UNIT- |
Thin plate theory, Structural Instability:



Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load,
combined bending and in-plane loading
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The operator (9%/dx* + 8*/y?) is the well-known Laplace operator in two dimensions
and is sometimes written as V2. Thus
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Thin plates having small initial curvature
thin plate has an initial curvature wo
plate to deflect a further Wi

total deflection is then w=wp+ W]
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Assuming that the initial form of the deflected plate is
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Energy methods of analysis.

Strain energy produced by bending and twisting
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Hence the total strain energy U of the rectangular plate a x b is
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Buckling of thin plates- elastic, inelastic
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experimental determination of critical loa
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local instability, instability of stiffened panels,
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failure stresses in plates and stiffened panels.
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Tension field beams- complete diagonal tension,
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incomplete diagonal tension,
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post buckling behaviour.
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Unit-I|

Bending and Shear and Torsion Of
Thin Walled Beams:



Symmetrical bending arises in beams which
have either singly or doubly symmetrical
cross-sections

Axis of symmetry
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UNSYMMETRICAL BENDING

Centroid
FG!

Let the axis origin coincide with the centroid G of the
cross section, and that the neutral axis is

a distance p from G.

The direct stress s, on element d, at point (x,y) and
distance X from the neutral axis is:

= Hz,_

Look at the beam in a plane parallel to the neutral axis

Neutral A%ith two segments ij and kI which are

of equal length when the beam is undeflected:
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Once the beam has been deflected this section will look like this

] where:
7 R = the radius of curvature
i dq = angle between planes ik and jl
The strain in plane kI can be defined as:

As the beam supports pure bending, the resultant load
on the end section must be zero. Hence
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Neutral Axis:

When a homogeneous beam is subjected to elastic bending, the neutral axis
LII:IARIWHI pass through the centroid of its cross section, but the orientation of
the NA depends on the orientation of the moment vector and the cross
sectional shape of the beam.

When the loading is unsymmetrical (at an angle) as seen in the figure below,
the NA will also be at some angle - NOT necessarily the same angle as the
bending moment.
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SHEAR FLOW AND SHEAR CENTRE

Restrictions:

Shear stress at every point in the beam must be less than the elastic limit of the
material in shear.

Normal stress at every point in the beam must be less than the elastic limit of the
material in tension and in compression.

3. Beam's cross section must contain at least one axis of symmetry.

The applied transverse (or lateral) force(s) at every point on the beam must pass
through the elastic axis of the beam. Recall that elastic axis is a line connecting
cross-sectional shear centers of the beam. Since shear center always falls on the

cross-sectional axis of symmetry, to assure the previous statement is satisfied, at

every point the transverse force is applied along the cross-sectional axis of
symmetry.
The length of the beam must be much longer than its cross sectional dimensions.
6. The beam's cross section must be uniform along its length.



Shear Center

[f the line of action of the force passes through the Shear Center of
the beam section, then the beam will only bend without any twist.
Otherwise, twist will accompany bending.

The shear center is in fact the centroid of the internal shear force
system. Depending on the beam's cross-sectional shape along its
length, the location of shear center may vary from section to
section. A line connecting all the shear centers is called the elastic
axis of the beam. When a beam is under the action of a more
general lateral load system, then to prevent the beam from
twisting, the load must be centered along the elastic axis of the
beam.
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Shear Center

er

The shear center always falls on a cross-sectional axis of symmetry.

If the cross section contains two axes of Sﬁr.nr.netry, then the shear center is
located at their intersection. Notice that this is the only case where shear
center and centroid coincide.
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SHEAR FLOW DISTRIBUTION
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EXAMPLES

* For the beam and loading shown, determine:

(a) the location and magnitude of the maximum transverse shear force 'Vmax/,
(b) the shear flow 'q' distribution due the 'Vmax',

(c) the 'x' coordinate of the shear center measured from the centroid,

(d) the maximun shear stress and its location on the cross section.

Stresses induced by the load do not exceed the elastic limits of the material.

NOTE:In this problem the applied transverse shear force passes through the centroid of the cross
section, and not its shear center.
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Shear Flow Analysis for Unsymmetric
Beams

« SHEAR FOR EQUATION FOR UNSUMMETRIC SECTION IS
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SHEAR FLOW DISTRIBUTION
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For the beam and loading shown, determine:

(a) the location and magnitude of the maximum
transverse shear force,

(b) the shear flow 'q’ distribution due to 'Vmax',

(c) the 'x' coordinate of the shear center
measured from the centroid of the cross section.

Stresses induced by the load do not exceed the
elastic limits of the material. The transverse
shear force is applied through the shear center at
every section of the beam. Also, the length of
each member is measured to the middle of the
adjacent member.
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Beams with Constant Shear Flow Webs

Assumptions:

1. Calculations of centroid, symmetry, moments of area and
moments of inertia are based totally on the areas and
distribution of beam stiffeners.

2. A web does not change the shear flow between two adjacent
stiffeners and as such would be in the state of constant shear
flow.

3. The stiffeners carry the entire bending-induced normal stresses,
while the web(s) carry the entire shear flow and corresponding
shear stresses.



Analysis

Let's begin with a simplest thin-walled stiffened beam. This means a beam with two
stiffeners and a web. Such a beam can only support a transverse force that is

R

be equal although the webs have different shapes.
& c \
A 5
d
nt
stiffenersis showntobe'd'inall EB® B ——  .qual
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such a beam are shown below. In these three beams, the value of shear flow would
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Important Features of
Two-Stiffener, Single-Web Beams:

. Shear flow between two adjacent stiffeners is constant.

. The magnitude of the resultant shear force is only a function of the straight
line between the two adjacent stiffeners, and is absolutely independent of
the web shape.

. The direction of the resultant shear force is parallel to the straight line
connecting the adjacent stiffeners.

. The location of the resultant shear force is a function of the enclosed area

(between the web, the stringers at each end and the arbitrary point '0'), and
the straight distance between the adjacent stiffeners. This is the only
quantity that depends on the shape of the web connecting the stiffeners.

. The line of action of the resultant force passes through the shear center of
the section.

q

g = constant
R =qgh (magnitude)
R is parallel to h (direction)

e= % (location)



EXAMPLE

*  For the multi-web, multi-stringer open-section beam shown, determine

(a) the shear flow distribution,
(b) the location of the shear center
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Torsion of Thin - Wall Closed Sections

e Derivation

Consider a thin-walled member with a closed cross section subjected to
pure torsion.

Ax [

(hot necessarily constant)

The ends are not restrained
so the cross sections are free
to warp.



Examining the equilibrium of a small cutout of
the skin reveals that

2 F=0 = F-F =0

B

Writing F, and Fg in terms of the shearing siress at A and

B vields
Tﬂ(fﬂﬂx) — TE(fBﬂx) =0
Tt = vt =Tt constant throughoit the member

Let Tt = q = constant
This is just like the product of VA (velocity x cross
sectional area) is constant in a Venbari tube. 'q is

theretore called shear flow.



dE = titds)=qds
The moment of dF about an arbitrary point O is

dM, - bdF - b (qds) - g (b ds)
dA =Mbds-bds=2dA

now dM = q (2ZdA)

T = ﬁdMo : ﬁq(m)

Since q is a constant we have

T = 24:} A Whars A iz tha area boundad by tha cantarlins
of the wall cross saction

] Wwhara t is the thickness of the skin at ths point
E
T = —2 P considarad in the shear strass caleulation



Angle of Twist

By applying strain energy equation due to shear and Castigliano's
Theorem the angle of twist for a thin-walled closed section can be

shown to be
5U & T

8T L 44°G

Since T = 2qA, we have 4 _ ffL §

If the wall thickness is constant along each segment of the cross
section, the integral can be replaced by a simple summation

gl !
MG L7



Torsion - Shear Flow Relations in Multiple-Cell Thin- Wall
Closed Sections

* The torsional moment in terms of the internal shear flow

is simply



Derivation

For equilibrium to be maintained at a exterior-interior wall (or web) junction
point (point m in the figure) the shear flows entering should be equal to those
=g +
leaving the junction RN
Summing the moments about an arbitrary point O, and assuming clockwise direction to be

positive, we obtain EM& - T{:} = 2@1(A1+A%) + 2‘?2(“13&) - 24:}3(1‘1%)
I, = 2‘:1-"1“11 ' 24:}11'1% ' quAEcz B ZQEA%

i}
B 2‘:jr'lfi'l * zq'lAEé:- * quAE-:l - 2(q1_q2)AEE=-

The moment equation above can be simplified to
A =4 + A4

2 da 2k

T& - quAl ¥ ZqEAE



Shear Stress Distribution and Angle of Twist for Two-Cell
Thin-Walled Closed Sections

* The equationrelating the shear flow along the exterior
wall of each cell to the resultant torque at the section is given as

T& - quAl ¥ ZqEAE

i =i =g

This is a statically indeterminate problem. In order
to find the shear flows q1 and g2, the compatibility

relation between the angle of twist in cells 1 and 2 must be used. The compatibility
requirement can be stated as

where I

_ q
= 1AG tﬁ:euﬂm

__L g
Pz = jﬂzgtﬁ:emﬁ
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ayp = . % (along exterior wall of cell 1)
A= Ay + A '
- ds :
Ty = T (along exterior wall of cell 2)
- ¢ iz = T (along intenor wall betweencells 1 & 2)

The shear stress at a point of interest is found according to the equation
3 2 3
_TL I:_ﬂ{ﬂzufﬁa + &y A +'f?1nf*=z}
= I B Hyp + p g T Epthap

To find the angle of twist, we could use either of the two twist formulas given above. It is

also possible to express the angle of twist equation similar to that for a circular section



Shear Stress Distribution and Angle of Twist for Multiple-Cell Thin-

Wall Closed Sections

ql ql *tl
3 h_'J I'_tu - I*— L)
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t
* Inthe figure above the area dutside of the ctbss dection will bqé designated as cell (0).
Thus to designate the exterior walls of cell (1), we use the notation 1-0. Similarly for cell
(2) we use 2-0 and for cell (3) we use 3-0. The interior walls will be designated by the

names of adjacent cells.
* the torque of this multi-cell member can be related to the shear flows in exterior walls
as follows

q1 - Tlfl ? qz - Tzfz i qa - Tafa

@ wall 1-2 4. =4, ~ 4,
@ wall 2-3 4., =4, ~ 4,

I = quAl * 2@21‘12 ¥ ZqEAE



For elastic continuity, the angles of twist in all cells must be
equal

bbb g s b
T 1 T meli 1
ds
Let a = ng
* The direction of twist chosen to be positive is clockwise.
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TRANSVERSE SHEAR LOADING OF BEAMS WITH CLOSED CROSS SECTIONS

A

Shear
Center

q' distribution




EXAMPLE

* For the thin-walled single-cell rectangular beam and loading shown, determine
(a) the shear center location (ex and ey),

(b) the resisting shear flow distribution at the root section due to the applied load of
1000 Ib,

(c) the location and magnitude of the maximum shear stress

10001b
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g 100" |
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Unit-III
Structural Idealisation of Thin Walled Beams



Structural Idealization

 Consider the two-spar wing
section shown. The stringers
and spar carry most of the
direct stresses while the skin
carries the shear stresses.

* Since variation in stress over
the stringer or spar flange
due to bending of the wing
would be small, it can be
assumed to be constant.

st3

4A%E (GT)op =Gy —
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Structural Idealization

e Stingers and spar flanges can then be replaced
by concentrations of areas known as boomes.

* It can be assumed that all direct stresses are
carried by booms and the skin carries only

shear.

* Direct st
be accol
Cross-se

‘he skin may
e boom



Structural Idealization

(a) Actual (b) |dealized

* |f skin does carry direct stress, we idealize it as a section that carries
only shear stress, and add effective area to the booms.

° i 1 hﬂ _|_ .2
Bl — fih ) + _3 Effective boom area due to
O 01 skin carrying direct stress —

* Similarly: these add to the boom

fjr_jh 1 areas of flanges, strings,
spars, etc..



Shear of open-section beams

* In the expression for shear flow in the cross-section:

i ~ 8 o J 8
hf_-J_r I_r\;-_* - .'-{_-;'u I*-'I—u .'-{:JyIﬂy - hf_-JLLIII-HI
Js = — 5 tp-x-ds — 5 tp -y -ds
I.tur-fyy T Ily 0 Ix‘rfyy T I,,L-y 0

t, is the direct stress carrying thickness of the skin

tp = t, if the skin is fully effective in carrying direct stress

tp = 0, if the skin is assumed to carry only shear stress

* If we idealize skin as shown previously, then shear flow in the skin
due to bending of the skin = 0.

* The above expression does not account for booms. How can we
deal with booms that cause discontinuity in the skin and therefore
interrupt the shear flow?



Shear of open-section beams

* Sxand Sy produce direct stresses due to bending in the booms (and skin)
and shear stresses in the skin

4 rth boom * y

(x,.y,) )




Shear of open-section beams

r'h boom has a cross-sectional area B,
Shear flows in skin adjacent to it are q, and q..

Equilibrium in z direction of previous figure =
do. . . _
(a: + — 6):3:) B, —o0. B, +q0z—qo0z=70

0z

This gives: -1 =—5_ 5



Shear of open-section beams

Recall:

()O.Ii L ("SIIII o *‘Syfl'y) T + (“Sy‘{yy o *StI‘I«I'E»’) Yy
I T 2 = 2 o
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0z

42 — 41 = — - B,

. Splee — Sylay B.r Sylyy — Seluy B
2 — 41 = — 5 rlp — > rYr
Lowlyy — 1 Loalyy — 1
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Shear of open-section beams

Splee — Sylay By Sylyy — Seluy B
2 — 1 = — 5 Ly — 5 U
III Iiﬂj' - IIE}, IJ.'I I-’.}-’.} o ‘[

Iy

* This gives the change in shear flow induced by a
boom.

e Each time a boom is encountered, the shear flow

i : - s "
br ! Tr ’53; I Ty : ] ¢ ' :
c %= ‘ tp-ax-ds—+ E B,x,
“ Y F— |
h rxlyy Y 0 r=1

i ] . n
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Open C/S Sample Problem

Calculate the shear flow distribution
in channel due to a 4.8 kN vertical

shear load acting through the shear
s ‘_’ center.
2 o .t
48kN
$ v 200 mem * Booms carry all the direct stresses (B,
=300 mm?)
! -
51 E‘L )
200 mm
S n




Open C/S Sample Problem

Calculate I : (Only consider direct stress carrying areas) = l.e. Booms

=» Ad’ =4x300x200° = 48x10° mm*

48><103 L
_ }:B — 10" }:B

At the outside of boom 1, g, = 0. As boom 1 is crossed, the shear flow changes to:

g,, =0 —\10‘4 x 300 x 209 =—6 N/mm

q;



Open C/S Sample Problem

There will be no further changes in shear flow until the next boom (2) is crossed.

0,3 =—6 —}0_4 x 300 x 209 — 12 N/mm

Y
a;
Qs = —12-10"* x 300 (— 200) = —6 N/mm
\
i
a;

At the outside of boom 4, the shear flow is zero (g, = 0)=>» as expected

—6-10"* x300x(—200)=0 N/mm



Open C/S Sample Problem

0., =—6 N/mm
‘ 0,3 = —12 N/mm
0., =—6 N/mm

How come all the signs are negative?




Closed C/S Sample Problem

* For the single cell beam, the s = QO + Gs.o
booms carry the direct stresses B, = By = 200mm?
and the walls carry only the . ,
shear stress. A vertical shear B, = B; = 250mm

load of 10 kN acts through the By = By = 400mm?
vertical plane between booms 3 )
and 6. Calculate the shearflow  Bi= 55 = 100mm

distribution

10 kN
3 P
! “““.:"“"4 K
200mm} 100 mm s - . - - : { 60mm
. 8
¥ 5 :
' 120 ¢ 240mm . 240mm
. -ie - LLLLIG
|




Closed C/S Sample Problem

Centroid on Horizontal Axis of Symmetry. I, =0
AlsoS =0,t,=0

q ZByr_l_qsO

xx r=1

. can be calculated from the direct stress carrying area of the booms
2 2 2 2
1, =2(B,x30% + B, x100% + B, x100? + B, x50?)

Substituting B,,...B, gives I, = 13.86 x 106 mm?*

10x10°

= +0,,=—17.22x107" > B,y, +
qs 1386X1062 ryr qsO X Z yr qsO




Closed C/S Sample Problem

Introduce a cut in the wall 23 and calculate the basic shear flow around the walls

_Since thet, =0

d..,,.=0
b,23 B3

Y3
Oy 50 = —7-22x107* x (400x100) = —28.9 N/mm
B, Ya
(pas = —28.9-7.22x107 x(100x50) = ~32.5 N/mm

Oy 56 = Op 34 = —28.9 N/mm (by symmetry)

Ob,67 = 0,23 = 0 (By symmetry)

Oy = —7-22x107* x (2%20><1(y)20) =-18.1N/mm

(s = —18.1-7.22x107* x (2810>< :?o) = —22.4 N/mm
O 57 = Op 22 = —18.1N/mm (by symmetry)




Closed C/S Sample Problem

* Taking moments about the intersection of the line of action of shear load and
horizontal axis:

0= § qudS + ZAqS,O ==) Solve for g,

§ is broken up into segments where each g, is constant

Draw out the shear flow distribution to determine the sign of the moment generated
by the shear flow on each segment

- :

\
[\: =

T




Closed C/S Sample Problem
q

p S
[0, g1 x480x 60+ 20, ,, x 240x170+ 20, ,5 x100x 240 —
— 20,3 x120x100 - g, 5, x120x100] + 2x 97,200q, , =0

Substituting for the basic shear flow gives:

0o = —2.4 N/mm

Enclosed Area, A

Add g, , to the basic shear flow to get the total shear flow in every wall.
In any wall the final shear flow is given by g, =g, + g, , so that

q,, =—18.1+5.4=-12.7 N/mm =q,
0,3 = —9.4N/mm =g

sy =—34.3 N/mm =q,

Qs =—37.9 N/mm

Og; =17 N/mm



UNIT- IV
Structural and Loading
Discontinuities in Thin Walled
Beams



Closed section beams- shear stress distribution of a closed

section beam built in at one end under bending, shear and

torsion loads. dq 0o
il

Js 0z

) Sxlxx — S' v Xy ¥ _ S_v]y_\‘ Sxl Xy
gs = — Ixds — . n ds + gs.0
Iix I\\ 1\\ 0 ].\;\'])-‘)' = [\—_\r 0

=0

s = qb T+ ¢s0

) Sxloe — S_\'I.\_T : " S' 1 yy — S I xy
gp = — = txds — r\ ds
1.\'.\'1_\')‘ = [{'\ 0 1\\1\\ X 0

2’

“'-..._..r S,
Shear of closed section beams.

Sxno — Syéo = % pqds = % Pgp ds + gs0 % pds

Sxno — Sy§o = fl"lbds + 2Aq5,0

If the moment centre is chosen to coincide
with the lines of action of Sx and Sy then 0= %1’% ds + 2Aq;,0



Open section beams




[f such a beam is axially unconstrained and loaded by a pure torque 7 the rate of twist
is constant along the beam and is given by

de ul
T =GJ 1_ Middte plane
azg

Shear stress distribution across the wall of an open section beam subjected to torsion.

51
do h? d36 %
T =GJ]— — EIF——
dz 2 dz3
e

Torsion of |-section beam; (b) plan view of beam showing undistorted shape of flanges.

(b)



» Shear lag- effect of shearing strains in beams-
redistribution of bending stresses due to
restraining of warping, limitation of
elementary bending theory, effect of
accounting for shear lag on the estimated
strength. _—

do 1 f gy
— =— P —ds
dz 2A ) Gt
Aos [ s de do

Ws — Wp = —d - — —ds — yR—(x;y — x0) + xrR—(¥s — yo)
: Jo Gt A Gt dz d-




UNIT-V
Stress Analysis of Aircraft Components- Wing, Fuselage:



Wing spars and box beams- tapered wing spar, open and closed
section beams, beams having variable stringer areas. Wings-
Three-boom shell in bending, torsion, shear, tapered wings,
deflections, cut-outs in wings.

Bending, shear, torsion, cut-outs in fuselages. Fuselage frames
and wing ribs- principles of stiffener/ web construction, fuselage
frames, wing ribs



Ag)!_u.' 3
gs = — pyds 4+ Biyi
].m' 0
S}r';.$v g
gs = — tpy ds + Bay?
Ixr 0

400 mm

=

400 mmz’T L
!

2 mm ==

2]
400 mm?
Section AA

300 mm

N s o
by, . 21
| @ Is,\\ :
)
S l& ’,Mx l
5y { L0 P, S
lP \. ;2



P, r
N\
R

|
| Sx, |

(c)

v,

(a)

(b)

dz

g |



(8x7 + Sy7 + 8z%)1/2
Pr =Py
dz
m m
Sx:wa‘i'ZPx,r S\—S\M-I-ZP\I
r=1 r=I1
m Sx m o
Sy= S +ZP~r'—:’ Sy = Sy +ZPz,r(;5—:’
r=1 r=1
m ; m 5
Sru —S\ - Z‘P~r_\_’ S_}-‘,u —S\ - ZP"_JS—E’

- 1
m m

Sxto — Sybo = 55 qopds +2Aqs0 — Y Peynr+ Y Pyrkr

r=1 r=I1



15 kN/m

2 1
éww' /
— : ‘\
. /; v 500 mm? _,_200 o
/
7
%/ L
L7
é | |
/ Tm tm Im
@ @ ©) @ ® ® @ @ O @
P, oxy /dz dyr [0z Py Py, P, &r Nr Py 0y Py ,&r
Boom (kN) (kN) (kN) (kN) (m) (m) (kN m) (kN m)
| —100 0.1 —0.05 —10 5 —101.3 0.6 0.3 3 -3
2 —133 0 —0.05 0 6.7 —177.3 0 0.3 0 0
3 —100 —0.1 —0.05 10 5 —101.3 0.6 0.3 -3 3
4 100 —0.1 0.05 —10 5 101.3 0.6 0.3 -3 3
5 133 0 0.05 0 6.7 177.3 0 0.3 0 0
6 100 0.1 0.05 10 5 101.3 0.6 0.3 3 -3
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™ 500 mm

Sx = —q12012 + q23l23

S.\.-‘ — ‘131(/112 +ho3) — q12/112 -~ q23/123

Sxno + Syéo = —2A12912 — 2A23¢23



<l F—

\,\‘\c

. ldealized section of a multicell wing.

f

200 mmt

50 mm ;_’_,/6

165 mm B26 eriems

5
1270 mm T | 020 mm

: I L — ‘
' T— _ |230mm
ZOOmmI A’/ . t 17 oo jlesmmid -
4
r'



N
T =) 2Arqr
R=1

do 1 f ds
d” 7ARG 1

16 I
;: = 2ARG [grO12 + (gR — GR—1)023 + qRO34 + (R — GR+1)041]
do I
dz "ARG( dR—10R—1.R + 4ROR — qR+10R+1.R) ) %
/"/_,——’-—.

Gy = qs
&~ e 7 D IQ
e >
dz _ 2ARGrer Jg ' 1*

T e —

4
9

t Shear flow distribution in the Rth cell of an N-cell wing section.



