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UNIT - I

PANEL METHODS



What are panel methods?

• Panel methods are techniques for solving incompressible 
potential flow over thick 2-D and 3-D geometries. 

• In 2-D, the airfoil surface is divided into piecewise straight 
line segments.

• These line segments are called as  panels.

• Either  soure sheets of strength m are vortex sheets of 
strength g are placed on each panel.

• Vortex sheets mimic the boundary layer around airfoils.
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The Point Source

Consider a point source
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The Source Panel

•Imagine spreading the source along a line. 

•Distribute the source as certain strength per unit length q(s) that 

could vary with distance s along the line. 

•Each elemental length of the line ds would behave like a miniature 

source and so would produce a velocity field:

Where z1(s), gives the coordinate of the line source at s.

The total flow field produced by the line is the strength of the 

panel.
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Uniform  Strength Source Panel
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The  velocity in terms of 

components aligned with the panel:
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•The panel is not a solid boundary. 

•To make it behave like a solid 

boundary in a flow you would have 

to set the strength q so that the total 

Vn (due to the panel and the flow) 

is zero 6



Linear Source Panels
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Constant-Strength Doublet Distribution
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Uniform  Strength Vortex  Panel

• The integral vortex panel is used to perturb the uniform flow to 

create a possible lifting body.
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•This is the stream function at any point in 2-D space.

•Panel methods are evaluated only at the closed streamline.

•This may be the surface of the would be airfoil as the body surface 

is a streamline. 

•Therefore, the stream function value will be some constant value 

C.
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Analogy between boundary layer and vortices

Upper surface boundary layer contains, in general, clockwise 

rotating vorticity.

Lower surface boundary layer contains, in general, counter 

clockwise vorticity.

Because there is more clockwise vorticity than counter clockwise 

Vorticity, there is net clockwise circulation around the airfoil.

In panel methods, this boundary layer, which has a small but finite 

thickness is replaced with a thin sheet of vorticity placed just 

outside the airfoil. 10



Panel method treats the airfoil as a series of line segments

On each panel, there is vortex sheet of strength DG = g0 ds0.

Where ds0 is the panel length.

Each panel is defined by its two end points (panel joints) and by the 

control point, located at the panel center, where we will

apply the boundary condition = Constant=C.

The more the number of panels, the more accurate the solution,since

we are representing a continuous curve by a series of broken straight 

lines
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Boundary Condition

• We treat the airfoil surface as a streamline.

– This ensures that the velocity is tangential to the airfoil 

surface, and no fluid can penetrate the surface.

• We require that at all control points (middle points of each 

panel) = C 

• The stream function is due to superposition of the effects 

of the free stream and the effects of the vortices g0 ds0 on 

each of the panel. 

12



Stream function due to a Counterclockwise Vortex of 

Strengh G
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Stream function Vortex Panel

• Pay attention to the signs.

• A counter-clockwise vortex is considered “positive”

• In our case, the vortex of strength g0ds0 had been placed on a 
panel with location (x0 and y0).

• Then the stream function at a point (x, y) will be
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Panel whose center 

point is (x0,y0)
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Superposition of All Vortices on all Panels

• In the panel method we use here, ds0 is the length of a small 
segment of the airfoil, and g0 is the vortex strength per unit 
length. 

• Then, the stream function due to all such infinitesimal vortices 
at the control point (located in the middle of each panel) may 
be written as the interval below, where the integral is done 
over all the vortex elements on the airfoil surface. 
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Adding the free stream and vortex effects..
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The unknowns are the vortex strength g0 on each panel, 

and the value of the Stream function C.

Before we go to the trouble of solving for g 0, we ask what is 

the purpose..
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Physical meaning of g0

Panel of length ds0 on the 

airfoil.

0

000

     , g

g



 

VOr

VdsdssdVnCirculatio

Contour



V = Velocity of the flow just outside the 

boundary layer

If we know g0 on each panel, then we know the velocity of the 

flow outside the boundary layer for that panel, and hence 

pressure over that panel.

Sides of our contour

have zero height.

Bottom side has zero 

Tangential velocity

Because of viscosity
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Pressure distribution and Loads

C
V

p
 



1
0

2

2

g

  222

2

1

2

1
:says Bernoulli


 Vpvup 

C
p p

V

u v

V

V

V
p




 


 


 

 
1

2

1 1
2

2 2

2

2

2



Since V = -g0
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Kutta Condition

• Kutta condition states that the pressure above and below the 

airfoil trailing edge must be equal, and that the flow must 

smoothly leave the trailing edge in the same direction at the 

upper and lower edge. 
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lower                                   

From this sketch above, we see that pressure will be equal, and the flow 

will leave the trailing edge smoothly, only if the voritcity on each panel 

is equal in magnitude above and below, but spinning in opposite 

Directions relative to each other.
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The Closure

• We need to solve the integral equation derived 
earlier

• And, satisfy Kutta condition.
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Numerical Procedure

• We divide the airfoil into N panels. A typical panel is given 
the number j, where J varies from 1 to N.

• On each panel, we assume that g0 is a piecewise constant. 
Thus, on a panel numbered j, the unknown strength is g0,j

• We number the control points at the centers of each panel as 
well. Each control point is given the symbol “i”, where i varies 
from 1 to N.

• The integral equation becomes
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Numerical procedure

• Notice that we use two indices „i‟ and „j‟. The index „i‟ refers 
to the control point where equation is applied. 

• The index „j‟ refers to the panel over which the line integral is 
evaluated.  

• The integrals over the individual panels depends only on the 
panel shape (straight line segment), its end points and the 
control point í‟.  

• Therefore this integral may be computed analytically. 

• We refer to the resulting quantity as

  
00,

ln
2

1
=iindex on  j Panel of Influence

,

dsrrA

where

iji



u y v x A C
i i i j j

j

N

 



    ,
g

0

1

0

22



Numerical procedure

• We thus have N+1 equations for the unknowns g0,j
(j=1…N) and C.

• We assume that the first panel (j=1) and last panel (j=N) 
are on the lower and upper surface trailing edges.
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This linear set of equations may be solved easily, and 

g0 found.

Once go is known, we can find pressure, and pressure 

coefficient Cp.
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An Useful Aerofoil
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Lifting Bodies in Subsonic Compressible Flows

• The Velocity Potential function is also valid for 

compressible isentropic subsonic flows. 
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Physical Boundary 

Conditions



27

Boundary Conditions

The governing equations are solved within a finite flow domain and 

zone. 

A solution of the equations requires accurate specification of

conditions at the boundaries of the domain and zones  Boundary

Conditions.

Distinguish between two types:

Physical Boundary Conditions at the boundary of the flow domain.

Zonal Boundary Conditions at the boundary between two zones.
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Reflection 

BC

Freestream BC

Viscous Wall BC

Outflow 

BC

Physical Boundary Conditions
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Types of Physical Boundary Conditions

Physical boundary conditions can be grouped:  

Flow Interface Boundary Conditions

Boundaries at which the flow crosses freely:

Frozen

Freestream

Arbitrary Inflow

Outflow

Boundary conditions for 

turbulence, chemistry, and 

MFD equations also.
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Wall Boundary Conditions

Boundaries with a solid surface (small amounts of flow 

may cross):

Viscous Wall 

Inviscid Wall

Reflection

Bleed

Blowing

Moving Wall
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Characteristic Nature at Boundaries

The characteristic (acoustic wave) nature of the flow at the

boundaries provides critical information for specifying boundary

conditions.

Eigenvalues of the flow equations at the boundaries indicate the

speed of the acoustic waves and whether they are entering

(positive) or leaving (negative) the flow domain at the boundary.

This indicates how much information should come from outside the

domain (physical) and how much information should come from

inside the domain (numerical).

Boundary normal is positive

directed into the flow domain

n̂

n̂

Boundary

Eigenvalues
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Eigenvalues
There are 5 eigenvalues  for the Navier-Stokes equations. 

The first 3 are associated with convective waves while last 2 are 

associated with acoustic waves (c is speed of sound):
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normal to the boundary.

Positive when the flow 

enters the flow domain.

Sign of 4and 5 depend on sign 

and magnitude of normal velocity.
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 > 0 indicates that a wave enters the domain and physical

information (i.e. pressure) must be specified as part of the

boundary condition.

 < 0 indicates that wave exits the domain and numerical

information (i.e. an extrapolation) must be specified as

part of the boundary condition.
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Flows and Eigenvalues

The flow at the boundary is: 

Inflow when                    and so

Outflow when                 and so

Subsonic when                   

Supersonic when

Combinations are:                                                       Physical  

Numerical

Subsonic Inflow 1, 2, 3, 4  > 0  and  5 < 0   4         1

Subsonic Outflow 4  > 0  and  1, 2, 3, 5 < 0   1         4

Supersonic Inflow 1, 2, 3, 4, 5 > 0              5         0

Supersonic Outflow 1, 2, 3, 4, 5 < 0 0           5
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Subsonic Inflow

The Subsonic Inflow condition has eigenvalues which indicates

that 4 physical and 1 numerical conditions need to be imposed at

the boundary. These conditions can be imposed when using the

Freestream or Arbitrary Inflow BC types at flow interfaces or the

Bleed or Blowing BC types at walls.

00,,,
54321

 



36

Subsonic Outflow

The Subsonic Outflow condition has eigenvalues which indicates that 1

physical and 4 numerical conditions need to be imposed at the boundary.

These conditions can be imposed when using the Freestream or Outflow BC

types at flow interfaces or the Bleed or Blowing BC types at walls.
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Supersonic Inflow / Frozen BC

The Supersonic Inflow condition has all positive eigenvalues which indicates

that all information should come from outside the flow domain. The Frozen

BC type is appropriate for supersonic inflow because the boundary condition

simply keeps the flow conditions at the boundary unchanged. These conditions

can be also imposed when using the Freestream or Arbitrary Inflow BC types

at flow interfaces.
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Supersonic Outflow

The Supersonic Outflow condition has all negative eigenvalues which

indicates that all information should come from inside the flow domain. An

extrapolation of the solution to the boundary is the typical numerical method.

The Freestream or Outflow BC types are both capable of imposing the correct

conditions.
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Flow BCs: Freestream

The Freestream BC type is used at boundaries where flow

conditions are expected to be fairly uniform and close to

freestream conditions. The BC is flexible in that it checks whether

the flow is inflow or outflow and subsonic or supersonic at the

boundary and imposes the correct conditions.

For supersonic inflow or supersonic outflow the previous two

slides indicate the conditions that are imposed.

For subsonic inflow and subsonic outflow, a characteristic-based

method is used to determine conditions. Assuming uniform

conditions, two Riemann invariants R+ and R- can each be

evaluated either numerically or from freestream conditions as

appropriate and then used to compute the other flow properties.
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Flow BCs: Arbitrary Inflow

The Arbitrary Inflow BC type is used mainly to impose a subsonic

inflow condition, especially for internal flows (nozzle plenum). Four

physical conditions need to be specified while the one numerical

condition is usually extrapolated from the interior flow solution. The

BC has the capability to:

•Hold total pressure and total temperature at the inflow.

•Specify the flow angle at the inflow.

•Hold total pressure, temperature, and flow angles of input solution.

•Specify an inflow profile.

•Specify inflow turbulence levels.

•Specify inflow chemistry composition.

•Specify inflows with a solid-body rotation.

•Specify time-varying inflows.
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Flow BCs: Outflow

The Outflow BC type is used mainly to impose a subsonic outflow

condition, especially for internal flows. The four numerical

conditions are imposed through extrapolation. The one physical

condition is imposed by determining the static pressure at the

boundary in some way. Options include:

Uniform Static Pressure (constant or time-varying)

Variable Static Pressure (reference pressure with spatial variation

over the boundary)

Mass Flow (for boundary and then compute the local static pressures)

Average Mach Number (for boundary and then compute the local

static pressures)

Compressor Face (reflection coefficients for wave interactions with

compressors)

Non-Reflecting (reference Mach number with non-reflecting

constraints)
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Wall Boundary Conditions

Wall boundary conditions involve a solid surface which may be

porous. The fundamental relation at a wall boundary is

SB is the area of the cell face over which the BC is applied.

The Bleed or Blowing BC will have , and so,

The Moving Wall BC will have

For all the wall boundary conditions, the value of is based on

the presence of bleed or blowing. If then
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Wall BCs: Viscous Wall

The Viscous Wall BC type is used at solid boundaries for which a

velocity no-slip condition is required. A boundary layer forms

along the wall. The no-slip condition is that the tangential flow

relative to the boundary is zero:

where the two tangential vectors are perpendicular, Classical

boundary layer theory indicates that the pressure gradient in the

direction normal to the wall is approximately zero, this is used as a

physical condition at the viscous wall

Another physical condition used at the wall assumes an adiabatic

condition for which or a constant temperature at the wall
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Wall BCs: Inviscid Wall / Reflection

The Inviscid Wall BC type is used at solid boundaries for which a

velocity slip condition is desired. Thus the tangential velocity

components and must now be computed in some manner.

One approach is to simply extrapolate the tangential velocity

components from the interior cells to the boundary.

The Reflection BC type uses the same methods as the inviscid wall

BC type; however, the intent of the reflection BC is to apply it at a

planar boundary of flow symmetry.
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Wall BCs: Bleed / Blowing

The Bleed and Blowing BC types are used at solid boundaries for

which there is a small amount of flow across the boundary. Bleed

and blowing are often used in aerospace systems for flow control.

The relative normal velocity component is computed as

where Aregion is the area of the boundary over which bleed / blowing

is specified.

One model for computing the bleed mass flow is

Which requires the specification of the bleed region porosity  and

a table or function for the bleed sonic flow function Qsonic.
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Wall BCs: Moving Wall

The Moving Wall boundary condtion is used at solid boundaries

that have uniform translation or rotation. An example of a uniform

translation is an airplane going down a runway. An example of a

uniform rotation is the airplane spinning about its x-axis. This BC

type can be used with the viscous or inviscid wall BC types.
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Boundary Condition Numerical Methods

•For a cell-vertex finite-volume cell, the boundary condition is

applied at the solution point on the boundary (approach of WIND).

•For a cell-centered finite-volume cell, the boundary condition is

applied at the cell face on the boundary as a flux.

•Boundary conditions can be imposed explicitly at boundary

solution points (this is the default method in WIND).

•Boundary conditions can be imposed implicitly by including the

conditions into the implicit matrices of the numerical method for

the inner flow field. Wall BCs can be solved implicitly in WIND.

•Boundary conditions are imposed at the end of each iteration of the

flow equations.
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Flow Property Extrapolations

Most of the boundary conditions use an extrapolation of flow field

properties to the boundary as part of imposing a numerical

condition. A simple zero-order extrapolation of a property  (which

can represent static pressure or density) is

Where B is the boundary value and A is the value at a solution

point adjacent to the boundary. A first-order extrapolation has the

form

Where AA is the value at a solution point adjacent to the adjacent

point to the boundary. The “adjacent” direction is usually

approximately normal to the boundary and along the grid line from

the boundary. The s are the spacings between the solution points.
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Neumann and Dirichlet boundary 

conditions
• When using a Dirichlet boundary condition, one prescribes

the value of a variable at the boundary, e.g. u(x) =

constant.

• When using a Neumann boundary condition, one

prescribes the gradient normal to the boundary of a

variable at the boundary, e.g. nu(x) = constant.

• When using a mixed boundary condition a function of the

form au(x)+bnu(x) = constant is applied.

• Note that at a given boundary, different types of boundary

conditions can be used for different variables.



UNIT – II

METHOD OF 

CHARACTERISTICS, 

BOUNDARY CONDITIONS
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METHOD OF CHARACTERISTICS

• Universal way to examine supersonic flow

• Name comes from looking at characteristic lines (Mach waves)

propagating downstream

• Isentropic (no shocks)

• Seek rates of change along physical waves
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METHOD OF CHARACTERISTICS
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ABREVIATED DERIVATION
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Geometrical Statement

Continuity + Momentum

Characteristic Equations

Introduction of m+ and m–

For 2D, r → ∞

+ = constant on characteristic m+ = I+

- = constant on characteristic m– = I– 53



NOMENCLATURE

q: Angle between u and Reference Axis

m: Angle between u and ± Mach Waves

n: reference normal vector, perpendicular to u (or streamline)

q+w = constant on characteristic m+ = I+

q-w = constant on characteristic m– = I–

Reference Axis
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METHOD OF 

CHARACTERISTICS 

EXAMPLE
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SPIKE EXAMPLE
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Spike Nozzle

Cowl

Centerline

Centerline

Ideal Aerospike Contour
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AIAA 2nd Responsive Space Conference 2004-7003

A STATUS REPORT ON THE DEVELOPMENT OF A NANOSAT LAUNCH VEHICLE AND 

ASSOCIATED LAUNCH VEHICLE TECHNOLOGIES

by: John M. Garvey and Eric Besnard

Figure 6: Static Fire Test of Aerospike Nozzle. From Ignition to Continuous Operation 57



LINEAR AEROSPIKE ENGINE (X-33)

http://www.nasaexplores.com/show2_articlea.php?id=01-001 http://observe.arc.nasa.gov/nasa/ootw/1997/ootw_971001/x33.html

http://www.msfc.nasa.gov/news/news/photos/1998/photos98-204.htm
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AEROSPIKE NOZZLE PERFORMANCE 

ENHANCEMENT
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INTRODUCTION
Designing planes that will fly quickly, efficiently and

economically is all about making air flow smoothly over

their wings and past their tube like bodies. Once a plane is

up in the air, there is no easy way to see how air is moving

past it. That‟s why every modern spacecraft and airplane is

tested on the ground first in a wind tunnel.

SO, WHAT IS WIND TUNNEL?

A wind tunnel is a tool used in aerodynamic research to

study the effects of air moving past solid objects. Actually,

the basic idea of a wind tunnel is: if you can‟t move the

plane through the air, why not move the air past the plane

instead. 60



OBJECTIVE

Our objective will be to obtain relations that

indicate the variation of fluid properties with

area changes and mach number. In this manner,

we can distinguish the important differences in

subsonic and supersonic behaviour in a

supersonic wind tunnel.
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Types of Wind Tunnel

• Subsonic wind tunnel               (M<1)

• Transonic wind tunnel              (0.8<M<1.0)

• Supersonic wind tunnel           (1.0<M<5)

• Hypersonic wind tunnel           (M>5)

62



Types of Supersonic Wind Tunnel

Continuous wind tunnels

Blowdown tunnels

Intermittent indraft wind tunnels
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Continuous wind tunnels

• They are designed so that the air that passes through

the tunnel does not exhaust to the atmosphere;

instead, it enters through a return passage and is

cycled through the test section repeatedly
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Blowdown tunnels
• Blowdown tunnels uses the difference between a

presurized tank and the atmosphere to attain

supersonic speed. Pressure in the tank is greater than

pressure in the environment in other to create a flow

in the environment
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Indraft wind tunnel
• Indraft wind tunnel uses the differences between a

low pressure tank and the atmosphere to create a

flow
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SUPERSONIC WIND TUNNEL

 What is a Supersonic Wind Tunnel?

A  supersonic  wind  tunnel  is  a  test  bed  for  

examining  the  fluid  mechanics  and  associated  fluid 

phenomena for air travelling faster than the speed of 

sound. (Ma>1)

How is supersonic achieved?

This question leads us to the elements working principle 

of supersonic wind tunnel
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Elements of Supersonic Wind Tunnel: The major elements 

of a supersonic wind tunnels are;

(a) Reservoir

(b) Nozzle

(c) Test Section

(d) Diffuser
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WORKING PRINCIPLE OF THE WIND TUNNEL

In order for the air inside the tunnel to reach supersonic conditions, the 

flow must be accelerated from rest through a Delaval nozzle.

To operate economically, the nozzle–test-section combination must be 

followed by a diffusing section which also must be converging–

diverging. 

What is a nozzle? A device is called a nozzle because of what it does, 

not what it looks like. It is a device that converts enthalpy into kinetic 

energy.

Types of a nozzle: 

• A converging/diverging-only nozzle

• A converging-diverging nozzle.
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Starting Condition

 How air flow is generated into the tunnel? The flow inside

the tunnel is naturally quiescent if the pressures are equal.

However, once the pressure ratio increases, the air starts

moving, and the wind tunnel progresses through stages until

it is fully started.

 How is this pressure difference achieved? There are three

main categories of supersonic wind tunnels, differentiated

by how the pressure ratio between the inlet and exhaust

is achieved and controlled.
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i. An indraft tunnel: In an indraft tunnel, the inlet pressure

is at atmospheric pressure, while the exhaust is at a lower

vacuum pressure.

ii. The blowdown tunnel: it has the opposite pressure setup;

high pressure is stored at the inlet, and the exhaust is at

atmospheric pressure.

iii.Pressure-vacuum: The pressure-vacuum tunnel,

combines both a high pressure inlet and a lower

pressure vacuum at the exhaust.
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Now that we are able to achieve fluid flow into the

tunnel, how is supersonic speed achieved?

How is the supersonic speed achieved? This leads

us to the wave formation from the entrance of the

delaval nozzle, through test section and the diffuser.

Starting condition
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 The speed of the wave in the tunnel beforehand i.e. before

startup is subsonic.

 Therefore, pressure variation increase and area changes of the

nozzle determine our Mach number. i.e. the kind of speed that

we achieve.

 it should be noted that, no matter what, the only flow that can

be achieved in the throat of converging-only nozzle will never

be greater than Mach 1

 At this Mach number, choking occurs at the throat of the

nozzle. The speed is sonic (Ma=1).

 Further change in the pressure ratio, and the area between the

test section and the throat cause the speed to increase the

more.

 Basically into supersonic speed
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SHOCK WAVE GENERATION

Now what happens if we decrease the nozzle  exit 

pressure even further? 

A sharp discontinuity is observed in the Test section.

This is otherwise called a SHOCK WAVE
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SHOCK WAVE IN A TUNNEL

Supersonic tunnel at start up with variable Mach 

number variation 75



UNDESIRED EFFECT OF SHOCK WAVE.

In some sense a shock wave can also be visualized as a very sharp

and thin wave front across which pressure, temperature, and

velocity of flow change abruptly

So, what do we DO?
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As the pressure difference in the tunnel keeps decreasing, the 

shock wave moves from the  test section and towards the 

diffusing end.

The throat of the diffuser must be configured to allow shock waves 

to pass through it.

As a rule of thumb, diffuser throat area must be larger than that 

of the nozzle to allow the throat to swallow shock

waves

i.e A nozzle ≤ A diffuser

WHY?
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Knowing fully well that sonic velocity is achieved both at the nozzle 

and diffuser throats, there exist a similarity between the flow 

properties at the two ends.

Pt A* = constant

Therefore,

Pt nozzle × A nozzle = Pt diffuser × A diffuser………..  

(*)
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Due to the friction losses in the tunnel ( not an ideal

situation), there is a pressure loss across the sections.

Therefore Pt diffuser will always be lower than Pt nozzle

i.e          Pt diffuser ˂ Pt nozzle

If the continuity equation is not obeyed, the shock will not

pass through the diffuser. Hence, the diffuser area is made

bigger than the nozzle area.

Therefore, for shock to move through the test section and

pass through the diffuser.

A diffuser > A nozzle      (for running condition) 
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DIFFUSER SECTION

The supersonic speed achieved is step down in the diffuser to subsonic.

Shocks disappear at the throat

where the velocity becomes sonic

again
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VARIABLE GEOMETRY

STARTING CONDITIION

To ensure chocking takes place at the nozzle throat, the diffuser

area must be small enough to quicken the process and big

enough to avoid chocking at the diffuser.

RUNING CONDITION

To ensure that shockwaves is passes throughout the test section

and the into the diffuser section, the diffuser area must be big

enough to accommodate for the losses in the system ( eqn *,

continuity equation).

Therefore the diffuser throat is made such that it changes

according to the time of operation.( variable Geometry)
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DIFFICULTIES IN DESIGN AND MEANS 

OF OVERCOMING THEM

Starting and Unstarting of the Tunnel

Mach – Area ratio and Variable Geometry design

Adequate supply of dry air

The use of drier for closed tunnels and operating at ambient

conditions for open tunnel.

Wall interference effect( Formation of Oblique shocks)

Contour of the throat is critically shaped to maintain a

smooth flow through the test section, and the blower blade

(For blow down tunnels) are made straight and flat to

produce a uniform flow.

High quality instrument capable of rapid measurement due to

short run time on intermittent tunnel

The use of diffuser to increase working time by producing a

minimum pressure gradient to drive the tunnel. 82



PRESSURE DIFFERENCE RELATIONS

 Assuming a source of pressure 200 psai and 12000R is contained in 

the reservoir/inlet where stagnation conditions prevailed.

• At Pe= Pt no there will be no flow in the tunnel

• Pressure difference Pe/ Pt controls the flow into the tunnel

Assume Pe<Pt i.e. Pe=150

P2/Pt2 = (P2/Pt1) ( Pt1/Pt2) Using our isentropic table, 

M=0.66; M< 1 subsonic

(150/200)= 0.75

Assume Pe =105.65

(105.65/200)= 0.52825       M= 1.0 (sonic). At this point, 

chocking occurs

Pe= Pressure at the exhaust  or receiver

P2= Pressure at the throat

Pt= Pressure at the reservoir/supply/inlet or stagnation pressure
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CHOKE FLOW RATE

But the chocked flow rate can change if, for example the supply

pressure or temperature is changed or the size of the throat (exit hole)

is changed.

Let‟s consider this equation

For us to achieve a supersonic flow, it means we need an increasing

area and increasing pressure Pt. With these criteria, we have our

convergent-divergent nozzle through which our supersonic pressure

can be achieved.
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 Although the supersonic wind tunnel is used primarily for

aeronautically oriented work, its operation serves to solidify many

of the important concepts of variable-area flow, normal shocks,

and their associated flow losses.

 Shocks are found only in supersonic flow, and the flow is always

subsonic after a normal shock. The shock wave is a type of

compression process, although a rather inefficient one since

relatively large losses are involved in the process. (What has been

lost?) Shocks provide a means of flow adjustment to meet

imposed pressure conditions in supersonic flow.

 Winds tunnels are used to study the flow of air around an object.

An object is placed in a tunnel and subjected to varying wind

speeds to determine how it is affected by wind current. Airplanes

and rockets are tested in large wind tunnels.

 To operate economically, the nozzle–test-section combination

must be followed by a diffusing section which also must be

converging–diverging.
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UNIT – III

NUMERICAL SOLUTION OF 

TRANSONIC SMALL 

DISTURBANCE EQUATION

86



CRITICAL MACH NUMBER, MCR

• As air expands around top surface near leading edge, velocity and M 

will increase

• Local M > M∞

Flow over airfoil may have sonic regions even though

freestream M∞ < 1 INCREASED DRAG!



CRITICAL FLOW AND SHOCK WAVES

MCR

0.1
 DivergenceDragCR

MM

• Sharp increase in cd is combined effect of shock waves and flow 

separation

• Freestream Mach number at which cd begins to increase rapidly 

called Drag-Divergence Mach number



CRITICAL FLOW AND SHOCK WAVES

„bubble‟ of supersonic flow



CRITICAL FLOW AND SHOCK WAVES

MCR



EXAMPLE: IMPACT ON AIRFOIL / WING DRAG

wdpdfdd

wavepressurefriction

cccc

DDDD

,,,


 Only at transonic and

supersonic speeds

Dwave= 0 for subsonic speeds

below Mdrag-divergence

Profile Drag

Profile Drag coefficient 

relatively constant with 

M∞ at subsonic speeds



AIRFOIL THICKNESS SUMMARY

• Which creates most lift?

– Thicker airfoil

• Which has higher critical Mach number?

– Thinner airfoil

• Which is better?

– Application dependent!

Note: thickness is relative

to chord in all cases

Ex. NACA 0012 → 12 %



CAN WE PREDICT MCR?

 1

2

2

0

0

2,

2

1
1

2

1
1

1
2






















































g

g

g

g

g

A

A

A

A

Ap

M

M

p

p

p

p

p

p

p

p

M
C

A
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Mach number (instead of velocity)

• In an isentropic flow total pressure, p0, is 

constant

• May be related to freestream pressure, p∞, 

and static pressure at A, pA



CAN WE PREDICT MCR?
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• Combined result

– Relates local value of CP to 

local Mach number

– Can think of this as 

compressible flow version of 

Bernoulli‟s equation

• Set MA = 1 (onset of supersonic 

flow)

• Relates CP,CR to MCR



HOW DO WE USE THIS?

1. Plot curve of CP,CR vs. M∞

2. Obtain incompressible value of CP at minimum pressure point

on given airfoil

3. Use any compressibility correction (such as P-G) and plot CP

vs. M∞

– Intersection of these two curves represents point

corresponding to sonic flow at minimum pressure location

on airfoil

– Value of M∞ at this intersection is MCR
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IMPLICATIONS: AIRFOIL THICKNESS

• Thick airfoils have a lower critical Mach number than thin

airfoils

• Desirable to have MCR as high as possible

• Implication for design → high speed wings usually design with

thin airfoils - Supercritical airfoil is somewhat thicker

Note: thickness is relative

to chord in all cases

Ex. NACA 0012 → 12 %



THICKNESS-TO-CHORD RATIO TRENDS

A-10

Root: NACA 6716

TIP: NACA 6713

F-15

Root: NACA 64A(.055)5.9

TIP: NACA 64A203

Flight Mach Number, M∞
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http://upload.wikimedia.org/wikipedia/commons/1/1a/A10Thunderbolt2_990422-F-7910D-517.jpg


ROOT TO TIP AIRFOIL THICKNESS TRENDS

http://www.nasg.com/afdb/list-airfoil-e.phtml

Root Mid-Span Tip

Boeing 737

http://www.airliners.net/open.file?id=800463&size=L&sok=JURER%20%20%28ZNGPU%20%28nvepensg%2Cnveyvar%2Ccynpr%2Ccubgb_qngr%2Cpbhagel%2Cerznex%2Ccubgbtencure%2Crznvy%2Clrne%2Cert%2Cnvepensg_trarevp%2Cpa%2Cpbqr%29%20NTNVAFG%20%28%27%2B%22737%22%27%20VA%20OBBYRNA%20ZBQR%29%29%20%20beqre%20ol%20cubgb_vq%20QRFP&photo_nr=23


SWEPT WINGS
• All modern high-speed aircraft have swept wings: WHY?



WHY WING SWEEP?
V∞

V∞

Wing sees component of flow normal to leading edge



WHY WING SWEEP?

V∞

Wing sees component of flow normal to leading edge

V∞

V∞,n

V∞,n < V∞

W W



SWEPT WINGS: SUBSONIC FLIGHT
• Recall MCR

• If M∞ > MCR large 

increase in drag

• Wing sees 

component of 

flow normal to 

leading edge

• Can increase M∞

• By sweeping 

wings of subsonic

aircraft, drag 

divergence is 

delayed to higher 

Mach numbers



SWEPT WINGS: SUBSONIC FLIGHT
• Alternate Explanation:

– Airfoil has same thickness but longer effective chord

– Effective airfoil section is thinner

– Making airfoil thinner increases critical Mach number

• Sweeping wing usually reduces lift for subsonic flight



SWEPT WINGS: SUPERSONIC FLIGHT
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• If leading edge of swept wing is outside Mach cone, component of 

Mach number normal to leading edge is supersonic → Large Wave 

Drag

• If leading edge of swept wing is inside Mach cone, component of 

Mach number normal to leading edge is subsonic → Reduced 

Wave Drag

• For supersonic flight, swept wings reduce wave drag



WING SWEEP COMPARISON

F-100D English Lightning



SWEPT WINGS: SUPERSONIC FLIGHT

 ~ 26º

(M=1.2) ~ 56º

(M=2.2) ~ 27º



SU-27
M∞ < 1

M∞ > 1



WING SWEEP DISADVANTAGE

• Wing sweep beneficial in that it increases drag-divergences Mach
number

• Increasing wing sweep reduces the lift coefficient

• At M ~ 0.6, 

severely reduced 

L/D

• Benefit of this 

design is at M > 1, 

to sweep wings 

inside Mach cone



TRANSONIC AREA RULE

• Drag created related to change in cross-sectional area

of vehicle from nose to tail

• Shape itself is not as critical in creation of drag, but

rate of change in shape

– Wave drag related to 2nd derivative of volume

distribution of vehicle
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EXAMPLE: YF-102A vs. F-102A



EXAMPLE: YF-102A vs. F-102A



UNIT – IV

NUMERICAL METHODS FOR 

EULER EQUATIONS, BOUNDARY 

LAYER EQUATIONS
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Numerical Solutions of 

Differential Equations

Euler‟s Method
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Differential Equations

A differential equation is a relation between the independent

variable (x), the dependent variable (y) and its derivatives

(y’,y’’,y’’’,y(4),…). Some of these variables might be missing

from the equation.

There are many known methods to solve differential equations

using non-numerical techniques (i.e. by hand). Most of these

involve integration methods. As we have previously

mentioned it is not always possible to find a closed form

antiderivative for a given function made up of functions we

commonly use.
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Many situations in not only mathematics, but physics,

engineering, biology, chemistry, economics as well as many

other disciplines can be described using differential equations.

Here are some examples:
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To the right is an example of an explicit solution of a

separable (Newton‟s Law of Cooling) differential

equation by non-numerical methods.

Notice the c0 term that appears in the solution. This

come from not knowing the constant (+C) when you

integrate.

If we knew a certain value for the function say

T(1)=95, for example, we could find the value for

c0 and thus have everything we need to solve the

differential equation.

This specific piece of information is sometime

called a boundary condition for the differential

equation. This will become an important part of

generating a numerical solution for a differential

equation.
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First Order Degree 1 Differential Equations

The study of differential equation is a subject of its own. The way 

they are normally studied is much like solving algebraic equations, 

look to see if the differential equation fits a certain pattern and then 

apply a certain technique to it.

The methods we will focus on here will all have the same initial 

problem. We will be given a differential equation with the derivative 

a function of the dependent and independent variable and an initial 

condition.

y
0

x
0

(x0,y

0)

y(x

)
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The solution which we call a function y(x) to such an

equation can be pictured graphically. The point (x0,y0)

must be on the graph. The function y(x) would also satisfy

the differential equation if you plugged y(x) in for y.
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Solutions to Equations

The solution to a differential equation (unlike an algebraic

equation) is a function. The problem with this is there are many

ways to describe functions. Some can be described in terms of

some equation relating the dependent and independent variable,

some by a graph and some by a very complicated rule.
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t
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The way we will “solve” a differential equation is to use the

definition of a function. That is to say if we are given a

differential equation y’(x) = f(x,y) with a boundary condition

y(x0) = y0 and another value of x, say xact we can find a number

yact so that y(xact) = yact.

The problem that exists is that yn can not be exactly computed

only estimated. There are several different ways in which to

estimate the value for yn. We will study a couple of them in this

section.

The point (x0,y0) is called the initial point and the point

(xact,yact) is called the terminal point.
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Euler‟s Method

The method that Euler used to

estimate a solution (i.e. the

corresponding value of y for a given

value of x) of a differential equation

was to follow the tangent line from

the initial point to the terminal point.

Here we use the value yn to estimate

the value of yact. This can be directly

computed from the information given

by the following equation
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The insight that Euler had was to see how this estimate 

could be improved on. The strategy he used was to divide 

the interval [x0,xact] (or [xact,x0] in the case xact<x0) into 

equal subintervals and recompute the tangent line as you 

go. This would not allow the tangent line to “drift” far from 

the function itself. This would hopefully produce a more 

accurate estimate for yact at the end.

To Apply Euler‟s Method

1. Divide the interval n equal subintervals. 

2. Compute the width of each subinterval which is 

Dx=h=(xn-x0)/n.

3. Compute the sequence of points as follows:
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In general the coordinates

of the point (xn+1,yn+1) can

be computed from the

coordinates of the point

(xn,yn) as follows:
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Example:

Given the differential equation to the right with its

boundary conditions find the value of y(2) using

Euler‟s method with 4 iterations.
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Some explicit integration method for a linear wave equation.

• Some basic schemes for  are presented.

(1)  FTCS (Forward in Time and Central difference Scheme).

(2)  Lax  (- Friedrich) scheme.

(3)  Leap-Flog scheme

(4)  Lax-Wendroff scheme

(5)  1st order upwind scheme



Some explicit integration method for a linear wave equation 

Lax, Lax-Wendroff, 1st order upwind schemes can be understood 

as  FTCS scheme +Diffusion term.  

(1)  Explicit Euler scheme (FTCS : Forward in Time and Central 

difference).

(2)  Lax  (- Friedrich) scheme.

(3)  Lax-Wendroff scheme. 

(4)  1st order upwind scheme

(Can be used also for negative c.)

(weakest diffusion)



von Neumann stability analysis.

• A method to analyze the stability of numerical scheme for linear 

PDE (assuming equally spaced grid points and periodic boundary 

condition).  

• Consider that the finite difference equation has the following 

solution.

• Then the perturbation                         can be also written

Substituting the Fourier transform above, we have 

Amplification factor g() is defined by



(2) Lax : 

(3) Lax-Wendroff : 

(4) 1st order upwind :

(1) Explicit Euler :



k – scheme : A parametrization of representative linear schemes. (Van Leer) 

For a linear PDE , write a Taylor expansion in time

Approximate the second term in RHS as

And the third term as

j+1jj–1 

j–1/2 j+1/2 

j–2 j–2 



Deriving a FD scheme explicitly for wn
j , one finds that the coefficients of wn

j

Are effectively proportional to k – 2 || .  Hence one parameter may be eliminated.

A choice results in the form of k – scheme derived  by Van Leer.  

k – scheme becomes 

Different from the Van Leer‟s choice

k = 1/3 Quickest scheme

k = 1/2 Quick scheme

k = 0 Fromm scheme (optimal)

Leonard (1979)

 k = 1          Lax-Wendroff

k – 2 = –1  Warming & Beam

k– scheme (continued)

Method of lines : (yet another idea for discretization.)

In the k– scheme (and the linear scheme we have seen) a dependence on the 

time step t is included in the Courant number .  To avoid this, one discretizes 

PDE along spatial direction first as

For the FD operator Lh , choose e.g. k – scheme, then apply ODE integration 

scheme such as RK4.   



Monotonicity preservation of a linear advection equation

Definition: (Monotonicity preserving scheme)

A numerical scheme is called monotonicity preserving if for every non-

increasing (decreasing ) initial data the numerical solution 

is non-increasing (decreasing).

A linear advection equation 

preserves monotonicity i.e. if f(0,x): monotonic ) f(t,x): monotonic, 

since its general solution is .

Consider a finite difference scheme that generates numerical 

approximation        to                .   : data at the time step n.  



For the uniform grid and the constant time step

the (explicit or implicit) one-step scheme, in which

at the (n+1)th step is uniquely determined from at

the nth step, is written

Theorem: (Godunov: Monotonicity preservation)

The above one-step scheme is monotonicity preserving if and

only if

Godunov‟s theorem

Theorem: (Godunov‟s order barrier theorem)

Linear one-step second-order accurate numerical schemes for

the convection equation cannot be monotonicity

preserving, unless



From the local truncatoin error formula, 

Two 2nd order schemes: Lax-Wendroff and Warming & Beam 

schemes

the 2nd order scheme needs to satisfy

Choice of 3 grid points j – 1, j, j +1, (m = – 1, 0, +1) results in Lax-Wendroff.

Choice of 3 grid points j – 2, j – 1, j, (m = –2, –1, 0) results in Warming & 

Beam.

( Explicit Euler + Diffusion term centered at j.)

( 1st order upwind + Diffusion term centered at j-1.)
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Writing these in the flux form

Lax-Wendroff: 

Warming & Beam: 
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Flux Numerical 

Methods
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Flux Basics

The finite-volume formulation of the conservation equations 

resulted in the equation   

where     was the flux of the flow across the control surface 

resulting from the approximation of the surface integral.  For a 

finite-volume cell, the flux was expressed as

Where

It was assumed that the flux was uniform over the cell face.
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Fluxes on a Hexahedral Cell

A hexahedral cell contains 6 quadrilateral 

faces, thus

where again,


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Numerical Flux on a Cell Face

The numerical flux on a cell face is

The normal area vector is usually easily defined for a

quadrilateral or triangular cell face. The focus of the rest of this

discussion is on numerical methods for computing

at a cell face.  

We first will assume that     is a known velocity for the cell face.

    
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Numerical Flux on a Cell Face

We first consider that we have the

states of the flow on the “left” and

“right” of the cell face, QL and QR.

Our objective is to find the cell face

flux.

One can define

A consistency condition for the

numerical flux is that if QL = QR ,

then

f
F̂

 
f

dSn̂
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Central Difference Method
A central difference method for computing the flux is simply

The central-difference method works okay for elliptic

components of the flux because there is no preferred direction

for the propagation of information.

A simple central difference is often unstable, especially in the

presence of strong gradients. One solution is to add some

second-order and fourth-order dissipation (artificial viscosity) to

the flux.

Methods for computing D(2) and D(4) vary, but generally use

second and fourth-order differences with switches to handle

variations in Q.

 
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Use of Central Difference Method

For the Navier-Stokes equations, the viscous shear stress and

heat flux terms in the viscous component DV of the non-

convective component D are elliptic and those flux components

can be computed with the central difference method.

Similarly, the fluxes of the turbulence and chemistry equations

can be computed using the central difference method.

The convective portion of the flux and the pressure term in the

inviscid component DI of the Navier-Stokes equation have a

hyperbolic character. This wave nature can be put to use to

compute the flux using upwind methods.
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Upwind Methods

We expressed the non-convective portion of the flux of the

Navier-Stokes equation as

This results in the cell-face flux being expressed as

or

We will now focus on computing the inviscid flux using

upwind methods. The focus will be on the use of Roe‟s Upwind

Flux-Difference Splitting Method.
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Roe Upwind Flux-Difference Method

The Roe upwind flux-difference method computes the 

inviscid flux as:

where        is the flux difference computed as,  
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Roe‟s method is the default flux method in WIND.
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Roe Upwind Flux-Difference Method

The are the eigen values that represent the speed of the

waves. The (+) indicate positive eigen values and the (-)

indicates negative eigen values.

The are the right eigenvectors that represent the direction of

propagation of the waves.

The are the Riemann invariants and represent the strength

of the wave,
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Roe Upwind Flux-Difference Method

The differentials are computed as

Flow properties at the face are computed using Roe-averaging

Similar for computing v, w, and ht.
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Higher-Order Projection

The choice of values of QL and QR have several option:

1) Use the values of the finite-volume cells to the “left” and

“right” of the face. This is a zero-order evaluation and will

result in a spatially first-order flux.

2) Use an extrapolation of neighboring finite-volume cells to

form a first-order evaluation of Q at the face. This will result

in a spatially second-order flux.
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Variation Limiting

The simple extrapolation formulas assume a smooth variation of

Q; however, discontinuities in Q are possible (i.e. shocks). Need

some mechanism to sense such discontinuities and limit the

variation of Q in these extrapolation formulas. Modify the

extrapolations by introducing a limiter ,

This gets into the topic of TVD (Total Variational Diminishing)

flux limiting methods, which we will not get into here. The

essential role of the limiter is to make   0 in the presence of

large variations, which make the flux spatially first-order.
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Examples of Limiters

The possible functions (and theory) for limiters is varied. A

couple examples include:

Superbee:

Chakravarthy:

Where r is some ratio of the flow properties and indicates the

amount of variation in the solution. An example is

The  is a compression parameter 1    2, where a value

toward 1 makes the limiter more dissipative.

   ,min,0max)( rr 

    2,min,1,2min,0max)( rrr 

i

i

Q

Q
r




1





150

Flux Vector Splitting

An alternative to flux-difference splitting is flux-vector

splitting that considers that the inviscid flux can be linearly

separated

Van Leer‟s flux-vector splitting has the general form of
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Other RHS Methods

Other methods for the “right-hand-side (RHS)” that will not be

discussed:

• Methods available for 3rd to 5th –order spatial accuracy.

• Roe‟s method is modified to allow non-uniform grids.

• Roe‟s method as used in the OVERFLOW code is available.

• Coakley method is available

• HLLE method is available (similar to Roe‟s method)



• Total variation of a function TV(f) is 

defined by 

which is independent of t, hence f(t,x) is TVD.  

Total variation diminishing (TVD) property.

• For f(t,x) a solution to, we have 

Definition: (TVD).   If TV(f) does not increase in time, f(t,x) 

is called total variation diminishing or TVD.  

Definition: A numerical scheme with this property is called 

TVD scheme.



Monotonicity preserving scheme with flux limiter 

function. (Flux limted schemes)

• Godunov‟s theorem does not allow the 2nd order linear one-

step scheme. 

• Conditions to be satisfied by the 1st order 

monotonicity preserving scheme are 

• Considering that the number of grid 

points for the 1st order scheme are 2 points,

resulting scheme is the 1st-order upwind.
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Lax-Wendroff : 

1st order upwind  ( c > 0 ): 

Lax-Wendroff scheme is understood as modifying the flux of 1st

order upwind.

Consider a non-linear scheme that modify the flux with a 

limiter function

(The value of  differs at each cell boundary.)
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UNIT – V

TIME DEPENDENT METHODS



Explicit Methods 
• The forward time / central space (FTCS) 

method.

• Stability condition:

156



• The Richardson method (central differencing for 

both of time and space derivatives):

• Unconditionally unstable and, therefore, has no 

practical value
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The DuFort-Frankel method
• Due to stability considerations, ui

n in the diffusion term is 

replaced by the average value of ui
n+1 and ui

n-1.

• the equation can be solved explicitly:

• unconditionally stable!
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• Either two sets of data must be specified, or, from a practical

point of view, a one-step method can be used as a starter. Of

course, for the one-step (in Δt) starter solution, only one set of

initial data, say at n - 1, is required to generate the solution at n.

• With the values of u, at n - 1 and n specified, the DuFort-Frankel

method can be used.

• The accuracy of the solution provided by the Dufort-Frankel

method is affected by the accuracy of the starter solution.

• Since the solution at the unknown station requires data from two

previous stations, computer storage requirements will increase.

160



Implicit Methods
• The Laasonen method:

• Implicit methods offer great advantage on the stability of the

finite difference equations, since most are unconditionally stable.

• Therefore, a larger step size in time is permitted;

• however, the selection of a larger time step is limited due to

accuracy consideration because an increase in time step will

increase the truncation error of the finite difference equation.
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The Crank-Nicolson method:
• If the diffusion term in Laasonen method is replaced by the average of the 

central differences at time levels n and n +1:
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• unconditionally stable
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The Beta Formulation

• unconditionally stable:

• Crank-Nicolson implicit method:

• conditionally stable:

• FTCS explicit method:
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• A fluid bounded by two parallel plates extended to infinity

such that no end effects are encountered. The planar walls

and the fluid are initially at rest. Now, the lower wall is

suddenly accelerated in the x-direction
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Parabolic Equations in Two-Space 

Dimensions

• FTCS

• stability

166
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Implicit  formulation
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Alternating Direction Implicit method  or ADI

• x sweep: implicit in the x-direction and explicit in the y-

direction:

• y  sweep: implicit  in the y-direction and explicit  in  the x-

direction:
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Extension to Three-Space 

Dimensions

170



Consistency Analysis of  the Finite Difference 

Equations
• By previous definition, an FDE approximation of a PDE is

consistent if the FDE reduces to the original PDE as the step

sizes approach zero.

• FTCS explicit method:
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• Consistency requires that as the step sizes !:"x and !:"t

approach zero, the FDE must reduce to the original PDE.
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• DuFort-Frankel method:
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Linearization

• Method 1. Lagging:

• Method II. Iterative:

• Method III. Newton's iterative linearization:
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Elliptic Equations

• Five-point formula" is the most commonly used. central

differencing (second-order accurate):
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• Nine-point formula (forth-order accurate):

• Implementation of the boundary conditions?
177



Five point

• Example:
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• The Point Gauss-Seidel Iteration Method 

• The Line Gauss-Seidel Iteration Method :
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Point Successive Over-Relaxation Method 

(PSOR)
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Line Successive Over-Relaxation Method 

(LSOR) 
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The Alternating Direction 

Implicit (ADI) Method
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The Point Gauss-Seidel Iteration 

Method 
• (sufficient condition) for the convergence of the 

method:

• and, at least for one row:
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Leap Frog (space and time)

• We use centered differencing for both space and time.

• We know that the leap frog time stepping method is only
stable for operators with eigenvalues in the range:

• However, we also know that the centered difference
derivative matrix is a skew symmetric matrix with
eigenvalues:

• So we are left with a condition: i.e.
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cont
• We can perform a full truncation analysis (in space and 

time):

• We know that dt <= dx so 
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Lax-Friedrichs Method

• We immediately conclude that the following method is not
stable:

• Because the Euler-Forward time integrator only admits one
stable point (the origin) on the imaginary axis, but the
central differencing matrix has all eigenvalues on the
imaginary axis.

• However, we can stabilize this formula by replacing the
second term in the time-stepping formula:
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• This formula does not quite fit into our constructive

process (method of lines approach).

• We have admitted spatial averaging into the discretization

of the time derivative.

• We can rearrange this:
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• We can immediately determine that this is a stable method as 

long as c*dt/dx <=1 

• Given, this condition we observe that the time updated solution

is always bounded between the values of the left and right

neighbor at the previous time because this is an interpolation

formula.
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• A formal stability analysis would involve:

• Which gives stability for each mode if:
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• Thus considering all the possible modes

• We note that the middle mode requires:

• This condition gives a sufficient condition for all modes to

be bounded.

• By the invertibility and boundedness of the Fourier

transform we conclude that the original equation is stable.
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• We can recast the Lax-Friedrichs method again

• This method consists of Euler Forward, central differencing

for the space derivative and an extra dissipative term (i.e. a

grid dependent advection diffusion equation)
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CFL Number

• The ratio appears repeatedly, in particular in the

estimates for the maximum possible time step.

• We refer to this quantity as the CFL (Courant-Friedrichs-

Lewy) number.

• Bounds of the form: which result from a

stability analysis are frequently referred to as CFL

conditions.

d t

d x
 

d t
C

d x
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Lax-Wendroff Method

• We are fairly free to choose the parameter in the stabilizing

term:

• The artificial viscosity term acts to shift the eigenvalues of

the spatial operator into the left half-plane.

• Recall – the Euler-Forward stability region is the unit circle

centered at -1 in the complex plane. So pushing the eigen

values off the imaginary axis allows us to choose a dt small

enough to push the eigen values of the discrete spatial

operator into the stability region…
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• At each iteration one prediction step is done and as many

correction steps as needed.

• is the estimate of the solution at xi+1 after k correction steps.
k

i
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2-Step Predictor-Corrector
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Finite difference approximation to derivatives
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Consider a smooth function g(x). Taylor‟s theorem reads:
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Short course on: Numerical methods for hyperbolic equations and applications-Trento, Italia-June 7th to 18th, 2004
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Finite difference approximation of PDEs: FTCS
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Now approximate partial derivatives.

(CS) spaceincentred:)(
2

(FT) timeinforward:)(
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Use finite differences:
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
The Courant-Friedrichs-Lewy number

or CFL number, or Courant number

Note that c is a dimensionless quantity, it is the ratio of two 

velocities:
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Introduce the dimensionless number:

Finally, the FTCS scheme reads:

This formula allows us to calculate explicitly the

evolution in time of discrete approximate values of the

solution at every point, except for i=0 and i=M.

Stencil
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Convergence

Our ultimate goal is to construct schemes that converge, that is

schemes that approach the true solution of the PDE when the

mesh size tends to zero.

Lax‟s Equivalence theorem says that:

the only schemes that are CONVERGENT are those that

are CONSISTENT and STABLE

We must therefore work on CONSISTENCY AND STABILITY.
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Local truncation error
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The numerical analogue of the PDE is the approximate 

operator:

We define the local truncation 

error:
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Assuming the solution is sufficiently smooth we Taylor expand 

and obtain:
n
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The FTCS is a first-order scheme

Noting that:

In general, if the local truncation error of a scheme is of the form:

)()(
lk

TE
xOtOL DD

Then the scheme is said to be k-th order accurate in time and l-th 

order accurate in space.
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Consistency

A numerical scheme is said to be consistent with the PDE being

discretized if the local truncation error tends to zero as the mesh

size tends to zero.

0  and   0     as    0 DD xtL
TE

For example, for the FTCS scheme we have

)()(
2

xOtOL
TE

DD

Therefore FTCS is consistent wit the PDE
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Stability of a numerical method.

 If a method is consistent with the PDE, then all we need to

bother is stability.

One view of stability is that of unbounded growth of errors as

the numerical scheme evolves the solution in time.

Another view of stability is that of controlling spurious

oscillations

Stability in the sense on unbounded growth can be analysed

by a variety of methods

A popular method is the von Neumann method

One performs a Fourier decomposition of the error. It is

sufficient to consider a single component.
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Stability analysis of the FTCS 
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Godunov‟s first-order upwind scheme

• Approximate derivatives in 0,0  
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Illustrate the 

stencil
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The finite difference operator is:

Substitution of the exact solution into the approximate opetaror 

gives:
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The scheme is first-order accurate in space and time

Local truncation error:
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The stencil (upwind)
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• For appropriate choices of               the point        lies 

between         and       

• Assume a linear interpolation between         and 
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The “downwind” scheme

• Approximate derivatives in 0,0  
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Exercise:  show that this scheme is unconditionally unstable.

Exercise: derive the local truncation error. Is the scheme consistent ?
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• For              the upwind scheme is )(
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define:

Exercise: show that the upwind scheme for negative speed is conditionally stable

General Form of the First-Order Upwind Scheme



216

Fully discrete and semi-discrete schemes
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Explicit scheme and implicit schemes
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Exercise: construct the fully discrete implicit version of FTCS



218

Monotone schemes for the linear advection equation with constant

speed of propagation are those whose coefficients are non-negative.
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Example: The Godunov upwind scheme.
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• Conditionally stable

• Monotone

LF may also be seen as the FTCS scheme (unstable) with        
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The Lax-Friedrichs scheme (LF)
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This is an interesting example of a first-order scheme that is NOT MONOTONE.

Stencil

The Godunov Centered Scheme
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• Non-monotone (verify by inspection)
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Stencil

The Lax-Wendroff Scheme (LW)
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stencil

The FORCE scheme


