\square
INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043

MODEL QUESTION PAPER

First Year B.Tech II Semester End Examinations, May - 2019
Regulations: R18
ENGINEERING MECHANICS
Time: 3 hours
Max. Marks: 70
Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only
1.
a) Explain the procedure to find the resultant of several forces acting at a point
b) The force of magnitudes $10 \mathrm{KN}, 20 \mathrm{KN}, 25 \mathrm{KN} \& 40 \mathrm{KN}$ are concurrent in space and are directed through the points $\mathrm{A}(3,2,5), \mathrm{B}(1,7,4), \quad \mathrm{C}(4,-2,4) \& \mathrm{D}(-2,4,-3)$ respectively. Determine the resultant of the force system of forces. Given that system of forces are concurrent at the origin.
2. a) Determine the magnitude and the direction of the resultant of two forces 7 N and 8 N acting at a point with an included angle of 60 o with between them. The force of 7 N being horizontal
b) A system of connected flexible cables as shown in figure is supporting two vertical forces 240 N and 300 N at points B and D. Determine the forces in various segments of the cable.

UNIT - II

3. a) Derive an expression for the minimum effort required along the inclined plane to keep a body in equilibrium position when it is at point of sliding downwards on a inclined plane.
b) Find the forc and its nature in member AD and BC for given cantilever truss loaded by 40 KN as shown figure
4. a) Solve reactions at points A \& B

b) A mean radius of the screw of a square threaded screw jack is 25 mm . the pitch of thread is 7.5 mm . if the coefficient of the friction is 0.12 , what effort applied at the end of the lever 60 cm length is needed to raise a weight of 2 KN

> UNIT - III
5. a) Determine the co-odinates of centroid of the shaded area shown in figure.

b) A pump lifts $40 \mathrm{~m}^{3}$ of water to aheight of 50 m and delivers it with a velocity of $5 \mathrm{~m} / \mathrm{s}$. what is the amount of energy spent during the process? If the job is done in half an hour, what is the input power of the pump which has an overall efficiency of 70%
6. a) A block of mass 50 kg slides down a 35° incline and strikes a spring 1.5 m away from it as shown in Fig. The maximum compression of the spring is 300 mm when the block comes to rest. If the spring constant is $1 \mathrm{kN} / \mathrm{m}$, Solve the coefficient of kinetic friction between the block and the plane.

b) Derive an expression for centroid of semi-circle and MI for a rectagle section.

UNIT - IV

7. a) A body A is projected vertically upwards from the top of a tower with a velocity of $40 \mathrm{~m} / \mathrm{s}$, the tower being 180 m high. After t seconds, another body B is allowed to fall from the same point. Both the bodies reach the ground simultaneously. Calculate t and the velocities of A and B on reaching the ground.
b) Determine the tension in the inextensible string of the system shown the figure 4 below while $m_{1}=200 \mathrm{Kg}$ and $\mathrm{m}_{2}=100 \mathrm{Kg}$. Consider the pulley as massless and coefficient of friction as 0.2 .

8. a) An elevator weighing 4900 N is ascending with an acceleration of $3 \mathrm{~m} / \mathrm{s} 2$. During the ascent its operator whose weight is 686 N is standing on the scales placed on the floor. What is the scale reading? What will be total tension in the cable of the elevator during this motion?
b) Find the velocity of block B shown in figure 2 given below, after 5 seconds starting from rest.

UNIT - V

9. a) Determine the period of vibration of a weight P attached to springs of stiffness k 1 and k 2 in two different cases as shown in figure 10 given below.

b) A vertical shaft 5 mm in diameter and 1 m in length has its upper end fixed to the ceiling. At the lower end it carries a rotor of diameter 200 mm and weight 20 N . The modulus of rigidity for the rotor is $0.85 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Calculate the frequency of torsional vibration for the system.
10. a) A body performing simple harmonic motion has a velocity $20 \mathrm{~m} / \mathrm{s}$ when the displacement is 40 mm and $3 \mathrm{~m} / \mathrm{s}$ when the displacement is 120 mm , the displacement measured from the mid-point. Calculate the frequency and amplitude of the motion. What is the acceleration when displacement is 85 mm .
b) A conical pendulum rotates at $100 \mathrm{rev} / \mathrm{min}$. The cord is 150 mm long and the mass of bob 1.35 Kg .
Find
i. The amount of which the bob rises above its lowest position
ii. The period
iii. The tension in the cord.
