
1

LECTURE NOTES

ON

PROGRAMMING FOR PROBLEM SOLVING

 I B. Tech I semester

Ms A.Jayanthi

Assistant Professor

MECHANICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

 Dundigal, Hyderabad - 500 043

2

MODULE -I

INTRODUCTION TO COMPUTERS

COMPUTER SYSTEMS

A Computer is an electronic device that stores, manipulates and retrieves the data.‖ We can

also refer computer computes the information supplied to it and generates data.

A System is a group of several objects with a process. For Example: Educational System

involves teacher, students (objects). Teacher teaches subject to students i.e., teaching (process).

Similarly a computer system can have objects and process.

The following are the objects of computer System

a) User (A person who uses the computer)

b) Hardware

c) Software

Hardware: Hardware of a computer system can be referred as anything which we can touch

and feel. Example : Keyboard and Mouse.

The hardware of a computer system can be classified as

Input Devices(I/P)

Processing Devices (CPU)

Output Devices(O/P)

ALU: It performs the Arithmetic and Logical Operations such as

+,-,*,/ (Arithmetic Operators)

&&, || (Logical Operators)

CU: Every Operation such as storing , computing and retrieving the data should be governed by

the control unit.

OUTPUT

MONITOR ALU, CU,

MU

KEYBOARD

3

MU: The Memory unit is used for storing the data.

The Memory unit is classified into two types.

They are 1) Primary Memory

2) Secondary Memory

Primary memory: The following are the types of memories which are treated as primary ROM:

It represents Read Only Memory that stores data and instructions even when the computer is

turned off. The Contents in the ROM can not be modified once if they are written . It is used to

store the BIOS information.

RAM: It represents Random Access Memory that stores data and instructions when the computer

is turned on. The contents in the RAM can be modified any no. of times by instructions. It is

used to store the programs under execution.

Cache memory: It is used to store the data and instructions referred by processor.

Secondary Memory: The following are the different kinds of memories

Magnetic Storage: The Magnetic Storage devices store information that can be read, erased and

rewritten a number of times.

Example: Floppy Disks, Hard Disks, Magnetic Tapes

Optical Storage: The optical storage devices that use laser beams to read and write stored

data. Example: CD(Compact Disk),DVD(Digital Versatile Disk)

COMPUTER SOFTWARE

Software of a computer system can be referred as anything which we can feel andsee.

Example: Windows, icons

Computer software is divided in to two broad categories: system software and application

software .System software manages the computer resources .It provides the interface between the

hardware and the users. Application software, on the other hand is directly responsible for

helping users solve their problems.

System Software

System software consists of programs that manage the hardware resources of a computer and

perform required information processing tasks. These programs are divided into three classes:

the operating system, system support, and system development.

4

The operating system provides services such as a user interface, file and database access, and

interfaces to communication systems such as Internet protocols. The primary purpose of this

software is to keep the system operating in an efficient manner while allowing the users access to

the system.

System support software provides system utilities and other operating services. Examples of

system utilities are sort programs and disk format programs. Operating services consists of

programs that provide performance statistics for the operational staff and security monitors to

protect the system and data.

The last system software category, system development software, includes the language

translators that convert programs into machine language for execution , debugging tools to

ensure that the programs are error free and computer –assisted software engineering(CASE)

systems.

Application software

Application software is broken in to two classes: general-purpose software and application –

specific software. General purpose software is purchased from a software developer and can be

used for more than one application. Examples of general purpose software include word

processors, database management systems , and computer aided design systems. They are labeled

general purpose because they can solve a variety of user computing problems.

Application –specific software can be used only for its intended purpose.

A general ledger system used by accountants and a material requirements planning system used

by a manufacturing organization are examples of application-specific software. They can be used

only for the task for which they were designed they cannot be used for other generalized tasks.

The relationship between system and application software is shown below. In this figure, each

circle represents an interface point .The inner core is hard ware. The user is represented by the

out layer. To work with the system, the typical user uses some form of application software. The

application software in turn interacts with the operating system, which is a part of the system

software layer. The system software provides the direct interaction with the hard ware. The

opening at the bottom of the figure is the path followed by the user who interacts directly with

the operating system when necessary.

5

COMPUTING ENVIRONMENTS

The word ‗compute„ is used to refer to the process of converting information to data. The

advent of several new kinds of computers created a need to have different computing

environments.

The following are the different kinds of computing environments available

1. Personal Computing Environment

2. Time Sharing Environment

3. Client/Server Environment

4. Distributed Computing Environment

Personal Computing Environment

In 1971, Mercian E. Hoff, working for INTEL combined the basic elements of the central

processing unit into the microprocessor. If we are using a personal computer then all the

computer hardware components are tied together. This kind of computing is used to satisfy the

needs of a single user, who uses the computer for the personal tasks.

Ex: Personal Computer

Time-Sharing Environment

The concept of time sharing computing is to share the processing of the computer basing

on the criteria time. In this environment all the computing must be done by the central computer.

6

The complete processing is done by the central computer. The computers which ask for

processing are only dumb terminals.

Client/Server Environment

A Client/Server Computing involves the processing between two machines. A client

Machine is the one which requests processing. Server Machine is the one which offers the

processing. Hence the client is Capable enough to do processing. A portion of processing is

done by client and the core(important) processing is done byServer.

Distributed Computing

A distributed computing environment provides a seamless integration of computing

functions between different servers and clients. A client not just a requestor for processing the

information from the server. The client also has the capability to process information. All the

machines Clients/Servers share the processing task.

7

Example: Ebay on Internet

COMPUTER LANGUAGES

To write a program (tells what to do) for a computer, we must use a computer language.

Over the years computer languages have evolved from machine languages to natural

languages. The following is the summary of computer languages

1940„s -- Machine Languages

1950„s -- Symbolic Languages

1960„s -- High Level Languages

Machine Language

In the earliest days of computers, the only programming languages available were

machine languages. Each computer has its own machine language which is made of streams of

0„s and 1„s. The instructions in machine language must be in streams of 0„s and 1„s. This is also

referred as binary digits. These are so named as the machine can directly understood the

programs

Advantages:

1) High speed execution

2) The computer can understood instruction immediately

3) No translation is needed.

Disadvantages:

1) Machine dependent

2) Programming is very difficult

3) Difficult to understand

4) Difficult to write bug free programs

5) Difficult to isolate an error

8

Example Addition of two numbers

2 0 0 1 0

+ 3 0 0 1 1

--- ---------------

5 0 1 0 1

--- ---------------

Symbolic Languages (or) Assembly Language

In the early 1950„s Admiral Grace Hopper, a mathematician and naval officer, developed

the concept of a special computer program that would convert programs into machine language.

These early programming languages simply mirrored the machine languages using symbols or

mnemonics to represent the various language instructions. These languages were known as

symbolic languages. Because a computer does not understand symbolic language it must be

translated into the machine language. A special program called an Assembler translates

symbolic code into the machine language. Hence they are called as Assembly language.

Advantages:

1) Easy to understand and use

2) Easy to modify and isolate error

3) High efficiency

4) More control on

hardware Disadvantages:

1) Machine Dependent Language

2) Requires translator

3) Difficult to learn and write programs

4) Slow development time

5) Less efficient

Example:

2 PUSH2,A

3 PUSH3,B

+ ADDA,B

5 PRINTC

9

High-Level Languages

The symbolic languages greatly improved programming efficiency they still

required programmers to concentrate on the hardware that they were using working with

symbolic languages was also very tedious because each machine instruction had to be

individually coded. The desire to improve programmer efficiency and to change the focus from

the computer to the problems being solved led to the development of high-level languages.

High-level languages are portable to many different computer allowing the programmer

to concentrate on the application problem at hand rather than the intricacies of the computer.

C A systems implementation Language

C++ C with object oriented enhancements

JAVA Object oriented language for internet and general applications using basic C syntax

Advantages:

1) Easy to write and understand

2) Easy to isolate an error

3) Machine independent language

4) Easy to maintain

5) Better readability

6) Low Development cost

7) Easier to document

8) Portable

Disadvantages:

1) Needs translator

2) Requires high execution time

3) Poor control on hardware

4) Less efficient

Example: C language

#include<stdio.h>

void main()

{
int a, b, c;
scanf("%d%d%",&a,&b);

10

c=a+b;

printf("%d",c);

}

Difference between Machine, Assembly, High Level Languages

Feature Machine Assembly High Level

Form 0„s and 1„s Mnemonic codes Normal English

Machine Dependent Dependent Dependent Independent

Translator Not Needed Needed(Assembler) Needed(Compiler)

Execution Time Less Less High

Languages Only one Different Manufacturers Different Languages

Nature Difficult Difficult Easy

Memory Space Less Less More

Language Translators

These are the programs which are used for converting the programs in one language into

machine language instructions, so that they can be executed by the computer.

1) Compiler: It is a program which is used to convert the high level

language programs into machine language

2) Assembler: It is a program which is used to convert the assembly

level language programs into machine language

3) Interpreter: It is a program, it takes one statement of a high level language

program, translates it into machine language instruction and then

immediately executes the resulting machine language instruction and soon.

Comparison between a Compiler and Interpreter

COMPILER INTERPRETER

A Compiler is used to compile an entire

program and an executable program is

generated through the object program

An interpreter is used to translate each line of

the program code immediately as it is entered

11

The executable program is stored in a disk for

future use or to run it in another computer

The executable program is generated in RAM

and the interpreter is required for each run of

the program

The compiled programs run faster The Interpreted programs run slower

Most of the Languages use compiler A very few languages use interpreters.

CREATING AND RUNNING PROGRAMS

The procedure for turning a program written in C into machine Language. The process is

presented in a straightforward, linear fashion but you shuld recognize that these steps are

repeated many times during development to correct errors and make improvements to thecode.

The following are the four steps in this process

1) Writing and Editing the program

2) Compiling the program

3) Linking the program with the required modules

4) Executing the program

12

Sl. No. Phase Name of Code Tools File Extension

1 Text Editor Source Code C Compilers

Edit,

Notepad Etc..,

.C

2 Compiler Object Code C Compiler .OBJ

3 Linker Executable

Code

C Compiler .EXE

4 Runner Executable

Code

C Compiler .EXE

Writing and Editing Programs

The software used to write programs is known as a text editor. A text editor helps

us enter, change and store character data. Once we write the program in the text editor we save it

using a filename stored with an extension of .C. This file is referred as source code file.

Compiling Programs

The code in a source file stored on the disk must be translated into machine language.

This is the job of the compiler. The Compiler is a computer program that translates the source

code written in a high-level language into the corresponding object code of the low-level

language. This translation process is called compilation. The entire high level program is

converted into the executable machine code file. The Compiler which executes C programs is

called as C Compiler. Example Turbo C, Borland C, Get.,

The C Compiler is actually two separate programs:

 The Preprocessor

 The Translator

The Preprocessor reads the source code and prepares it for the translator. While preparing the

code, it scans for special instructions known as preprocessor commands. These commands tell

the preprocessor to look for special code libraries. The result of preprocessing is called the

translation unit.

13

After the preprocessor has prepared the code for compilation, the translator does the

actual work of converting the program into machine language. The translator reads the

translation unit and writes the resulting object module to a file that can then be combined with

other precompiled units to form the final program. An object module is the code in the machine

language.

Linking Programs

The Linker assembles all functions, the programs functions and system functions into one

executable program.

Executing Programs

To execute a program we use an operating system command, such as run, to load the program into

primary memory and execute it. Getting the program into memory is the function of an operating

system program known as the loader. It locates the executable program and reads it into memory.

When everything is loaded the program takes control and it begin execution.

ALGORITHM

Algorithm is a finite sequence of instructions, each of which has a clear meaning and can be

performed with a finite amount of effort in a finite length of time. No matter what the input values

may be, an algorithm terminates after executing a finite number of instructions.

We represent an algorithm using a pseudo language that is a combination of the constructs of a

programming language together with informal English statements.

The ordered set of instructions required to solve a problem is known as an algorithm.

The characteristics of a good algorithm are:

 Precision – the steps are precisely stated (defined).

 Uniqueness – results of each step are uniquely defined and only depend on the input

and the result of the preceding steps.

 Finiteness – the algorithm stops after a finite number of instructions are executed.

14

 Input – the algorithm receives input.

 Output – the algorithm produces output.

 Generality – the algorithm applies to a set of inputs.

Example

P. Write a algorithm to find out number is odd or even?

Ans.

step 1 : start
step 2 : input number
step 3 : rem=number mod 2
step 4 : if rem=0then

print "number even"
else

print "number odd"

endif

step 5 :stop

FLOWCHART

Flowchart is a diagrammatic representation of an algorithm. Flowchart is very helpful in writing

program and explaining program to others.

Symbols Used In Flowchart

Different symbols are used for different states in flowchart, For example: Input/output and

decision making has different symbols. The table below describes all the symbols that are used in

making flowchart

15

Symbol Purpose Description

Flow line
Used to indicate the flow of logic by connecting

symbols.

Terminal(Stop/Start)

Used to represent start and end of flowchart.

Input/output

Used for input and output operation.

Processing

Used for arithmetic operations and data-

manipulations.

Desicion

Used to represent the operation in which there are

two alternatives, true and false.

On-page Connector

Used to join different flow line

Off-page Connector

Used to connect flowchart portion on different page.

Predefined

Process/Function

Used to represent a group of statements performing

one processing task.

Examples of flowcharts in programming

Draw a flowchart to add two numbers entered by user.

16

Draw flowchart to find the largest among three different numbers entered by user.

INTRODUCTION TO C LANGUAGE

C is a general-purpose high level language that was originally developed by Dennis Ritchie for the

Unix operating system. It was first implemented on the Digital Equipment Corporation PDP-11

computer in 1972.

17

The Unix operating system and virtually all Unix applications are written in the C language. C has

now become a widely used professional language for various reasons.

 Easy to learn

 Structured language

 It produces efficient programs.

 It can handle low-level activities.

 It can be compiled on a variety of computers.

Facts about C

 C was invented to write an operating system called UNIX.

 C is a successor of B language which was introduced around1970

 The language was formalized in 1988 by the American National Standard

Institute (ANSI).

 By 1973 UNIX OS almost totally written in C.

 Today C is the most widely used System Programming Language.

 Most of the state of the art software have been implemented using c

Why to use C?

C was initially used for system development work, in particular the programs that make-up the

operating system. C was adopted as a system development language because it produces code

that runs nearly as fast as code written in assembly language. Some examples of the use of C

might be:

 Operating Systems

 Language Compilers

 Assemblers

 Text Editors

 Prints poolers

 Network Drivers

 Modern Programs

 Databases

 Language Interpreters

 Utilities

18

The Unix operating system and virtually all Unix applications are written in the C language. C has

now become a widely used professional language for various reasons.

 Easy to learn

 Structured language

 It produces efficient programs.

 It can handle low-level activities.

 It can be compiled on a variety of computers.

HISTORY TO C LANGUAGE

C is a general-purpose language which has been closely associated with the UNIX operating system

for which it was developed - since the system and most of the programs that run it are written in C.

Many of the important ideas of C stem from the language BCPL, developed by Martin Richards.

The influence of BCPL on C proceeded indirectly through the language B, which was written by

Ken Thompson in 1970 at Bell Labs, for the first UNIX system on a DECPDP-

BCPL and B are "type less" languages whereas C provides a variety of data types.

In 1972 Dennis Ritchie at Bell Labs writes C and in 1978 the publication of The C Programming

Language by Kernighan & Ritchie caused a revolution in the computing world.

In 1983, the American National Standards Institute (ANSI) established a committee to provide a

modern, comprehensive definition of C. The resulting definition, the ANSI standard, or "ANSI C",

was completed late 1988.

BASIC STRUCTURE OF C PROGRAMMING

http://www.le.ac.uk/cc/glossary/ccglb.html#8
http://www.digital.com/

19

1. Documentation section: The documentation section consists of a set of comment lines giving

the name of the program, the author and other details, which the programmer would like to use

later.

2. Link section: The link section provides instructions to the compiler to link functions from the

system library such as using the #include directive.

3. Definition section: The definition section defines all symbolic constants such using the

#define directive.

4. Global declaration section: There are some variables that are used in more than one function.

Such variables are called global variables and are declared in the global declaration section that

is outside of all the functions. This section also declares all the user-defined functions.

5. main () function section: Every C program must have one main function section. This section

contains two parts; declaration part and executable part

1. Declaration part: The declaration part declares all the variables used in the

executable part.

2. Executable part: There is at least one statement in the executable part. These two

parts must appear between the opening and closing braces. The program execution

begins at the opening brace and ends at the closing brace. The closing brace of the

main function is the logical end of the program. All statements in the declaration

and executable part end with semicolon.

6. Subprogram section: If the program is a program then the subprogram section contains all the

functions that are called in the main () function. User-defined functions are generally placed

immediately after the main () function, although they may appear in any order.

PROCESS OF COMPILING AND RUNNING C PROGRAM

We will briefly highlight key features of the C Compilation model here.

http://www.onlineclassnotes.com/2015/04/what-is-include-directive.html
http://www.onlineclassnotes.com/2015/04/what-is-define-directive.html
http://www.onlineclassnotes.com/2015/04/what-is-user-defined-functions.html
http://www.onlineclassnotes.com/2015/04/what-are-variables-what-are-conditions.html

20

The steps involved in Creating and Running Programs are:

 Writing and Editing Programs

 Compiling Programs

 Linking Programs

 Executing Programs

Writing and Editing Programs

 To solve a particular problem a Program has to be created as a file using text editor /word

processor. This is called source file.

 The program has to be written as per the structure and rules defined by the high-level

language that is used for writing the program (C, JAVAetc).

Compiling Programs

 The compiler corresponding to the high-level language will scan the source file, checks the

program for the correct grammar (syntax) rules of the language.

 If the program is syntactically correct, the compiler generates an output file called ‗Object File„

which will be in a binary format and consists of machine language instructions corresponding to

the computer on which the program gets executed.

21

Linking Programs:

 Linker program combines the Object File with the required library functions to produce

another file called ― executable file‖. Object file will be the input to the linker program.

 The executable file is created on disk. This file has to be put into (loaded) the memory.

Executing Programs:

 Loader program loads the executable file from disk into the memory and directs the CPU to

start execution.

 The CPU will start execution of the program that is loaded into the memory.

C TOKENS

C tokens are the basic buildings blocks in C language which are constructed together to write a C

program.

Each and every smallest individual unit in a C program is known as C tokens. C

tokens are of six types. They are

Keywords (eg: int,while),

Identifiers (eg: main, total),

Constants (eg: 10, 20),

Strings (eg:―total‖,―hello‖),Special

symbols (eg: (),{}),

Operators (eg: +,/,-,*)

C KEYWORDS

C keywords are the words that convey a special meaning to the c compiler. The keywords

cannot be used as variable names.

The list of C keywords is given below:

auto break case char const

22

continue default do double else

enum extern float for goto

if int long register return

short signed size of static struct

switch typedef union unsigned void

volatile while

C IDENTIFIERS

Identifiers are used as the general terminology for the names of variables, functions and arrays.

These are user defined names consisting of arbitrarily long sequence of letters and digits with either

a letter or the underscore(_) as a first character.

There are certain rules that should be followed while naming c identifiers:

They must begin with a letter or underscore (_).

They must consist of only letters, digits, or underscore. No other special character is allowed. It

should not be a keyword.

It must not contain whitespace.

Itshouldbeupto31characterslongasonlyfirst31charactersaresignificant. Some

examples of identifiers:

Name Remark

_A9 Valid

Temp.var Invalid as it contains special character other than the underscore

void Invalid as it is a keyword

C CONSTANTS

A C constant refers to the data items that do not change their value during the program execution.

Several types of C constants that are allowed in C are:

23

Integer Constants

Integer constants are whole numbers without any fractional part. It must have at least one digit

and may contain either + or – sign. A number with no sign is assumed to be positive.

There are three types of integer constants:

Decimal Integer Constants

Integer constants consisting of a set of digits, 0 through 9, preceded by an optional – or + sign.

Example of valid decimal integer constants

341, -341, 0, 8972

Octal Integer Constants

Integer constants consisting of sequence of digits from the set 0 through 7 starting with 0 is said

to be octal integer constants.

Example of valid octal integer constants

010, 0424, 0, 0540

Hexadecimal Integer Constants

Hexadecimal integer constants are integer constants having sequence of digits preceded by 0x or

0X. They may also include alphabets from A to F representing numbers 10 to 15.

Example of valid hexadecimal integer constants

0xD, 0X8d, 0X, 0xbD

It should be noted that, octal and hexadecimal integer constants are rarely used in programming.

Real Constants

The numbers having fractional parts are called real or floating point constants. These may be

represented in one of the two forms called fractional form or the exponent form and may also

have either + or – sign preceding it.

Example of valid real constants in fractional form or decimal

notation 0.05, -0.905, 562.05,0.015

Representing a real constant in exponent form

The general format in which a real number may be represented in exponential or scientific form is

mantissa e exponent

The mantissa must be either an integer or a real number expressed in decimal notation.

24

The letter e separating the mantissa and the exponent can also be written in uppercase i.e. E And,

the exponent must be an integer.

Examples of valid real constants in exponent form are:

252E85, 0.15E-10, -3e+8

Character Constants

A character constant contains one single character enclosed within single quotes.

Examples of valid character constants

‗a„ , ‗Z„,‗5„

It should be noted that character constants have numerical values known as ASCII values, for

example, the value of ‗A„ is 65 which is its ASCII value.

Escape Characters/ Escape Sequences

C allows us to have certain non graphic characters in character constants. Non graphic characters are

those characters that cannot be typed directly from keyboard, for example, tabs, carriage return, etc.

These non graphic characters can be represented by using escape sequences represented by a backslash()

followed by one or more characters.

NOTE: An escape sequence consumes only one byte of space as it represents a single character.

Escape Sequence Description

a Audible alert(bell)

b Backspace

f Form feed

n New line

r Carriage return

t Horizontal tab

v Vertical tab

\ Backslash

― Double quotation mark

‗ Single quotation mark

? Question mark

 Null

25

STRING CONSTANTS

String constants are sequence of characters enclosed within double quotes. For example,

―hello‖

―abc‖

―hello911‖

Every sting constant is automatically terminated with a special character „‟ called thenull

character which represents the end of the string.

For example,―hello‖ will represent―hello‖in the memory.

Thus, the size of the string is the total number of characters plus one for the null character.

SPECIAL SYMBOLS

The following special symbols are used in C having some special meaning and thus, cannot be

used for some other purpose.

[] () {} , ; : * … = #

Braces{}: These opening and ending curly braces marks the start and end of a block of code

containing more than one executable statement.

Parentheses(): These special symbols are used to indicate function calls and function

parameters.

Brackets[]: Opening and closing brackets are used as array element reference. These indicate

single and multidimensional subscripts.

VARIABLES

A variable is nothing but a name given to a storage area that our programs can manipulate. Each

variable in C has a specific type, which determines the size and layout of the variable's memory; the

range of values that can be stored within that memory; and the set of operations that can be applied

to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must

begin with either a letter or an underscore. Upper and lowercase letters are distinct because C is

case-sensitive. Based on the basic types explained in the previous chapter, there will be the

following basic variable types −

Type Description

26

type variable_list;

int i, j, k;

char c, ch;

float f, salary;

double d;

type variable_name = value;

char Typically a single octet(one byte). This is an integer type.

int The most natural size of integer for the machine.

float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

C programming language also allows defining various other types of variables like Enumeration,

Pointer, Array, Structure, Union, etc.

Variable Definition in C

A variable definition tells the compiler where and how much storage to create for the variable. A

variable definition specifies a data type and contains a list of one or more variables of that type as

follows −

Here, type must be a valid C data type including char, w_char, int, float, double, bool, or any user-

defined object; and variable list may consist of one or more identifier names separated by commas.

Some valid declarations are shown here −

The line int i, j, k; declares and defines the variables i, j, and k; which instruct the compiler to create

variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initialize consists

of an equal sign followed by a constant expression as follows −

27

extern int d = 3, f=5; // declaration of d andf.

int d = 3, f=5; // definition and initializing d and f.

byte z=22; // definition and initializesz.

char x= 'x'; // the variable x has the value'x'.

Some examples are −

For definition without an initialize: variables with static storage duration are implicitly initialized

with NULL (all bytes have the value 0); the initial value of all other variables are undefined.

Variable Declaration in C

A variable declaration provides assurance to the compiler that there exists a variable with the

given type and name so that the compiler can proceed for further compilation without requiring

the complete detail about the variable. A variable definition has its meaning at the time of compilation

only; the compiler needs actual variable definition at the time of linking the program. A variable

declaration is useful when multiple files are used.

28

Data types in C Language

Data types specify how we enter data into our programs and what type of data we enter. C language

has some predefined set of data types to handle various kinds of data that we can use in our program.

These data types have different storage capacities.

C language supports 2 different type of data types:

1. Primary data types:

These are fundamental data types in C namely integer (int), floating point (float),

character(char) and void.

2. Derived data types:

Derived data types are nothing but primary data types but a little twisted or grouped together

like array, structure, union and pointer. These are discussed in details later.

Data type determines the type of data a variable will hold. If a variable x is declared as int. it means x

can hold only integer values. Every variable which is used in the program must be declared as what

data-type it is.

29

Integer type

Integers are used to store whole numbers.

Size and range of Integer type on 16-bit machine:

Type Size(bytes) Range

int or signed int 2 -32,768 to 32767

unsigned int 2 0 to 65535

short int or signed short int 1 -128 to 127

unsigned short int 1 0 to 255

long int or signed long int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295

Floating point type

Floating types are used to store real numbers.

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

Float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E+308

long double 10 3.4E-4932 to 1.1E+4932

30

Character type

Character types are used to store characters value.

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

char or signed char 1 -128 to 127

unsigned char 1 0 to 255

void type

void type means no value. This is usually used to specify the type of functions which returns nothing. We will
get acquainted to this data type as we start learning more advanced topics in C language, like functions, pointers
etc.

OPERATORS and EXPRESSIONS

C language offers many types of operators. They are,

1. Arithmetic operators

2. Assignment operators

3. Relational operators

4. Logical operators

5. Bit wise operators

6. Conditional operators (ternary operators)

7. Increment/decrement operators

8. Special operators

Arithmetic operators

31

#include <stdio.h>

main() {

int a = 21;

int b = 10;

int c ;

c = a + b;

printf("Line 1 - Value of c is %d\n", c);

c = a - b;

printf("Line 2 - Value of c is %d\n", c);

The following table shows all the arithmetic operators supported by the C language. Assume variable A holds 10

and variable B holds 20, then −

Operator Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

% Modulus Operator and remainder of after an integer division. B % A = 0

++ Increment operator increases the integer value by one. A++ = 11

-- Decrement operator decreases the integer value by one. A-- = 9

Example

Try the following example to understand all the arithmetic operators available in C −

32

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Line 4 - Value of c is 2

Line 5 - Value of c is 1

Line 6 - Value of c is 21

Line 7 - Value of c is 22

When you compile and execute the above program, it produces the following result −

Assignment operators

The following table lists the assignment operators supported by the C language −

Operator Description Example

= Simple assignment operator. Assigns values from right side operands to left

side operand

C = A + B

will assign

the value of

A + B to C

+= Add AND assignment operator. It adds the right operand to the left operand C += A is

equivalent

c = a * b;

printf("Line 3 - Value of c is %d\n", c);

c = a / b;

printf("Line 4 - Value of c is %d\n", c);

c = a % b;

printf("Line 5 - Value of c is %d\n", c);

c = a++;

printf("Line 6 - Value of c is %d\n", c);

c = a--;

printf("Line 7 - Value of c is %d\n", c);

}

33

and assign the result to the left operand. to C = C +

A

-= Subtract AND assignment operator. It subtracts the right operand from the left

operand and assigns the result to the left operand.

C -= A is

equivalent

to C = C -

A

*= Multiply AND assignment operator. It multiplies the right operand with the

left operand and assigns the result to the left operand.

C *= A is

equivalent

to C = C *

A

/= Divide AND assignment operator. It divides the left operand with the

right operand and assigns the result to the left operand.

C /= A is

equivalent

to C = C /

A

%= Modulus AND assignment operator. It takes modulus using two operands and

assigns the result to the left operand.

C %= A is

equivalent

to C = C %

A

<<= Left shift AND assignment operator. C <<= 2 is

same as C

= C << 2

>>= Right shift AND assignment operator. C >>= 2 is

same as C

= C >> 2

&= Bitwise AND assignment operator. C &= 2 is

same as C

= C & 2

34

^= Bitwise exclusive OR and assignment operator. C ^= 2 is

same as C

= C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is

same as C

= C | 2

Relational operators

The following table shows all the relational operators supported by C language. Assume variable A holds 10 and

variable B holds 20 then −

Operator Description Example

== Checks if the values of two operands are equal or not. If yes, then the

condition becomes true.

(A == B)

is not true.

!= Checks if the values of two operands are equal or not. If the values are not

equal, then the condition becomes true.

(A != B) is

true.

> Checks if the value of left operand is greater than the value of right operand.

If yes, then the condition becomes true.

(A > B) is

not true.

< Checks if the value of left operand is less than the value of right operand. If

yes, then the condition becomes true.

(A < B) is

true.

>= Checks if the value of left operand is greater than or equal to the value of

right operand. If yes, then the condition becomes true.

(A >= B)

is not true.

<= Checks if the value of left operand is less than or equal to the value of right

operand. If yes, then the condition becomes true.

(A <= B)

is true.

35

Example

Try the following example to understand all the relational operators available in C −

#include <stdio.h>

main() {

int a = 21;

int b = 10;

int c ;

if(a == b) {

printf("Line 1 - a is equal to b\n");

} else {

printf("Line 1 - a is not equal to b\n");

}

if (a < b) {

printf("Line 2 - a is less than b\n");

} else {

printf("Line 2 - a is not less than b\n");

}

if (a > b) {

printf("Line 3 - a is greater than b\n");

} else {

printf("Line 3 - a is not greater than b\n");

}

/* Lets change value of a and b */

a = 5;

b = 20;

if (a <= b) {

36

Line 1 - a is not equal to b

Line 2 - a is not less than b

Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

Line 5 - b is either greater than or equal to b

When you compile and execute the above program, it produces the following result –

Logical operators

Following table shows all the logical operators supported by C language. Assume variable A holds 1 and

variable B holds 0, then −

Operator Description Example

&& Called Logical AND operator. If both the operands are non-zero, then the

condition becomes true.

(A && B)

is false.

|| Called Logical OR Operator. If any of the two operands is non-zero, then the

condition becomes true.

(A || B) is

true.

! Called Logical NOT Operator. It is used to reverse the logical state of its

operand. If a condition is true, then Logical NOT operator will make it false.

!(A &&

B) is true.

Example

Try the following example to understand all the logical operators available in C −

printf("Line 4 - a is either less than or equal to b\n");

}

if (b >= a) {

printf("Line 5 - b is either greater than or equal to b\n");

}

}

37

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condition is not true

Line 4 - Condition is true

#include <stdio.h>

main() {

int a = 5;

int b = 20;

int c ;

if (a && b) {

printf("Line 1 - Condition is true\n");

}

if (a || b) {

printf("Line 2 - Condition is true\n");

}

/* lets change the value of a and b */

a = 0;

b = 10;

if (a && b) {

printf("Line 3 - Condition is true\n");

} else {

printf("Line 3 - Condition is not true\n");

}

if (!(a && b)) {

printf("Line 4 - Condition is true\n");

}

}

When you compile and execute the above program, it produces the following result −

38

Bit wise operators

The following table lists the Bitwise operators supported by C. Assume variable 'A' holds 60 and variable 'B' holds

13, then −

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in both

operands.

(A & B) =

12, i.e., 0000

1100

| Binary OR Operator copies a bit if it exists in either operand. (A | B) = 61,

i.e., 0011

1101

^ Binary XOR Operator copies the bit if it is set in one operand but not

both.

(A ^ B) = 49,

i.e., 0011

0001

~

Binary Ones Complement Operator is unary and has the effect of

'flipping' bits.

(~A) = -60,

i.e,. 1100

0100 in 2's

complement

form.

<< Binary Left Shift Operator. The left operands value is moved left by the

number of bits specified by the right operand.

A << 2 = 240

i.e., 1111

0000

>> Binary Right Shift Operator. The left operands value is moved right by

the number of bits specified by the right operand.

A >> 2 = 15

i.e., 0000

1111

Example

Try the following example to understand all the bitwise operators available in C −

39

unsigned int b = 13; /* 13 = 0000 1101 */

int c = 0;

c = a&b; /* 12 = 0000 1100 */

printf("Line 1 - Value of c is %d\n", c);

c = a|b; /* 61 = 0011 1101*/

printf("Line 2 - Value of c is %d\n", c);

c = a ^b; /* 49 = 0011 0001 */

printf("Line 3 - Value of c is %d\n", c);

c = ~a; /*-61 = 1100 0011 */

printf("Line 4 - Value of c is %d\n", c);

c = a<<2; /* 240 = 1111 0000*/

printf("Line 5 - Value of c is %d\n", c);

c = a>>2; /* 15 = 0000 1111*/

printf("Line 6 - Value of c is %d\n", c);

}

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is -61

Line 5 - Value of c is 240

Line 6 - Value of c is 15

 Conditionaloperatorsreturnonevalueifconditionistrueandreturnsanother valueisconditionisfalse.

 This operator is also called as ternaryoperator.

Syntax :

When you compile and execute the above program, it produces the following result −

Conditional operators (ternary operators)

 Example :

#include <stdio.h>

main() {

unsigned int a = 60; /* 60 = 0011 1100 */

(Condition? true_value: false_value);

(A > 100 ? 0 : 1);

40

#include<stdio.h>

int main()

{

int num;

printf("Enter the Number : ");

scanf("%d",&num);

(num%2==0)?printf("Even"):printf("Odd");

}

Increment operators are used to increase the value of the variable by one and decrement operators are used to
decrease the value of the variable by one in C programs.

Syntax:

Increment operator: ++var_name; (or) var_name++;

decrement operator: --var_name; (or) var_name--;

Increment operator: ++i; (or) i++;

decrement operator: --i; (or) i--

EXAMPLE PROGRAM FOR INCREMENT OPERATORS IN C:

In this program, value of ―i‖ is incremented one by one from 1 up to 9 using ―i++‖ operator and output is displayed

as ―1 2 3 4 5 6 7 8 9‖.

OUTPUT:

Example

Increment/decrement operators

Example

#include <stdio.h>

int main()

{

int i=1;

while(i<10)

{

printf("%d ",i);
i++;

}

}

 In above example, if A is greater than 100, 0 is returned else 1 is returned. This is equal to if elseconditional

statements.

41

EXAMPLE PROGRAM FOR DECREMENT OPERATORS IN C:

In this program, value of ―I‖ is decremented one by one from 20 up to 11 using ―i–‖ operator and output is displayed

as ―20 19 18 17 16 15 14 13 12 11‖.

1 2 3 4 5 6 7 8 9

#include <stdio.h>

int main()

{

int i=20;

while(i>10)

{
printf("%d ",i);

i--;

}

}

OUTPUT:

20 19 18 17 16 15 14 13 12 11

Special operators

S.no Operators Description

1

&

This is used to get the address of the

variable.

Example : &a will give address of a.

2

*

This is used as pointer to a variable.

Example : * a where, * is pointer

to the variable.

3

Sizeof ()

This gives the size of the variable.

Example : size of (char) will give us

1.

EXAMPLE PROGRAM FOR & AND * OPERATORS IN C

42

In this program, ―&‖symbol is used to get the address of the variable and ―*‖symbol isusedtogetthe value of the

variable that the pointer is pointing to. Please refer C – pointer topic to know more about pointers.

#include <stdio.h>

int main()

{

int *ptr, q;

q=50;

/* address of q is assigned to ptr */

ptr = &q;

/* display q's value using ptr variable */

printf("%d", *ptr);

return 0;

}

Output

50

EXAMPLE PROGRAM FOR SIZEOF() OPERATOR IN C

sizeof() operator is used to find the memory space allocated for each C data types

#include <stdio.h>

#include <limits.h>
int main()

{

int a;

char b;

float c;

double d;

printf("Storage size for int data type:%d \n",sizeof(a));

printf("Storage size for char data type:%d \n",sizeof(b));

printf("Storage size for float data type:%d \n",sizeof(c));

printf("Storage size for double data type:%d\n",sizeof(d)); return 0;

}

OUTPUT:

Storage size for int data type:4

Storage size for char data type:1

43

Storage size for float data type:4

Storage size for double data type:8

EXPRESSIONS

Arithmetic expression in C is a combination of variables, constants and operators written in a proper syntax.

C can easily handle any complex mathematical expressions but these mathematical expressions have to be

written in a proper syntax. Some examples of mathematical expressions written in proper syntax of C are

Note: C does not have any operator for exponentiation.

C OPERATOR PRECEDENCE AND ASSOCIATIVITY

C operators in order of precedence (highest to lowest). Their associativity indicates in what order operators of

equal precedence in an expression are applied.

Operator Description Associativity

()

[]

.

->

++ --

Parentheses (function call) (see Note 1)

Brackets (array subscript)

Member selection via object name

Member selection via pointer

Postfix increment/decrement (see Note 2)

left-to-right

++ --

+ -

! ~

(type)

*

&
sizeof

Prefix increment/decrement

Unary plus/minus

Logical negation/bitwise complement

Cast (convert value to temporary value of type)

Dereference

Address (of operand)
Determine size in bytes on this implementation

right-to-left

* / % Multiplication/division/modulus left-to-right

+- Addition/subtraction left-to-right

<<>> Bitwise shift left, Bitwise shift right left-to-right

<<=
>>=

Relational less than/less than or equal to

Relational greater than/greater than or equal to

left-to-right

==!= Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right

^ Bitwise exclusive OR left-to-right

| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right

| | Logical OR left-to-right

? : Ternary conditional right-to-left

= Assignment right-to-left

+=-= Addition/subtraction assignment

*=/= Multiplication/division assignment

%=&= Modulus/bitwise AND assignment

^= |= Bitwise exclusive/inclusive OR assignment

<<=>>= Bitwise shift left/right assignment

, Comma (separate expressions) left-to-right

Note1:

Note2:

Parentheses are also used to group sub-expressions to force a

different precedence; such parenthetical expressions can be nested

and are evaluated from inner to outer.

Postfix increment/decrement have high precedence, but the actual

increment or decrement of the operand is delayed (to be accomplished

sometime before the statement completes execution). So in the

statement y = x * z++; the current value of z is used to evaluate the

expression (i.e., z++ evaluates to z) and z only incremented after all

else is done.

Evaluation of expressions

At first, the expressions within parenthesis are evaluated. If no parenthesis is present, then the

arithmetic expression is evaluated from left to right. There are two priority levels of operators in C.

High priority: * / % Low

priority: + -

The evaluation procedure of an arithmetic expression includes two left to right passes through the entire

expression. In the first pass, the high priority operators are applied as they are encountered and in the

second pass, low priority operations are applied as they are encountered.

Suppose, we have an arithmetic expression as:

x = 9 – 12 / 3 + 3 *2 - 1

This expression is evaluated in two left to right passes as:

First Pass

Step 1: x = 9-4 + 3 * 2 – 1

Step 2: x = 9 – 4 + 6 – 1

44

Second Pass

Step 1: x = 5 + 6 – 1

Step 2: x = 11 – 1

Step 3: x = 10

But when parenthesis is used in the same expression, the order of evaluation gets changed.

For example,

x = 9 – 12 / (3 + 3) * (2 – 1)

When parentheses are present then the expression inside the parenthesis are evaluated first from left

to right. The expression is now evaluated in three passes as:

First Pass

Step 1: x = 9 – 12 / 6 * (2 – 1)

Step 2: x= 9 – 12 / 6 * 1

Second Pass

Step 1: x= 9 – 2 * 1

Step 2: x = 9 – 2

Third Pass

 Step 3: x= 7

There may even arise a case where nested parentheses are present (i.e. parenthesis inside parenthesis). In

such case, the expression inside the innermost set of parentheses is evaluated first and then the outer

parentheses are evaluated.

For example, we have an expression as:

x = 9 – ((12 / 3) + 3 * 2) –1

The expression is now evaluated as:

First Pass:

45

46

Step 1: x = 9 – (4 + 3 * 2) – 1

Step 2: x= 9 – (4 + 6) – 1

Step 3: x= 9 – 10 -1

Second Pass

Step 1: x= - 1 – 1

Step 2: x = -2

Note: The number of evaluation steps is equal to the number of operators in thearithmetic

expression.

47

if (condition)
{

//Block of C statements here

//These statements will only execute if the condition is true
}

MODULE-II

CONTROL STRUCTURES

Decision statements- if and Switch

if Statement

Syntax of if statement:
The statements inside the body of ―if‖ only execute if the given condition returns true. If the condition returns false
then the statements inside ―if‖ are skipped.

Flow Diagram of if statement

48

#include
<stdio.h>intmain()

{
int x = 20;

int y = 22;

if(x<y)

{

printf("Variable x is less than y");
}

return 0;

}

if(condition) {

// Statements inside body of if

}
else {

//Statements inside body of else

}

Example of if statement

Output:

Variable x is less than y

Explanation: The condition (x<y) specified in the ―if‖ returns true for the value of x and y, so the statement inside

the body of „if‟ is executed.

If else statement

Syntax of if else statement:

If condition returns true then the statements inside the body of ―if‖ are executed and the statements inside body of

―else‖ are skipped.

If condition returns false then the statements inside the body of ―if‖ are skipped and the statements in ―else‖ are

executed.

49

#include <stdio.h>
int main()
{

int age;
printf("Enter your age:");
scanf("%d",&age);
if(age >=18)

printf("You are eligible for voting");
else

printf("You are not eligible for voting");
return 0;

}

Flow diagram of if else statement

Example of if else statement

In this program user is asked to enter the age and based on the input, the if..else statement checks whether the

entered age is greater than or equal to 18. If this condition meet then display message ―You are eligible for voting‖,

however if the condition doesn‘t meet then display a different message ―You are not eligible for voting‖.

50

if(condition) {
//Nested if else inside the body of "if"

if(condition2) {

//Statements inside the body of nested "if"

}
else {

//Statements inside the body of nested "else"

}
}

else {

//Statements inside the body of "else"

}

#include <stdio.h>

int main()

{
int var1, var2;

printf("Input the value ofvar1:");

scanf("%d", &var1);

printf("Input the value ofvar2:");

scanf("%d",&var2);

if (var1 != var2)

{

printf("var1 is not equal to var2\n");
//Nested if else

if (var1 > var2)

{

printf("var1 is greater than var2\n");

}
else
{

printf("var2 is greater than var1\n");

}

}

else
{

printf("var1 is equal to var2\n");

}

return 0;

Nested If..else statement

When an if else statement is present inside the body of another ―if‖ or ―else‖ then this is called nested if else.

Syntax of Nested if else statement:

Example of nested if..else

51

Input the value of var1:12

Input the value of var2:21

var1 is not equal to var2

var2 is greater than var1

if (condition1)
{

//These statements would execute if the condition1 is true
}

else if(condition2)

{
//These statements would execute if the condition2 is true

}

else if (condition3)

{
//These statements would execute if the condition3 is true

}

.

.

else

{
//These statements would execute if all the conditions return false.

}

#include <stdio.h>

int main()

{
int var1, var2;
printf("Input the value of var1:");

scanf("%d", &var1);

}

Output:

else..if statement

The else..if statement is useful when you need to check multiple conditions within the program, nesting of if-else
blocks can be avoided using else..if statement.

Syntax of else..if statement:

Example of else..if statement

Lets take the same example that we have seen above while discussing nested if..else. We will rewrite the same

program using else..if statements.

52

Input the value of var1:12

Input the value of var2:21

var1 is not equal to var2

switch(expression) {

case constant-expression :

statement(s);

break; /* optional */

case constant-expression :

statement(s);

break; /* optional */

/* you can have any number of case statements */

printf("Input the value of var2:");

scanf("%d",&var2);

if (var1 !=var2)

{

printf("var1 is not equal to var2\n");

}

else if (var1 > var2)

{

printf("var1 is greater than var2\n");
}

else if (var2 > var1)

{

}

else

{

}

printf("var2 is greater than var1\n");

printf("var1 is equal to var2\n");

return 0;
}

Output:

Switch statement

A switch statement allows a variable to be tested for equality against a list of values. Each value is called a case,

and the variable being switched on is checked for each switch case.

Syntax

The syntax for a switch statement in C programming language is as follows −

53

The following rules apply to a switch statement −

 The expression used in a switch statement must have an integral or enumerated type, or be of a class type

in which the class has a single conversion function to an integral or enumerated type.

 You can have any number of case statements within a switch. Each case is followed by the value to be

compared to and colon.

 The constant-expression for a case must be the same data type as the variable in the switch, and it must be

a constant or literal.

 When the variable being switched on is equal to a case, the statements following that case will execute until

a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps to the next line

following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall through to

subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of the switch. The

default case can be used for performing a task when none of the cases is true. No break is needed in the

default case.

Flow Diagram

Example

default : /* Optional */

statement(s);

}

54

Well done

#include <stdio.h>

int main () {

/* local variable definition */

char grade = 'B';

switch(grade) {

case 'A' :

printf("Excellent!\n");

break;

case 'B':

case 'C':

printf("Well done\n");

break;

case 'D' :

printf("You passed\n");

break;

case 'F':

printf("Better try again\n");

break;

default:

printf("Invalid grade\n");

}

printf("Your grade is %c\n", grade);

return 0;

}

When the above code is compiled and executed, it produces the following result −

55

while(condition) {

statement(s);

}

Loop Control Statements: While, do-while, for

While loop

A while loop in C programming repeatedly executes a target statement as long as a given condition is true.

Syntax

The syntax of a while loop in C programming language is –

Here, statement(s) may be a single statement or a block of statements. The condition may be any expression, and

true is any nonzero value. The loop iterates while the condition is true.

When the condition becomes false, the program control

passes to the line immediately following the loop.

Flow Diagram

Here, the key point to note is that a while loop might not execute at all. When the condition is tested and the result

is false, the loop body will be skipped and the first statement after the while loop will be executed.

Your grade is B

56

#include <stdio.h>

int main () {

/* local variable definition */

int a = 10;

/* while loop execution */

while(a < 20) {

printf("value of a: %d\n", a);

a++;

}

return 0;}

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

do
{

//Statements

Example

When the above code is compiled and executed, it produces the following result −

Do-while loop

A do while loop is similar to while loop with one exception that it executes the statements inside the body of do-

while before checking the condition. On the other hand in the while loop, first the condition is checked and then the

statements in while loop are executed. So you can say that if a condition is false at the first place then the do while

would run once, however the while loop would not run at all.

C – do..while loop

Syntax of do-while loop

57

#include <stdio.h>

int main()

{
int j=0;

do

{
printf("Value of variable j is: %d\n", j);
j++;

}while (j<=3);

return 0;

}

Value of variable j is: 0

Value of variable j is: 1

Value of variable j is: 2

Value of variable j is: 3

Flow diagram of do while loop

Example of do while loop

Output:

}while(condition test);

58

Enter a number: 5

5

10
15

20
25

30

35
40

45

50

Enter a number: 10

10

20

30

40
50

60

70

80

90

100

Program to print table for the given number using do while loop

1. #include<stdio.h>

2. intmain(){

3. inti=1,number=0;

4. printf("Enter a number:");

5. scanf("%d", &number);

6. do{

7. printf("%d\n",(number*i));

8.i++;

9. }while(i<=10);

10. return0;

11. }

Output

For loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute

a specific number of times.

59

for (init; condition; increment)

{

statement(s);

}

Syntax

The syntax of a for loop in C programming language is –

Here is the flow of control in a 'for' loop −

 The init step is executed first, and only once. This step allows you to declare and initialize any

loop control variables. You are not required to put a statement here, as long as a semicolon

appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false, the

body of the loop does not execute and the flow of control jumps to the next statement just after the

'for ‗loop.

 After the body of the 'for' loop executes, the flow of control jumps back up to the

increment statement. This statement allows you to update any loop control variables. This

statement can be left blank, as long as a semicolon appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and the process repeats itself

(body of loop, then increment step, and then again condition). After the condition becomes false,

the 'for' loop terminates.

60

#include <stdio.h>

int main () {

int a;

/* for loop execution */

for(a = 10; a < 20; a = a + 1){

printf("value of a: %d\n", a);

}

return 0;

}

Flow Diagram

Example

61

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

When the above code is compiled and executed, it produces the following result −

Jump statements-break , continue and goto

Break statement

Break Statement Simply Terminate Loop and takes control out of the loop.

Break in For Loop :

for(initialization ; condition ; incrimination)

{

statement1;

Statement2;

Break;

}

Break in While Loop :

initialization:

while(condition)

{
statement1;

statement2;

incrimination

break;

}

62

Break Statement in Do-While :

Initialization:

do

{
statement1;

statement2;

incrimination

break;

}while(condition);

Way 1: Do-While Loop

Way 2: Nested for

63

Way 3: For Loop

Way 4 : While Loop

Continue statement:

Loop

{

Continue;

//code

}

Note:

It is used for skipping part of Loop.

Continue causes the remaining code inside a loop block to be skipped and causes execution to jump to the

top of the loop block

64

Loop Use of Continue !!

for

while

do-while

Goto statement:

goto label;

label:

Whenever goto keyword encountered then it causes the program to continue on the line , so long as it is in

65

the scope.

Types of

Go to Forward

Backward

66

 Array might be belonging to any of the datatypes

 Array size must be a constantvalue.

 Always, Contiguous (adjacent) memory locations are used to store array elements inmemory.

 It is a best practice to initialize an array to zero or null while declaring, if we don‟t assign any

values toarray.

MODULE -III

ARRAYS AND FUNCTIONS

ARRAY

C Array is a collection of variables belongings to the same data type. You can store group of data of same
data type in an array.

Example for C Arrays:

int a[10]; // integer array
char b[10]; // character array i.e. string

Advantage of an array:

 Multiple elements are stored under a single unit.

 Searching is fast because all the elements are stored in a sequence

TYPES OF C ARRAYS:

1. Static Array

2. Dynamic Array

Types of Static Array

1. One dimensional array

2. Multi dimensional array

o Two dimensional array

o Three dimensional array

o four dimensional arrayed…

One Dimensional Array :

Syntax : data-type arr_name[array size];

67

data_type arr_name [arr_size];Array initialization

syntax:

data_type arr_name [arr_size]=(value1, value2,

value3,….);Array accessing syntax:

arr_name[index];

#include<stdio.h>

int main()

{

int i;
int arr[5] = {10,20,30,40,50};

// declaring and Initializing array in C

//To initialize all array elements to 0, use int arr[5]={0};
/* Above array can be initialized as below

also arr[0] =10;

arr[1] =20;

arr[2] =30;

arr[3] = 40;

arr[4] = 50;*/

for(i=0;i<5;i++)

{

// Accessing each variable

printf("value of arr[%d] is %d \n", i, arr[i]);

}

Array declaration, initializationandaccessing Example

Arraydeclarationsyntax: Integer arrayexample:

int age [5];

int age[5]={0, 1, 2, 3, 4};

age[0]; /*0 is accessed*/

age[1]; /*1 is accessed*/

age[2]; /*2 isaccessed*/

Character array example:

char str[10];
char str[10]={„H‟,„a‟,„i‟};

(or)

char str[0] = „H‟;
char str[1] = „a‟;

char str[2] = „i;

str[0]; /*H is accessed*/

str[1]; /*a is accessed*/

str[2]; /*i is accessed*/

EXAMPLE PROGRAM FOR ONE DIMENSIONAL ARRAY IN C:

68

OUTPUT:

}

value of arr[0] is 10

value of arr[1] is 20

value of arr[2] is30

value of arr[3] is 40

value of arr[4] is50

Two dimensional array

The two dimensional array in C language is represented in the form of rows and columns, also known as

matrix. It is also known as array of arrays or list of arrays.

The two dimensional, three dimensional or other dimensional arrays are also known

as multidimensional arrays.

Declaration of two dimensional Array in C

We can declare an array in the c language in the following way.

data_type array_name[size1][size2];

A simple example to declare two dimensional array is given below.

int two dimen[4][3];

Here, 4 is the row number and 3 is the column number.

Initialization of 2D Array in C

A way to initialize the two dimensional array at the time of declaration is given below.

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

Two dimensional array example in C

#include<stdio.h>

int main(){

inti=0,j=0;

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

69

//traversing 2D array

for(i=0;i<4;i++){

for(j=0;j<3;j++){

printf("arr[%d] [%d] = %d \n",i,j,arr[i][j]);

}//end ofj

}//end ofi

return 0;

}

Output

arr[0][0] =1

arr[0][1] =2

arr[0][2] =3
arr[1][0] =2

arr[1][1] =3

arr[1][2] =4

arr[2][0] =3

arr[2][1] =4

arr[2][2] =5

arr[3][0] =4

arr[3][1] =5

arr[3][2] =6

Strings

In C programming, array of characters or collection of characters is called a string. A string
always recognized in double quotes. A string is terminated by a null character /0. For example:

·

Here, ―String‖ is a string. When, compiler encounters strings, it appends a null character /0 at

the end of string.

S T R I N G \0

WAP to accept a complete string (first name and last name) and display hello message in the

output.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

―String‖

70

{
char str1[20];

char str2[20];

printf(―enter first name:‖);

scanf(―%s‖,&str1) ;

printf(―enter second name:‖);

scanf(―%s‖,&str2) ;

puts(str1);

puts(str2);

}

String Handling Functions in C:

Our c language provides us lot of string functions for manipulating the string.

All the string functions are available in string.h header file.

These String functions are:

1. strlen().

2. strupr().

3. strlwr().

4. strcmp().

5. strcat().

6. strcpy().

7. strrev().

1. strlen()

The strlen() function is defined in <string.h>header file.

Example

#include <stdio.h>

#include <string.h>

int main()

{

size_t strlen(const char *str);

The function takes a single argument, i.e, the string variable whose length is to be found, and returns the

length of the string passed.

https://www.programiz.com/c-programming/library-function/string.h

71

Output

Enter string: String

Length of string a = 7

Length of string b = 7

Length of string c = 6

2. strupr()

strupr() function converts a given string into uppercase. Syntax for strupr() function is given below.

char *strupr(char *string);

Example

#include<stdio.h>

#include<string.h>

int main()

{
char str[] = "Modify This String To Upper";

printf("%s\n",strupr(str));

return 0;

}

OUTPUT:

MODIFY THIS STRING TO UPPER

char a[20]=‖Program‖

char b[20]={„P‟,‟r‟,‟o‟,‟g‟,‟r‟,‟a‟,‟m‟,‟\0‟};

char c[20];

printf(―Enter string: ―);

gets(c);

printf(―Length of string a = %d \n‖, strlen(a));

//calculates the length of string before null charcter.

printf(―Length of string b = %d \n‖, strlen(b));

printf(―Length of string c = %d \n‖, strlen(c));

return 0;

}

72

3. strlwr()

strlwr() function converts a given string into lowercase. Syntax for strlwr() function is given below.

char *strlwr(char *string);

Example

#include<stdio.h>

#include<string.h>

int main ()

{

char str[] = "MODIFY This String To Lower";

printf("%s\n",strlwr (str));

return 0;
}

OUTPUT:

modify this string to lower

4. strcmp()

 strcmp() function in C compares two given strings and returns zero if they are same.

 If length of string1 < string2, it returns < 0 value. If length of string1 > string2, it returns >0

value. Syntax for strcmp() function is given below.

int strcmp (const char * str1, const char * str2);

 strcmp() function is case sensitive. i.e, ―A‖ and ―a‖ are treated as different characters.

Example

#include <stdio.h>

#include <string.h>

int main()

{

char str1[] = "fresh" ;

char str2[] = "refresh" ;

int i, j, k ;

i = strcmp (str1, "fresh") ;

j = strcmp (str1, str2);

k = strcmp (str1, "f");
printf ("\n%d %d %d", i, j, k) ;
return 0;

}

73

OUTPUT:

0 -1 1

5. strcat()

 strcat() function in C language concatenates two given strings. It concatenates source string at

the end of destination string. Syntax for strcat() function is given below

.

char * strcat (char * destination, const char * source);

 Example:

strcat (str2, str1); – str1 is concatenated at the end of str2.

strcat (str1, str2); – str2 is concatenated at the end of str1.

 As you know, each string in C is ended up with null character(„\0‟).

 In strcat() operation, null character of destination string is overwritten by source string‘s first

character and null character is added at the end of new destination string which is created

after strcat()operation.

Example

#include <stdio.h>

#include <string.h>

int main()

{

char source[] = " fresh2refresh" ;

char target[]= " C tutorial" ;

printf ("\nSource string = %s", source) ;

printf ("\nTarget string = %s", target) ;

strcat (target, source) ;

printf ("\nTarget string after strcat() = %s", target) ;

}

OUTPUT:

Sourcestring =fresh2refresh

Targetstring = Ctutorial

Target string after strcat() = C tutorial fresh2refresh

6. strcpy().

 strcpy() function copies contents of one string into another string. Syntax for strcpy function

id given below.

char * strcpy (char * destination, const char * source);

74

 Example:

strcpy (str1, str2) – It copies contents of str2 into str1.

strcpy (str2, str1) – It copies contents of str1 into str2.

 If destination string length is less than source string, entire source string value won‘t be

copied into destination string.

Example

#include <stdio.h>

#include <string.h>

int main()

{

char source[] = "fresh2refresh" ;

char target[20]= "" ;

printf ("\nsource string = %s", source) ;

printf ("\ntarget string = %s", target) ;

strcpy (target, source) ;

printf ("\ntarget string after strcpy() = %s", target) ;

return 0;

}

OUTPUT:

source string = fresh2refresh

target string =

target string after strcpy() = fresh2refresh

7. strrev()

strrev() function reverses a given string in C language. Syntax for strrev() function is given below.

char *strrev(char *string);

Example

#include<stdio.h>

#include<string.h>

int main()

{

char name[30] = "Hello";

printf("String before strrev() : %s\n",name);

printf("String after strrev() : %s",strrev(name));

return 0;
}

75

OUTPUT:

String before strrev() : Hello

String after strrev() :olleH

Arrays of strings

A string is a 1-D array of characters, so an array of strings is a 2-D array of characters.

Just like we can create a 2-D array of int, float etc; we can also create a 2-D array of character or array of

strings. Here is how we can declare a 2-D array of characters.

char ch_arr[3][10]={

{„s‟,‟p‟,‟i‟,‟k‟,‟e‟,‟\0‟},

{ „t‟,‟o‟,‟m‟,‟\0‟},
{„j‟,‟e‟,‟r‟,‟r‟,‟y‟,‟\0‟}};

It is important to end each 1-D array by the null character otherwise, it's just an array of characters. We

can't use them as strings.

Declaring an array of string this way is a tedious and error-prone process that's why C provides a more
compact way to it. This above initialization is equivalent to:

char ch_arr[3][10]={―spike‖,‖tom‖,‖jerry‖};

The following program demonstrates how to print an array of strings.

#include<stdio.h>

int main()

{

int i;

char ch_arr[3][10] = {

"spike",
"tom",

"jerry"

};

printf("1st way \n\n");

for(i = 0; i < 3; i++)

{
printf("string = %s \t address = %u\n", ch_arr + i, ch_arr + i);

}

// signal to operating system program ran fine

return 0;

}

76

return_type function_name(parameter list) {

body of the function

}

Expected output

string = spike address = 2686736

string = tom address = 2686746

string = jerry address = 2686756‟

We already know that the name of an array is a constant pointer so the following operations are
invalid.

ch_arr[0] = "tyke"; // invalid

ch_arr[1] = "dragon"; // invalid

Here we are trying to assign a string literal (a pointer) to a constant pointer which is obviously

not possible.

To assign a new string to ch_arr use the following methods.

strcpy(ch_arr[0], "type"); // valid
scanf(ch_arr[0], "type"); // valid

Introduction to functions

A function is a group of statements that together perform a task. Every C program has at least one

function, which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among different

functions is up to you, but logically the division is such that each function performs a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters. A

function definition provides the actual body of the function.

The C standard library provides numerous built-in functions that your program can call. For

example, strcat() to concatenate two strings, memcpy() to copy one memory location to another

location, and many more functions.

A function can also be referred as a method or a sub-routine or a procedure, etc.

Defining a Function

The general form of a function definition in C programming language is as follows −

77

/* function returning the max between two numbers */

int max(int num1, int num2) {

/* local variable declaration */

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

A function definition in C programming consists of a function header and a function body. Here are all

the parts of a function −

 Return Type − A function may return a value. The return_type is the data type of the value the

function returns. Some functions perform the desired operations without returning a value. In

this case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The function name and the parameter

list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is invoked, you pass a value to

the parameter. This value is referred to as actual parameter or argument. The parameter list

refers to the type, order, and number of the parameters of a function. Parameters are optional;

that is, a function may contain no parameters.

 Function Body − The function body contains a collection of statements that define what the

function does.

Example

Given below is the source code for a function called max(). This function takes two parameters num1

and num2 and returns the maximum value between the two −

Function Declarations

A function declaration tells the compiler about a function name and how to call the function. The actual

body of the function can be defined separately.

78

returnType functionName(type1 argument1, type2 argument2,...);

return_type function_name(parameter list);

int max(int num1, int num2);

A function declaration has the following parts −

For the above defined function max(), the function declaration is as follows −

Parameter names are not important in function declaration only their type is required, so the following is

also a valid declaration −

Function declaration is required when you define a function in one source file and you call that function

in another file. In such case, you should declare the function at the top of the file calling the function.

Function prototype

A function prototype is simply the declaration of a function that specifies function's name, parameters and

return type. It doesn't contain function body.

A function prototype gives information to the compiler that the function may later be used in the program.

Syntax of function prototype

In the above example, int add Numbers(int a, int b);is the function prototype
which provides following information to the compiler:

1. name of the function is addNumbers()

2. return type of the function is int

3. two arguments of type int are passed to the function

The function prototype is not needed if the user-defined function is defined before the main()function.

Category of functions:

A function depending an whether the arguments are present or not and whether a value is

returned or not, may belong to one of following categories

1. Function with no return values, no arguments
2. Functions with arguments, no return values

int max(int, int);

3. Functions with arguments and return values

4. Functions with no arguments and return values.

Function with no return values, no arguments

In this category, the function has no arguments. It does not receive any data from the calling

function. Similarly, it doesn‟t return any value. The calling function doesn‘t receive any data

from the called function. So, there is no communication between calling and called functions.

Functions with arguments, no return values

In this category, function has some arguments. It receives data from the calling function, but it

doesn‟t return a value to the calling function. The calling function doesn‘t receive any data

from the called function. So, it is one way data communication between called and calling

functions.

Eg: Printing n Natural numbers

#include<stdio.h>

#include<conio.h>

void nat(int);

voidmain()

{
int n;

printf("\n Enter n value:");
scanf("%d",&n);

nat(n);

}
void nat(int n)

{

int i;

for(i=1;i<=n;i++)

printf("%d\t",i);

}

Note:

In the main() function, n value is passed to the nat() function. The n value is now stored in the

formal argument n, declared in the function definition and subsequently, the natural numbers

up to n are obtained.

Functions with arguments and return values

In this category, functions have some arguments and it receives data from the calling function.

Similarly, it returns a value to the calling function. The calling function receives data from the

79

called function. So, it is two-way data communication between calling and called functions.

Eg. Factorial of a Number

#include<stdio.h>

#include<conio.h>

intfact(int);

voidmain()

{

int n;
printf("\n Enter n:");

scanf("%d",&n);

printf("\n Factorial of the number : %d", fact(n));

}

int fact(int n)

{
int i,f;

for(i=1,f=1;i<=n;i++)

f=f*i;

return(f);

}

Functions with no arguments and return values.

In this category, the functions have no arguments and it doesn‘t receive any data from the

calling function, but it returns a value to the calling function. The calling function receives data

from the called function. So, it is one way data communication between calling and called

functions.

Eg. Sum of Numbers

#include<stdio.h>

#include<conio.h>

int sum();

void main()

{

int s;
printf("\n Enter number of elements to be added :");

s=sum();

printf("\n Sum of the elements :%d",s);

}

int sum()

80

81

{

int a[20], i, s=0,n;

scanf("%d",&n);
printf("\n Enter theelements:");

for(i=0;i< n; i++)

scanf("%d",&a[i]);

for(i=0;i< n; i++)

s=s+a[i];

return s;

}

Inter Function communication

When a function gets executed in the program, the execution control is transferred from calling function

to called function and executes function definition, and finally comes back to the calling function. In this

process, both calling and called functions have to communicate each other to exchange information. The

process of exchanging information between calling and called functions is called as inter function

communication.

In C, the inter function communication is classified as follows...

 Downward Communication

 Upward Communication

 Bi-directional Communication

Downward Communication

In this type of communication, the data is transferred from calling function to called function but not

from called function to calling function. The function with parameters and without return value is

considered under Downward communication.

Example

#include <stdio.h>

#include<conio.h>

void main(){

int num1, num2 ;
void addition(int, int) ; // function declaration

clrscr() ;

num1 = 10 ;

num2 = 20 ;

printf("\nBefore swap: num1 = %d, num2 = %d", num1, num2) ;

addition(num1, num2) ; // calling function

getch() ;

}

void addition(int a, int b) // called function
{

82

printf("SUM = %d", a+b) ;

}

Output

SUM=30

Upward Communication

In this type of communication, the data is transferred from called function to calling function but not

from calling function to called function. The function without parameters and with return value is

considered under upward communication.

Example

#include <stdio.h>

#include<conio.h>

void main(){

int result ;
int addition() ; // function declaration

clrscr() ;

result = addition() ; // calling function

printf("SUM = %d", result) ;

getch() ;

}

int addition() // called function

{
int num1, num2 ;

num1 =10;

num2 =20;

return (num1+num2) ;

}

Output

SUM=30

Bi-Directional Communication

In this type of communication, the data is transferred from called function to calling function and also

from calling function to called function. The function with parameters and with return value is considered

under Bi-Directional communication.

83

1. Call byvalue

2. Call byreference

Example

#include <stdio.h>

#include<conio.h>

void main(){

int num1, num2, result ;
int addition(int, int) ; // function declaration

clrscr() ;

num1 = 10 ;

num2 = 20 ;

result = addition(num1, num2) ; // calling function

printf("SUM = %d", result) ;

getch() ;

}

int addition(int a, int b) // called function

{

return (a+b) ;

}

Output

SUM=30

Function Calls

This calls the actual function

Syntax:

function_name (arguments list);

There are two ways that a C function can be called from a program. They are,

Call by Value

 In call by value method, the value of the variable is passed to the function as parameter.

 The value of the actual parameter cannot be modified by formal parameter.

 Different Memory is allocated for both actual and formal parameters. Because, value of actual

parameter is copied to formal parameter.

84

Note:

 Actual parameter – This is the argument which is used in function call.

 Formal parameter – This is the argument which is used in function definition

Call by Reference:

 In call by reference method, the address of the variable is passed to the function as parameter.

 The value of the actual parameter can be modified by formal parameter.

 Same memory is used for both actual and formal parameters since only address is used by

both parameters.

Parameter Passing Mechanisms:

In C Programming we have different ways of parameter passing schemes such as Call by Value and Call

by Reference.

Function is good programming style in which we can write reusable code that can be called whenever

require.

Whenever we call a function then sequence of executable statements gets executed. We can pass some of

the information to the function for processing called argument.

Two Ways of Passing Argument to Function in C Language :

A. Call by Reference

B. Call by Value

Let us discuss different ways one by one –

A. Call by Value:

#include<stdio.h>

void interchange(int number1,int number2)

{

int temp;
temp = number1;

number1 = number2;

number2 = temp;

}

int main() {

int num1=50,num2=70;

interchange(num1,num2);

printf("\nNumber 1 : %d",num1);

printf("\nNumber 2 : %d",num2);

85

return(0);

}

Output:

Number 1 :50

Number 2 :70

Explanation: Call by Value

While Passing Parameters using call by value , Xerox copy of original parameter is created and

passed to the called function.

Any update made inside method will not affect the original value of variable in calling function.

In the above example num1 and num2 are the original values and Xerox copy of these values is passed

to the function and these values are copied into number1,number2 variable of sum function respectively.

As their scope is limited to only function so they cannot alter the values inside main function.

86

B. Call by Reference/Pointer/Address:

#include<stdio.h>

void interchange(int *num1,int *num2)

{

int temp;

temp = *num1;

*num1 = *num2;

*num2 = temp;

}

int main() {
int num1=50,num2=70;

interchange(&num1,&num2);

printf("\nNumber 1 : %d",num1);

printf("\nNumber 2 : %d",num2);

return(0);

}

Output :

Number 1 :70

Number 2 :50

Call by Address

While passing parameter using call by address scheme, we are passing the actual address of the variable

to the called function.

Any updates made inside the called function will modify the original copy since we are directly

modifying the content of the exact memory location.

87

Recursion

The process of calling a function by itself is called recursion and the function which calls itself is

called recursive function. Recursion is used to solve various mathematical problems by dividing

it into smaller problems.

Syntax of Recursive Function

return_type recursive_func ([argument list])

{

statements;

...

recursive_func ([actual argument]);

...

}

Flowchart of Recursion

Note: In order to prevent infinite recursive call, we need to define proper exit condition in a recursive

function.

For example, consider the program below:

88

Example #1: C Program to show infinite recursive function

#include<stdio.h>
intmain()

{

printf("Hello world");

main();

return 0;

}

In this program, we are calling main() from main() which is recursion. But we haven't defined any

condition for the program to exit. Hence this code will print "Hello world" infinitely in the output screen.

Types of recursion

 DirectRecursion

 IndirectRecursion

Direct Recursion

A function is said to be direct recursive if it calls itself directly.

Example #2: C Program Function to show direct recursion

int fibo (int n)

{

if (n==1 || n==2)

return 1;

else

return (fibo(n-1)+fibo(n-2));
}

In this program, fibo() is a direct recursive function. This is because, inside fibo() function, there

is a statement which calls fibo() function again directly.

Indirect Recursion

A function is said to be indirect recursive if it calls another function and this new function calls

the first calling function again.

Example #3: C Program Function to show indirect recursion

int func1(int n)

{

if (n<=1)
return 1;

else

return func2(n);

}

int func2(int n)

{

return func1(n);

}

Passing Array to a Function:

Whenever we need to pass a list of elements as argument to any function in C language, it is

preferred to do so using an array.

Declaring Function with array as a parameter

There are two possible ways to do so, one by using call by value and other by using call by

reference.

We can either have an array as a Parameter

int sum (int arr[]);

Or, we can have a pointer in the parameter list, to hold the base address of our

array. int sum (int* ptr);

Returning an Array from a function

We don't return an array from functions, rather we return a pointer holding the base address of the
array to be returned.

int* sum (intx[])

{

// statements return x ;

}

Passing a single array element to a function(Call by value)

89

In this type of function call, the actual parameter is copied to the formal parameters.

Example 1:

#include<stdio.h>
void giveMeArray(int a);

int main()

{
int myArray[] = { 2, 3, 4 };

giveMeArray(myArray[2]);

return 0;

}

void giveMeArray(int a)

{

printf("%d", a);

}

Output: 4

Example 2:

#include <stdio.h> void disp(char ch)

{

printf("%c ", ch);

}

int main()

{

char arr[] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'};

for (int x=0; x<10; x++)

{

disp (arr[x]);

}

return 0;

}

OUTPUT: a b c d e f g h i j

Passing array to function using call by reference

When we pass the address of an array while calling a function then this is called function call by

reference. When we pass an address as an argument, the function declaration should have a

pointer as a parameter to receive the passed address.

#include <stdio.h>

void disp(int *num)

{

90

https://beginnersbook.com/2014/01/c-pointers/

printf("%d ", *num);

}

int main()

{

int arr[] = {1, 2, 3, 4, 5, 6, 7, 8,9, 0};

for (int i=0; i<10;i++)

{

/* Passing addresses of array elements*/
disp (&arr[i]);

}

return 0;

}

OUTPUT:

1 2 3 4 5 6 7 8 9 0

Passing a complete One-dimensional array to a function

We will only send in the name of the array as argument, which is nothing but the address of the

starting element of the array, or we can say the starting memory address.

#include<stdio.h>

float findAverage(int marks[]);

int main()

{

float avg;

int marks[] = {99, 90, 96, 93, 95};
avg = findAverage(marks);

printf("Average marks = %.1f", avg);

return 0;

}

float findAverage(int marks[])
{

int i, sum = 0;
float avg;

for (i = 0; i <= 4; i++)

{

sum += age[i];

}
avg = (sum / 5);

return avg;

}

Output: 94.6

91

Passing a Multi-dimensional array to a function

For two dimensional array, we will only pass the name of the array as argument.

#include<stdio.h>

void displayArray(int arr[3][3]); int main()

{

int arr[3][3], i, j;

printf("Please enter 9 numbers for the array: \n");

for (i = 0; i < 3;++i)

{

for (j = 0; j < 3;++j)

{

scanf("%d", &arr[i][j]);

}

}
// passing the array as argument displayArray(arr);

return 0;

}

void displayArray(int arr[3][3])

{

int i, j;

printf("The complete array is:\n");
for (i = 0; i < 3;++i)

{

// getting cursor to new lineprintf("\n");

for (j = 0; j < 3;++j)

{
// \t is used to provide tab space printf("%4d", arr[i][j]);

}

}

}

Output:

Please enter 9 numbers for the array: 1 2 3 4 5 6 7 8 9

The complete array is: 1 2 3 4 5 6 7 8 9

Passing string to function

 A string is a collection of characters.

 A string is also called as an array of characters.

 A String must access by %s access specifier in c andc++.

 A string is always terminated with \0 (Null) character.

92

93

 Example of string:“Gaurav”

 A string always recognized in double quotes.

 A string also consider space as character.

 Example: ” GauravArora”

 The above string contains 12characters.

 Example: Charar[20]

 The above example will store 19 character with I null character.

Strings are just char arrays. So, they can be passed to a function in a similar manner as arrays.

#include <stdio.h>

void displayString(char str[]);

int main()

{
char str[50]; printf("Enter string: ");
gets(str);

displayString(str);

// Passing string c to function. return 0;

}

void displayString(char str[])

{
printf("String Output: ");

puts(str);

}

Here, string c is passed from main() function to user-defined function

displayString(). In function declaration, str[] is the formal argument

Example-2 :

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

void strreverse(char *string)

{
int i, len;

char c;

len=strlen(string);
charstring2[len+1];

for(i=0; i<len;i++)

{

c=string[i];

94

string2[len-i]=c;

}
string2[len+1]='\0';

string=string2;

//printf("%s\n", string);
}

int main(int argc, char *argv[])

{

char str[256];

printf("Type a String to reverse it.[max. 255 chars]\n");
fgets(str, 255, stdin);

strreverse(&str[0]);

printf("%s", str);

return 0;

}

Storage Classes

Every Variable in a program has memory associated with it.

Memory Requirement of Variables is different for different types of

variables. In C, Memory is allocated & released at different places

Term Definition

Scope
Region or Part of Program in which Variable is accessible

Extent Period of time during which memory is associated with variable

Storage

Class

Manner in which memory is allocated by the Compiler for Variable

Different Storage Classes

Storage class of variable Determines following things

Where the variable is stored
Scope of Variable

Default initial

value Lifetime of variable

95

Where the variable is stored:

Storage Class determines the location of variable, where it is declared. Variables declared with

auto storage classes are declared inside main memory whereas variables declared with keyword

register are stored inside the CPU Register.

Scope of Variable

Scope of Variable tells compile about the visibility of Variable in the block. Variable may have

Block Scope, Local Scope and External Scope. A scope is the context within a computer

program in which a variable name or other identifier is valid and can be used, or within which a

declaration has effect.

Default Initial Value of the Variable

Whenever we declare a Variable in C, garbage value is assigned to the variable. Garbage Value

may be considered as initial value of the variable. C Programming have different storage classes

which has different initial values such as Global Variable have Initial Value as 0 while the Local

auto variable have default initial garbage value.

Lifetime of variable

Lifetime of the = Time Of variable Declaration - Time of Variable Destruction Suppose we have

declared variable inside main function then variable will be destroyed only when the control

comes out of the main .i.e end of the program.

Different Storage Classes:

 Auto Storage Class

 Static Storage Class

 Extern Storage Class

 Register Storage Class

Automatic (Auto) storage class

This is default storage class

All variables declared are of type Auto by default

In order to Explicit declaration of variable use ‗auto„ keyword

auto int num1 ; // Explicit Declaration

http://www.c4learn.com/c-programming/c-auto-storage-class/
http://en.wikipedia.org/wiki/Scope_(computer_science)
http://www.c4learn.com/c-programming/c-storage-class/
http://www.c4learn.com/c-programming/c-storage-class/
http://www.c4learn.com/c-programming/c-storage-class/

96

Features:

Storage
Memory

Scope Local / Block Scope

Life time Exists as long as Control remains in the block

Default initial

Value

Garbage

Example

void main()
{
auto mum = 20 ;
{
auto num = 60 ;
printf("nNum :%d",num);
}
printf("nNum :%d",num);
}

Note :

Two variables are declared in different blocks , so they are treated as different variables

External (extern) storage class in C Programming

Variables of this storage class are ―Global variables‖

Global Variables are declared outside the function and are accessible to all functions in the

program

Generally , External variables are declared again in the function using keyword extern In order to

Explicit declaration of variable use ‗extern„ keyword

extern int num1 ; // Explicit Declaration

97

Features :

Storage Memory

Scope
Global / File Scope

Life time Exists as long as variable is running Retains

value within the function

Default initial Value
Zero

Example

int num = 75 ;

void display();

void main()

{
extern int num ;

printf("nNum : %d",num);

display();

}

void display()

{

extern int num ;

printf("nNum : %d",num);

}

Static Storage Class

The static storage class instructs the compiler to keep a local variable in existence

during the life- time of the program instead of creating and destroying it each time it

comes into and goes out of scope. Therefore, making local variables static allows them

to maintain their values between function calls. The static modifier may also be

applied to global variables. When this is done, it causes that variable's scope to be

restricted to the file in which it is declared.

In C programming, when static is used on a class data member, it causes only one copy

of that member to be shared by all the objects of its class.

98

#include <stdio.h>

void func(void);

static int count = 5; /* global variable

*/ main() {
while(count--)

{

func();

}

return 0;

}

void func(void)

{

static int i = 5;
/* local static variable*/

i++;

printf("i is %d and count is %d\n", i, count);

}

Register Storage Class

register keyword is used to define local variable.

Local variable are stored in register instead of

RAM.

As variable is stored in register, the Maximum size of variable = Maximum Size of

Register unary operator [&] is not associated with it because Value is not stored in

RAM instead it is stored in Register.

This is generally used for

faster access.

Communisis―Counter―

Example

#include<stdio.h>

int main()

{
int num1,num2;

register int sum;

printf("\nEnter the Number 1 : ");

scanf("%d",&num1);

printf("\nEnter the Number 2 : ");

scanf("%d",&num2);

sum=num—num2;
 printf("\nSum of Numbers :%d",sum);

return(0);

}

Preprocessor directives

The C preprocessor is a macro processor that is used automatically by the C compiler to

transform your program before actual compilation (Preprocessor directives are executed before

compilation.). It is called a macro processor because it allows you to define macros, which are

brief abbreviations for longer constructs. A macro is a segment of code which is replaced by the

value of macro. Macro is defined by #define directive.

Preprocessing directives are lines in your program that start with #. The # is followed by an

identifier that is the directive name. For example, #define is the directive that defines a macro.

Whitespace is also allowed before and after the #.

The # and the directive name cannot come from a macro expansion. For example, if foo is

defined as a macro expanding to define, that does not make #foo a valid preprocessing

directive.

All preprocessor directives starts with hash # symbol.

List of preprocessor directives :

1. #include
2. #define
3. #undef
4. #ifdef
5. #ifndef
6. #if
7. #else
8. #elif
9. #endif
10. #error

11. #pragma

1. #include

The #include preprocessor directive is used to paste code of given file into current file. It is

used include system- defined and user-defined header files. If included file is not found,

compiler renders error. It has three variants:

99

100

#define PI 3.1415

#include

<stdio.h>

#define PI

3.1415 main()

{

#include <file>

This variant is used for system header files. It searches for a file named file in a list of

directories specified by you, then in a standard list of system directories.

#include "file"

This variant is used for header files of your own program. It searches for a file named file first

in the current directory, then in the same directories used for system header files. The current

directory is the directory of the current input file.

#include anything else

This variant is called a computed #include. Any #include directive whose argument does not fit

the above two forms is a computed include.

2. Macro's(#define)

Let's start with macro, as we discuss, a macro is a segment of code which is replaced by the

value of macro. Macro is defined by #define directive.

Syntax

 #define token value

There are two types of macros:

1. Object-likeMacros

2. Function-likeMacros

1. Object-like Macros

The object-like macro is an identifier that is replaced by value. It is widely used to represent

numeric constants. For example:

Here, PI is the macro name which will be replaced by the value 3.14. Let's see an example of

Object-like Macros

:

Output:

3.14000

2. Function-like Macros

The function-like macro looks like function call. For example:

 #define MIN(a,b) ((a)<(b)?(a):(b)

Here MIN is the macro name. Let's see an example of Function-like Macros :

#include <stdio.h>

#define MIN(a,b) ((a)<(b)?(a):(b))

void main()

{

printf("Minimum between 10 and 20 is: %d\n", MIN(10,20));
}

Output:

Minimum between 10 and 20 is: 10

Preprocessor Formatting

A preprocessing directive cannot be more than one line in normal circumstances. It may be

split cosmetically with Backslash-Newline. Comments containing Newlines can alsodivide

the directive into multiple lines.

for example, you can split a line cosmetically with Backslash-Newline anywhere:

is equivalent into #define FOO 1020.

3. #undef

To undefined a macro means to cancel its definition. This is done with the

#undef directive. Syntax:

 #undef token

define and undefine example

#include <stdio.h>

#define PI 3.1415
#undef PI
main()

{ printf("%f",PI);

}

101

Output:

Compile Time Error: 'PI' undeclared

4. #ifdef

The #ifdef preprocessor directive checks if macro is defined by #define. If yes, it

executes the code.

Syntax:

#ifdef MACRO
//code
#endif

5. #ifndef

The #ifndef preprocessor directive checks if macro is not defined by #define. If yes, it

Syntax:

#ifndef MACRO
//code

#endif

6. #if

The #if preprocessor directive evaluates the expression or condition. If condition is true, it

executes the code.

Syntax:

#if expression

//code

#endif

7. #else

The #else preprocessor directive evaluates the expression or condition if condition of #if is

false. It can be used with #if, #elif, #ifdef and #ifndef directives.

102

Syntax:

#if expression

//if code
#else

//else code
#endif

Syntax with #elif

#if expression

//if code

#elif expression
//elif code
#else

//else code
#endif

8. #error

The #error preprocessor directive indicates error. The compiler gives fatal error if #error
directive is found and skips further compilation process.

C #error example

#include<stdio.h>

#ifndef MATH_H

#error First include then compile #else

void main(){ float a; a=sqrt(7);

printf("%f",a);

}

#endif

9. #pragma

The #pragma preprocessor directive is used to provide additional information to the compiler.
The #pragma directive is used by the compiler to offer machine or operating-system feature.
Different compilers can provide different usage of #pragma directive.

Syntax:

#pragma token

103

A better approach will be to have a collection of all related information under a single name

Person, and use it for every person. Now, the code looks much cleaner, readable and efficient as

well.

This collection of all related information under a single name Person is a structure.

Structure Definition in C

Keyword structis used for creating a structure.

Syntax of structure

struct structure_name

{

data_type member1;

data_type member2;

Need of structures

MODULE -IV

STRUCTURES, UNIONS AND POINTERS

Structure is a collection of variables of different types under a single name.

For example: You want to store some information about a person: his/her name, citizenship

number and salary. You can easily create different variables name, citNo, salary to store these

information separately.

However, in the future, you would want to store information about multiple persons. Now, you'd

need to create different variables for each information per person: name1, citNo1, salary1,

name2, citNo2,salary2

You can easily visualize how big and messy the code would look. Also, since no relation

between the variables (information) would exist, it's going to be a daunting task.

.

.

data_type memeber;};

104

Note: Don't forget the semicolon }; in the ending line.

We can create the structure for a person as mentioned above as:

struct person

{

char name[50];

int citNo;

float salary;

};

This declaration above creates the derived data type struct person.

Structure variable declaration

When a structure is defined, it creates a user-defined type but, no storage or memory is allocated.
For the above structure of a person, variable can be declared as:

struct person

{

char name[50];

int citNo;

float salary;

};

int main()

{

struct person person1, person2, person3[20];

return 0;

}

Another way of creating a structure variable is

struct person

{

char name[50];

int citNo;

float salary;

105

} person1, person2, person3[20];

In both cases, two variables person1, person2 and an array person3 having 20 elements of type

struct person are created.

Accessing members of a structure

There are two types of operators used for accessing members of a structure.

1. Member operator(.)

2. Structure pointer operator(->) (is discussed in structure and pointers tutorial)

3. Any member of a structure can be accessed as:

structure_variable_name.member_name

Suppose, we want to access salary for variable person2. Then, it can be accessed as:

person2.salary

Example of structure

Write a C program to add two distances entered by user. Measurement of distance should be

in inch and feet. (Note: 12 inches = 1 foot)

#include <stdio.h> struct Distance

{

int feet; floatinch;
} dist1, dist2,sum;

int main()

{

printf("1st distance\n");

// Input of feet for structure variable dist1 printf("Enter feet:");
scanf("%d",&dist1.feet);

// Input of inch for structure variable dist1 printf("Enter inch: ");
scanf("%f",&dist1.inch);

106

https://www.programiz.com/c-programming/c-structures-pointers

printf("2nd distance\n");

// Input of feet for structure variable dist2 printf("Enter feet:");
scanf("%d",&dist2.feet);

// Input of feet for structure variable dist2 printf("Enter inch: ");

scanf("%f",&dist2.inch);

sum.feet = dist1.feet + dist2.feet; sum.inch = dist1.inch + dist2.inch;

if (sum.inch > 12)

{

//If inch is greater than 12, changing it to feet.

++sum.feet;

sum.inch = sum.inch - 12;

}

// printing sum of distance dist1 and dist2

printf("Sum of distances = %d\'-%.1f\"", sum.feet, sum.inch); return 0;

}

Output

1st distance Enter feet: 12

Enter inch: 7.9 2nd distance Enter feet: 2
Enter inch: 9.8

Sum of distances = 15'-5.7"

Structure Initialization

1. When we declare a structure, memory is not allocated for un-initialized variable.

2. Let us discuss very familiar example of structure student , we can initialize structure

variable in different ways–

Way1: Declare and Initialize

struct student

{
char name[20];

int roll;

float marks;

}std1 = { "Pritesh",67,78.3 };

107

In the above code snippet, we have seen that structure is declared and as soon as after declaration

we have initialized the structure variable.

Way2: Declaring and Initializing Multiple Variables

struct student

{
char name[20];

int roll;

float marks;

}

std1 = {"Pritesh",67,78.3};
std2 = {"Don",62,71.3};

In this example, we have declared two structure variables in above code. After declaration of

variable we have initialized two variable.

Way3: Initializing single member

struct student

{

int mark1;

int mark2;

int mark3;

} sub1={67};

Though there are three members of structure,only one is initialized , Then remaining two membersare

initialized with Zero. If there are variables of other data type then their initial values will be–

Data Type Default value if not initialized

integer 0

float 0.00

char NULL

Way4: Initializing inside main

struct student

{

int mark1;

108

109

int mark2;

int mark3;

};

void main()

{

struct student s1 = {89,54,65};

- - - ---

- - - ---

- - - ---

};

When we declare a structure then memory won‟t be allocated for the structure. i.e only writing

below declaration statement will never allocate memory

struct student

{

int mark1;

int mark2;

int mark3;

};

We need to initialize structure variable to allocate some memory to the structure

Accessing StructureMembers

1. Array elements are accessed using the Subscript variable , Similarly Structuremembers

are accessed using dot [.]operator.

2. (.) is called as ―Structure member Operator‖.

3. Use this Operator in between “Structure name” &“membername”.

#include<stdio.h>

struct stud

{

char name[20];
char fname[10];

};

struct stud s;

119

main()

{

scanf("%s%s",&s.name,&s.fname);

printf("%s%s",s.name,s.fname);

}

Output:

Vedha

srinivas

Vedhasrinivas

struct employee

{

char name[100];

int age;

float salary;

char department[50];

} employee_one = {"Jack", 30, 1234.5, "Sales"};

int age = employee_one.age;

float salary= employee_one.salary;

char department= employee_one.department;

ACCESSING ARRAY OF STRUCTURE ELEMTS

STRUCT STUD

{

Datatype member1;

Datatype member2;

.

111

.

} struct stud s[50];

Members of structures are accessed through dot operator. Eg:

stud[i].memeber1 Stud[i].member2

#include<stdio.h>

struct stud

{

char name[20];

};

struct stud s[10];

main()

{

int i,n;

for(i=0;i<2;i++)

{

scanf("%s",&s[i].name);

printf("%s",s[i].name);

}

}

Output:

Swapna

Divya

Swapna

divya

112

Nested Structures

A structure can be nested inside another structure. In other words, the members of a

structure can be of any other type including structure.

Here is the syntax to create nested structures.

structure tagname_1

{
member1; member2; member3;...

Member n; structure tagname_2

{

member_1; member_2; member_3;...

member_n;

},var1

}var2;

To access the members of the inner structure, we write a variable name of the outer structure, followed

by a dot(.) operator, followed by the variable of the inner structure, followed by a dot(.) operator, which

is then followed by the name of the member we want to access.

var2.var1.member_1 - refers to the member_1 of structure tagname_2

var2.var1.member_2 - refers to the member_2 of structure tagname_2

Let's take an example:

struct student
{
struct person

{
char name[20];
int age;

char dob[10];

} p ;
int rollno;

float marks;

} stu;

113

Here we have defined structure person as a member of structure student. Here is how we can access

the members of person structure.

stu.p.name - refers to the name of the person

stu.p.age - refers to the age of the person stu.p.dob -

refers to the date of birth of the person

It is important to note that structure person doesn't exist on its own. We can't declare structure variable

of type struct person anywhere else in the program.

Instead of defining the structure inside another structure. We could have defined it outside and then

declare it's variable inside the structure where we want to use it. For example:

struct person

{
char name[20];

int age;

char dob[10];

};

We can use this structure as a part of a bigger structure

struct student

{

struct person info;

int rollno;

float marks;

}

Here the first member is of type struct person. If we use this method of creating nested structures then

you must first define the structures before creating variables of its types. So, it's mandatory for you to

first define person structure before using it's variable as a member of the structure student.

The advantage of using this method is that now we can declare a variable of type struct person in

anywhere else in the program.

114

Initializing nested Structures

Nested structures can be initialized at the time of declaration. For example:

struct person

{

char name[20]; int age; char dob[10];

};

struct student

{

struct person info; int rollno; float
marks[10];

}

struct student student_1 = {{"Adam", 25,1990},101,90};

The following program demonstrates how we can use nested structures.

#include<stdio.h>
struct person

{
char name[20];

int age;

char dob[10];

};

struct student

{

struct person info; int roll_no; float marks;

};

int main()

{

struct student s1;

printf("Details of student: \n\n");

printf("Enter name: "); scanf("%s", s1.info.name);

printf("Enter age: "); scanf("%d", &s1.info.age);
printf("Enter dob: "); scanf("%s", s1.info.dob);

printf("Enter roll no: "); scanf("%d", &s1.roll_no);

printf("Enter marks: "); scanf("%f", &s1.marks);

printf("\n*******************************\n\n");

printf("Name: %s\n", s1.info.name);

printf("Age: %d\n", s1.info.age);
printf("DOB: %s\n", s1.info.dob); printf("Roll no:%d\n", s1.roll_no); printf("Marks: %.2f\n",
s1.marks);

signal to operating system program ran fine return 0;

}

115

Need of array of structures:

Structure is collection of different data type. An object of structure represents a single record in memory,
if we want more than one record of structure type, we have to create an array of structure or object. As we

know, an array is a collection of similar type, therefore an array can be of structure type.

Structure is used to store the information of One particular object but if we need to store such 100 objects
then Array of Structure is used.

Syntax

Struct struct-name

{

datatype var1;
datatype var2;

datatype varN

};

Struct struct-name obj[size]

Initializing Array of Structure:

Array elements are stored in consecutive memory Location. Like Array , Array of Structure can
be initialized at compile time.

Way1 : Initializing After Declaring Structure Array :

struct Book

{

char bname[20];

int pages;

char author[20];

float price;

}b1[3] = {{"Let us C",700,"YPK",300.00},

{"Wings of Fire",500,"APJ AbdulKalam",350.00},

{"Complete C",1200,"HerbtSchildt",450.00}

};

116

Explanation:

As soon as after declaration of structure we initialize structure with the pre-defined values. For each

structure variable we specify set of values in curly braces. Suppose we have 3 Array Elements then we

have to initialize each array element individually and all individual sets are combined to form single set.

{"Let us C",700,"YPK",300.00}

Above set of values are used to initialize first element of the array. Similarly –

{"Wings of Fire",500,"APJ Abdul Kalam",350.00} is

used to initialize second element of the array.

Way 2 : Initializing in Main

struct Book

{

char bname[20];

int pages;

char author[20];

float price;

};

void main()

{

struct Book b1[3] = {{"Let us C",700,"YPK",300.00},

{"Wings of Fire",500,"AbdulKalam",350.00},

{"Complete C",1200,"HerbtSchildt",450.00}

};

}

117

C Program on book details using array of structures:

#include <stdio.h>

struct Bookinfo

{

char[20] bname;

int pages;

int price;

}book[3];

int main(int argc, char *argv[])

{

int i;

for(i=0;i<3;i++)

{

printf("\nEnter the Name of Book: ");

gets(book[i].bname);

printf("\nEnter the Number of Pages : ");

scanf("%d",book[i].pages);

printf("\nEnter the Price of Book : ");

scanf("%f",book[i].price);

}

printf("\n---------BookDetails -------------------- ");

for(i=0;i<3;i++)

{

printf("\nName of Book : %s",book[i].bname);

printf("\nNumber of Pages : %d",book[i].pages);

printf("\nPrice of Book : %f",book[i].price);

}

return 0;

}

118

Some Observations and Important Points:

Tip #1 : All Structure Members need not be initialized

#include<stdio.h>

struct Book

{

char bname[20];

int pages;

char author[20];

floatprice;

}b1[3] ={

{"Book1",700,"YPK"},

{"Book2",500,"AAK",350.00},

{"Book3",120,"HST",450.00}

};

void main()

{

printf("\nBook Name: %s",b1[0].bname);

printf("\nBook Pages : %d",b1[0].pages);

printf("\nBook Author : %s",b1[0].author);

printf("\nBook Price : %f",b1[0].price);

}

In this example , While initializing first element of the array we have not specified the price of book 1.It

is not mandatory to provide initialization for all the values. Suppose we have 5 structure elements and we

provide initial values for first two element then we cannot provide initial values to remaining elements.

119

{"Book1",700,,90.00}

above initialization is illegal and can cause compile time error. Tip #2 :

Default Initial Value

struct Book

{

char bname[20];

int pages;

char author[20];

floatprice;

}b1[3] ={

{},

{"Book2",500,"AAK",350.00},

{"Book3",120,"HST",450.00}

};

Output :

BookName :

Book Pages : 0 Book

Author :

Book Price : 0.000000

Structures and functions

In C, structure can be passed to functions by two methods:

1.Passing by value (passing actual value as argument)

2.Passing by reference (passing address of an argument)

120

Passing structure by value

A structure variable can be passed to the function as an argument as a normal variable.

If structure is passed by value, changes made to the structure variable inside the function
definition does not reflect in the originally passed structure variable.

C program to create a structure student, containing name and roll and display the information.

#include <stdio.h>

struct student

{

char name[50];
int roll;

};
void display(struct student stu);

int main()

{
struct student stud;

printf("Enter student's name: ");

scanf("%s", &stud.name);

printf("Enter roll number:");

scanf("%d",&stud.roll);

display(stud); // passing structure variable stud as argument return 0;

}
void display(struct student stu){

printf("Output\nName: %s",stu.name);

printf("\nRoll: %d",stu.roll);

}

Output :

Enter student's name: Raju

Enter roll number: 48

Name: Raju

Roll : 48

Passing structure by reference

The memory address of a structure variable is passed to function while passing it by reference. If structure

is passed by reference, changes made to the structure variable inside function definition reflects in the

originally passed structure variable.

C program to add two distances and display the result without the return statement.

#include <stdio.h>

struct distance

121

{
int feet;

float inch;

};
void add(struct distance d1,struct distance d2, struct distance *d3);
int main()

{

struct distance dist1, dist2, dist3;

printf("First distance\n");

printf("Enter feet: ");

scanf("%d", &dist1.feet);

printf("Enter inch: ");

scanf("%f", &dist1.inch);

printf("Second distance\n");

printf("Enter feet: ");

scanf("%d", &dist2.feet);

printf("Enter inch: ");

scanf("%f", &dist2.inch);

add(dist1, dist2, &dist3);

printf("\nSum of distances = %d\'-%.1f\"", dist3.feet, dist3.inch);

return 0;

}

void add(struct distance d1,struct distance d2, struct distance *d3)

{

d3-> feet = d1.feet + d2.feet;

d3-> inch = d1.inch + d2.inch;

if (d3->inch >= 12)

{

d3->inch -= 12;

++d3->feet;

}

}

Output:

First distance

Enter feet:12

Enter inch: 6.8

Second distance

Enter feet:5

Enter inch: 7.5

Sum of distances = 18'-2.3"

122

Structure and Pointer

Structures can be created and accessed using pointers. A pointer variable of a structure can be created as below:

struct name

{
member1;
member2;

.

.

.

};

int main()

{

struct name *ptr;

}

Here, the pointer variable of type struct nameis created.

Accessing structure's member through pointer

A structure's member can be accesssed through pointer in two ways:

Referencing pointer to another address to access memory

Using dynamic memory allocation

1. Referencing pointer to another address to access the memory

Consider an example to access structure's member through pointer.

#include<stdio.h>

typedef struct person

{

int age;

float weight;

};

int main()

{

struct person *personPtr, person1;
personPtr=&person1; // Referencing pointer to memory address ofperson1

printf("Enterinteger:");

scanf("%d",&(*personPtr).age);

https://www.programiz.com/c-programming/c-structures
https://www.programiz.com/c-programming/c-pointers

123

printf("Enter number: ");

scanf("%f",&(*personPtr).weight);

printf("Displaying: ");

printf("%d%f",(*personPtr).age,(*personPtr).weight);

return 0;

}

In this example, the pointer variable of type struct personis referenced to the address of person1. Then,

only the structure member through pointer can can accessed.

Using -> operator to access structure pointer member

Structure pointer member can also be accessed using -> operator.

(*personPtr).age is same as personPtr->age

(*personPtr).weight is same as personPtr->weight

2. Accessing structure member through pointer using dynamic memoryallocation

To access structure member using pointers, memory can be allocated dynamically using

malloc()functiondefined under "stdlib.h" header file.

Syntax to use malloc()

ptr = (cast-type*) malloc(byte-size)

Example to use structure's member through pointer using malloc() function.

#include<stdio.h>

#include<stdlib.h>

struct person {

int age;
float weight;

char name[30];

};

int main()

{
struct person *ptr;

int i, num;

printf("Enter number of persons: ");

scanf("%d", &num);

ptr = (struct person*) malloc(num * sizeof(struct person));

// Above statement allocates the memory for n structures with pointer personPtr pointing to base
address */ for(i = 0; i < num; ++i)

https://www.programiz.com/c-programming/c-dynamic-memory-allocation
https://www.programiz.com/c-programming/c-dynamic-memory-allocation

124

{

printf("Enter name, age and weight of the person respectively:\n"); scanf("%s%d%f", &(ptr+i)-

>name, &(ptr+i)->age, &(ptr+i)->weight);

}

printf("Displaying Infromation:\n");
for(i = 0; i < num; ++i)

printf("%s\t%d\t%.2f\n", (ptr+i)->name, (ptr+i)->age, (ptr+i)->weight);
return 0;

}

Output

Enter number of persons: 2

Enter name, age and weight of the person respectively:

Adam

2

3.2

Enter name, age and weight of the person respectively: Eve6

2.3

Displaying Information:

Adam 2 3.20

Eve 6 2.30

In C, structure can be passed to functions by two methods:

 Passing by value (passing actual value asargument)

 Passing by reference (passing address of anargument)

Passing structure by value

A structure variable can be passed to the function as an argument as a normal variable.

If structure is passed by value, changes made to the structure variable inside the function

definition does not reflect in the originally passed structure variable.

C program to create a structure student, containing name and roll and display the information.

#include <stdio.h>

125

struct student

{

char name[50];
int roll;

};

void display(struct student stu);

// function prototype should be below to the structure declaration otherwise compiler shows error

int main()

{
struct student stud;

printf("Enterstudent's name: ");

scanf("%s",&stud.name);

printf("Enter rollnumber:");

scanf("%d",&stud.roll);

display(stud); // passing structure variable stud as argument return 0;

}
void display(struct student stu){

printf("Output\nName: %s",stu.name);

printf("\nRoll: %d",stu.roll);

}

Output

Enter student's name: Kevin Amla
Enter roll number: 149

Output

Name: Kevin Amla

Roll: 149

Passing structure by reference

The memory address of a structure variable is passed to function while passing it by reference.

If structure is passed by reference, changes made to the structure variable inside function
definition reflects in the originally passed structure variable.

C program to add two distances (feet-inch system) and display the result without the return

statement.

#include <stdio.h>

126

struct distance

{

int feet;
float inch;

};

void add(struct distance d1,struct distance d2, struct distance *d3);
int main()

{
struct distance dist1, dist2, dist3;

printf("First distance\n");

printf("Enter feet: ");

scanf("%d", &dist1.feet);

printf("Enter inch: ");

scanf("%f", &dist1.inch);

printf("Second distance\n");

printf("Enter feet: ");

scanf("%d", &dist2.feet);

printf("Enter inch: ");

scanf("%f", &dist2.inch);

add(dist1, dist2, &dist3);

//passing structure variables dist1 and dist2 by value whereas passing structure variable dist3 by
reference

printf("\nSum of distances = %d\'-%.1f\"", dist3.feet, dist3.inch);

return 0;

}

void add(struct distance d1,struct distance d2, struct distance *d3)

{

//Adding distances d1 and d2 and storing it in d3 d3-

>feet = d1.feet + d2.feet;

d3->inch = d1.inch + d2.inch;

if (d3->inch >= 12) { /* if inch is greater or equal to 12, converting it to feet. */ d3-

>inch -=12;

++d3->feet;

}

}

127

Output

First distance
Enter feet: 12

Enter inch: 6.8

Second distance Enter
feet: 5

Enter inch: 7.5

Sum of distances = 18'-2.3"

In this program, structure variables dist1 and dist2 are passed by value to the addfunction

(because value of dist1 and dist2 does not need to be displayed in main function).

But, dist3 is passed by reference ,i.e, address of dist3 (&dist3) is passed as an argument.

Due to this, the structure pointer variable d3 inside the add function points to the address ofdist3

from the calling main function. So, any change made to the d3 variable is seen in dist3 variable

in main function.

As a result, the correct sum is displayed in the output.

Self Referential Structures:

Self referential structures contain a pointer member that points to a structure of the same
structure type.

In other words, a self-referential C structure is the one which includes a pointer to an instance
of itself.

Syntax of Self-Referential Structure in C Programming

struct demo

{

Data_type member1, member2;

struct demo *ptr1, *ptr2;

}

128

As you can see in the syntax, ptr1 and ptr2 are structure pointers that are pointing to the structure

demo, so structure demo is a self referential structure. These types of data structures are helpful

in implementing data structures like linked lists and trees.

It is an error to use a structure variable as a member of its own struct type structure or union type

union, respectively.

Self Referential Structure Example

struct node

{
int data;
struct node *nextPtr;

}

nextPtr

 is a pointer member that points to a structure of the same type as the one beingdeclared.

 is referred to as a link. Links can tie one node to anothernode.

The concept of linked lists, stacks, queues, trees and many others works on the principle
of self-referential structures.

One important point worth noting is that you cannot reference the typedef that you create within

the structure itself in C programming.

An example of Self-Referential Structure in C

#include<stdio.h>

#include<stdlib.h>-
struct node //structure of the node in the list

{

int info;

struct node * link;

};

int main()

{

int choice;

typedef struct node NODE;

NODE *PTR, *START;

START = NULL;//Initialising START to NULL
while(1)

{
printf("\n1.Enter the new node at the start\n");

printf("2.Display the elements of the list\n");

http://www.codingalpha.com/stack-using-linked-list-c-program/

129

printf("3.Exit\n");

printf("Enter Choice\n");

scanf("%d",&choice);

switch(choice)

{
case 1:PTR = (NODE*)malloc(sizeof(NODE)); //Allocating Memory to new node

printf("Enter the number you want to enter at the start\n");

scanf("%d",&PTR->info);

if(START == NULL)

{
START = PTR;

PTR->link = NULL;

}

else

{

PTR->link = START;

START = PTR;

}

break;

case 2:PTR = START;
printf("The elements in the list are::\n");

while(PTR->link != NULL)

{
printf("%d\t",PTR->info);

PTR = PTR->link;

}
printf("%d",PTR->info);
break;

case 3:exit(1);
break;

default: printf("\nEnter Valid Choice");

}

}

return 0;

}

Unions in CLanguage

Unions are conceptually similar to structures. The syntax to declare/define a union is also similar to that

of a structure. The only differences is in terms of storage. In structure each member has its own storage

location, whereas all members of union uses a single shared memory location which is equal to the size

of its largest datamember.

130

#include<stdio.h>

struct student

{
char sname[20];

char fname[50];

int marks;

}s;

main()

{

printf("size of union=%d",sizeof(union student));

}

Output:size of union =50

Maximum size of the variable is the size of union so its size is 50.

This implies that although a union may contain many members of different types, it cannot

handle all the members at the same time. A union is declared using the union keyword.

union item

{
int m; float

x; char c;

}It1;

131

This declares a variable It1 of type union item. This union contains three members each with a

different data type. However only one of them can be used at a time. This is due to the fact that

only one location is allocated for all the union variables, irrespective of their size. Thecompiler

allocates the storage that is large enough to hold the largest variable type in theunion.

In the union declared above the member x requires 4 bytes which is largest amongst the members
for a 16-bit machine. Other members of union will share the same memory address.

Accessing a Union Member

Syntax for accessing any union member is similar to accessing structure members,

union test

{
int a;

float b;

char c;

}t;

t.a; //to access members of union t
t.b;

t.c;

Time for an Example

#include <stdio.h>

union item

{
int a;

float b;

char ch;

};

int main()

{

union item it; it.a=12;

it.b = 20.2;

it.ch = 'z';

printf("%d\n", it.a);

132

printf("%f\n", it.b);

printf("%c\n", it.ch);

return 0;

}

output

-26426

20.1999

As you can see here, the values of a and b get corrupted and only variable c prints the expected result.
This is because in union, the memory is shared among different data types. Hence, the only member
whose value is currently stored will have thememory.

In the above example, value of the variable c was stored at last, hence the value of other variables is lost.

Bit fields

Suppose your C program contains a number of TRUE/FALSE variables grouped in a structure

calle status, as follows:

struct

{

unsigned int

widthValidated;

unsigned int

heightValidated;

} status;

This structure requires 8 bytes of memory space but in actual we are going to store either 0 or 1

in each of the variables. The C programming language offers a better way to utilize the memory

space in such situation. If you are using such variables inside a structure then you can define the

width of a variable which tells the C compiler that you are going to use only those number of

bytes. For example, above structure can be re-written as follows:

struct

{
unsigned int

widthValidated : 1;

unsigned int

heightValidated :

1;

} status

133

Now, the above structure will require 4 bytes of memory space for status variable but only 2 bits will be

used to store the values. If you will use up to 32 variables each one with a width of 1 bit , then also status

structure will use 4 bytes, but as soon as you will have 33 variables, then it will allocate next slot of the

memory and it will start using 8 bytes. Let us check the following example to understand the concept:

#include <stdio.h>

#include <string.h>

/* define sim ple structure * / struct

{

unsigned int widthValidated;

unsigned int heightValidated;

} status1;

/* define a structure with bit fields * / struct

{

unsigned int widthValidated : 1;
unsigned int heightValidated : 1;

} status2;
int m ain()

{
printf("Mem ory size occupied by status1 : %d\n", sizeof(status1));

printf("Mem ory size occupied by status2 : %d\n", sizeof(status2));

return 0;

}

When the above code is compiled and executed, it produces the aboveresult:

Memory size occupied by status1 :8

Memory size occupied by status2 :4

Bit Field Declaration

The declaration of a bit-field has the form inside a structure:

struct

{
type [member_name] : width ;
};

Below the description of variable elements of a bit field:

134

Elements Description

type

An integer type that determines how the bit-field's value is

interpreted. The type may be int, signed int, unsigned int.

member_name

The name of thebit-field.

width The number of bits in the bit-field. The width must be less than

or equal to the bit width of the specified type.

The variables defined with a predefined width are called bit fields. A bit field can hold more than

a single bit for example if you need a variable to store a value from 0 to 7 only then you can

define a bit field with a width of 3 bits as follows:

struct

{

unsigned int age :3;

} Age;

The above structure definition instructs C compiler that age variable is going to use only 3 bits to
store the value, if you will try to use more than 3 bits then it will not allow you to do so.

Let us try the following example:

#include <stdio.h>

#include <string.h>
struct

{

unsigned int age : 3;

} Age;

int m ain()

{

Age.age = 4;

printf("Sizeof(Age) : %d\n", sizeof(Age));
printf("Age.age : %d\n",Age.age);

Age.age =7;
printf("Age.age : %d\n", Age.age);

Age.age =8;

printf("Age.age : %d\n", Age.age);

return 0;

}

135

When the above code is compiled it will compile with warning and when executed, it produces

the following result:

Sizeof(Age) :4

Age.age :4

Age.age :7

Age.age :0

Typedef:

The C programming language provides a keyword called typedef, which you can use to give a

type, a new name.

Syntax:

typedef data_type new_name;

typedef: It is a keyword.

data_type: It is the name of any existing type or user defined type created using structure/union.
new_name: alias or new name you want to give to any existing type or user defined type.

Following is an example to define a term BYTE for one-byte numbers − typedef unsigned char

BYTE;

After this type definition, the identifier BYTE can be used as an abbreviation for the type

unsigned char, for example..

BYTE b1, b2;

By convention, uppercase letters are used for these definitions to remind the user that the type

name is really a symbolic abbreviation, but you can use lowercase, as follows −

typedef unsigned char byte;

You can use typedef to give a name to your user defined data types as well. For example, you

can use typedef with structure to define a new data type and then use that data type to define

structure variables directly as follows −

#include <stdio.h>

#include <string.h>

typedef struct Books {

char title[50];

char author[50];
char subject[100];

int book_id;
} Book;

int main()

{

Book book;
strcpy(book.title, "C Programming");

strcpy(book.author, "Nuha Ali");

strcpy(book.subject, "C Programming Tutorial");

book.book_id = 6495407;

printf("Book title : %s\n", book.title);

printf("Book author : %s\n",book.author);

printf("Book subject : %s\n",book.subject);

printf("Book book_id : %d\n", book.book_id);

return 0;

}

OUTPUT:
Book title : C Programming Book

author : Nuha Ali

Book subject : C Programming Tutorial Book

book_id : 6495407

Structures with typedef:

Consider the following student structure

struct student

{

int mark [2];

char name [10];

float average;

}

Variable for the above structure can be declared in two ways.

st
1 way:

struct student record; /* for normal variable */ struct

student*record; /* for pointer variable*/

136

137

nd
2 way:

typedef struct student status;

When we use ―typedef‖ keyword before struct <tag_name> like above, after that we can simply use type

definition ―status‖ in the C program to declare structure variable. Now, structure variable declaration will

be, ―status record‖. This is equal to ―struct student record‖. Type definition for ―struct student‖ is status.

status = ―struct student‖.

An Alternative Way for Structure Declaration Using Typedef in C:

typedef struct student

{

int mark [2];

char name [10];

float average;

} status;

To declare structure variable, we can use the belowstatements.

status record1; /* record 1 is structure variable */ status

record2; /* record 2 is structure variable*/

// Structure using typedef:

#include <stdio.h>

#include <string.h>

typedef struct student

{

int id;

char name[20];
float percentage;

} status;
int main()

{
status record;

record.id=1;

strcpy(record.name, "Raju");

record.percentage = 86.5;

printf(" Id is: %d \n", record.id);

printf(" Name is: %s \n", record.name);

printf(" Percentage is: %f \n",

record.percentage);

return 0;

}

138

OUTPUT:

Id is: 1

Name is: Raju

Percentage is: 86.500000

Another Example

#include <stdio.h>

#include <limits.h>

int main()

{
typedef long long int LLI;

printf("Storage size for long long

int data " \"type : %ld \n", sizeof(LLI));

return 0;

}

OUTPUT: Storage size for long long int data type : 8

Enumeration data type:

An enumeration is a user-defined data type that consists of integral constants. To define an
enumeration, keyword enum is used.

Syntax:

enum flag {const1, const2,……constN};

Here, name of the enumeration is flag. Constants likeconst1,const2, , constN arevalues

of type flag.

By default, const1 is 0, const2 is 1 and so on. You can change default values of enum elements

during declaration (if necessary).

// Changing the default value of enum elements enum

suit{

club=0;

diamonds=10;

hearts=20;

spades=3;

};

139

Declaration of enumerated variable

Above code defines the type of the data but, no any variable is created. Variable of type enum

can be created as:

enum boolean{ false;

true;

};

enum boolean check;

Here, a variable check is declared which is of type enum boolean.

Example of enumerated type

#include <stdio.h>
enum week{ sunday, monday, tuesday, wednesday, thursday, friday, saturday};

int main(){

enum week today;

today=wednesday;

printf("%d day",today+1);

return 0;

}

Output

4 day

Pointers

A pointer is a variable whose value is the address of another variable, i.e., direct address of the

memory location.

Like any variable or constant, you must declare a pointer before using it to store any variable

address.

The general form of a pointer variable declaration is

Datatype *variable_name

Asterisk(*)

Asterisk is called as Indirection Operator. It is also called as Value at address Operator

140

It Indicates Variable declared is of Pointer type. pointer_name must follow the rules of identifier.
Examples for different pointer declarations:

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch; /* pointer to a character*/

Diff Between pointer and normalvariable:

int *ptr; //Here ptr is Integer PointerVariable
int ptr; //Here ptr is Normal Integer Variable Pointer

Overview: int i; int *j; j=&i;

Explanation:

i is the name given for particular memory location of ordinary variable.

Let us consider it‟s Corresponding address be 65624 and the Value stored in variable „i‟ is 5

Theaddressofthevariable„i‟isstoredinanotherintegervariablewhosenameis„j‟andwhichis having

corresponding address65522

j = &i; i.e j = Address of i

Here j is not ordinary variable , It is special variable and called pointer variable as it stores the address

of the another ordinary variable. We can summarize it like –

141

Variable Name Variable Value Variable Address

i 5 65524

j 65524 65522

Pointer Basic Example:

#include
int main()

{

int *ptr, i; i = 11;

/* address of i is assigned to ptr */ ptr = &i;

/* show i's value using ptr variable */ printf("Value of i : %d", *ptr); return 0;

}

Output

You will get value of i = 11 in the above program.

Whitespace while Writing Pointer:

pointer variable name and asterisk can contain whitespace because whitespace is ignored by

compiler. int *ptr;

int * ptr;

int * ptr;

All the above syntax are legal and valid. We can insert any number of spaces or blanks

inside declaration. We can also split the declaration on multiple lines.

Pointer information:

When we declare integer pointer then we can only store address of integer variable into that pointer.

Similarly if we declare character pointer then only the address of character variable is stored into the

pointer variable.

142

Simple Pointer Example #1:

#include<stdio.h>intmain()

{

int a = 3; int *ptr; ptr = &a;

printf(―the value of is %d‖, *ptr);

printf(―the value of a is %d‖,a);

return(0);

}

Explanation of Example:

Point Variable 'a' Variable 'ptr'

Name of Variable a ptr

Type of Value that it holds Integer Address of Integer 'a'

Value Stored 3 2001

Address of Variable 2001 (Assumption) 4001 (Assumption)

Reference operator (&) and Dereference operator (*)

The operator, & is called reference operator. It gives you the address of a variable.

One more complement operator is dereference operator (*), that gets the value from the address

Program on Reference and Dereference operator

#include <stdio.h>

int main()

{
int* pc; int c; c=22;

printf("Address of c:%u\n",&c);

printf("Value of c:%d\n\n",c); pc=&c;

printf("Address of pointer pc:%u\n",pc);

printf("Content of pointer pc:%d\n\n",*pc);

c=11;

143

printf("Address of pointer pc:%u\n",pc);

printf("Content of pointer pc:%d\n\n",*pc);

*pc=2;

printf("Address of c:%u\n",&c);

printf("Value of c:%d\n\n",c);

return0;

}

OUTPUT:

Address of c: 2686784

Value of c: 22

Address of pointer pc: 2686784

Content of pointer pc: 22

Address of pointer pc: 2686784

Content of pointer pc: 11

Address of c: 2686784

Value of c: 2D

Pointer Arithmetic

Pointer is a variable that points to a memory location. Memory addresses are numeric value that ranges

from zero to maximum memory size in bytes. These addresses can be manipulated like simple variables.

You can increment, decrement, calculate or compare these addresses manually.

C language provides a set of operators to perform arithmetic and comparison of memory addresses.

Pointer arithmetic and comparison in C is supported by following operators -

 Increment and decrement ++ and--

 Addition and Subtraction + and-

 Comparison <, >, <=, >=, ==,!=

Pointer increment and decrement

Increment operator when used with a pointer variable returns next address pointed by the pointer. The

next address returned is the sum of current pointed address and size of pointer data type.

Or in simple terms, incrementing a pointer will cause the pointer to point to a memory location

skipping Nbytes from current pointed memory location. Where N is size of pointer data type.

Similarly, decrement operator returns the previous address pointed by the pointer. The returned address is

the difference of current pointed address and size of pointer data type.

For example, consider the below statements.

144

int num = 5; // Suppose address of num = 0x1230

int*ptr; // Pointervariable

ptr=# // ptr points to 0x1230 or ptr points tonum

ptr++; // ptr now points to 0x1234, since integer size is 4 bytes

ptr--; // ptr now points to0x1230

Example program to perform pointer increment and decrement

Array in memory are stored sequentially, hence is the best example to demonstrate pointer

increment, decrement operations.

#include <stdio.h>

#define SIZE 5

int main()

{

int arr[SIZE] = {10, 20, 30, 40, 50};
int *ptr;

int count;

 ptr = &arr[0]; // ptr points to arr[0]

 count = 0;

printf("Accessing array elements using pointer \n");
while(count < SIZE)

{

printf("arr[%d] = %d \n", count, *ptr);

// Move pointer to next array element

 ptr++;

 count++;

}

return0;

}

Output-

arr[0] = 10

arr[1] = 20

arr[2] = 30

arr[3] = 40
arr[4] = 50

145

Pointer addition and subtraction

Pointer increment operation increments pointer by one. Causing it to point to a memory location

skipping N bytes (where N is size of pointer data type).

We know that increment operation is equivalent to addition by one. Suppose an integer

pointer int * ptr. Now, ptr++ is equivalent to ptr = ptr + 1. Similarly, you can add or subtract any

integer value to apointer.

Adding K to a pointer causes it to point to a memory location skipping K * N bytes. Where K is
a constant integer and N is size of pointer data type.

Let us revise the above program to print array using pointer.

#include <stdio.h>

#define SIZE 5

int main()

{

int arr[SIZE] = {10, 20, 30, 40, 50};
int *ptr;
int count;

 ptr = &arr[0]; // ptr points to arr[0]

 count = 0;

printf("Accessing array elements using pointer \n");

while(count < SIZE)

{

printf("arr[%d] = %d \n", count, *(ptr + count));

 count++;

}

return 0;

}

 When count = 0, (ptr + count) is equivalent to (ptr + 0) which points to arr[0] and hence
prints 10.

 When count = 1, (ptr + count) is equivalent to (ptr + 1) which points to arr[1] and hence

prints 20.

 Similarly when count = 4, (ptr + count) is equivalent to (ptr + 4) which points
to arr[4]and hence prints50.

146

u

lo

Output of above program is same as first program.

Pointer comparison

In C, you can compare two pointers using relational operator. You can perform six different type
of pointer comparison <, >, <=, >=, == and !=.

Note: Pointer comparison compares two pointer addresses to which they point to, instead of

comparing their values.

Pointer comparisons are less used when compared to pointer arithmetic. However, I frequently

use pointer comparison when dealing with arrays.

Pointer comparisons are useful,

 If you want to check if two pointer points to same location. Forexample,

int main()

{

int num = 10;

int *ptr1=# // ptr1 points tonum

int *ptr2=# // ptr2 also points to nm

if(ptr1 == ptr2)

{

// Both pointers points to same memory

// Do some task

}

cation

return 0;

}

 If you want to check if a pointer points within an array range. Forexample,

intmain()

{
int arr[5] = {10, 20, 30, 40, 50};

int *ptr = &arr[0]; // ptr points to arr[0]

while(ptr <= &arr[4])

{

// ptr will always point within the array

// Do some task

https://codeforwin.org/2017/08/relational-operators-c.html

147

// Move ptr to next array element

 ptr++;

}

return0;

}

Pointer to pointer

Pointers are used to store the address of other variables of similar datatype. But if you want to

store the address of a pointer variable, then you again need a pointer to store it. Thus, when one

pointer variable stores the address of another pointer variable, it is known as Pointer to

Pointer variable or DoublePointer.

Syntax:

int **p1;

Here, we have used two indirection operator(*) which stores and points to the address of a pointer

variable i.e, int *. If we want to store the address of this (double pointer) variable p1, then the syntax

would become:

int ***p2;

Simple program to represent Pointer to a Pointer

#include

<stdio.h>int main()

{

int a =10;

int *p1; //this can store the address of variablea

int**p2;

148

/*

this can store the address of pointer variable p1 only.

It cannot store the address of variable 'a'

*/

p1 = &a;

p2 = &p1;

printf("Address of a = %u\n", &a);

printf("Address of p1 = %u\n", &p1);

printf("Address of p2 = %u\n\n", &p2);

// below print statement will give the address of 'a'

printf("Value at the address stored by p2 = %u\n", *p2);

printf("Value at the address stored by p1 = %d\n\n", *p1);

printf("Value of **p2 = %d\n", **p2); //read this *(*p2)

/*

This is not allowed, it will give a compile time error-

p2 = &a;

printf("%u", p2);

*/

return0;

}

Output

Address of a =

2686724Address of p1
=2686728

Address of p2 =2686732

Value at the address stored by p2 =

2686724Value at the address stored by p1 =

10Value of **p2 =10

149

e

Explanation of the above program

p1pointer variable can only hold the address of the variable a(i.e Number of indirection operator(*)-1

variable). Similarly, p2variable can only hold the address of variable p1. It cannot hold the

address of variable a.

 *p2gives us the value at an address stored by the p2pointer. p2stores the address of p1pointer

and value at the address of p1is the address of variable a. Thus, *p2prints address ofa.

 **p2can be read as *(*p2). Hence, it gives us the value stored at the address *p2. From above

statement,youknow*p2meanstheaddressofvariablea.Hence,thevalueattheaddress*p2is

10. Thus, **p2prints 10.

Generic pointers

A Generic pointer is a special pointer that can point to object of any type. A Generic pointer is

typeless pointer also known as void pointer. void pointer is an approach towards generic

functions and generic programming in C.

Note: Writing programs without being constrained by data type is known as generic

programming.A generic function is a special function that focuses on logic without confining to

data type. For

transformed t

 xample, logic to insert values in array is common for all types and hence can be

generic function.

Syntax to declare void or Generic pointer

void * pointer-name;

Example to declare void or Generic pointer

void * vPtr;

150

How to dereference a void or Generic pointer

Dereferencing is the process of retrieving data from memory location pointed by a pointer. It
converts block of raw memory bytes to a meaningful data (data is meaningful if type is
associated).

While dereferencing a void or Generic pointer, the C compiler does not have any clue about
type of value pointed by the void pointer. Hence, dereferencing a void pointer is illegal in C.
But, a pointer will become useless if you cannot dereference it back.

To dereference a void pointer you must typecastit to a valid pointer type.

Example to dereference a void or Generic pointer

int num = 10;
void * vPtr = # // void pointer pointing at num int

value = *((int *) vPtr); // Dereferencing void pointer

void or Generic pointer arithmetic

void or Generic pointer arithmetic is illegal in C programming, due to the absence

of type. However, some compiler supports void pointer arithmetic by assuming it as

a char pointer. To perform pointer arithmetic on void pointer you must first typecast

to other type.

Example of void or Generic pointer arithmetic

int arr[] = {10, 20, 30, 40, 50};

void * vPtr = &arr; // void pointer pointing at arr

vPtr = ((int *) vPtr + 1); // add 1 to void pointer

Example program to use void pointer

Write a C function to accept an array and print its elements. The function must accept array of

different types

/**C program to demonstrate void pointer */

#include <stdio.h>

#define SIZE 10
/* Function declaration */

https://codeforwin.org/2017/08/typecasting-c-programming.html
https://codeforwin.org/2017/10/c-pointer-arithmetic.html
https://codeforwin.org/2015/07/c-program-to-read-and-print-elements-in-array.html

151

void printArray(void * vPtr, int size, int type);
int main()

{

int num[SIZE] = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};

float fractional[SIZE] = {1.1f, 1.2f, 1.3f, 1.4f, 1.5f, 1.6f, 1.7f, 1.8f, 1.9f, 2.0f}; char

characters[SIZE] = {'C', 'o', 'd', 'e', 'f', 'o', 'r', 'w', 'i', 'n'}; printf("\nElements of integer array: ");

printArray(&num, SIZE, 1);

printf("\nElements of float array: ");

printArray(&fractional, SIZE, 2);

printf("\nElements of character array: ");

printArray(&characters, SIZE, 3);

return 0;

}

/**

*Function to print array of different types.

*@vPtr Pointer to an array

*@size Size of the array

*@type Integer value specifying type of array. 1 - Integer,

*2 - Float,

*3 - Character

*/

void printArray(void * vPtr, int size, int type)

{

int i;

for(i=0; i<size; i++)

{

//Print array elements based on their type switch(type)

{

case 1:

/* Typecast void pointer to integer then print

*/ printf("%d, ", *((int *)vPtr + i)); break;
case 2:

/* Typecast void pointer to float then print */ printf("%f, ", *((float *)vPtr + i));
break; case 3:

/* Typecast void pointer to char then print */ printf("%c, ", *((char *)vPtr + i));
break;

}

}

}

Output:

Elements of integer array: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

Elements of float array: 1.100000, 1.200000, 1.300000, 1.400000, 1.500000, 1.600000,1.700000,

1.800000, 1.900000, 2.000000,

Elements of character array: C, o, d, e, f, o, r, w, i, n

152

while not end of file and array not exhausted, read a string store it in an array of strings and assign

the string to an element of a pointer array access the array of strings and print them out access the

array of pointers .

Arrays and Pointers

Arrays and pointers are closely related in C. In fact an array declared as int A[10];

can be accessed using its pointer representation. The name of the array A is a constant pointer to

the first element of the array. So A can be considered a const int*. Since A is a constant pointer,

A = NULL would be an illegal statement. Arrays and pointers are synonymous in terms of how

they use to access memory. But, the important difference between them is that, a pointer variable

can take different addresses as value whereas, in case of array it is fixed.

Consider the following array:

int age[5];

In C , name of the array always points to the first element of an array. Here, address of first

element of an array is &age[0]. Also, age represents the address of the pointer where it is

pointing. Hence, &age[0] is equivalent to age. Note, value inside the address &age[0] and address

age are equal. Value in address &age[0] is age[0] and value in address age is *age. Hence, age[0]

is equivalent to*age.

C arrays can be of any type. We define array of ints, chars, doubles etc. We can also define an

array of pointers as follows. Here is the code to define an array of n char pointers or an array of

strings.

char* A[n];

each cell in the array A[i] is a char* and so it can point to a character. Now if you would like to

assign a string to each A[i] you can do something like this.

A[i] = malloc(length_of_string + 1);

153

Again this only allocates memory for a string and you still need to copy the characters into this

string. So if you are building a dynamic dictionary (n words) you need to allocate memory for n

char*‟s and then allocate just the right amount of memory for each string.

In C, you can declare an array and can use pointer to alter the data of an array. This program

declares the array of six element and the elements of that array are accessed using pointer, and

returns the sum.

Program to find the sum of six numbers with arrays and pointers.

#include <stdio.h>

int main()

{

int i,class[6],sum=0;

printf("Enter 2 numbers:\n");

for(i=0;i<6;++i)

{

scanf("%d",(class+i)); // (class+i) is equivalent to &class[i]

sum+= *(class+i); // *(class+i) is equivalent to class[i]

}

printf("Sum=%d",sum);

return 0;

}

Output

Enter 2 numbers:

2

3

Pointer Array

A pointer is a place in memory that keeps address

of another place inside

An array is a single, pre allocated chunk of

contiguous elements (all of the same type), fixed

in size and location.

Allows us to indirectly access variables. In other

words, we can talk about its address rather than

its value

Expression a[4] refers to the 5
th
 element of the

array a.

Pointer can‟t be initialized at definition Array can be initialized at definition. Example

int num[] = { 2, 4, 5}

154

Pointer is dynamic in nature. The memory

allocation can be resized or freed later.

They are static in nature. Once memory is

allocated , it cannot be resized or freed

dynamically

Pointer Definition:

A pointer is a variable whose value is the address of another variable, i.e., direct address of the

memory location. Like any variable or constant, you must declare a pointer before using it to

store any variable address.

Function basics:

A function is a group of statements that together perform a task. Every C program has at

least one function, which is main(), and all the most trivial programs can define additional

functions.

A function declaration tells the compiler about a function's name, return type, and

parameters. A function definition provides the actual body of the function.

To call a function, you simply need to pass the required parameters along with the function
name, and if the function returns a value, then you can store the returned value.

Functions Parameter passing methods:

Call by value

This method copies the actual value of an argument into the formal parameter of the function. In

this case, changes made to the parameter inside the function have no effect on the argument.

Syntax: datatype function_name(datatype variable_name);

Call by reference:

This method copies the address of an argument into the formal parameter. Inside the function, the

address is used to access the actual argument used in the call. This means that changes made to

the parameter affect theargument.

Syntax: datatype function_name(datatype *variable_name);

155

Function example: Call by value

#include <stdio.h>
void swap(int i, int j)

{
int t;

t=i;

i=j;

j=t;

}

void main()

{

int a,b;

a=5;

b=10;

printf("%d %d\n", a, b);

swap(a,b);

printf("%d %d\n", a, b);
}

Analysis: When you execute this program, you will find that no swapping takes place. The values

of a and b are passed to swap, and the swap function does swap them, but when the function

returns nothing happens.

Function example: Call by reference:

#include <stdio.h>
void swap(int *i, int*j)

{
int t;

t =*i;

*i = *j;

*j = t;

}

void main()

{
int a,b;

a=5;

b=10;

printf("%d %d\n",a,b);

swap(&a,&b);

printf("%d %d\n",a,b);

}

Analysis: The above code uses *i and *j, it means a and b. When the function completes, a andb

have beenswapped.

156

Passing Pointer to a Function:

When we pass a pointer as an argument instead of a variable then the address of the variable

is passed instead of the value. So any change made by the function using the pointer is

permanently made at the address of passedvariable.

Example:1

#include <stdio.h>

void salaryhike(int *var, int b)

{

*var = *var+b;

}

int main()

{

int salary=0,bonus=0;

printf("Enter the employee currentsalary:");

scanf("%d",&salary);

printf("Enter bonus:");

scanf("%d", &bonus);

salaryhike(&salary, bonus);

printf("Final salary: %d", salary);

return 0;

}

OUTPUT:

Enter theemployee
current salary:10000

Enter bonus:2000

Final salary:12000

Example: 2

#include <stdio.h>

void swapnum(int *num1, int *num2)

{

int tempnum;

tempnum = *num1;

*num1 = *num2;

*num2 = tempnum;

}

int main()

{

int v1 = 11, v2 = 77 ;

printf("Before swapping:");

printf("\nValue of v1 is: %d", v1);

157

printf("\nValue of v2 is: %d", v2);

/*calling swap function*/

swapnum(&v1, &v2);

printf("\nAfter swapping:");

printf("\nValue of v1 is: %d", v1);

printf("\nValue of v2 is: %d", v2);

}

Output:

Before swapping:

Value of v1 is: 11

Value of v2 is: 77

After swapping:

Value of v1 is:77

Value of v2 is: 11

Functions of returning pointers

It is also possible for functions to return a function pointer as a value. This ability increases the

flexibility of programs. In this case you must be careful, because local variables of function doesn't

live outside the function. They have scope only inside the function. Hence if you return a pointer

connected to a local variable, that pointer will be pointing to nothing when the function ends.

Example of function pointers as returned values

#include <stdio.h>

int* larger(int*, int*);

void main()

{
int a = 15;

int b = 92;

int *p;

p = larger(&a, &b);

printf("%d islarger",*p);

}

int* larger(int *x, int*y)

{

if(*x > *y)

return x;

else

return y;

}

158

Note:
1. Either use argument with functions. Because argument passed to the functions are declared inside

the calling function, hence they will live outside the function aswell.

2. Or, use static local variables inside the function and return them. As static variables have a

lifetime until the main() function exits, therefore they will be available throughouttheprogram.

Pointer to functions

It is possible to declare a pointer pointing to a function which can then be used as an argument in

another function.

A pointer to a function is declared as follows,

type (*pointer-name)(parameter);

A function pointer can point to a specific function when it is assigned the name of that function.

int sum(int, int);

int (*s)(int, int);

s = sum;

Here s is a pointer to a function sum. Now sum can be called using function pointer s along with

providing the required argument values.

s (10, 20);

Example of Pointer to Function

#include <stdio.h>
int sum(int x, int

y)

{

return x+y;

}

int main()

{

int (*fp)(int, int);

fp = sum;

int s = fp(10, 15);

printf("Sum is %d", s);

return 0;

}

Out put: 25

Example function returning pointer

#include <stdio.h>

int* findLarger(int*, int*);

159

void main()

{

int numa=0;

int numb=0;

int *result;

printf("\n\n Pointer : Show a function returning pointer:\n");

printf(" \n");

printf(" Input the first number : ");

scanf("%d", &numa);

printf(" Input the second number : ");

scanf("%d", &numb);

result=findLarger(&numa, &numb);

printf(" The number %d is larger. \n\n",*result);

}

int* findLarger(int *n1, int *n2)

{
if(*n1 > *n2) return n1;
else

return n2;

}

Out put:

Pointer : Show a function returning pointer :

--
Input the first number : 5

Input the second number : 6

The number 6 is larger.

Dynamic memory allocation

The exact size of array is unknown until the compile time, i.e., time when a compiler compiles code

written in a programming language into a executable form. The size of array you have declared

initially can be sometimes insufficient and sometimes more than required.

Dynamic memory allocation allows a program to obtain more memory space, while running or to
release space when no space is required.

Although, C language inherently does not has any technique to allocated memory dynamically, there

are 4 library functions under "stdlib.h" for dynamic memory allocation.

Dynamic memory management refers to manual memory management. This allows you to obtain
more memory when required and release it when not necessary.

malloc()

Allocates requested size of bytes and returns a pointer first byte of allocated space

160

calloc()

Allocates space for an array elements, initializes to zero and then returns a pointer to memory

free()

dellocate the previously allocated space

realloc()

Change the size of previously allocated space

Examples of calloc() and malloc()

Write a C program to find sum of n elements entered by user. To perform this program, allocate

memory dynamically using malloc() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

int n,i,*ptr,sum=0;
printf("Enter number of elements: ");

scanf("%d",&n);

ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc

if(ptr==NULL)

{
printf("Error! memory not allocated.");
exit(0);

}

printf("Enter elements of array: ");

for(i=0;i<n;++i)

{
scanf("%d",ptr+i);
sum+=*(ptr+i);

}
printf("Sum=%d",sum);

free(ptr);

return 0;

}

161

Static memory allocation Dynamic memory allocation

In static memory allocation, memory is allocated

while writing the C program. Actually, user

requested memory will be allocated at compile time.

In dynamic memory allocation, memory

is allocated while executing the

program. That means at run time.

Memory size can‟t be modified while execution.

Example: array

Memory size can be modified while

execution.

Example: Linked list

Difference Between malloc() and calloc() Functions :

malloc() calloc()

It allocates only single block of requested

memory

It allocates multiple blocks of requested

memory

int *ptr;ptr = malloc(20 * sizeof(int));For the

above, 20*4 bytes of memory only allocated in one

block.

Total = 80 bytes

int *ptr;Ptr = calloc(20, 20 * sizeof(int));For

the above, 20 blocks of memory will be created

and each contains 20*4 bytes of memory.

Total = 1600 bytes

malloc () doesn‟t initializes the allocated

memory. It contains garbage values

calloc () initializes the allocated memory

to zero

type cast must be done since this

function returns void pointer int *ptr;ptr

= (int*)malloc(sizeof(int)*20);

Same as malloc () function int *ptr;ptr =

(int*)calloc(20, 20 * sizeof(int));

162

MODULE -V

FILE HANDLING AND BASICALGORITHMS

File Operations

In C, you can perform four major operations on the file, either text or binary:

1. Creating a newfile

2. Opening an existingfile

3. Closing afile

4. Reading from and writing information to afile

Working With Files

When working with files, you need to declare a pointer of type file. This declaration is needed
for communication between the file and program.

Opening a file - for creation and edit

FILE *fp;

Opening a file is performed using the library function in the "stdio.h" header file: fopen().

The syntax for opening a file in standard I/O is:

fp = fopen("fileopen","mode")

For Example:

fopen("E:\\cprogram\\newprogram.txt","w");

fopen("E:\\cprogram\\oldprogram.bin","rb");

 Let's suppose the file newprogram.txt doesn't exist in the location E:\cprogram. The first

function creates a new file named newprogram.txt and opens it for writing as per the mode

'w'. The writing mode allows you to create and edit (overwrite) the contents of thefile.

 Now let's suppose the second binary file oldprogram.bin exists in the location

E:\cprogram. The second function opens the existing file for reading in binary mode'rb'.

The reading mode only allows you to read the file, you cannot write into thefile.

Sr.No. Mode & Description

1 "r"

Opens a file for reading. The file must exist.

2 "w"

https://www.programiz.com/c-programming/library-function

Creates an empty file for writing. If a file with the same name

already exists, its content is erased and the file is considered as a

new empty file.

3 "a"

Appends to a file. Writing operations, append data at the end of

the file. The file is created if it does not exist.

4 "r+"

Opens a file to update both reading and writing. The filemust

exist.

5 "w+"

Creates an empty file for both reading and writing.

6 "a+"

Opens a file for reading and appending.

Closing a file:

The file (both text and binary) should be closed after reading/writing. Closing a file is performed
using library function fclose().

fclose(fp); //fp is the file pointer associated with file to be closed

Reading And Writing A Text File

For reading and writing to a text file, we use the functions fprintf() and fscanf().

They are just the file versions of printf() and scanf(). The only difference is that, fprint and fscanf
expects a pointer to the structure FILE.

Writing to a text file

Example 1: Write to a text file using fprintf()

#include <stdio.h>

163

164

int main()

{

int num;

FILE *fp;

fptr = fopen("C:\\program.txt","w");

if(fp == NULL)

{

printf("Error!");

exit(1);

}

printf("Enter num: ");

scanf("%d",&num);

fprintf(fp,"%d",num);

fclose(fp);

return 0;

}

This program takes a number from user and stores in the file program.txt.

File Types

A file represents a sequence of bytes on the disk where a group of related data is stored. File is

created for permanent storage of data. It is a readymade structure.

In C language, we use a structure pointer of file type to declare a file.

FILE *fp;

C provides a number of functions that helps to perform basic file operations. Following are the
functions,

Function description

fopen() create a new file or open a existing

165

fclose() file closes a file

getc() reads a character from a file

putc() writes a character to a file

fscanf() reads a set of data from afile

fprintf() writes a set of data to a file

getw() reads a integer from a file

putw() writes a integer to a file

fseek() set the position to desire point

ftell() gives current position in the

file

rewind() set the position to the beginning point

Opening a File or Creating a File

The fopen()function is used to create a new file or to open an existing file.

General Syntax :

*fp = FILE *fopen(const char *filename, const char *mode);

Here filename is the name of the file to be opened and mode specifies the purpose of

opening the file. Mode can be of following types,

*fp is the FILE pointer (FILE *fp), which will hold the reference to the opened (or created) file.

Closing a File

The fclose()function is used to close an already opened file.

166

General Syntax :

int fclose(FILE *fp);

Here fclose() function closes the file and returns zero on success, or EOF if there is an error

in closing the file. This EOF is a constant defined in the header file stdio.h.

Input/Output operation on File

In the above table we have discussed about various file I/O functions to perform reading and

writing on file. getc()and putc()are simplest functions used to read and write individual

characters to afile.

#include<stdio.h>

#include<conio.h>

main()

{
FILE *fp;

char ch;

fp = fopen("one.txt", "w");

printf("Enter data");

while((ch = getchar()) != EOF)

{

putc(ch,fp);

}

fclose(fp);

fp = fopen("one.txt", "r");

while((ch = getc()) != EOF)
printf("%c",ch); fclose(fp);

}

Reading and Writing from File using fprintf() and fscanf()

#include<stdio.h>

#include<conio.h>

struct emp

{
char name[10];

int age;

};

void main()

{
struct emp e;

FILE *p,*q;

p = fopen("one.txt", "a");
q = fopen("one.txt", "r");

printf("Enter Name and Age");

scanf("%s%d", e.name, &e.age);

fprintf(p,"%s %d", e.name, e.age);
fclose(p);

do

{

fscanf(q,"%s %d", e.name, e.age);

printf("%s %d", e.name, e.age);

}

while(!feof(q));

getch();

}

In this program, we have create two FILE pointers and both are refering to the same file

but in different modes. fprintf() function directly writes into the file, while fscanf() reads

from the file, which can then be printed on console usinf standard printf() function.

Difference between Append and Write Mode

Write (w) mode and Append (a) mode, while opening a file are almost the same. Both are used

to write in a file. In both the modes, new file is created if it doesn't exists already.

The only difference they have is, when you open a file in the write mode, the file is reset,

resulting in deletion of any data already present in the file. While in append mode this will not

happen. Append mode is used to append or add data to the existing data of file(if any). Hence,

when you open a file in Append(a) mode, the cursor is positioned at the end of the present

data in thefile.

Reading and Writing in a Binary File

A Binary file is similar to the text file, but it contains only large numerical data. The Opening

modes are mentioned in the table for opening modes above.

fread() and fwrite() functions are used to read and write is a binary file.

fwrite(data-element-to-be-written, size_of_elements,number_of_elements, pointer-to-file);

fread() is also used in the same way, with the same arguments like fwrite() function.

167

Below mentioned is a simple example of writing into a binary file

const char *mytext = "The quick brown fox jumps over the lazy dog";
FILE *bfp= fopen("test.txt", "wb");

if (bfp)

{
fwrite(mytext, sizeof(char), strlen(mytext), bfp) ;

fclose(bfp) ;

}

fseek(), ftell() and rewind() functions

fseek() - It is used to move the reading control to different positions using fseek function.
ftell() - It tells the byte location of current position of cursor in file pointer.

rewind() - It moves the control to beginning of the file.

File opening modes

Before storing data onto the secondary storage , firstly we must specify following things – File

name, Data Structure Perpose / Mode.

Very first task in File handling is to open file File name : Specifies Name ofthe File

File name consists of two fields

First field is name fieldand second field is of extension field

Extension field is optional

Both File name and extension are separated by period or dot.

Data Structure

Data structure of file is defined as FILE in the library of standard I/O functions In short we have

to declare the pointer variable of type FILE

File opening modes

In C Programming we can open file in different modes such as reading mode,writing mode and

appending mode depending on purpose of handling file.

Following are the different Opening modes of File :

168

Reading File will be opened just for reading purpose Retained

Writing File will be opened just for writing purpose Flushed

Appending
File will be opened for appending some thing in

file

Retained

Different Steps to Open File

Step 1 : Declaring FILE pointer

Firstly we need pointer variable which can point to file. below is the syntax for declaring

thefile pointer.

FILE *fp;

Step 2 : Opening file hello.txt

fp = fopen ("filename","mode");

Example : Opening the File and Defining the File

#include<stdio.h>

int main()

{

FILE *fp;

char ch;

fp = fopen("INPUT.txt","r") // Open file in Read mode

fclose(fp); // Close File after Reading return(0);

}

If we want to open file in different mode then following syntax will be used –

Reading Modefp = fopen("hello.txt","r");

Writing Mode fp = fopen("hello.txt","w");
Append Mode fp = fopen("hello.txt","a");

Opening the File: Yet Another Example

#include<stdio.h>

void main()

{

FILE *fp;
char ch;

169

http://www.c4learn.com/c-programming/c-file-structure-and-file-pointer/
http://www.c4learn.com/c-programming/c-file-structure-and-file-pointer/
http://www.c4learn.com/c-programming/c-file-structure-and-file-pointer/
http://www.c4learn.com/c-programming/c-file-structure-and-file-pointer/

fp = fopen("INPUT.txt","r"); // Open file in Read mode
while(1)

{

ch = fgetc(fp); // Read a Character
if(ch == EOF) // Check for End of File break ;

printf("%c",ch);

}

fclose(fp); // Close File after Reading

}

File Opening Mode Chart:

Mode

Meaning

fopen Returns if FILE-

Exists Not Exists

r Reading – NULL

w

Writing

Over write on Existing
Create New

File

a

Append

–
Create New

File

r+
Reading +

Writing

New data is written at the beginning

overwriting existing data

Create New

File

w+
Reading +

Writing

Over write on Existing
Create New

File

a+
Reading +

Appending

New data is appended at the end of file
Create New

File

170

171

Explanation:

File can be opened in basic 3 modes : Reading Mode, Writing Mode, Appending Mode

If File is not present on the path specified then New File can be created using Write and

Append Mode.Generally we used to open following types of file in C –

File Type Extension

C Source File .c

Text File .txt

Data File .dat

Writing on the file will overwrite previous content EOF and feof function >> stdio.h >> File

Handling in C Syntax :

int feof(FILE *stream);

What it does?

Macro tests if end-of-file has been reached on a stream.

feof is a macro that tests the given stream for an end-of-file indicator.

Once the indicator is set, read operations on the file return the indicator until rewind is called, or

the file is closed. The end-of-file indicator is reset with each input operation.

Ways of Detecting End of File

A) In Text File :

Special Character EOF denotes the end of File

As soon as Character is read,End of the File can be detected.

EOF is defined in stdio.h

Equivalent value of EOF is -1 Printing

Value of EOF :

void main()

{

printf("%d", EOF);

172

}

B) In Binary File :

feof function is used to detect the end of file It can be used in text file

feof Returns TRUE if end of file is reached

Syntax :

int feof(FILE *fp);

Way of Writing feof Function :

with if statement :

if(feof(fptr) == 1) // as if(1) is TRUE

printf("End of File");

Way 2 : In

While Loop

while(!feof(fptr)

)

{

--- ---

--- ---

}

Input And Output Operations With Files

File i/o functions

When working with files, we need to declare a pointer of type file. This declaration is needed for
communication between the file and program.

FILE *fptr;
C provides a number of functions that helps to perform basic file operations. Following are the

functions

fopen():

create a new file or open a existing file

*fp = FILE *fopen(const char *filename, const char *mode);

fclose() :

173

function is used to close an already opened file.
int fclose(FILE *fp);

getc() and putc() are the simplest functions which can be used to read and write individual

characters to a file.

fprintf() function directly writes into the file, while fscanf() reads from the file, which can then
be printed on the console using standard printf() function.

Example of Reading and Writing to File using fprintf() and fscanf() functions

#include<stdio.h>

struct emp

{
char name[10];
int age;

};

void main()

{

struct emp e; FILE *p,*q;

p = fopen("one.txt", "a");

q = fopen("one.txt", "r");

printf("Enter Name and Age:");

scanf("%s %d", e.name, &e.age);

fprintf(p,"%s %d", e.name, e.age);

fclose(p);

do

{

fscanf(q,"%s %d", e.name, e.age);

printf("%s %d", e.name, e.age);

} while(!feof(q));

}

File Status Functions:

 fseek()

 ftell()

 rewind()

 fseek()

It is used to set file pointer to any position. Prototype is:

int fseek (FILE * stream, long int offset, int origin);

Parameters

Stream: pointer to a file.

Offset: Number of bytes or characters from the origin.

Origin: The original position is set here. From this position, using the offset, the file pointer is set
to a new position. Generally, three positions are used as origin:

SEEK_SET - Beginning of file

SEEK_CUR - Current position of the file pointer

SEEK_END - End of file

Return

Type: Integer

Value: On success Zero (0) On failure Non-Zero

Example

int main()
{

FILE *fp;
fp = fopen ("file.txt" , "w");

if (fp==NULL)

printf ("Error in opening file");
else

{
fputs("I am supporter of France.",fp);

fseek (fp , 18 , SEEK_SET);

fputs ("Brazil" , fp);

fseek(fp , 0 , SEEK_CUR);

fputs(" and Portugal" , fp);

fclose (fp);

}

return 0;

}

Then using SEEK_SET and offset, the word France is replaced by Brazil. Then by using

SEEK_CUR, and position is appended with the string.

ftell()

It is used to get current position of the file pointer. The function

prototype is: long int ftell (FILE * stream);

Parameters

stream: Pointer to a file.

174

175

Return

Type: long integer.

Value: On success value of current position or

offset bytes On failure -1. System specific

error no is set

Example

Code:

int main ()

{
FILE * fp;

ong int len;

fp = fopen ("file.txt","r");

if (fp==NULL)

printf ("Error in opening file");

else

{
fseek (fp, 0, SEEK_END);

len=ftell (fp);

fclose (fp);

printf ("The file contains %ld characters.\n",len);

}

return 0;

}

In this example, file.txt is opened and using fseek(), file pointer is set to the end of the file. Then,

ftell() is used to get the current position, i.e. offset from the beginning of the file.

rewind()

It is used to set the file pointer at the beginning of the file.

Function prototype: void rewind (FILE * stream);

Parameters

stream: Pointer to a file.

In any stage of the program, if we need to go back to the starting point of the file, we can use

176

rewind() and send the file pointer as the parameter.

Example

Code:

int main ()

{

int n; FILE * fp;
fp = fopen ("file.txt","w+");

if(fp==NULL)

printf ("Error in opening file");
else { fputs ("France is my favorite team",fp);

rewind (fp);

fputs("Brazil",fp);
fclose (fp);

}

return 0;

}

In the above example, first, some string is written in the file. Then rewind() is used to set the file

pointer at the beginning of the file. Then overwrite a word.

File Position functions :

The C library function int fseek(FILE *stream, long int offset, int whence) sets the file
position of the stream to the given offset.

Following is the declaration for fseek() function.

int fseek(FILE *stream, long int offset, int whence)

Parameters

 stream − This is the pointer to a FILE object that identifies thestream.

 offset − This is the number of bytes to offset fromwhence.

 whence − This is the position from where offset is added. It is specified by one ofthe

following constants−

Sr.No. Constant & Description

177

1

SEEK_SET

Beginning of file

2

SEEK_CUR

Current position of the file pointer

3

SEEK_END

End of file

Return Value:

This function returns zero if successful, or else it returns a non-zero value.

Example:

The following example shows the usage of fseek() function.

#include <stdio.h>

int main ()

{

FILE *fp;
fp = fopen("file.txt","w+");

fputs("This is tutorialspoint.com", fp);

fseek(fp, 7, SEEK_SET);

fputs(" C Programming Language", fp);
fclose(fp);

return(0);

}

Let us compile and run the above program that will create a file file.txt with the following content.

Initially program creates the file and writes This is tutorialspoint.com but later we had reset the write

pointer at 7th position from the beginning and used puts() statement which over-write the file with the

following content –

This is C Programming Language

Now let's see the content of the above file using the following program −

#include <stdio.h>

int main ()

{

178

FILE *fp; int c;
fp = fopen("file.txt","r");

while(1)

{
c = fgetc(fp);
if(feof(fp))

{

break;

}

printf("%c", c);

}

fclose(fp);

return(0);

}

Let us compile and run the above program to produce the following result −

This is C Programming Language

Command Line Arguments

It is possible to pass some values from the command line to your C programs when they are

executed. These values are called command line argumentsand many times they are important

for your program especially when you want to control your program from outside instead of

hard coding those values inside thecode.

The command line arguments are handled using main() function arguments where argc refers to

the number of arguments passed, and argv[] is a pointer array which points to each argument

passed to the program. Following is a simple example which checks if there is any argument

supplied from the command line and take action accordingly –

#include <stdio.h>

int main(int argc, char *argv[])

{

if(argc == 2)

{

printf("The argument supplied is %s\n", argv[1]);

}

else if(argc > 2)

{

printf("Too many arguments supplied.\n");

}

else

{

printf("One argument expected.\n");

}

179

}

When the above code is compiled and executed with single argument, it produces the following

result.

$./a.out testing

The argument supplied is testing

When the above code is compiled and executed with a two arguments, it produces the following

result.

$./a.out testing1 testing2

Too many arguments supplied.

When the above code is compiled and executed without passing any argument, it produces the

following result.

$./a.out

One argument expected

It should be noted that argv[0] holds the name of the program itself and argv[1] is a pointer to

the first command line argument supplied, and *argv[n] is the last argument. If no arguments

are supplied, argc will be one, and if you pass one argument then argc is set at 2.

You pass all the command line arguments separated by a space, but if argument itself has a

space then you can pass such arguments by putting them inside double quotes "" or single

quotes ''. Let us re-write above example once again where we will print program name and we

also pass a command line argument by putting inside double quotes −

#include <stdio.h>

int main(int argc, char *argv[])

{
printf("Program name %s\n", argv[0]);

if(argc == 2)

{

printf("The argument supplied is %s\n", argv[1]);

}

else if(argc > 2)

{

printf("Too many arguments supplied.\n");

180

}

else

{

printf("One argument expected.\n");

}

}

When the above code is compiled and executed with a single argument separated by space but inside

double quotes, it produces the following result.

$./a.out "testing1 testing2"

Progranm name ./a.out

The argument supplied is testing1 testing2

Searching

Searching is one of the most common problems that arise in computing. Searching is the algorithmic

process of finding a particular item in a collection of items. A search typically answers

either True or False as to whether the item is present. On occasion it may be modified to return where the

item is found. Search operations are usually carried out on a keyfield.

Well, to search an element in a given array, there are two popular algorithms available:

1. LinearSearch

2. BinarySearch

Linear Search

Linear search is a very basic and simple search algorithm. In Linear search, we search an element or value

in a given array by traversing the array from the starting, till the desired element or value is found.

It compares the element to be searched with all the elements present in the array and when the element

is matched successfully, it returns the index of the element in the array, else it return -1.

Linear Search is applied on unsorted or unordered lists, when there are fewer elements in a list.

Features of Linear Search Algorithm

1. It is used for unsorted and unordered small list ofelements.

2. It has a time complexity of O(n), which means the time is linearly dependent on the number of

elements, which is not bad, but not that goodtoo.

It has a very simple implementation.

181

Linear search C program

#include <stdio.h>

int main()

{

int array[100], search, c, n;
printf("Enter the number of elements in array\n");
scanf("%d", &n);

printf("Enter %d integer(s)\n", n);

for (c = 0; c < n; c++)

{

scanf("%d", &array[c]);

printf("Enter a number to search\n"); scanf("%d", &search);

printf("%d isn't present in the array.\n", search);

return 0;

}

 if (array[c] == search)

 If required element is found */

 printf("%d is present at location %d.\n", search, c+1);

 break;

 }

Binary Search

1. BinarySearchis used withsorted arrayorlist. In binarysearch, wefollowthefollowingsteps:

2. We start by comparing the element to be searched with the element in the middle of thelist/array.

3. If we get a match, we return the index of the middleelement.

4. If we do not get a match, we check whether the element to be searched is less or greater than in

value than the middleelement.

5. Iftheelement/numbertobesearchedisgreaterin valuethanthemiddlenumber,thenwepickthe elements

on the right side of the middle element(as the list/array is sorted, hence on the right, we willhave

all the numbersgreaterthan themiddle number),andstartagainfromthestep1.

6. If the element/number to be searched is lesser in value than the middle number, then we pick the

elements on the left side of the middle element, and start again from the step1.

Binary Search is useful when there are large number of elements in an array and they are sorted.

So a necessary condition for Binary search to work is that the list/array should be sorted.

Features of Binary Search

1. It is great to search through large sortedarrays.

182

2. It has a time complexity of O(log n) which is a very good timecomplexity

3. It has a simpleimplementation.

Binary search C program

#include <stdio.h>
int main()

{

int c, first, last, middle, n, search, array[100];

printf("Enter number of elements\n");

scanf("%d",&n);

printf("Enter %d integers\n", n);

for (c = 0; c < n; c++)

scanf("%d",&array[c]);

printf("Enter value to find\n");

scanf("%d", &search);

first = 0;

last = n - 1;

middle =(first+last)/2;

while (first <= last){

if (array[middle] <search)

first = middle +1;

else if (array[middle] == search)

{
printf("%d found at location %d.\n", search, middle+1);

break;

middle = (first + last)/2;

}

if (first > last) printf("Not found!

%d isn't present in the list.\n", search);

}

else

last = middle - 1;

return 0;

}

183

Sorting

Sorting is the basic operation in computer science. Sorting is the process of arranging data in some given

sequence or order (in increasing or decreasing order).

For example you have an array which contain 10 elements as follow;

10, 3 ,6 12, 4, 17, 5, 9

After shorting value must be;

3, 4, 5, 6, 9, 10, 12, 17

Above value sort by apply any sorting technique. C language have following technique to sort values;

 BubbleSort

 SelectionSort

 InsertionSort

Bubble Sort in C

Bubble sort is a simple sorting algorithm in which each element is compared with adjacent

element and swapped if their position is incorrect. It is named as bubble sort because same as

like bubbles the lighter elements come up and heavier elements settledown.

Both worst case and average case complexity is O

(n
2
). Example Program for Bubble Sort

#include<stdio.h>

int main()

{

int a[50],n,i,j,temp;
printf("Enter the size of array: ");

scanf("%d",&n);

printf("Enter the array elements: ");

for(i=0;i<n;++i)
scanf("%d",&a[i]);

for(i=1;i<n;++i)

for(j=0;j<(n-i);++j)

if(a[j]>a[j+1])

{

temp=a[j];

184

a[j]=a[j+1];

a[j+1]=temp;

}

printf("\nArray after sorting: ");
for(i=0;i<n;++i)

printf("%d ",a[i]);

return 0;

}
Output

Enter the size of array: 4
Enter the array elements: 3 7 9 2

Array after sorting: 2 3 7 9

Selection Sort in C

One of the simplest techniques is a selection sort. As the name suggests, selection sort is the

selection of an element and keeping it in sorted order. In selection sort, the strategy is to find the

smallest number in the array and exchange it with the value in first position of array. Now,

find the second smallest element in the remainder of array and exchange it with a value in the

second position, carry on till you have reached the end of array. Now all the elements have been

sorted in ascending order.ep by StepProcess

The selection sort algorithm is performed using following steps...

 Step 1: Select the first element of the list (i.e., Element at first position in thelist).

 Step 2: Compare the selected element with all other elements in thelist.

 Step 3: For every comparision, if any element is smaller than selected element(for

Ascending order), then these two areswapped.

 Step 4: Repeat the same procedure with next position in the list till the entire list issorted.

Example Program for Selection Sort

#include<stdio.h>

#include<conio.h>

void main(){

int size,i,j,temp,list[100];

clrscr();

printf("Enter the size of the List: ");

185

scanf("%d",&size);

printf("Enter %d integer values: ",size);

for(i=0; i<size; i++)

scanf("%d",&list[i]);

//Selection sort logic

for(i=0; i<size; i++){

for(j=i+1; j<size; j++){
if(list[i] >list[j])

{
temp=list[i];

list[i]=list[j];

list[j]=temp;

}

}

}

printf("List after sorting is: ");

for(i=0; i<size; i++)

printf(" %d",list[i]);

getch();

}

Insertion Sort in C

The insertion sort inserts each element in proper place. The strategy behind the insertion sort is similar to

the process of sorting a pack of cards. You can take a card, move it to its location in sequence and move

the remaining cards left or right as needed.

In insertion sort, we assume that first element A[0] in pass 1 is already sorted. In pass 2 the next second

element A[1] is compared with the first one and inserted into its proper place either before or after

the first element. In pass 3 the third element A[2] is inserted into its proper place and so on.

Example Program for Insertion Sort

#include<stdio.h>

int main()

{

int i,j,n,temp,a[30];
printf("Enter the number of elements:");

scanf("%d",&n);

printf("\nEnter the elements\n");

for(i=0;i<n;i++)

186

{

scanf("%d",&a[i]);

}

for(i=1;i<=n-1;i++)

{

temp=a[i];

j=i-1;

while((temp<a[j])&&(j>=0))

{

a[j+1]=a[j]; //moves element forward

j=j-1;

}

a[j+1]=temp; //insert element in properplace

}

printf("\nSorted list is as follows\n");
for(i=0;i<n;i++)

{

printf("%d ",a[i]);

}

return 0;

}

Algorithm complexity through example programs

Algorithm

Time Complexity

Best Average Worst

Selection Sort Ω(n^2) θ(n^2) O(n^2)

Bubble Sort Ω(n) θ(n^2) O(n^2)

Insertion Sort Ω(n) θ(n^2) O(n^2)

http://geeksquiz.com/selection-sort/
http://geeksquiz.com/bubble-sort/
http://geeksquiz.com/insertion-sort/

