in the list.

2. Step 3: For every comparision, if any element is smaller
than selected element (for Ascending order), then these
two are swapped.

3. Step 4: Repeat the same procedure with next position in the list
till the entire list is sorted.

1 415

 Insertion Sort in C

• The insertion sort inserts each element in proper place. The strategy
behind the insertion sort is similar to the process of sorting a pack of
cards.

• You can take a card, move it to its location in sequence and move
the remaining cards left or right as needed.

• In insertion sort, we assume that first element A[0] in pass 1 is
already sorted. In pass 2 the next second element A[1] is compared
with the first one and inserted into its proper place either before or
after the first element. In pass 3 the third element A[2] is inserted
into its proper place and so on.

1 416

