**INSTITUTE OF AERONAUTICAL ENGINEERING** 

THARE NOT

(Autonomous)

Dundigal, Hyderabad - 500 043

## MODEL QUESTION PAPER-I

B.Tech IV Semester End Examinations, May-2020

**Regulations: IARE-R18** 

## MATERIALS AND MECHANICS OF SOLIDS

(MECHANICAL ENGINEERING)

## Time: 3 hours

Max. Marks: 70

Question Paper Code: AMEB11

Answer ONE Question from each Module All Questions Carry Equal Marks All parts of the question must be answered in one place only

## MODULE – I

| 1. | a) | What is a metallic bond? How the type of bonding does influence the properties of crystals? Distinguish between a family of planes and family of directions.                                                                                                                                         | [7M] |
|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | b) | What is Atomic packing factor (APF)? Find APF of a Body Centered Cube and a Face Centered Cube?                                                                                                                                                                                                      | [7M] |
| 2. | a) | Explain the effects of crystal structure and atomic radii on formation of solid solution between two metallic elements.                                                                                                                                                                              | [7M] |
|    | b) | What are intermediate phases? Explain most common types of intermediate phases with examples.                                                                                                                                                                                                        | [7M] |
|    |    | MODULE – II                                                                                                                                                                                                                                                                                          |      |
| 3. | a) | What is cooling curve? With the help of appropriate diagram explain the cooling curve for (i) Pure metal (ii) Binary solid solution (iii) Binary eutectic system.                                                                                                                                    | [7M] |
|    | b) | <ul> <li>Elements A and B melt at 600°C and 900°C respectively. They form an eutectic at 40 % B and at temperature 400°C. Draw a typical phase diagram between A and B.</li> <li>Find (i) Amount of free A and eutectic in 20 % B alloy (ii)Amount of free B and eutectic in 60 % B alloy</li> </ul> | [7M] |
| 4. | a) | Draw and explain the various areas of an isomorphous system (phase diagram) in which two metals are completely soluble in solid as well as liquid.                                                                                                                                                   | [7M] |
|    | b) | How is the cored structure formed and how can it be eliminated?                                                                                                                                                                                                                                      | [7M] |
| 5. | a) | <b>MODULE – III</b><br>A concrete column is reinforced with steel bars comprising 6 percent of the gross<br>area of column section. What is the fraction of the compressive load sustained by<br>steel bars, if the ratio of Young's modulii of steel and concrete is 12.5?                          | [7M] |
|    | b) | A prismatic member of length l and unit weight w is suspended freely from its end. Determine the elongation of the member under gravity.                                                                                                                                                             | [7M] |
| 6. | a) | A circular alloy bar 2 m long uniformly tapers from 30 mm diameter to 20 mm diameter. Calculate the elongation of the rod under an axial force of 50 KN. Take E for the alloy as 140 GPa.                                                                                                            | [7M] |
|    | b) | A mild steel rod 1 m long and 20 mm diameter is subjected to an axial pull of 62.5 KN. What is the elongation of the rod, when the load is applied (i) gradually,                                                                                                                                    | [7M] |

and (ii) suddenly? Take E = 200 GPa.

#### **MODULE – IV**

- 7. a) A cantilever beam 4 m long carries a gradually varying load, zero at the free end to [7M] 3 KN/m at the fixed end. Draw bending moment and shear force diagrams for the Beam.
  - b) A Beam of length 6.0m is simply supported at the ends and carries a u.d.l of [7M] intensity 1.5KN/m run and three concentrated loads of 1KN, 2KN and 3KN acting at a distance of 1.5m, 3.0m and 4.5m respectively from left end. Draw the S.F.D and B.M.D and also determine the maximum bending moment.
- 8. a) A cantilever beam AB, 1.8 m long carries a point load of 2.5 KN at its free end and a uniformly distributed load of 1KN/m from A to B. Draw shear force and bending moment diagrams for the beam.
  - b) A simply supported beam of 3 m span carries two loads of 5 KN each at 1 m [7M] and 2 m from the left hand support. Draw shear force and bending moment diagrams for the beam.

#### MODULE-V

- 9. a) Compute the rotation at middle support of a two equal span continuous beam fixed [7M] at the ends and carrying UDL of 10 kN/m over the entire beam span 5 m. Take EI =  $60000 \text{ kNm}^2$ .
  - b) Explain the use of slope deflection method.
- 10. a) The beam shown in figure is to be analyzed by slope deflection method. What are **[7M]** the unknowns and to determine them, what are the conditions used?

[7M]

b) A rigid frame is having totally 10 joints including support joints. Out of slope [7M] deflection and moment distribution methods, which method would you prefer for analysis? Why?



**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous)

Dundigal, Hyderabad - 500 043

#### **COURSE OBJECTIVES:**

| I Understand the basic structure and crystal arrangement of materials. |                                                                                                                                                                     |  |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| II                                                                     | Knowledge of phase diagrams and equilibrium diagrams.                                                                                                               |  |  |
| III                                                                    | Understand the nature of stresses developed in simple geometries such as bars, cantilevers, beams, shafts, cylinders and spheres for various types of simple loads. |  |  |
| IV                                                                     | Calculate the slope and deflection of different types of beams.                                                                                                     |  |  |

## **COURSE OUTCOMES:**

| S. No.    | Description                                                                                                                        | Blooms<br>Taxonomy<br>Level |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| AMEB11.01 | Understand the concepts crystallography, crystal structures, unit cells, crystallographic planes, directions and miller indices.   | Remember                    |
| AMEB11.02 | Discuss the crystal imperfections and Frank Reed source of dislocation.                                                            | Understand                  |
| AMEB11.03 | Demonstrate the concept of Bauschinger"s effect, twinning, strain hardening and seasons cracking.                                  | Remember                    |
| AMEB11.04 | Knowledge of yield point phenomenon, cold/hot working, recovery, re-<br>crystallization, grain growth and strengthening of metals. | Understand                  |
| AMEB11.05 | Discuss the constitution of alloys and phase diagrams, constitution of alloys, solid solutions, substitutional and interstitial.   | Remember                    |
| AMEB11.06 | Demonstrate the phase diagrams, isomorphous, eutectic, peritectic, eutectoid and peritectoid reactions.                            | Understand                  |
| AMEB11.07 | Construction of iron –Iron carbide equilibrium diagram.                                                                            | Remember                    |
| AMEB11.08 | Classification of steel and cast-Iron microstructure, properties and application.                                                  | Understand                  |
| AMEB11.09 | Discuss Hooke's law, stresses and strains                                                                                          | Remember                    |
| AMEB11.10 | Derive relationship between elastic constants.                                                                                     | Understand                  |
| AMEB11.11 | Describe the concept of poisson's ratio, linear and lateral strains.                                                               | Remember                    |
| AMEB11.12 | Construct the Mohr's circle to solve principal stresses and strains.                                                               | Understand                  |
| AMEB11.13 | Understand the beams and types transverse loading on beams, shear force and bend moment diagrams.                                  | Remember                    |
| AMEB11.14 | Discuss types of beam supports, simply supported and over-hanging beams, cantilevers.                                              | Understand                  |
| AMEB11.15 | Understand theory of bending of beams, bending stress distribution and neutral axis.                                               | Remember                    |
| AMEB11.16 | Understand the shear stress distribution, point and distributed loads.                                                             | Remember                    |
| AMEB11.17 | Understand moment of inertia about an axis and polar moment of inertia.                                                            | Understand                  |

| AMEB11.18 | Derive the deflection of a beam using double integration<br>Method. | Remember   |
|-----------|---------------------------------------------------------------------|------------|
| AMEB11.19 | Computation of slopes and deflection in beams.                      | Understand |
| AMEB11.20 | Discuss Maxwell"s reciprocal theorems.                              | Remember   |

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

2000

IARE NO

#### (Autonomous) Dundigal, Hyderabad - 500 043 DEPARTMENT OF MECHANICAL ENGINEERING

# MAPPING OF MODEL QUESTION PAPER QUESTIONS TO THE ACHIEVEMENT OF COURSE OUTCOMES

| SEE<br>Question<br>No. |   | Course Outcomes |                                                                                                                                        | Blooms<br>Taxonomy |
|------------------------|---|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1                      | a | AMEB11.01       | Understand the concepts crystallography, crystal structures,<br>unit cells, crystallographic planes, directions and miller<br>indices. | Remember           |
|                        | b | AMEB11.01       | Discuss the crystal imperfections and Frank Reed source of dislocation.                                                                | Understand         |
| 2                      | а | AMEB11.02       | Demonstrate the concept of Bauschinger"s effect, twinning, strain hardening and seasons cracking.                                      | Remember           |
| 2                      | b | AMEB11.03       | Knowledge of yield point phenomenon, cold/hot working, recovery, re-crystallization, grain growth and strengthening of metals.         | Understand         |
| 3                      | а | AMEB11.04       | Discuss the constitution of alloys and phase diagrams, constitution of alloys, solid solutions, substitutional and interstitial.       | Remember           |
|                        | b | AMEB11.04       | Demonstrate the phase diagrams, isomorphous, eutectic, peritectic, eutectoid and peritectoid reactions.                                | Understand         |
| 4                      | а | AMEB11.04       | Construction of iron –Iron carbide equilibrium diagram.                                                                                | Remember           |
|                        | b | AMEB11.04       | Classification of steel and cast-Iron microstructure, properties and application.                                                      | Understand         |
| 5                      | а | AMEB11.05       | Discuss Hooke's law, stresses and strains                                                                                              | Remember           |
|                        | b | AMEB11.05       | Derive relationship between elastic constants.                                                                                         | Understand         |
| 6                      | а | AMEB11.06       | Describe the concept of poisson's ratio, linear and lateral strains.                                                                   | Remember           |
| -                      | b | AMEB11.06       | Construct the Mohr's circle to solve principal stresses and strains.                                                                   | Understand         |
| 7                      | а | AMEB11.07       | Understand the beams and types transverse loading on beams, shear force and bend moment diagrams.                                      | Remember           |
|                        | b | AMEB11.07       | Discuss types of beam supports, simply supported and over-<br>hanging beams, cantilevers.                                              | Understand         |
| 8                      | а | AMEB11.08       | Understand theory of bending of beams, bending stress distribution and neutral axis.                                                   | Remember           |
|                        | b | AMEB11.08       | Understand the shear stress distribution, point and distributed loads.                                                                 | Understand         |
| 9                      | а | AMEB11.09       | Understand moment of inertia about an axis and polar moment of inertia.                                                                | Remember           |
|                        | b | AMEB11.10       | Derive the deflection of a beam using double integration Method.                                                                       | Understand         |
| 10                     | а | AMEB11.11       | Computation of slopes and deflection in beams.                                                                                         | Remember           |
| -                      | b | AMEB11.12       | Discuss Maxwell"s reciprocal theorems.                                                                                                 | Understand         |

# Signature of Course Coordinator

Mr A Somaiah, Assistant Professor, Department of Mechanical Engineering IARE, Dundigal, Hyderabad.

HOD, M.E