


# **MODEL QUESTION PAPER-I**

B.Tech V Semester End Examinations, November/December - 2019

**Regulations: IARE - R16** 

## AIRCRAFT PERFORMANCE

(Aeronautical Engineering)

Time: 3 hours

Max. Marks: 70

[7M]

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

## UNIT – I

- 1. a) Write about drag reduction methods. Name all methods and explain one method with [7M] required diagram.
  - b) Plot the international atmosphere with elevation and temperature. Explain salient [7M] features of this plot.
- 2. a) Write the relation between sea level gravity and gravity at flying. How these terms [7M] are related? Write the expression and explain.
  - b) Derive expression for maximum lift to drag ratio (L/D). With respect to the [7M] coefficient of drag (C<sub>D,0</sub>) at zero angle of attack.

#### $\mathbf{UNIT}-\mathbf{II}$

- 3. a) Derive the range expression for a jet powered aircraft. Explain each term in detail [7M]
  b) "The maximum range, in the presence of wind, is not obtained at Em but at a different L/D". Discuss this issue and give your opinion on this statement with necessary formula and plot.
- 4. a) What are the Equations of Motion in straight and level flight? Derive the Equations of Motion in straight and level flight and explain each term.
  - b) For a commercial aircraft with total weight is 30000 kg,  $S = 90 \text{ m}^2$ ,  $C_{D,0}=0.012$ , **[7M]** K=0.09. If the velocity of the airplane is 140 m/s. Calculate the minimum power required and the velocity at which this occurs. (Take standard conditions at sea level).

#### UNIT – III

- 5. a) Derive the expression for the Maximum Climb Angle by using analytical approach [7M] for jet propelled airplane
  - b) Given an airplane mass of 50000 kg, Lift/Drag ratio 10, thrust per engine 60, 000N, [7M] assume  $g=10 \text{ m/s}^2$ . For a straight, steady, wings level climb of a twin engine airplane. Calculate the all engine climb gradient

- 6. a) Draw the diagram of shallow and deep climb angles and write the equations of **[7M]** motion in both nconditions. What is the correct relationship between the true airspeed for (i) minimum sink rate (ii) minimum glide angle at a given altitude.
  - b) Determine the range of the following propeller-driven aircraft, with the following [7M] data, at a constant airspeed of 80.5 m/s at 2440 m altitude:  $W_1 = 82.29$  kN,  $W_{fuel} = 26.69$  kN, S = 87 m<sup>2</sup>,  $\eta p = 0.85$ , C = 2.0 N/HP-hr, C = 0.0192 $+0.047C^2_{\text{L}.}$

#### UNIT - IV

- 7. a) What are the limitations of the structural boundaries of the airplane? Explain with **[7M]** sketch.
  - b) Derive the expression for turning velocity during maneuvering flight of an airplane. [7M]
- 8. a) Draw the turn maneuverability energy diagram for an aircraft and explain its salient [7M] features. How these features are significant for determination of the performance of an aircraft?
  - b) Calculate the minimum turn radius, load factor, velocity and Coefficient of lift at sea [7M] level for Airbus 310: Details are given: K=0.08, W/S=76.84, T/W=0.37,  $C_{D,0}=0.015$ (missing data can be assumed).

#### UNIT - V

- 9. a) Describe the pull-up maneuvers with neat sketches and also explain the importance of [7M] V-n diagram
  - b) An airplane with a wing area of 20 m<sup>2</sup> and a weight of 19,620 N dives with engine [7M] switched off, along a straight line inclined at 60° to the horizontal. What is the acceleration of the airplane when the flight speed is 250 kmph? If the airplane has to pull out of this dive at a radius of 200 m, what will be the lift coefficient required and the load factor? Drag polar is given by:  $C_D = 0.035 + 0.076C^2$  and the maneuver takes place around an altitude of 2 km.
- 10. a) Draw the V-n diagram and explain its important point. How this diagram is [7M] significant for pilot operating the plane?.
  - b) Derive the ground run distance for landing performance. What is the importance of [7M] ground run? Why it is needed?



**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous) Dundigal, Hyderabad - 500 043

## **COURSE OBJECTIVES:**

| The course should enable the students to: |                                                                                                                                           |  |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ι                                         | Learn the different regimes of aircraft and performance requirements at different atmospheric conditions.                                 |  |  |  |
| II                                        | Understand the different type of velocities and gives differences between stall velocity and maximum and minimum velocities.              |  |  |  |
| III                                       | Estimate the time to climb and descent and relate between rate of climb and descent and time to climb and descent at different altitudes. |  |  |  |
| IV                                        | Illustrate the velocity and radius required for different type of maneuvers like pull-up, pull down and steady turn.                      |  |  |  |
| V                                         | Evaluate the equations of motion for an airplane in different flight modes like takeoff, cruise and landing.                              |  |  |  |

## **COURSE OUTCOMES (COs):**

| CO 1 | Understand the design mission, performance, standard atmosphere, aerodynamic and propulsive forces, different speeds and estimation methods of aircraft. |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO 2 | Remember and describe the cruise performance of an airplane in relation with range and endurance with                                                    |  |  |  |  |  |
|      | different types of engines also to understand effects of weight, altitude and temperature on performance.                                                |  |  |  |  |  |
| CO 3 | Determine and apply the concept of climb and descent performance and to calculate power for best climb a                                                 |  |  |  |  |  |
|      | descent performance.                                                                                                                                     |  |  |  |  |  |
| CO 4 | Describe about aircraft maneuver performance in turn, pull-ups by considering limitations of power for                                                   |  |  |  |  |  |
|      | military and civil aircrafts.                                                                                                                            |  |  |  |  |  |
| CO 5 | Explore the methods to calculate take off and landing runway distances and to understand fuel planning,                                                  |  |  |  |  |  |
|      | safety and environment effects of aircraft performance.                                                                                                  |  |  |  |  |  |

## COURSE LEARNING OUTCOMES (CLOs):

| CLO       | At the end of the course, the student will have the ability to:                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------|
| Code      |                                                                                                                         |
| AAE011.01 | Remember the atmospheric conditions that are suitable for better performance of an aircraft.                            |
| AAE011.02 | Understand the basics of mathematics, science and engineering for problem solving.                                      |
| AAE011.03 | Describe different atmospheric models that an aircraft encounters in its real-time flight.                              |
| AAE011.04 | Apply and demonstrate different methods for the measurement of air data and their respective systems working principle. |
| AAE011.05 | Remember mission profiles that an aircraft adapts depending upon its category and requirements.                         |
| AAE011.06 | Understand different phases of design process from performance standpoint.                                              |
| AAE011.07 | Describe definition of aircraft performance for different categories of aircraft.                                       |
| AAE011.08 | Apply and demonstrate the force system of the aircraft and the development of equations of motion.                      |
| AAE011.09 | Understand the performance of aircraft in cruising phase and appropriate conclusions are drawn.                         |
| AAE011.10 | Illustrate the climb and descent performance of the aircraft and its performance parameters are measured.               |

| AAE011.11  | Evaluate the concept behind various methods that are employed during takeoff and landing phases                                     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|
|            | depending upon its mission.                                                                                                         |
| AAE011.12  | Apply the factors that enhance the performance of aircraft during takeoff and landing.                                              |
| AAE011.013 | Understand the maneuver performance of typical transport and military aircrafts.                                                    |
| AAE011.14  | Evaluate the parametric performance data analysis for different phases of aircraft and various methods of measurement.              |
| AAE011.15  | Illustrate the concept of flight planning, fuel planning and how it affects the performance of aircraft.                            |
| AAE011.16  | Apply the propulsive force characteristics like thrust that affects the aircraft performance.                                       |
| AAE011.17  | Understand the flight measurement of performance, with detailed sections on airworthiness certification and the performance manual. |
| AAE011.18  | Illustrate the calibration methods that are used for the aircraft instruments to derive air data.                                   |
| AAE011.19  | Evaluate the aerodynamic force characteristics like lift and drag that affects the aircraft performance.                            |
| AAE011.20  | Apply the full equation of motion, which are developed and used in the expressions for maneuver performance.                        |

# MAPPING OF SEMESTER END EXAMINATION TO COURSE OUTCOMES

| SEE<br>Question<br>No |   | Marks<br>Allotted | CLO<br>Code | Course Learning Outcomes                                                                                                       | Course<br>outcomes | Blooms<br>Taxonomy<br>Level |
|-----------------------|---|-------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|
| 1                     | а | 7                 | AAE11.01    | Apply Remember and understand the atmospheric conditions that are suitable for better performance of an aircraft.              | CO1                | Remember                    |
|                       | b | 7                 | AAE11.01    | Adapt the basic Remember of mathematics, science and engineering for problem solving.                                          | CO1                | Understand                  |
| 2                     | а | 7                 | AAE11.04    | Demonstrate different methods for the measurement of air data and their respective systems working principle.                  | CO1                | Remember                    |
|                       | b | 7                 | AAE11.03    | Describe different atmospheric models that an aircraft encounters in its real-time practice.                                   | CO2                | Understand                  |
| 3                     | а | 7                 | AAE11.05    | Describe mission profiles that an aircraft adapts depending upon its category and requirements.                                | CO2                | Remember                    |
| 3                     | b | 7                 | AAE11.07    | Identify definition of aircraft performance for different categories of aircraft.                                              | CO2                | Evaluate                    |
| 4                     | a | 7                 | AAE11.06    | Understand different phases of design process from performance standpoint.                                                     | CO2                | Remember                    |
| 4                     | b | 7                 | AAE11.08    | Explain the force system of the aircraft and the development of equations of motion                                            | CO2                | Understand                  |
| 5                     | a | 7                 | AAE11.10    | Illustrate the climb and descent performance of<br>the aircraft and its performance parameters are<br>measured.                | CO3                | Apply                       |
|                       | b | 7                 | AAE11.09    | Evaluate the performance of aircraft in cruising phase and appropriate conclusions are drawn.                                  | CO3                | Apply                       |
| 6                     | а | 7                 | AAE11.10    | Illustrate the climb and descent performance of<br>the aircraft and its performance parameters are<br>measured.                | CO3                | Remember                    |
|                       | b | 7                 | AAE11.12    | Evaluate the factors that enhance the performance of aircraft during takeoff and landing.                                      | CO3                | Apply                       |
|                       | а | 7                 | AAE11.13    | Understand the maneuver performance of typical transport and military aircrafts.                                               | CO4                | Remember                    |
| 7                     | b | 7                 | AAE11.14    | Understand the parametric performance data<br>analysis for different phases of aircraft and<br>various methods of measurement. | CO4                | Apply                       |
| 8                     | а | 7                 | AAE11.16    | Understand the propulsive force characteristics like thrust that affects the aircraft performance.                             | CO4                | Remember                    |

| SEE<br>Question<br>No |   | Marks<br>Allotted | CLO<br>Code | Course Learning Outcomes                                                                                                                 | Course<br>outcomes | Blooms<br>Taxonomy<br>Level |
|-----------------------|---|-------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|
|                       | b | 7                 | AAE11.17    | Describes the flight measurement of performance,<br>with detailed sections on airworthiness<br>certification and the performance manual. | CO4                | Apply                       |
|                       | а | 7                 | AAE11.11    | Understand the concept behind various methods<br>that are employed during takeoff and landing<br>phases depending upon its mission.      | CO5                | Remember                    |
| 9                     | b | 7                 | AAE11.19    | Understand the aerodynamic force characteristics<br>like lift and drag that affects the aircraft<br>performance.                         | CO5                | Understand                  |
| 10                    | а | 7                 | AAE11.20    | Evaluate the full equation of motion, which are<br>developed and used in the expressions for<br>maneuver performance.                    | CO5                | Remember                    |
|                       | b | 7                 | AAE11.20    | Evaluate the full equation of motion, which are<br>developed and used in the expressions for<br>maneuver performance.                    | CO5                | Understand                  |

# Signature of Course Coordinator

Dr. Yagya Dutta Dwivedi

HOD, AE