

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER - I

B.Tech III Semester End Examinations, November/ December - 2019

Regulations: IARE - R18

MECHANICS OF SOLIDS

(AERONAUTICAL ENGINEERING)

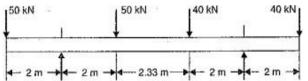
Time: 3 hours

Max. Marks: 70

Answer ONE Question from each Module All Questions Carry Equal Marks All parts of the question must be answered in one place only

MODULE-I

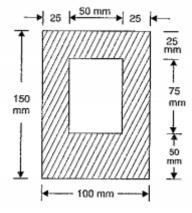
- 1. a) The extension in a rectangular steel bar of length 800mm and of thickness 20mm is found [7M] to be 0.21mm. The bar tapers uniformly in width from 80mm to 40mm. if E for the bar is 2×105 N/mm2. Determine the axial tensile load on the bar.
 - b) A load of 100N falls through a height of 2cm on to a collar rigidly attached to the lower [7M] end of a vertical bar 1.5m long and of 1.5cm2 cross-sectional area. The upper end of the vertical bar is fixed. Determine:
 - i. Maximum instantaneous stress induced in the vertical bar,
 - ii. Maximum instantaneous elongation and
 - iii. Strain energy stored in the vertical rod. Take $E=2 \times 105 N/mm2$
- 2. a) A vertical bar 4m long and 2000 mm2 cross-sectional area is fixed at the upper end and [7M] has a collar at the lower end. Determine the maximum stress induced when a weight of:
 - i. 3000 N falls through a height of 20cm on the collar,
 - ii. 30KN falls through a height of 2 cm on the collar.


Take E= 2×105 N/mm2

b) The shear stress in a material at a point is given as 45 N/mm2. Determine the local strain [7M] energy per unit volume stored in the material due to shear stress. Take $C=8 \times 104$ N/mm2

MODULE – II

- 3. a) A cantilever of length 2m carries a udl of 2KN/m run over the length of 1m from the free [7M] end. It also carries a point load of 4KN at a distance of 0.5m from the free end. Draw the S.F.D and B.M.D.
 - b) A beam is loaded as shown in the figure. Draw S.F.D and B.M.D and find [7M] a) Maximum Shear Force


- b) Maximum Bending Moment
- c) Point of inflexion

- 4. a) Draw the sheer force and bending moment diagrams for a cantilever of length L carrying a [7M] uniformly varying load zero at free end to w per unit length at the fixed end.
 - b) Draw the shear force and bending moment diagrams for a simply supported beam of length [7M] L carrying a uniformly varying load zero at each end to w per unit length at the centre.

MODULE – III

- 5. a) A tie rod of solid circular section is subjected to a tensile force of 94.25KN at an eccentricity of 5mm from the longitudinal axis. If the maximum tensile stress is limited to 150N/mm2 find the minimum diameter of the rod.
 - b) An I-section consists of the following sections: upper flange=130mm×50mm [7M] Web=200mm×50mm, lower flange=200mm×50mm. If the beam is subjected to a shearing force of 50KN, find the maximum shear stress across the section. Also draw the shear stress distribution diagram. Take I=284.9×106 mm4
- 6. a) A timber beam 150mm wide and 100 mm deep is to be reinforced by two steel flitches [7M] each 150mm×10mm in section. Calculate the ratio of the moments of the resistance in the two mentioned cases:
 - i. Flitches attached symmetrically on the sides
 - ii. Flitches attached at top and bottom.
 - b) A SSB of length 4m carries a point load of 16kN at a distance of 3m from left support. The [7M] cross-section of the beam is as shown in figure. Determine the maximum tensile and compressive stress at a section which is at a distance of 2.25m from the left support.

MODULE - IV

- 7. a) Derive the expression for maximum deflection and maximum deflection for a strut [7M] subjected to compressive axial load or axial thrust and a transverse UDL of intensity w per unit length when both ends are pinned.
 - b) A hollow cylindrical cast iron column is 6m long with both ends fixed. Determine the [7M] minimum diameter of the column if it has to carry a safe load of 300KN with a factor of safety of 4. Take the internal diameter as 0.7 times the external diameter. Take fc =550N/mm2 and α =1/1600 in Rankine's formula.

- 8. a) Determine Euler's crippling load for an I-section joist $30 \text{cm} \times 15 \text{cm} \times 2 \text{cm}$ and $5 \text{m} \log$ [7M] which is used as a strut with both ends fixed. Take $E=2 \times 105 \text{N/mm2}$ for the joist.
 - b) A tubular steel strut is of 65mm external diameter and 50 mm internal diameter. It is 2.5 m [7M] long and hinged at both ends. The load acting is eccentric. Find the maximum eccentricity for a crippling load of 0.75 of the Euler load, the yield stress being 330 MPa, E = 210 GPa.

MODULE-V

- 9. a) The principal tensile stress at a point across two mutually perpendicular planes is [7M] 100N/mm2 and 50 N/mm2. Determine the normal, tangential and resultant stresses on a plane inclined at 300 to the axis of the minor principal stress.
 - b) At a point in a strained material, the principal stresses are 140 N/mm2(tensile) and [7M] 60N/mm2(compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 450 to the axis of the major principal stress. What is the maximum intensity of shear stress in the material at the point?
- 10 a) At a point in a two dimensional system, the normal stress on two mutually perpendicular [7M] . planes are $\sigma 1$ and $\sigma 2$ (both alike) and shear stress is τ . Show that one of the principal stresses is zero if $\tau = \sqrt{\sigma 1 \times \sigma 2}$.
 - b) A rectangular block of material is subjected to a tensile stress of 100 N/mm2 on one plane [7M] and a tensile stress of 50N/mm2 on a plane at right angles, together with shear stresses of 60N/mm2 on the faces. Find:
 - i. The direction of principal planes
 - ii. The magnitude of principal stresses and
 - iii. Magnitude of the greatest shear stress.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MECHANICS OF SOLIDS

COURSE OBJECTIVES:

The course should enable the students to:

Ι	Understand the behavior of structure basic structural components under loading conditions	
Π	Apply the shear force, bending moment and deflection methods to the beam in different load conditions	
III		
IV		

COURSE OUTCOMES (COs):

CO 1	To understand the basics of material properties, stress and strain.	
CO 2	To apply knowledge of various kinds of beams for engineering applications.	
CO 3	Ability to identify, formulate, and solve engineering & real life problems.	
CO 4	Ability to design and conduct experiments, as well as to analyze and interpret data	
CO 5	Ability to design a component to meet desired needs within realistic constraints of safety.	

COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the ability to do the following:

AAEB04.01	Calculate the stress strain relations in conjunction with elasticity and material properties		
AAEB04.02	Describe the resistance and deformation in members which are subjected to axial, flexural and torsion loads.		
AAEB04.03	Discuss thermal explanations in solid bars and induced thermal stresses		
AAEB04.04	Solve for bending and shear parameters of beams under loading conditions		
AAEB04.05	Explain for deflections of beams under loading with various approaches.		
AAEB04.06	Determine the deflections of different beams under different loading conditions.		
AAEB04.07	Compute the bending stresses developed in various sections of beams of real field problems.		
AAEB04.08	Apply the bending equation on various sections		
AAEB04.09	09 Determine the shear stresses developed in various sections of beams		
AAEB04.10	Calculate the stability of structural elements and determine buckling loads.		
AAEB04.11	1 Discuss critical buckling load for column with various loading and end conditions		

AAEB04.12	Apply theories and to predict the performance of bars under axial loading including buckling.
AAEB04.13	Understand the theory of beam column & determine buckling loads on it.
AAEB04.14	Solve the principal stress problems by graphical methods.
AAEB04.15	Explain the stress transformation and concept of principle plane and principle stresses
AAEB04.16 Evaluate principal stresses, strains and apply the concept of failure theories for desi	
AAEB04.17	Acquire knowledge to solve real time problems in Aircraft structure subjected loading conditions

MAPPING OF SEE – COURSE OUTCOMES

SEE Question No.		Course Outcomes		Course Outcomes	Blooms' Taxonomy Level
1	а	AAEB04.01	Calculate the stress strain relations in conjunction with elasticity and material properties	CO1	Remember
	b	AAEB04.02	Describe the resistance and deformation in members which are subjected to axial, flexural and torsion loads.	CO1	Remember
2	a	AAEB04.03	Discuss thermal explanations in solid bars and induced thermal stresses	CO1	Remember
	b	AAEB04.01	Calculate the stress strain relations in conjunction with elasticity and material properties	CO1	Understand
3	а	AAEB04.04	Solve for bending and shear parameters of beams under loading conditions	CO2	Remember
	b	AAEB04.05	Explain for deflections of beams under loading with various approaches.	CO2	Remember
4	а	AAEB04.04	Solve for bending and shear parameters of beams under loading conditions	CO2	Remember
4	b	AAEB04.05	Explain for deflections of beams under loading with various approaches.	CO2	Remember
5	а	AAEB04.07	Compute the bending stresses developed in various sections of beams of real field problems.	CO3	Understand
5	b	AAEB04.07	Compute the bending stresses developed in various sections of beams of real field problems.	CO3	Remember
	а	AAEB04.09	Determine the shear stresses developed in various sections of beams	CO3	Understand
6	b	AAEB04.09	Determine the shear stresses developed in various sections of beams	CO3	Understand
7	a	AAEB04.10	Calculate the stability of structural elements and determine buckling loads.	CO4	Understand
/	b	AAEB04.11	Discuss critical buckling load for column with various loading and end conditions	CO4	Remember
8	а	AAEB04.12	Apply theories and to predict the performance of bars under axial loading including buckling.	CO4	Understand
0	b	AAEB04.13	Understand the theory of beam column & determine buckling loads on it.	CO4	Understand
9	а	AAEB04.14	Solve the principal stress problems by graphical methods.	CO5	Remember
	b	AAEB04.15	Explain the stress transformation and concept of principle plane and principle stresses	CO5	Understand

10	a	AAEB04.16	Evaluate principal stresses, strains and apply the concept of failure theories for design	CO5	Remember
) b	AAEB04.17	Acquire knowledge to solve real time problems in Aircraft structure subjected loading conditions	CO5	Remember

Signature of Course Coordinator

HOD, AE