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Basic Antenna Theory 
Purpose 

 
 

 

• to refresh basic concepts related to 
the antenna physics  
– needed to understand better the operation 

and design of microwave links and systems 



Outline 
 
 

 

• Introduction  
• Review of basic antenna types  
• Radiation pattern, gain, polarization  
• Equivalent circuit & radiation efficiency  
• Smart antennas  
• Some theory  
• Summary 
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Quiz 
 
 
 
 

We use a transmitting antenna to 

radiate radio wave and a 
receiving antenna to capture the 
RF energy carried by the wave. 

 

Somebody told that the receiving 
antenna also radiates radio waves 
during the reception. 

 

Is it a true fact or a slip of the tongue? 
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Intended & unintended radiators 
 
 

 

• Antennas intended to produce specified EM field  
– Radiocommunication antennas; Measuring antennas; EM sensors, 

probes; EM applicators (Industrial, Medical, Scientific)  
• Radiators not intended to generate any EM field, but producing 

it as an unintended side-effect  
– Any conductor/ installation with varying electrical current (e.g. 

electrical installation of vehicles)  
– Any slot/ opening in the screen of a device/ cable carrying RF 

current  
– Any discontinuity in transmission medium (e.g. conducting 

structures/ installations) irradiated by EM waves  
– Stationary (e.g. antenna masts or power line wires); Time-varying (e.g. 

windmill or helicopter propellers); Transient (e.g. aeroplanes, missiles) 
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Space wave 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Guided wave 

Antenna purpose 
 
 
 

 

• Transformation of a guided EM 

wave in transmission line 

(waveguide) into a freely 

propagating EM wave in space 

(or vice versa) with specified 

directional characteristics 
 

– Transformation from time-function in  
one-dimensional space into time-
function in three dimensional space  

– The specific form of the radiated 
wave is defined by the antenna 
structure and the environment 
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Antenna functions 
 
 
 
 
 

 

• Transmission line 
 

– Power transport medium - must avoid power 
reflections, otherwise use matching devices  

• Radiator  
– Must radiate efficiently – must be of a size 

comparable with the half-wavelength  
• Resonator  

– Unavoidable - for broadband applications 
resonances must be attenuated 
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Monopole (dipole over plane) 
 

High-Q 
  

Narrowband 
 
 
 
 
 
 
 
 

 

Uniform wave 
 

traveling 
 

along the line 

 
 
 
 
 

 

Smooth 
 

transition 
 

region 

 

 

Low-Q 
  

Broadband 

 
 
 

 

• If there is an inhomogeneity (obstacle) a reflected wave, standing wave, & higher field 
modes appear  

• With pure standing wave the energy is stored and oscillates from entirely electric to 
entirely magnetic and back  

• Model: a resonator with high Q = (energy stored) / (energy lost) per cycle, as in LC circuits  
• Kraus p.2 
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Outline 
 
 

 

• Introduction  
• Review of basic antenna types  
• Radiation pattern, gain, polarization  
• Equivalent circuit & radiation efficiency  
• Smart antennas  
• Some theory  
• Summary 
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Antennas for laptop applications 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: D. Liu et al.: Developing integrated antenna subsystemsPropertyforlaptopcomputers;ofRIBMStruzakJ.RES.& DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 p. 355-367 10 



 
 
 
 
 
 
 
 
 

 

• Patch and slot antennas 
derived from printed-circuit and 
micro-strip technologies  

• Ceramic chip antennas are 
typically helical or inverted-F 
(INF) antennas, or variations of 
these two types with high 
dielectric loading to reduce the 
antenna size 

 
 
 

 
Source: D. Liu et al.: Developing integrated antenna subsystems for laptop  
computers; IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 p. 355-367 
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Slot & INF antennas 
 

• Slot antenna: a slot is cut from a large (relative 
to the slot length) metal plate. 

• The center conductor of the feeding coaxial cable is 
connected to one side of the slot, and the outside 
conductor of the cable - to the other side of the slot. 

• The slot length is some (/2) for the slot antenna 
and (/4) long for the INF antenna.  

• The slot and INF antennas behave similarly.  
• The slot antenna can be considered as a loaded version of 

the INF antenna. The load is a quarter-wavelength stub, i.e. 
a narrowband device. 

• When the feed point is moved to the short-circuited end of 
the slot (or INF) antenna, the impedance decreases. 
When it is moved to the slot center (or open end of the INF 
antenna), the impedance increases 
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Example 
 

double-layer printed Yagi antenna 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note: no galvanic contact with 
the director 
 

 

Source: N Gregorieva 13 



 
 
 
 

 

• Patch and slot antennas are  
– Cheap and easy to fabricate and to mount  
– Suited for integration  
– Light and mechanically robust  
– Have low cross-polarization  
– Low-profile - widely used in antenna arrays  

– spacecrafts, satellites, missiles, cars and other mobile 
applications 
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Aperture-antenna 
 
 
 
 

 

EM wave 
 

 

Power density: 

Power PFD [w/m
2

] 
absorbed: P [watt] 

A = A*PFD 
Effective 

 

aperture: A[m
2

] 
 
 

 

Note: The aperture concept is applicable 
also to wired antennas. For instance, 
the max effective aperture of linear 

/2 wavelength dipole antenna is 
2

/8 

 
 

 

• Aperture antennas 

derived from 

waveguide technology 

(circular, rectangular) 
 
• Can transfer high 

power (magnetrons, 

klystrons)  
• Above few GHz 
 
• Will be explored 

inprace during 
the school 
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Leaky-wave antennas 
 
 
 

 

• Derived from millimeter-
wave guides (dielectric 
guides, microstrip lines, 
coplanar and slot lines).  

• For frequencies > 30 
GHz, including infrared  

• Subject of intensive study.  
– Note: Periodical 

discontinuities near the 
end of the guide lead to 
substantial radiation 
leakage (radiation from the 
dielectric surface). 

 
 

Source: adapted from N Gregorieva 16 



Reflector antennas 
 
 

 

• Reflectors are used to concentrate flux of 
EM energy radiated/ received, or to change its 
direction  

• Usually, they are parabolic (paraboloidal).  
– The first parabolic (cylinder) reflector antenna was 

used by Heinrich Hertz in 1888.  
• Large reflectors have high gain and directivity  

– Are not easy to fabricate  
– Are not mechanically robust  
– Typical applications: radio telescopes, satellite 

telecommunications. 
 

Source: adapted from N Gregorieva 17 



Planar reflectors 
 
 
 
 
 
 
 
 

d 
 
 
 

 

2d 
 
 
 
 
 
 
 
 

 

• Uda-Yagi, Log-periodic antennas 

 
 
 
 
 
 
 

 

• Intended reflector antenna 

allows maintaining radio link in 

non-LOS conditions (avoiding 

propagation obstacles) 
 
• Unintended antennas 

create interference 
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Paraboloidal reflectors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Front feed           Cassegrain feed 
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The largest radio telescopes 
 
 
 
 

• Max Plank Institüt für Radioastronomie 

radio telescope, Effelsberg (Germany), 

100-m paraboloidal reflector 
 
• The Green Bank Telescope (the 

National Radio Astronomy Observatory)  
– paraboloid of aperture 100 m 

 
 
 
 
 
 
 
 
 
 
 

Source: adapted from N Gregorieva 20 



The Arecibo Observatory Antenna 
System 

 
 

The world‘s 
 

largest single 

radio telescope 
 

 

304.8-m 
 

spherical 
 

reflector 
 

National 

Astronomy and 

Ionosphere 

Center (USA), 

Arecibo, 

Puerto Rico 
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The Arecibo Radio Telescope 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[Sky & Telescope 
Feb 1997 p. 29] 

 
 

 

22 



Lens antennas 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Lenses play a similar role to that of reflectors in 
reflector antennas: they collimate divergent energy 

 

Often preferred to reflectors at frequencies > 100 GHz. 
 
 
 

 

Source: Kraus p.382, N Gregorieva 23 



Outline 
 
 

 

• Introduction  
• Review of basic antenna types  
• Radiation pattern, gain, polarization  
• Equivalent circuit & radiation efficiency  
• Smart antennas  
• Some theory  
• Summary 
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Radiation pattern 
 
 
 
 

• The radiation pattern of antenna is a representation 

(pictorial or mathematical) of the distribution of the 

power out-flowing (radiated) from the antenna (in the 

case of transmitting antenna), or inflowing (received) to 

the antenna (in the case of receiving antenna) as a 

function of direction angles from the antenna  
• Antenna radiation pattern (antenna pattern): 

 
– is defined for large distances from the antenna, where the 

spatial (angular) distribution of the radiated power does not 
depend on the distance from the radiation source 

 
– is independent on the power flow direction: it is the same when the 

antenna is used to transmit and when it is used to receive radio waves  
– is usually different for different frequencies and different polarizations 

of radio wave radiated/ received 
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Power pattern vs. Field pattern 
 
 
 

 

 Antenna   Auxiliary 
   

antenna  under test   
      

   Large distance 
        
        

 Power or   
Generator  

field-strength meter 
 

     
        

         
 

 

Turntable 
 
 

 

• The power pattern and the field 
patterns are inter-related: 

P (θ, ϕ) = (1/)*|E(θ, ϕ)|
2

 = *|H(θ, ϕ)|
2 

 
 
 

• The power pattern is the 
measured (calculated) 
and plotted received 
power: |P(θ, ϕ)| at a 
constant (large) distance 
from the antenna  

• The amplitude field pattern is 
 

the measured (calculated) and 
plotted electric (magnetic) 
field intensity, |E(θ, ϕ)| or |H(θ, 

 

ϕ)| at a constant (large) 
distance from the antenna 

 
 
 
 
 

 

P = power 



E = electrical field component vector 
 

H = magnetic field component vector 
 

 = 377 ohm (free-space, plane wave
 

impedance) 26 



Normalized pattern 
 
 
 
 

• Usually, the pattern describes the 
normalized field (power) values 
with respect to the maximum value. 

 
– Note: The power pattern and the 

amplitude field pattern are the same when 
computed and when plotted in dB. 
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3-D pattern 
 
 
 
 
 
 

• Antenna 
radiation pattern 
is 3-dimensional 

 
• The 3-D plot of antenna 

pattern assumes both 

angles θ and ϕ varying, 

which is difficult to 

produce and to interpret 
 
 
 

 

3-D pattern 
 
 
 

Source: NK Nikolova 
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2-D pattern 
 
 
 
 

 

• Usually the antenna 
pattern is presented as a 
2-D plot, with only one of 
the direction angles, θ or ϕ 
varies 

• It is an intersection of the 
3-D one with a given plane  
– usually it is a θ = const 

plane or a ϕ= const 
plane that contains the 
pattern‘s maximum 

 
 
 
 
 

Two 2-D patterns 
 

Source: NK Nikolova 
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Example: a short dipole 
on z-axis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: NK Nikolova 
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Principal patterns 
 
 
 
 
 

• Principal patterns are the 2-D 

patterns of linearly polarized 

antennas, measured in 2 planes 
 

1. the E-plane: a plane parallel to the E 
vector and containing the direction of 
maximum radiation, and 

 
2. the H-plane: a plane parallel to the H 

vector, orthogonal to the E-plane, and 
containing the direction of maximum 

 

radiation 
 Source: NK Nikolova 
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Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: NK Nikolova 
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Antenna Mask (Example 1) 
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[CCIR doc. 11/645, 17-Oct 1989) 
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Antenna Mask (Example 2) 
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Reference pattern for co-polar and cross-polar components 
for satellite transmitting antennas in Regions 1 and 3 
(Broadcasting ~12 GHz) 
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Isotropic antenna 
 
 
 

• Isotropic antenna or 
isotropic radiator is a 
hypothetical (not physically 
realizable) concept, used as a 
useful reference to describe 
real antennas.  

• Isotropic antenna radiates 
equally in all directions.  
– Its radiation pattern is 

represented by a sphere whose 
center coincides with the 
location of the isotropic radiator. 

 
 

 

Source: NK Nikolova 
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Directional antenna 
 
 
 
 

• Directional antenna is an antenna, which 

radiates (or receives) much more power 
in (or from) some directions than in (or 
from) others. 

 
– Note: Usually, this term is applied to 

antennas whose directivity is much higher 
than that of a half-wavelength dipole. 

 
 
 
 
 
 
 

 

Source: NK Nikolova 
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Omnidirectional antenna 
 
 
 

 

• An antenna, 

which has a non-
directional 
pattern in a plane 

 
– It is usually 

directional in other 
planes 

 
 
 
 
 
 
 

 

Source: NK Nikolova 
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Pattern lobes 
 
 
 
 
 

 

Pattern lobe is a 
 

portion of the radiation 
 

pattern with a local 
 

maximum 
 

Lobes are 
 

classified as: 
 

major, minor, side 
 

lobes, back lobes. 
 
 
 
 

 

Source: NK Nikolova 
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Pattern lobes and beam widths 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: NK Nikolova 
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Beamwidth 
 
 
 
 

• Half-power beamwidth (HPBW) is the angle 
between two vectors from the pattern‘s origin to 

the points of the major lobe where the radiation 

intensity is half its maximum  
• Often used to describe the antenna resolution properties  

» Important in radar technology, radioastronomy, etc. 
 

• First-null beamwidth (FNBW) is the angle 
between two vectors, originating at the pattern‘s 
origin and tangent to the main beam at its base.  

» Often FNBW ≈ 2*HPBW 
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Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: NK Nikolova 
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Anisotropic sources: gain 
 

 

•  Every real antenna radiates more 
energy in some directions than in 

 

others (i.e. has directional properties) 
 

 •  Idealized example of directional 
 antenna: the radiated energy is 

Isotropic sphere concentrated in the yellow region 
(cone).  

 •  Directive antenna gain: the power flux 
 density is increased by (roughly) the 
 inverse ratio of the yellow area and the 

 total surface of the isotropic sphere 

 –  Gain in the field intensity may also be 
 considered - it is equal to the square 
 root of the power gain. 
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Antenna gain measurement 
 
 
 
 
 
 

Reference Measuring Actual Measuring 
 

antenna equipment antenna equipment 
 
 
 
 
 
 

 

Po = Power S0 = Power  P = Power S = Power 
delivered to received  delivered to received 

the reference (the same in  the actual (the same in 

antenna both steps)  antenna both steps) 
     

Step 1: reference 
    

  
Step 2: substitution 

 
    
 

Antenna Gain = (P/Po) S=S0 
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Antenna Gains Gi, Gd 
 
 

 

• Unless otherwise specified, the gain refers 
to the direction of maximum radiation. 

 
• Gain is a dimension-less factor related to 

power and usually expressed in decibels  

• Gi ―Isotropic Power Gain‖ – theoretical 
concept, the reference antenna is isotropic  

• Gd - the reference antenna is a half-
wave dipole 
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Typical Gain and Beamwidth 
 
 
 

 

Type of antenna Gi [dB] BeamW. 
Isotropic 0 360 x360 

   0 
    

Half-wave Dipole 2 360 x120 
   0 
   

Helix (10 turn) 14 35
0

x35
0 

Small dish 16 30
0

x30
0 

Large dish 45 1
0

x1
0 
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Antenna gain and effective area 
 
 
 
 
 
 
 

• Measure of the effective absorption area 
presented by an antenna to an incident 
plane wave. 

•  Depends on the antenna gain and wavelength 

Ae  
2
G(,) [m

2
] 

 

4 
 

Aperture efficiency: a = Ae / A 

A: physical area of antenna’s aperture, square meters 
 
 

 

47 



Power Transfer in Free Space 
 
 
 
 

 

PR   PFD  Ae    

 GT PT 
 2  

  GR  

    4 
  4r 2  

   

   


2 

 P G G 
  

    
 
 
 

 

T T R 4r 

 
 

 

• :  wavelength [m] 

• PR: power available at the 
receiving antenna  

• PT: power delivered to the 
transmitting antenna 

• GR: gain of the transmitting 

antenna in the direction of 
the receiving antenna  

• GT: gain of the receiving 

antenna in the direction of 
the transmitting antenna  

• Matched polarizations 
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e.i.r.p. 
 
 
 
 

• Equivalent Isotropically Radiated 
Power (in a given direction): 

 

e.i.r . p.  PGi 
 
 

 

• The product of the power supplied 
to the antenna and the antenna gain 
(relative to an isotropic antenna) in a 
given direction 
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Linear Polarization 
 
 
 
 
 
 
 
 

• In a linearly polarized 
plane wave the direction 
of the E (or H) vector is 
constant. 

     
• http://www.amanogawa.com/archive/wavesA.h 

tml 
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Elliptical Polarization 
 
 
 
 
 
 
 
 

 

LHC 
 
 

 

Ex = cos (wt) Ex = cos (wt) Ex = cos (wt) Ex = cos (wt) 
  

Ey = cos (wt) Ey = cos (wt+pi/4) Ey = -sin (wt) Ey = cos (wt+3pi/4) 
   

 
 
 
 
 
 
 
 

 

 RHC 
Ex = cos (wt) Ex = cos (wt) 

 

Ey = -cos (wt+pi/4) Ey = sin (wt) 
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Polarization ellipse 
Ex 

 
 
 
 
 
 

 

Ey 

 
 
 
 
 

 

M 
 
 
 

 


 
 
 
 

 

N 

 

• The superposition of 
two plane-wave 
components results in 
an elliptically 
polarized wave  

• The polarization 
ellipse is defined by 
its axial ratio N/M 

 

(ellipticity), tilt angle  
and sense of rotation 
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Polarization states 
 
 
 

 

LHC (Poincaré sphere)   
 

UPPER HEMISPHERE: 

ELLIPTIC POLARIZATION 

LEFT_HANDED SENSE 
 
 

 

EQUATOR:  

LINEAR POLARIZATION 

 
 
 

 

LATTITUDE:  

REPRESENTS  

AXIAL RATIO 

 
 
 

 

LOWER HEMISPHERE: 45 0 LINEAR 
ELLIPTIC POLARIZATION 

 

    

RIGHT_HANDED SENSE LONGITUDE:   

  REPRESENTS 
  TILT ANGLE 
  RHC  

POLES REPRESENT   

 CIRCULAR POLARIZATIONS  
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Comments on Polarization 
 
 
 
 

• At any moment in a chosen reference point in 
space, there is actually a single electric vector E 
(and associated magnetic vector H). 

 
• This is the result of superposition (addition) of 

the instantaneous fields E (and H) produced by 
all radiation sources active at the moment. 

 
• The separation of fields by their wavelength, 

polarization, or direction is the result of ‗filtration‘. 
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Antenna Polarization 
 
 
 
 
 
 

 

• The polarization of an antenna in a specific 
direction is defined to be the polarization of 
the wave produced by the antenna at a great 
distance at this direction 
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Polarization Efficiency 
 
 
 
 
 

 

• The power received by  an antenna  
from a particular direction is maximal if the 
polarization of the incident wave and the 
polarization of the antenna in the wave 
arrival direction have:  

– the same axial ratio  
– the same sense of polarization  
– the same spatial orientation 

 

. 
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Polarization filters/ reflectors 
 
 
 
 

 

Wall of thin parallel wires (conductors) 
 
 
 
 
 

|E1|>0 |E2| = 0 |E1|>0 |E2| ~ |E2| 
 

 

Vector E  wires Vector E  wires 
 
 
 
 
 

 

Wire distance ~ 0.1
 

• At the surface of ideal conductor the tangential 
electrical field component = 0 
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Transmitting antenna equivalent circuit 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

jXG 
 

 

RG 
 
 
 
 
 

 

VG 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

G
en

er
at

o
r 

 
 

 
 

 Antenna  

Transmitter Transm. line Radio wave 
  

 The transmitter with the transmission line is represented 
 by an (Thevenin) equivalent generator 

jXA The antenna is represented by its input impedance 
 (which is frequency-dependent and is influenced 
 by objects nearby) as seem from the generator 

 jXA represents energy stored in electric (E e) and 

R
r 

magnetic (Em) near-field components; if |Ee| = |Em| 

then XA = 0 (antenna resonance) 
 

Rr represents energy radiated into space (far- 

Rl 
field components) 

Rl represents energy lost, i.e. transformed into heat 
 

 in the antenna structure 
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Receiving antenna equivalent circuit 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

jXA 
 

Rr 
 

Rl 
 

VA 

 
 
 
 

 

Radio wave 
 
 
 
 
 
 
 
 
 
 

 

A
n
te

n
n
a 

jXL 

RL 

 

Antenna 
 
 

Transm.line Receiver 
 
 
 

 

The antenna with the transmission line 
is represented by an (Thevenin) 
equivalent generator 
 

The receiver is represented by its input 
impedance as seen from the antenna terminals 
(i.e. transformed by the transmission line) 
 

VA is the (induced by the incident wave) 
voltage at the antenna terminals determined 
when the antenna is open circuited 
 

 

Note: The antenna impedance is the same when the antenna is 
used to radiate and when it is used to receive energy 

 

Thevenin equivalent 
64 



Power transfer 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

P
A

 /
 P

A
m

a
x
 

 
 
 
 
 

 

1 
 
 
 
 
 
 
 
 

 

0.5 
 
 
 
 
 
 
 
 

 

0 

 
 

 
 

  • The maximum 

   power is delivered 

   to (or from) the 

   antenna when the 

   antenna 

   impedance and 

   the impedance of 

0.1 1 10 the equivalent 
 RA / RG; (XA+XG = 0)  generator (or load) 
    

 

are matched 
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• When the impedances are matched 
 

– Half of the source power is delivered to the load and 
half is dissipated within the (equivalent) generator as  
heat 

– In the case of receiving antenna, a part (Pl) of the 
 

power captured is lost as heat in the antenna 
elements, , the other part being reradiated 
(scattered) back into space 

 

• Even when the antenna losses tend to zero, still only half of 
the power captured is delivered to the load (in the case of 
conjugate matching), the other half being scattered back 
into space 
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• When the antenna impedance is not matched to 
the transmitter output impedance (or to the 
receiver input impedance) or to the transmission 
line between them, impedance-matching devices 
must be used for maximum power transfer 

 
 
• Inexpensive impedance-matching devices are 

usually narrow-band  
• Transmission lines often have significant losses 
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Radiation efficiency 
 
 
 
 

• The radiation efficiency e indicates how 
efficiently the antenna uses the RF power 

 
• It is the ratio of the power radiated by the 

antenna and the total power delivered to 
 

the antenna terminals (in transmitting 
mode). In terms of equivalent circuit 
parameters: 

R 
e  r Rr 

 

R
l 
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Antenna arrays 
 

 

• Consist of multiple (usually identical) antennas 
(elements) ‗collaborating‘ to synthesize radiation 
characteristics not available with a single antenna. 
They are able  
–  to match the radiation pattern to the desired coverage area  
– to change the radiation pattern electronically (electronic 

scanning) through the control of the phase and the 
amplitude of the signal fed to each element  

–  to adapt to changing signal conditions  
– to increase transmission capacity by better use of the radio 

resources and reducing interference  
• Complex & costly  

–  Intensive research related to military, space, etc. activities  
» Smart antennas, signal-processing antennas, tracking 

antennas, phased arrays, etc. 

 

Source: adapted from N Gregorieva 70 



Satellite antennas (TV) 
 
 
 

 

• Not an array! 
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Owens Valley Radio 
 

Observatory 
 

The Earth‘s 

atmosphere is 
 

transparent in  

the narrow  

visible-light  

window (4000-  

7000  

angstroms) and  

the radio band  

between 1 mm  

and 10 m. 
 

 

[Sky & Telescope 

Feb 1997 p.26] 
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The New Mexico Very 
Large Array 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Sky & Telescope 

Feb 1997 p. 30] 
 

27 antennas along 3 railroad tracks provide baselines up to 35 km.  
Radio images are formed by correlating the signals garnered by  

each antenna. 73 



2 GHz adaptive antenna 
 
 

 

• A set of 48 
  

2GHz 
 

antennas 
 

–  Source: 
 

Arraycomm 
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Phased Arrays 
 
 

 

• Array of N antennas in a linear or two-
dimensional configuration + beam-forming  
& control device  

• The amplitude and phase excitation of each 
individual antenna controlled electronically 
(―software-defined‖)  
– Diode  phase shifters  
– Ferrite phase shifters  

• Inertia-less beam-forming and scanning (sec) 
with fixed physical structure 
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• Switched beam antennas  
– Based on switching function between 

separate directive antennas or 
predefined beams of an array  

• Space Division Multiple Access 
(SDMA) = allocating an angle 
direction sector to each user  
– In a TDMA system, two users will 

be allocated to the same time slot 
and the same carrier frequency  

– They will be differentiated by different 
direction angles 
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• Dynamically 
 

array (PA): 
 

 
 
 
 

 

phased 

 

– A generalization of the 
switched lobe concept 

 

– The radiation pattern 
continuously track the 
designated signal (user) 

 

– Include a direction of arrival 
(DoA) tracking algorithm 
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Beam Steering 
 
 
 

 

Beam direction 
  


 Equi-phase 

wave front 
 
 

 d   

 = [(2/)d sin]     

    Radiating 

    elements 

3 2 
0 Phase 

 shifters 
    

 

Power 
 

distribution 

 
 
 

 

• Beam-

steering 

using 

phase 

shifters 

at each 

radiating 

element 
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4-Bit Phase-Shifter (Example) 
 
 
 
 

 

Bit #4 Bit #3 Bit #2 Bit #1 

Input   Output 
00 or 22.50 00  or 450 00  or 900 00  or 1800 

 
 
 

 

Steering/ Beam-forming Circuitry 
 
 
 
 
 
 
 

 

Alternative solution: Transmission line with controlled delay 
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Switched-Line Phase Bit 
 
 
 
 
 
 

Delay line #1a 
 
 
 
 
 

 

Input Output 
 
 
 
 
 
 
 
 
 
 

Diode switch 

 
 
 
 
 
 
 

 

Delay line #1b 

 

 

Phase bit = delay difference 
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Simulation 
 
 
 
 
 

 

• 2 omnidirectional antennas (equal amplitudes)  
– Variables  

• distance increment  
• phase increment  

• N omnidirectional antennas  
– Group factor (N omnidirectional antennas 

uniformly distributed along a straight line, equal 
amplitudes, equal phase increment)  

• http://www.amanogawa.com/archive/TwoDipole/ 
Antenna2-2.html (more details) 
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N omnidirectional antennas 
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• Array gain (line, uniform, identical power) 
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Antenna Arrays: Benefits 
 
 
 

 

• Possibilities to control electronically  
–  Direction of maximum radiation  
–  Directions (positions) of nulls  
–  Beam-width  
–  Directivity  
–  Levels of sidelobes 

 

using standard antennas (or antenna collections) 
independently of their radiation patterns 

 

• Antenna elements can be distributed along 
straight lines, arcs, squares, circles, etc. 
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Adaptive (―Intelligent‖)Antennas 
 

• Array  of  N antennas  in a 
 

linear,circular, or planar configuration 
 

 

• Used for selection signals from 
desired sources and suppress 
incident signals from undesired 
sources  

• The antenna pattern track the 
sources  

• It is then adjusted to null out the 
interferers and to maximize the 
signal to interference ratio (SIR)  

• Able to receive and combine 
constructively multipath signals 
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• The amplitude/ phase 
excitation of each 
antenna controlled 
electronically  
(―software-defined‖)  

• The weight-determining 
algorithm uses a-priori 
and/ or measured 
information to adapt 
antenna to changing 
environment  

• The weight and 
summing circuits can 
operate at the RF and/ 
or at an intermediate 
frequency 

 
 
 
 
 
 

 

1 
 

w1 
 
 
 


 
 
 
 

wN 
 

N  
 

Weight-determining 

algorithm 
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Antenna sitting 
 

 

• Radio horizon  
• Effects of obstacles & structures nearby  
• Safety  

– operating procedures  
– Grounding  

• lightning strikes  
• static charges 

 
– Surge protection 

 
• lightning searches for a second path to ground 

 

87 



Outline 
 
 

 

• Introduction  
• Review of basic antenna types  
• Radiation pattern, gain, polarization  
• Equivalent circuit & radiation efficiency  
• Smart antennas  
• Some theory  
• Summary 
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Maxwell‘s Equations 
 
 

 

• EM field interacting with the matter  
– 2 coupled vectors E and H (6 numbers!), varying with time and 

space and satisfying the boundary conditions 
(see http://www.amanogawa.com/archive/docs/EM1.pdf; 
http://www.amanogawa.com/archive/docs/EM7.pdf; 
http://www.amanogawa.com/archive/docs/EM5.pdf)  

• Reciprocity Theorem  
– Antenna characteristics do not depend on the direction of energy 

flow. The impedance & radiation pattern are the same when the 
antenna radiates signal and when it receives it.  

– Note: This theorem is valid only for linear passive antennas (i.e. 
antennas that do not contain nonlinear and unilateral elements, 
e.g. amplifiers) 
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EM Field of Current Element 
 

z  
Er 

E  Er  E  E  

E


  OP    

  E H  H r   H  H

 r     
 

E   E  2  E 
2
   E 

2 
   

I, dz 
  r  

  

H  Hr 2  H 
2
  H 

2 

  y 
      

 

x 
I: current (monochromatic) [A]; dz: antenna element (short) [m] 
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Short dipole antenna: summary 
 

• E & H are maximal in the equatorial plane, zero along the 

antenna axis  
• Er is maximal along the antenna axis dz, zero in the equatorial plane 

• All show axial symmetry  
• All are proportional to the current moment Idz  
• Have 3 components that decrease with the distance-to-

wavelength ratio as  
– (r/)

-2
 & (r/)

-3
: near-field, or induction field. The energy oscillates from 

entirely electric to entirely magnetic and back, twice per cycle. Modeled 
as a resonant LC circuit or resonator;  

–  (r/)
-1

: far-field or radiation field 

– These 3 component are all equal at (r/) = 1/(2) 
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  

Field components 
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Field impedance 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Z
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7
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Short dipole 
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1 
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  Small loop  
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Z = E/H 
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antenna 
type and 

100 

on 
 

distance 
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Far-Field, Near-Field 
 
 
 

 

• Near-field region:  
– Angular distribution of energy depends on 

distance from the antenna;  
–  Reactive field components dominate (L, C)  

• Far-field region:  
– Angular distribution of energy is 

independent on distance;  
–  Radiating field component dominates (R)  
– The resultant EM field can locally be treated 

as uniform (TEM) 
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Poynting vector 
 
 
 
 

• The time-rate of EM energy flow per unit area in 
free space is the Poynting vector  
(see http://www.amanogawa.com/archive/docs/EM8.pdf). 

 
• It is the cross-product (vector product, right-hand 

screw direction) of the electric field vector (E) and 
the magnetic field vector (H): P = E x H.  

• For the elementary dipole E  H and only  

ExH carry energy into space with the speed of 
light. 
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Power Flow 
 
 
 
 

• In free space and at large distances, the 

radiated energy streams from the antenna in 

radial lines, i.e. the Poynting vector has only 
the radial component in spherical coordinates. 

 
• A source that radiates uniformly in all directions 

is an isotropic source (radiator, antenna).  
For such a source the radial component of 

the Poynting vector is independent of  and . 
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Linear Antennas 
 
 

 

• Summation of all vector 
components E (or H) 
produced by each antenna 
element 

 

E  E1  E2  E3  ... 
 

H  H1  H 2  H3  ... 
 

O •   In the far-field region, the 
 

 vector components are 
 parallel to each other 

 •  Phase difference due to 
 –  Excitation phase difference 

 –  Path distance difference 

 •  Method of moments 
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Simulation: Linear dipole antenna 
 
 
 

 

• http://www.amanogawa.com/archive/Dipol 
eAnt/DipoleAnt-2.html  
– Linear dipole antenna 

 
• http://www.amanogawa.com/archive/Ante

n na1/Antenna1-2.html  
– Detailed analysis             
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Point Source 
 
 

 

• For many purposes, it is sufficient to know 
the direction (angle) variation of the power 
radiated by antenna at large distances.  

• For that purpose, any practical antenna, 
regardless of its size and complexity, 
can be represented as a point-source.  

• The actual field near the antenna is 
then disregarded. 
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• The EM field at large distances from 
an antenna can be treated as 
originated at a point source - 
fictitious volume-less emitter. 

 
• The EM field in a homogenous 

unlimited medium at large distances 
from an antenna can be approximated 
by an uniform plane TEM wave 
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Image Theory 
 
 

 

• Antenna above perfectly 
conducting plane surface  

• Tangential electrical 
field component = 0  
– vertical components: the 

same direction  
– horizontal components: 

opposite directions  
• The field (above the ground) 

is the same as if the ground 
is replaced by an mirror 
image of the antenna  

• http://www.amanogawa.com/ 
archive/wavesA.html 

 
 
 
 
 
 
 
 

 +   
 
 
 
 
 
 
 
 
 

 - 
 
 
 
 
 

Elliptical polarization: 

change of the rotation sense! 
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Summary 
 
 

 

• Introduction  
• Review of basic antenna types  
• Radiation pattern, gain, polarization  
• Equivalent circuit & radiation efficiency  
• Smart antennas  
• Some theory 
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Any questions? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Thank you for your attention 
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HISTORY 
 
 
 
 

• The first antennas were built in 1888 by German 

physicist Heinrich Hertz in his pioneering experiments 

to prove the existence of electromagnetic waves 

predicted by the theory of James Clerk Maxwell. 
    
• Hertz placed dipole antennas at the focal point of 

parabolic reflectors for both transmitting and 

receiving. He published his work in Annalen der 

Physik und Chemie (vol. 36, 1889). 



INTRODUCTION 
 
 

• An antenna is an electrical device which converts 
electric currents into radio waves, and vice versa. 
It is usually used with a radio transmitter or radio 
receiver.  

• In transmission, a radio transmitter applies an 
oscillating radio frequency electric current to the 
antenna's terminals, and the antenna radiates the 
energy from the current as electromagnetic waves 
(radio waves). 



 

• Transmitting Antenna: Any structure designed to 

efficiently radiate electromagnetic radiation in a 

preferred direction is called a transmitting antenna. 
 
• In reception, an antenna intercepts some of the power 

of an electromagnetic wave in order to produce a tiny 

voltage at its terminals, that is applied to a receiver to 

be amplified. An antenna can be used for both 

transmitting and receiving. 
 
• Receiving Antenna: Any structure designed to 

efficiently receive electromagnetic radiation is called a 

receiving antenna 



BASIC STRUCTURE 
 
 
 

• It is a metallic conductor system capable of radiating 
and receiving em waves.  

• Typically an antenna consists of an arrangement of 
metallic conductors (“elements"), electrically 
connected (often through a transmission line) to the 
receiver or transmitter.  

• An oscillating current of electrons forced through 

the antenna by a transmitter will create an oscillating 

magnetic field around the antenna elements, while the 

charge of the electrons also creates an oscillating 

electric field along the elements. 



• These time-varying fields radiate away from the 
antenna into space as a moving electromagnetic 
field wave.  

• Conversely, during reception, the oscillating 
electric and magnetic fields of an incoming radio 
wave exert force on the electrons in the antenna 
elements, causing them to move back and forth, 
creating oscillating currents in the antenna.  

• Antenna reciprocity : can be used as transmitter 
and receiver.In two way communication same 
antenna can be used as transmitter and receiver. 



• Antennas may also contain reflective or directive 
elements or surfaces not connected to the 
transmitter or receiver, such as parasitic elements, 
parabolic reflectors or horns, which serve to direct 
the radio waves into a beam or other desired 
radiation pattern.  

• Antennas can be designed to transmit or receive 
radio waves in all directions equally 
(omnidirectional antennas), or transmit them in a 
beam in a particular direction, and receive from 
that one direction only ( directional or high gain 
antennas). 



WHY ANTENNAS ? 
 
 

 

• Need of antenna arisen when two person wanted to 
communicate between them when separated by some 

distance and wired communication is not possible. 
 
• Antennas are required by any radio receiver or 

transmitter to couple its electrical connection to the 
electromagnetic field.  

• Radio waves are electromagnetic waves which 
carry signals through the air (or through space) at the 
speed of light with almost no transmission loss. 



• Radio transmitters and receivers are used to convey 

signals (information) in systems including broadcast 

(audio) radio, television, mobile telephones , point-to-

point communications links (telephone, data 

networks), satellite links. 
 
• Radio waves are also used directly for measurements 

in technologies including Radar, GPS, and radio 

astronomy. 
 
• In each and every case, the transmitters and receivers 

involved require antennas, although these are sometimes 

hidden (such as the antenna inside an AM radio or inside 

a laptop computer equipped with wi-fi). 



WHERE USED? 
 
 
 
 

• Antennas are used in systems such as radio and 

television broadcasting, point to point radio 

communication, wireless LAN, radar and space 

exploration 
 
• Antennas are most utilized in air or outer space 
 
• But can also be operated under water or even through 

soil and rock at certain frequencies for short distances 



RADIATION MECHANISM 
 

• Ideally all incident energy must be reflected back 
when open circuit. But practically a small portion of 
electromagnetic energy escapes from the system that 
is it gets radiated.  

• This occurs because the line of force don’t undergo 
complete phase reversal and some of them escapes. 
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• The amount of escaped energy is very small due to 
mismatch between transmission line and 
surrounding space.  

• Also because two wires are too close to each other, 
radiation from one tip will cancel radiation from 
other tip.( as they are of opposite polarities and 
distance between them is too small as compared to 
wavelength ) 
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• To increase amount of radiated power open circuit 
must be enlarged , by spreading the two wires. 

 
• Due to this arrangement, coupling between 

transmission line and free space is improved. 
 
• Also amount of cancellation has reduced. 
 
• The radiation efficiency will increase further if two 

conductors of transmission line are bent so as to bring 

them in same line. 
 



TYPES OF ANTENNAS 
 

 

• According to their applications and technology available, 
antennas generally fall in one of two categories: 

 

1.Omnidirectional or only weakly directional antennas 
which receive or radiate more or less in all directions. 
These are employed when the relative position of the 
other station is unknown or arbitrary. They are also used 
at lower frequencies where a directional antenna would 
be too large, or simply to cut costs in applications where 
a directional antenna isn't required. 

 

2. Directional or beam antennas which are intended to 
preferentially radiate or receive in a particular direction 
or directional pattern. 



 

• According to length of transmission lines 
available, antennas generally fall in one of two 
categories:  
1. Resonant Antennas – is a transmission line, the 
length of which is exactly equal to multiples of 
half wavelength and it is open at both ends. 

 

2.Non-resonant Antennas – the length of these 
antennas is not equal to exact multiples of half 
wavelength. In these antennas standing waves are 

 

not present as antennas are terminated in correct 
impedance which avoid reflections. The waves 
travel only in forward direction .Non-resonant 
antenna is a unidirectional antenna. 



RADIATION PATTERN 
 



• The radiation pattern of an antenna is a plot of the 
relative field strength of the radio waves emitted by 
the antenna at different angles.  

• It is typically represented by a three dimensional 
graph, or polar plots of the horizontal and vertical cross 
sections. It is a plot of field strength in V/m versus the 
angle in degrees.  

• The pattern of an ideal isotropic antenna , which 
radiates equally in all directions, would look like a 
sphere.  

• Many non-directional antennas, such as dipoles, emit 
equal power in all horizontal directions, with the power 
dropping off at higher and lower angles; this is called 
an omni directional pattern and when plotted looks like 
a donut. 



• The radiation of many antennas shows a pattern of 
maxima or "lobes" at various angles, separated by 
“nulls", angles where the radiation falls to zero.  

• This is because the radio waves emitted by different 
parts of the antenna typically interfere, causing maxima 
at angles where the radio waves arrive at distant points 
in phase, and zero radiation at other angles where the 
radio waves arrive out of phase.  

• In a directional antenna designed to project radio 
waves in a particular direction, the lobe in that direction 
is designed larger than the others and is called the 
"main lobe".  

• The other lobes usually represent unwanted radiation 
and are called “sidelobes". The axis through the main 
lobe is called the "principle axis" or “boresight axis". 



ANTENNA GAIN 
 
 
 

• Gain is a parameter which measures the degree of 
directivity of the antenna's radiation pattern. A high-
gain antenna will preferentially radiate in a particular 
direction.  

• Specifically, the antenna gain, or power gain of an 
antenna is defined as the ratio of the intensity (power 
per unit surface) radiated by the antenna in the direction 
of its maximum output, at an arbitrary distance, divided 
by the intensity radiated at the same distance by a 
hypothetical isotropic antenna. 



 

• The gain of an antenna is a passive phenomenon - 
power is not added by the antenna, but simply 
redistributed to provide more radiated power in a certain 
direction than would be transmitted by an isotropic 
antenna.  

• High-gain antennas have the advantage of longer 
range and better signal quality, but must be aimed 
carefully in a particular direction.  

• Low-gain antennas have shorter range, but the 
orientation of the antenna is relatively inconsequential. 



 

• For example, a dish antenna on a spacecraft is a high-
gain device that must be pointed at the planet to be 
effective, whereas a typical Wi-Fi antenna in a laptop 
computer is low-gain, and as long as the base station is 
within range, the antenna can be in any orientation in 
space.  

• In practice, the half-wave dipole is taken as a 
reference instead of the isotropic radiator. The gain is 
then given in dBd (decibels over dipole) 



ANTENNA EFFICIENCY 
 
 
 
 

• Efficiency of a transmitting antenna is the ratio of 
power actually radiated (in all directions) to the power 

absorbed by the antenna terminals. 
 
• The power supplied to the antenna terminals which is 

not radiated is converted into heat. This is usually 

through loss resistance in the antenna's conductors, but 

can also be due to dielectric or magnetic core losses in 

antennas (or antenna systems) using such components. 



POLARIZATION 
 

• The polarization of an antenna is the orientation of 
the electric field (E-plane) of the radio wave with 

respect to the Earth's surface and is determined by the 

physical structure of the antenna and by its orientation. 
 
• A simple straight wire antenna will have one 

polarization when mounted vertically, and a different 
polarization when mounted horizontally.  

• Reflections generally affect polarization. For radio 
waves the most important reflector is the ionosphere - 
signals which reflect from it will have their 
polarization changed  

• LF,VLF and MF antennas are vertically polarized 



BEAM-WIDTH 
 
 

 

• Beam-width of an antenna is defined as angular 
separation between the two half power points on power 
density radiation pattern OR  

• Angular separation between two 3dB down points on 
the field strength of radiation pattern  

• It is expressed in degrees 





ISOTROPIC ANTENNA 
 
 
 

• Isotropic antenna or isotropic 
radiator is a hypothetical (not 
physically realizable) concept, 
used as a useful reference to 
describe real antennas.  

• Isotropic antenna radiates 
equally in all directions.  
– Its radiation pattern is 

represented by a sphere 
whose center coincides with 
the location of the isotropic 
radiator. 

 



 
 
 
 
 
 
 
 
 

• It is considered to be a point in space with no 

dimensions and no mass. This antenna cannot 

physically exist, but is useful as a theoretical 

model for comparison with all other antennas. 
 
• Most antennas' gains are measured with reference 

to an isotropic radiator, and are rated in dBi 
(decibels with respect to an isotropic radiator). 



HALF WAVE DIPOLE ANTENNA 
 
 
 

 

• The half-wave dipole antenna is just a special case 
of the dipole antenna. 

 
• Half-wave term means that the length of this dipole 

antenna is equal to a half-wavelength at the frequency 

of operation. 
 
• The dipole antenna, is the basis for most antenna 

designs, is a balanced component, with equal but 

opposite voltages and currents applied at its two 

terminals through a balanced transmission line. 



 
 
 
 
 
 

• To make it crystal clear, if the antenna is to radiate at 
600 MHz, what size should the half-wavelength dipole 

be? 
 
• One wavelength at 600 MHz is = c / f = 0.5 meters. 

Hence, the half-wavelength dipole antenna's length is 

0.25 meters. 
 
• The half-wave dipole antenna is as you may expect, a 

simple half-wavelength wire fed at the center as 

shown in Figure 





 
 

 

• Dipoles have an 
 

radiation pattern, 

doughnut symmetrical 

about the axis of the 

dipole. The radiation is 

maximum at right 

angles to the dipole, 

dropping off to zero on 

the antenna's axis. 



FOLDED DIPOLE 
 
 
 
 

 

• Folded antenna is a single antenna 
but it consists of two elements. 

 
• First element is fed directly while 

second one is coupled inductively at 
its end. 

 
• Radiation pattern of folded dipole is 

same as that of dipole antenna i.e 
figure of eight (8). 



Advantages 
 
 
 
 

• Input impedance of folded dipole is four times higher 
than that of straight dipole. 

 
• Typically the input impedance of half wavelength 

folded dipole antenna is 288 ohm. 
 
• Bandwidth of folded dipole is higher than that of 

straight dipole. 



HERTZ ANTENNA 
 
 
 
 
 
 
 

• The Hertzian dipole is a theoretical short dipole 

(significantly smaller than the wavelength) with 

a uniform current along its length. 
 
• A true Hertzian dipole cannot physically exist, 

since the assumed current distribution implies an 

infinite charge density at its ends, and significant 

radiation requires a very high current over its very 

short length. 





LOOP ANTENNA 
 
 
 

• A loop antenna is a radio antenna consisting of a 
loop of wire with its ends connected to a balanced 
transmission line  

• It is a single turn coil carrying RF current through it.  
• The dimensions of coil are smaller than the 

wavelength hence current flowing through the coil has 
same phase.  

• Small loops have a poor efficiency and are mainly 
used as receiving antennas at low frequencies. Except 
for car radios, almost every AM broadcast receiver sold 
has such an antenna built inside of it or directly 
attached to it. 



• A technically small loop, also known as a magnetic 
loop, should have a circumference of one tenth of a 
wavelength or less. This is necessary to ensure a 
constant current distribution round the loop.  

• As the frequency or the size are increased, a standing 
wave starts to develop in the current, and the antenna 
starts to have some of the characteristics of a folded 
dipole antenna or a self-resonant loop.  

• Self-resonant loop antennas are larger. They are 
typically used at higher frequencies, especially VHF 
and UHF, where their size is manageable. They can be 
viewed as a form of folded dipole and have somewhat 
similar characteristics. The radiation efficiency is also 
high and similar to that of a dipole. 



 
 

• Radiation pattern of loop 
antenna is a doughnut pattern. 

   
• Can be circular or square 

loop  
• No radiation is received 

normal to the plane of loop 
and null is obtained in this 
direction.  

• Application: Used for 
direction finding applications 

 



TURNSTILE ANTENNA 
 
 
 
 
 

 

• A turnstile antenna is a set of two 
dipole antennas aligned at right 
angles to each other and fed 90 
degrees out-of-phase.  

• The name reflects that the antenna 
looks like a turnstile when mounted 
horizontally.  

• When mounted horizontally the 
antenna is nearly omnidirectional on 
the horizontal plane. 

 



 

• When mounted vertically the 
antenna is directional to a right 
angle to its plane and is circularly 
polarized.  

• The turnstile antenna is often 
used for communication satellites  
because, being circularly 
polarized, the polarization of the 
signal doesn't rotate when the 
satellite rotates. 

 



RHOMBIC ANTENNA 
 
 

 

• Structure and construction 
 

– 4 wires are connected in rhombic shape and 
terminated by a resistor. 

 
– Mounted horizontally and placed > ^/2 from 

ground. 
 
• Highest development of long wire antenna is rhombic 

antenna. 







 

 

• Advantages 
 

– Easier to construct 
 

– Its i/p impedance and radiation pattern are 
relatively constant over range of frequencies. 

 
– Maximum efficiency 

 
– High gain can be obtained. 

 
• Disadvantages 
 

– Large site area and large side lobes. 



 
 
 
 

 

• Application 
 

– Long distance communication, high frequency 
transmission and reception. 

 
– Point to point communication.  
– Radio communication. 

 
– Short wave radio broadcasting. 



ANTENNA ARRAYS 
 
 
 
 

• Antenna arrays is group of antennas or antenna 
elements arranged to provide desired directional 

characteristics. 
 
• Generally any combination of elements can form an 

array. 
 
• However equal elements of regualar geometry are 

usually used. 



YAGI-UDA ANTENNA 
 
 
 

• It is a directional antenna consisting of a driven 
element (typically a dipole or folded dipole) and 
additional parasitic elements (usually a so-called 
reflector and one or more directors).  

• All the elements are arranged collinearly and close 
together.  

• The reflector element is slightly longer (typically 5% 
longer) than the driven dipole, whereas the so-called 
directors are a little bit shorter.  

• The design achieves a very substantial increase in the 
antenna's directionality and gain compared to a 
simple dipole. 





 

• Typical spacing between elements vary from 
about 1/10 to 1/4 of a wavelength, depending on 
the specific design.  

• The elements are usually parallel in one plane.  
• Radiation pattern is modified figure of eight  
• By adjusting distance between adjacent directors it 

is possible to reduce back lobe  
• Improved front to back ratio 





ANTENNA APPLICATIONS 
 
 

 

They are used in systems such as 
 

• Radio broadcasting 
 
• Broadcast television 
 
• Two-way radio 
 
• Communication receivers 
 
• Radar 
 
• Cell phones 
 
• Satellite communications. 



ANTENNA CONSIDERATIONS 
 
 

 

• The space available for an antenna 
 
• The proximity to neighbors 
 
• The operating frequencies 
 
• The output power 
 
• Money 



 
 
 
 
 
 
 
 
 
 
 

 

Antenna Fundamentals (1) 
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• Note: These materials may be used for study, 
research, and education in not-for-profit 
applications. If you link to or cite these materials, 
please credit the author, Ryszard Struzak. These 
materials may not be published, copied to or 
issued from another Web server without the 
author's express permission. Copyright © 2001 
Ryszard Struzak. All commercial rights are 
reserved. If you have comments or suggestions, 
please contact the author at 
ryszard.struzak@ties.itu.int. 
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Radio Link 
 
 
 
 
 
 
 

Antenna Antenna 
 
 
 
 
 
 
 

Radio wave 
 

 

Receiver 
Transmitter 

 
 
 

 

Antennas: important elements of 
any radio link 
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Photographs 
 

of 
 

Various Antenna Types 
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T-Antenna 
 
 
 
 
 

 

• Transmitting antenna transforms  
power in the form of time-dependent electrical 
current  
into  
time-and-space-dependent electro-magnetic 
(EM) wave. 
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R-Antenna 
 
 
 
 
 

 

• Receiving antenna transforms 
 

time-and-space-dependent EM 
wave into 

 

time-dependent electrical current (power) 
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Intended Antennas 
 
 
 

 

• Radiocommunication antennas  
– Transmitting  
– Receiving  

• EM applicators  
– Industrial  
– Medical  

• Measuring antennas 
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Unintended Antennas 
 
 
 
 
 
 
 

• Any conductor/ installation carrying electrical 
current  
– (e.g. electrical installation of vehicles) 

 
• Any conducting structure/ 

installation irradiated by EM waves  
– Permanent (e.g. Antenna masts, or power 

network)  
– Time-varying (e.g. Windmills, or helicopter 

propellers)  
– Transient (e.g. Re-radiating aeroplane) 
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PFD 
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PFD: Isotropic Radiator 
 

 

 Power Flux Density (PFD) 

 PFD 
P

T 
 

4r 
2 

r   

Notes 
 

• Loss-less propagation 
medium assumed 

 
• Isotropic radiator cannot 

be physically realized 
 

• PFD does not depend on 
frequency/ wavelength 
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PFD: Distance Dependence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

100 
 
 
 
 
 

10 
 
 
 
 
 

1 
 
 
 

 

0.1 
 
 
 
 
 

0.01 
 

0.1 1 10 
 

Distance 
 
 

168 



PFD: Example 1 
 
 
 
 
 
 
 
 

 

• What is the PFD from 

TV broadcast GEO 
satellite at Trieste? 

 
• EIRP = 180 kW 

(52.5 dB(W)) 
 
• Distance: ~38'000 km  
• Free space 

 
 
 
 

 

PFD  1.8 10
2
 10

3 

  

 
4   (38 10

6
 )

2 

  1.8 10
5


 1.8 10
16 

  110
11

 Wm
-2


100 dB(Wm 
2

 )
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PFD: Example 2 
 
 
 
 
 
 
 
 
 
 

• What is the PFD 
from a hand-held 
phone at the head?  

• EIRP = 180 mW  
• Distance = ~3.8 cm  
• Free space 

 
 
 
 
 
 
 

 
 

PFD 

1.8 10 
1 

4   (3.8 10
2

 ) 
2 

 1.8 10 
1 

1.8 10 
2 

 

 10 Wm 
-2




 10 dB(Wm 
-2

 )
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PFD: Example 3 
 
 
 
 
 
 
 

• What is the ratio of 

the powers 

required to produce 

the same power 

flux density at a 

GEO-satellite and 

at a LEO-satellite.?  
• Distances:  

– GEO: 38 000 km  
– LEO:  1 000 km 

 
 
 
 
 
 
 
 
 

 
 

PFDGEO 
   


2 

  
P

GEO   
Dist

 LEO 
 



  


  

PFD P  Dist  

LEO  LEO  GEO 
 
 

 

P 38000  2 
GEO    1444   

P 
LEO  1000 
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PFD concept 
 
 
 
 
 
 
 

• Used often in the management/ regulating the 
use of the radio frequency spectrum 

 
• To define the restrictions imposed on 

radiocommunication systems  
• To assure electromagnetic compatibility  
• Relates to the field-strength of plane wave 
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PFD Limits 
 
 
 
 
 

 

• The WRC 2000 decided that 

the PFD at the Earth‘s 

surface produced by 

emission from a space 

station in Fixed-satellite 

service shall not exceed the 

limit shown in the figure. 
 
• The figure is valid for stations 

at the geostationary orbit in 

frequency band 10.7-11.7 

GHz and reference band 4 

kHz. For other cases see RR 

Table S21-4. 

 
 
 
 
 
 
 

 
 

 -138 

 -140 

[d
B

(W
m

^2
)]

 

-142 
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 -144 

P
F

D
 

-148 
 

 -150 

 -152   
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Angle of arrival (above the horizontal plane) 
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PFD: Real Antenna 
 
 
 
 
 
 
 
 
 
 

 

• PFD produced by physically 
realizable antennas depends on 

 
– power and distance (as 

isotropic source)  
– horizontal direction angle ()  
– vertical direction angle () 

 
 
 
 

 

174 



 
 
 
 
 
 
 
 
 
 
 

 

Directivity and Gain 
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Radiation Intensity 
 
 
 
 
 
 

 
z 

  •  measure of the 
   

ability of an antenna     

    

  OP to concentrate 

Transmitting 


r 

radiated power in a 
 

particular direction antenna 
 

   
   

y 
 

    

   • Radiation intensity = 
     

x 
Power per steradian = 

= (,) 
Distance (r) is very large 

[watts/steradian]  
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Antenna Directivity 
 
 
 
 
 
 
 

 

Total power radiated 

P0   0
2

 0

(,) 

 

 

sindd
 
 
 

 

Average radiation intensity 


avg 


 4

P
0 

 

 
 
 
 
 
 
 

 

D(,)  (,)  (,) 
 P 4

 

avg 0 
 
 
 
 
 

 

• D Has no units  
• Note: 

P0 = power radiated 
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Antenna Gain 
 
 
 
 
 
 
 

 

• The directivity and gain 

are measures of the 

ability of an antenna to 
concentrate power in a 

particular direction. 
 
• Directivity – power 

radiated by antenna (P0  
)  

• Gain – power delivered 

to antenna (PT) 

 
 
 
 
 

 

G(,)  D(,) 

  

P
T 

P0 
 

• : radiation efficiency 
(50% - 75%)  

• G has no units  
– Usually relates to the 

peak directivity of the 
main radiation lobe  

–  Often expressed in dB  
– Known as ―Absolute 
Gain‖ or ―Isotropic Gain‖ 
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PFD vs. Antenna Gain 
 
 

 

S (,)  (,) 
   

(r)(r) 
 

P0 
 

 G(,) 4r 
2


 G(,)S0

 
 
 
 
 
 
 
 

 

 (,) 

r 2 

 

S0 = PFD produced by a loss-

less isotropic radiator 
 

 

179 



Other Definitions of Gain 
 
 
 
 

• For practical purposes, the antenna gain is defined as 

the ratio (usually in dB), of the power required at the 

input of a loss-free reference antenna to the power 

supplied to the input of the given antenna to produce, 

in a given direction, the same field strength or the same 

power flux-density at the same distance. 
 
• When not specified otherwise, the gain refers to the 

direction of maximum radiation. 
 
• The gain may be considered for a specified 

polarization. [RR 154] 
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Antenna Gain 
 
 
 
 
 
 

 

Actual Measuring Reference Measuring 
 

antenna equipment antenna equipment 
 
 
 
 
 
 
 

P = Power S = Power Po = Power S = Power 
Delivered to received Delivered to received 

the antenna at a great the antenna at a great 

 distance  distance 
 
 
 

Antenna Gain (in the specific direction) = P / Po 
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Reference Antennas 
 
 

 

• Isotropic radiator 

– isolated in space (Gi, absolute gain, or isotropic gain)  
• Half-wave dipole  

– isolated in space, whose equatorial plane of 

symmetry contains the given direction (Gd)  
• Short vertical antenna  

– (much shorter than /4), close to, and normal to a 
perfectly conducting plane which contains the 

given direction (Gv) 
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Reference Antennas (1) 
 
 
 
 
 

 

Isotropic antenna 
 

• Sends (receives) 
energy equally in 
(from) all directions  

• Gain = 1 (= 0 dB) 
 
• When supplied by P, 

produces at distance r  
power flux density = P 

/(4r
2

)  
• Theoretical 

concept, cannot be 
physically realized 

 
 
 
 
 

 

Radiation pattern 
  

in vertical plane 
 
 
 
 
 
 
 
 
 
 

 

Radiation pattern 
 

In horizontal plane 
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Reference Antennas (2) 
 
 
 
 
 

 

Half-Wave Dipole 
 

• Linear antenna, realizable 
 
• Gain = 1.64 (= 2,15 dB) 

in the direction of 
maximum radiation 

 
• Figure-eight-shaped 

radiation pattern in the 

dipole plane, 

omnidirectional (circular) in 

the orthogonal plan 

 
 
 
 
 

 

Radiation pattern 
  

in vertical plane 
 
 
 
 
 
 
 
 
 
 

 

Radiation pattern 
 

In horizontal plane 
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Typical radiation pattern 
 
 

 

• Omnidirectional  
– Broadcasting  
– Mobile telephony  

• Pencil-beam  
– Microwave links 

 
• Fan-beam (narrow in one plane, wide in the 

other)  
• Shaped-beam  

– Satellite antennas 
 
 
 
 

185 



Typical Gain and Beam-width 
 
 
 

 

Type of antenna G [dB] HPBW [ ] 
 i  
   

Isotropic 0 360x360 
   

Dipole 2 360x120 
   

Helix (10 turn) 14 35x35 
   

Small dish 16 30x30 
   

Large dish 45 1x1 
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Gain and Beam-width 
 
 
 
 
 
 
 

• Gain and beam-width of directive antennas are 
inter-related 

 
 

• G ~ 30000 / (1*2) 
 
 

• 1 and 2 are the 3-dB beam-widths 

(in degrees)  
in the two orthogonal principal planes of 
antenna radiation pattern. 
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EIRP 
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e.i.r.p. 
 
 
 
 
 
 
 

• Equivalent Isotropically Radiated 
Power (in a given direction):  

• The product of the power supplied to 
 

the antenna and the antenna gain 
relative to an isotropic antenna in 
a given direction 
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e.i.r.p.: Example 1 
 
 
 
 
 
 
 

• What is the 
maximum e.i.r.p. of 
a GEO satellite 
station if RR impose 
PFD limits of (-160) 

dB (W/(m
2

*4kHz)) at 

the earth surface in 
Equator (distance 
35900 km) ? 

 
 
 

 

PFD = e.i.r.p./(4d
2

) 
2 

-160 dB  10
-16 

W/(m
2

*4kHz)  

d
2

 ~ 1.29*10
15

m2 

4d
2

 ~ 4*10
15

m2 

e.i.r.p. ~ 0.4 W/4kHz 
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e.r.p. 
 
 
 
 

• Effective Radiated Power (in a 
given direction):  

• The product of the power supplied to the 
 

antenna and its gain relative to a 
half-wave dipole in a given direction 
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Chapter Sixteen: 
 

Antennas 



Introduction 
 
 
 
 

• The antenna is the interface between the transmission 
line and space 

 
• Antennas are passive devices; the power radiated 

cannot be greater than the power entering from the 
transmitter 

 
• When speaking of gain in an antenna, gain refers to the 

idea that certain directions are radiated better than 
others 

 
• Antennas are reciprocal - the same design works for 

receiving systems as for transmitting systems 



Simple Antennas 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The Isotropic Radiator would radiate all 
the power delivered to it and equally in all 
directions 

 
• The isotropic radiator would also be a point 

source 



 
 
 
 
 
 
 

The Half-Wave Dipole 
 

• A more practical antenna is the half-wave 
dipole  

• Dipole simply means it is in two parts  
• A dipole does not have to be one-half 

wavelength, but that length is handy 
for impedance matching  

• A half-wave dipole is sometimes referred to 
as a Hertz antenna 







Basics of the Half-Wave 
Dipole 

• Typically, the length of a half-wave dipole is 
95% of one-half the wavelength measured in 
free space: 

f 

•   


c




• The halfRadiation-wavedipoledoesResistancenotdissipatepower, 

assuming lossless material 

• It will radiate power into space  
• The effect on the feedpoint resistance is the same as if a 

loss had taken place 
 

• The half-wave dipole looks like a resistance of 70 ohms 
at its feedpoint  

• The portion of an antenna‘s input impedance that is 
due to power radiated into space is known as radiation 
resistance 



Antenna Characteristics 
 
 
 
 

• It should be apparent that antennas radiate in 
various directions 

 
• The terms applied to isotropic and half-wave 

dipole antennas are also applied to other 
antenna designs 



Radiation Patterns 
 
 
 
 
 
 
 
 
 
 

 

• Antenna coordinates are 
shown in three-
dimensional diagrams  

• The angle  is measured 

from the x axis in the 

direction of the y axis 
 
• The z axis is vertical, 

and angle  is usually 
measured from the 
horizontal plane to the 
zenith 

 



 
 
 
 

 

Plotting Radiation Patterns 
 

 

• Typical radiation patters are displayed in a polar 
plot 

 



Gain and Directivity 
 
 
 
 
 
 
 
 
 
 
 
 

 

• In antennas, power 
gain in one direction 

is at the expense of 

losses in others 
 
• Directivity is the gain 

calculated assuming 

a lossless antenna 



Beamwidth 
 
 
 
 

• A directional antenna can be said to direct a 
beam of radiation in one or more directions 

 
• The width of this bean is defined as the angle 

between its half-power points 
 
• A half-wave dipole has a beamwidth of about 

79º in one plane and 360º in the other  
• Many antennas are far more directional than this 



 
 
 
 

 

Front-to-Back Ratio 
 

 

• The direction of 
maximum radiation is in 
the horizontal plane is 
considered to be the 
front of the antenna, and 
the back is the direction 
180º from the front  

• For a dipole, the front 
and back have the same 
radiation, but this is not 
always the case 

 



Major and Minor Lobes 
 
 
 
 
 
 
 
 
 
 

 

• In the previous diagram, the antenna has one 
major lobe and a number of minor ones 

 
• Each of these lobes has a gain and a 

beamwidth which can be found using the 
diagram 



 

 

Effective Isotropic Radiated 
Power and Effective Radiated 

Power 
 

• In practical situations, we are more interested in 
the power emitted in a particular direction than in 
total radiated power 

 
• Effective Radiated Power represents the power input 

multiplied by the antenna gain measured with respect 
to a half-wave dipole 

 
• An Ideal dipole has a gain of 2.14 dBi; EIRP is 

2.14 dB greater than the ERP for the same 
antenna combination 



 
 
 
 

 

Impedance 
 
 

 

• The radiation resistance of a half-wave dipole 
situated in free space and fed at the center is 
approximately 70 ohms 

 
• The impedance is completely resistive at resonance, 

which occurs when the length of the antenna is about 
95% of the calculated free-space, half-wavelength 
value 

 
• If the frequency is above resonance, the 

feedpoint impedance has an inductive 
component; if the frequency is below resonance, 
the component is capacitive 



 
 
 
 

 

Ground Effects 
 

• When an antenna is installed 
within a few wavelengths of the 
ground, the earth acts as a 
reflector and has a 
considerable influence on the 
radiation pattern of the antenna  

• Ground effects are important 
up through the HF range. At 
VHF and above, the antenna is 
usually far enough above the 
earth that reflections are not 
significant  

• Ground effects are complex 
because the characteristics of 
the ground are variable 

 



Other Simple Antennas 
 
 

 

• Other types of simple antennas are:  
– The folded dipole  
– The monopole antenna  
– Loop antennas  
– The five-eighths wavelength antenna  
– The Discone antenna  
– The helical antenna 



 
 
 
 

 

The Folded Dipole 
 

• The folded dipole is the 
same length as a standard 
dipole, but is made with two 
parallel conductors, joined at 
both ends and separated by 
a distance that is short 
compared with the length of 
the antenna  

• The folded dipole differs in 
that it has wider bandwidth 
and has approximately four 
times the the feedpoint 
impedance of a standard 

 



 
 
 
 
 

 

The Monopole Antenna 
 

• For low- and medium-frequency transmissions, it is necessary 
to use vertical polarization to take advantage of ground-wave 
propagation  

• A vertical dipole would be possible, but similar results are 
available from a quarter-wavelength monopole antenna  

• Fed at one end with an unbalanced feedline, with the ground 
conductor of the feedline taken to earth ground 

 



 
 
 
 

 

Loop Antennas 
 

• Sometimes, smaller 
antennas are required 
for certain applications, 
like AM radio receivers  

• These antennas are not 
very efficient but 
perform adequately  

• Two types of loop 
antennas are:  
–  Air-wound loops  
–  Ferrite-core loopsticks 

 



 
 
 
 
 

The Five-Eighths 
Wavelength Antenna 

 

• The five-eighths wavelength 
antenna is used vertically either 
as a mobile or base antenna in 
VHF and UHF systems  

• It has omnidirectional response 
in the horizontal plane  

• Radiation is concentrated at a 
lower angle, resulting in gain in 
the horizontal direction  

• It also has a higher impedance 
than a quarter-wave monopole 
and does not require as good a 
ground 

 



 
 
 
 

 

The Discone Antenna 
 

• The discone antenna is 
characterized by very wide 
bandwidth, covering a 
10:1 frequency range  

• It also has an omnidirectional 
pattern in the horizontal plane 
and a gain comparable to that 
of a dipole  

• The feedpoint resistance 
is typically 50 ohms  

• Typically, the length of the 
surface of the cone is about 
one-quarter wavelength at 
the lowest operating 
frequency 

 



 
 
 
 
 

 

The Helical Antenna 
 

• Several types of 
antennas are 
classified as helical  

• The antenna in the 
sketch has its 
maximum radiation 
along its long axis 

 
• A quarter-wave 

monopole can be 

shortened and wound 
into a helix— common in 

rubber ducky antenna 
 



Antenna Matching 
 
 
 
 
 
 
 
 
 
 

 

• Sometimes a resonant antenna is too large to 
be convenient  

• Other times, an antenna may be required to 
operate at several widely different 
frequencies and cannot be of resonant length 
all the time  

• The problem of mismatch can be rectified by 
matching the antenna to the feedline using 
an LC matching network 



 
 
 
 

 

Antenna Arrays 
 

• Simple antenna elements can be combined to form 
arrays resulting in reinforcement in some 
directions and cancellations in others to give better 
gain and directional characteristics  

• Arrays can be classified as broadside or end-fire  
–  Examples of arrays are:  
–  The Yagi Array  
–  The Log-Periodic Dipole Array  
–  The Turnstile Array  
–  The Monopole Phased Array  
–  Other Phased Arrays 



 
 
 
 

 

Reflectors 
 

• It is possible to construct a conductive 
surface that reflects antenna power in 
the desired direction  

• The surface may consist of one or more 
planes or may be parabolic  

• Typical reflectors are:  
– Plane and corner Reflectors  
– The Parabolic Reflector 



 
 
 
 

 

Cell-Site Antenna 
 
 

 

• For cellular radio systems, there is a need for 

omnidirectional antennas and for antennas with 

beamwidths of 120º, and less for sectorized cells 
 
• Cellular and PCS base-station receiving antennas 

are usually mounted in such a way as to obtain space 
diversity 

 
• For an omnidirectional pattern, typically three 

antennas are mounted on a tower with a triangular 
cross section and the antennas are mounted at 120º 
intervals 



 
 
 
 

 

Mobile and Portable Antenna 
 

• Mobile and portable 
antennas used with cellular 
and PCS systems have to be 
omnidirectional and small  

• The simplest antenna is the 
quarter-wavelength monopole 
are these are usually the ones 
supplied with portable phones  

• For mobile phones, and 
common configuration is 
the quarter-wave antenna 
with a half-wave antenna 
mounted collinearly above it 

 



 
 
 

 

Test Equipment: 
The Anechoic Chamber 

 

• The anechoic chamber is used to set up antennas in a 
location that is free from reflections in order to 
evaluate them 

 



Chapter 10  Potentials and Fields 
 

 

10.1 The Potential Formulation 
 
 

 

10.2 Continuous Distributions 
 
 

 

10.3 Point Charges 



10.1 The Potential Formulation 
 

 

10.1.1 Scalar and vector potentials 
 
 

 

10.1.2 Gauge transformation 
 
 

 

10.1.3 Coulomb gauge and Lorentz gauge 



 

10.1.1 Scalar and Vector Potentials 

(r,t) 


E(r,t) field formulism 

     

J(r,t)  B(r,t) 
or 

   
V(r,t) 

 potential formulism     
               

                

   A(r,t)             

 Maxwell‘s eqs       MS 
    

     
E  

      

  E      0 t   BB  A 
  

0 
  

0 
    

  0        

               

         
B 

     

  B  0       

t 
     

   

 E 
 

ES
   E  0E V

    

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(E 

 


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 0 
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A
E 

 

      

    

t 
     

          
        V

 t 
 

             

   

E t A V 
  



         



10.1.1 (2) 
 



 E 
                        


0 
                      

                         

     

A 
 


             

          


2

 V 

  
           

  

( A) 

   

[V t ]0 

       

    t 0   
E                        

   0  0  

0
  t 


   


      

( A) 
   

 J   [V  A] 
    

           
   

t t 
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A       

  
(

2
 A  



  

2 
A

 ) ( A 
V 

)  J 

             
                 

                  

                         

   0 0 t 
2 

     0   0  t 0    
 



 

10.1.1 (3) 
 

Ex.10.1 
 

V  0 
            0 k  

(ct 
 

x 

  

2 ˆ 
       

x 

  

 ct,J? 
                         
                             

         A  4c       )  z  for       
                                         

              


                     

for 
 

x 
 

 ct                                      
              

0 
                       

where k is a constant, 

           

c  (00 ) 

 


1 

 

     

                   

 
k 

         2         
        

 
 

0 (ct  x )z 
                   

E 
A    

                       
                          

Sol: 

       

t 2 

           

ˆ 
       

0
k 

          

                                   
                  2                  

B A  0                   (ct  x ) y      (ct   

      k                                            

                                   

ˆ 
             

x )yˆ 
                                

   

             

              
4c x 

         

2c                            

for 

 

x 
 

 ct ,(E  B  0 for 
 

x 
 

 ct ) 
 

     

     

 E 0    B  0                    

 E 
 

0
k     

          (ct  x )(y)  0k y               
                            

                          

ˆ 
     

2 
ˆ 

 

                                

 k 

  

 k 

   

2 x 
                  

                            
 B   0(ct  x )(z)   0 z                                           

         

2c 

            

ˆ 
  

2 ˆ 

           

           

 

                       

         

x 
                       

                                          



10.1.1 (4) 
 
 
 
 

 

 E 0 kc z  B  0 k y             

 t    2    t    2                

0 E  0                        

   

1 
        

E 
     

k 
  kc 

z  0                    0      
J 

   

( B) 
   

 


  

z 
  

          


  

t 
    

   0     0        2c ˆ 
2 0 ˆ        


  


          

         

as E  E 
     

E at x  0,Ex  0  Ex  0    

2, 
   

        z     z     1          x  0 
                

1 
            

       

B 
yx0



 B 
yx0

  

B 
yx0


 x 0

1 
 
 

            

            0   B


y 0  K f  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( 
1

 ) 
 

0 0 c2 

 
 
 
 
 

 

 xˆ

[(kt )  (kt )]y  K  (z  x)   
 

 kt z 
2 2 ˆ fˆ  ˆ K 

  f ˆ   

 yˆ



10.1.2 Gauge transformation 
 
 

 
E V  

A 

 

 

t 
 
 

 
 

V for V  V , (r, t) (t)0 

How about A A ? 

 

B  A  A for AA  ,(r, t) 0 

E V 

A     A      
                 

t V t t    

VA (
 

) 
           

            
   

t 

 

 k(t) 

  

  

t 
  

     
V   t                

  A k(t)      t  t 
             



t 



10.1.2 (2) 
 

When 
 

A A 


V V 
Gauge  transformation 
       

    t     

B  A  A    

  A  
A 

    

   

 t E V  t V 

The fields are independent of the gauges. 
 

(note: physics is independent of the coordinates.) 



 

10.1.3 Coulomb gauge and Lorentz gauge 
 

Potential formulation 

 

( A) 
 


2
 V 


 

 

2 
 t    

( A       
 ) ( A 

       2    

   0  0 t 
2 

Sources:  , J   V,A 

Coulomb gauge:   

 A  0         

2     1 
            

 
 
 
 
 

 
 



V  
)  J 

t 0  0 0 
 

E V  
A 

 

t 
 

B  A 
 
 
 
 

 


easy to solve V 

(r , t) 

 V   V r t 
( , ) 

  



  

d


 4 R  

 
0 

  
  

 A 
     

V 
 

        

difficult to solveA 2 A 
t 2 

 J  ( 
t  0  0  0 0  0 ) 

 



10.1.3 (2) 
 

Lorentz gauge: 
 

      


 V  
 A   t 
 

0 0 
  

           


2 

A   
2 

A J



 0 0 t 
2 

  0    


2 

V  
 


2 
V 




  

      

 0 0 t 
2 

  0     

 

the d‘Alembertion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2
 A  J inhomogeneous wave eq. 

 

2 V  


0 

 

0

 2 


2 00 
2 t 

 

2 
 

  

2
 f  0   wave equation 

[Note:Since 
 2 

 is with   ,thet potentials
2
 with both 

t 

and are solutions.] 

  t 
 



10.1.3 (3) 
 

Gauge transformation 
 

   A A   

   V V  




t  

Coulomb gauge : 

 A  0 
   

     

 A  A  0  A  A  

If you have aand ,  2 

Find  ,  A     
 2      

 
 
 
 

Then, you have a solution 

and
A A0 



10.1.3 (4) 
 

0 V 

Lorentz gauge :  A 0 t 
  

 
 

If you have a set of    A , and    A V
and     

              V    0  0 t 

 
V

A 
 V  2    

2
   

               

0   0  t 0  t 
   

0   0  t 2 

 

 A 0     
      2              

Find ,   
2
      A V    

 0 0 t 2     0 0 t     

Then ,you have a set if solutions and A , and V  
 


V 

 
                 

                   

A 

0 0 t 



10.2 Continuous Distributions : 
 
 

 

             ,  
    V  

               

0  t With the Lorentz gauge  A   0  

2 1 where 2  2         
2 

 

 V  0       0 0 t 
        A               

2 A 0 J E V   t ,  B  A 
    

(
t  0) ,             

In the static case 

    2    

2 , 
      

               

 
2
 V  

1
    

V(r ) 

1    


(r)d

       4 0      R 
   0            ( )       
          

 
  

J 
   

r  
2
 A 0 J       



   
           

       A(r )  4
0 

  R  d
 



10.2 (2) 
 

For nonstatic case, the above solutions only valid  

when 
 (t  t r )c ( ,   ) r  r 

 
for ,  and  

where  

the pensencet of and 
r 

; that is , the delay is 
 

 
 

R / c 
 

t r   t 
R

c 

 

due to and 

) 
, 

J r  t r A( r, t) 


of  (r , t 
isV (ther,t )retarded time. Because the messager   

must travel a distance 

R  r  r , 
 

J 
 
 
 

 

(Causality) 



10.2 (3) 
 

The solutions of retarded potentials for nonstatic sources are 
 

V(r, t) 1 


(r , t r )  

( , )  
4


 

R d  ( ,  )

0 
 

A r t   4
0 

J r  t 
r
  d   R 

Proof:           

  1   

V (r ,t) 
     

 () 

40    

  1    1  
         

    R  R 2 

       
 t    (r , t r   

 
 
 
 
 
 
 
 
 
 
 

 
 

1  
  ( 

1       
  

 

  

 
)d

     

         

R   R       

      ˆ       


    

 

R 

 

R 
 

R 
 

r   r 

 

   

    
 

 

R 2 

  

 
       
       

               

 R  1    ˆ 
    

   )     t r   (R)       R 

c t r c c 



10.2 (4) 
 

V 
1          ̂        


   ˆ                       

          R          R                      

            

 
                

d
                  

                           2                   

 40   c R        R                       
 1          1 R                   R      R  R 

ˆ 
 

              


  ̂                     ˆ   ˆ     

 V             
 

       ()     
 

  () (   
)d

 
                        2  2  

  40    c 
R 

                R R  R    

  




 t r 

ˆR 

                    
                         

  

t r 
                       

         ˆ  c                                  ˆ      
               

1   (R 
 1

 ) 1 
              

  (
R 

)           (  R  )  4 (R )    
                 

        R      R 
2

 R      R  R 2      R 2      

2 1        1    1  1  3      

V 
            

  
 

 

      


       

 
       

 4(R)d
   

  

40 
2            2   

c R 
2    

     c   R    c R     



              

     1   
2 

1        (r 
t
 r       (r, t r   t)      

c
2  

 t 
2 

( 
      


              

 4
0 

      R   d )         

     1 
2
 V 1                          0          

                                          A. 
 c2  t 2 


            (r, t)         

The same procedure is for proving                      

0 

                    

   



10.2 (5) 
 

Example 10.2 
0,  for t  0 E(s, t)  ?  

  I(t)   

  



I 
t  0 

B(s, t)  ?

  0  , for  

Solution:     

 0  V  0    

A(s, t) 
0 

z 


r  dz 
   

     

ˆ  
 

for t   , 
4 A(s, t)  0  

R 
   E(s, t)  B(s, t)  0  

             

             

    c        

for t s , only 
 

z 
 


 

contribute s (ct )   s   
   

   

 
c 

       

           



 

10.2 (6) 
A(s, t)  ( 

0 
 

I0 z)2 
         dz     

                

        ˆ  2 2            
                     

              

2 
   

2 
  

  4 0        s  z   
              
 


            

                         


 

I 0 z ln( 
      

 z) 
 

(ct)
2

 s
2 

0  s  z    
    

                      

 2 
ˆ 

           0      

 0I0 zˆln(ct  (ct )  s )  lns 

2

 0 
I

0 ln( ct  (ct )
2
  s

2
 )z 

2 s ˆ 

E(s, t)  
A

 

0 I0 c   z 

t 

    

2

 

ˆ (ct )
2
   s

2 
 

 
 
 
 
 
 
 

d 
 

      

 

s
2

  z
2

   z) dz ln( 
 

 1    2z 
1  

     

 

 2  s 2  z 2   

 s
2
  z

2
  z 

 

1 
  

 s
2
  z

2 
 

 

       A z ˆ            

B(s, t)  A  s        

  I    s    1   (2s)  2  2 


 

0 
 

 
0 

 

    

  
   

s 

 (ct 


 (ct ) s 

 

) ˆ           
           

2 
 

      

          22 2 2     



 2 ct   (ct ) s
s


2
(ct)s       



10.2 (7) 
 

    



 I 1               s
2
   ct (ct )

2
   s

2 
 (ct )

2
   s

2
 

    

  

 0  

 

 
0 

  

 

    

 


  

 


    
     

  

2 2 22 

        2s ct  (ct )   s           (ct )  s 

 0  I 0                  ct     ̂                            
                                                

B(s, t)  2s 

           



                          

 (ct )
2
   s

2 
                          

Note: 
                                     

  D ct  (ct )
2
   s

2 
   

2
  1    ct 

  
               

s 
              

   


                          

c 1 
     

2
s  

               c                  
       

ln D 
        

ln D 
        

1 
       


 

                       

 

       

  

t 
                2     

              s           s D    2  1  

                
c 1     

2
  1  

c 1            
         

                

s D
2
1 s 

2
  1 

      

                          

               c  1             
c                   

                                                

               s
  ( ct ) 2 1 

    

(ct )
2
  s

2       

                                 
                                              

s 
 



10.2 (8) 


 ln D 


 ln D 


  
t

  


 ln D 
 

s s   s  t 

  ct(1 ) s   ln D 

     s2c  t 

 t     c      
      

 s  (ct )
2 

 s
2 

 

 

t , 
 

E  0 
  

 0 I 0  ˆ 
recover the static case 

 

B 2s 



10.3 Point Charges 
 

10.3.1 Lienard-Wiechert Potentials 
 
 

 

10.3.2 The Fields of a Moving Point Charge 



10.3.1 Lienard-Wiechert potentials 
 

 

Consider a point charge q moving on a trajectory W(t) 

retarded position R  r  w(t r )    

location of the observer at time t 

t r   t  

R
c 

  

Two issues 
 

•There is at most one point on the trajectory communicating 
with at any time t. 

 

r 
 

Suppose there are two points: 

1  c(t  t1 ) 2 c(tt2), 
 

R1  R 2  c(t 2  t1 )

 VR1


R

2
c

t 2  t1  



Since q can not move at the speed of light, 
there is only one point at meet. 



10.3.1 (2) 
 

•  
 the point chage 

 

   q  
 

ˆ (r , t r )d   

  1  R  V / c 
due to Doppler –shift effect as the point charge is 
considered as an extended charge. 

 
 
 
 

 

Proof. 
consider the extended charge has a length L as a 

train (a) moving directly to the observer 

 

time for the light to arrive the observer. 
 

L
c 

x
  

L
v 

L
 

x
c   

E F  

L 
 

L1  v / c 



 

10.3.1 (3) 
 

(b)moving with an angle to the observer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

L  cos  x L  
 

c v 
L 

  

L1  v cos  / c 
 

 

 The apparent volume
 

 

  q 
(r , t r )d  ˆ 
  1  R  v / c 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

L x 

c 
      
   actual volume

 

 ˆ  

1  R  c
v 

 



10.3.1 (4) 
 

 

1         1     q    
     (r , t r )         

V(r, t) 
   


       

d
  

 

         

     
R 

       ˆ    

  40 
   40  R(1  R  v )  

            

                        c  

 
V(r, t) 

1      qc             
                        

 

40 

 

Rc  R  v 

            

              

                 

  
 0 

     ( r 
     

    


0 

v  
     



  
, t r )v(t r ) 

    

             

 

A(r, t) 

       

d

 

 

 

 (r , t r ) d 4      R 4R 
 
 
 
 

A(r, t)  
0 qcv 


v 

V (r, t) 

4 (Rc  R  v) c2 
   

 

 

 Lienard-Wiechert Potentials for a moving point charge 



10.3.1 (5) 
 

Example 10.3  V(r, t)  ? ( 
q  , )  ? 

        v 
cons 

A r t            
        

t 
  

             

Solution:              

let w(t  0)  0           

 w(t)  vt           

R 
 

r  vt r 

 

 c(t  t r ) 
        

          

r 
2
  2r  vt r  v 

2 
r 

2
  c

2
 (t 

2
  2 t t r  t r 

2
  ) 

t r   (c 
2
 t  r    v)  (c 

2
t  r   v) 

2
  (c 

2
 v 

2
 )(r 

2
  c 

2
 t 

2
 )   1 

               

consider 


v  0, 

 c
2

  v
2 

  

t   t r  t r  retarded 


     r  

c 
 

c 


        
 



choose  sign 



10.3.1 (6) 
 

R  c(t  t r ) 

ˆ   r  vt r                                

R c(t  t r )  
                               

 

R ˆv

                                  

          v     r  vt r                   

R(1  c )  c(t  t r )1 
    


         


               

 

c 
                        

                    c(t  t r )                

      c(t  t r )  v  r 
v 

2 

r 
                  

                          

         

c 
                  

     

1  1 
          c                         

         2          2       2   2 2  2 2            
     


 

(c t  r  v)   (c   v  )(r   c t  ) 
          

   

1 
c           

      
qc 

    
1 

          
qc 

          
V

(
r
, 
t
)  4 0 

                           
                                           

      ˆ 
40 (c 

2 
t  r   v) 

2 
 (c 

2 
 v 

2 
)(r 

2 
 c 

2 
t 

2 
)      

Rc(1 

R  v              

      c  )                                

A(r, t) 
v  

V(r, t) 
         0      qcv             

                                        

2 
                                       

                    

2 
   

2 
 

2 
   

2 
 

2 
 

2  2 
    

  
1 

      

4 (c 

             

 

c 

        

00 

 

t  r  v)  (c  v )(r  c t ) 

   

        c
2 

     



10.3.2 The Fields of a Moving Point 
 

ChargeLienard-Weichert potentials: 
 

1 qc 
( , )  v A r t V(r, t) V(r, t) 

    

40 (Rc  R  v)    c
2 

 


A 

E 
   

   

B  A 
 

V
 t 

  
   

       

 ),  ( ) t r and v w t r       R   r ( ),  ( w t r R 

       c t  

Math., Math., and Math,…. are in the following:  

 qc 1   

V 
 

 (Rc  R  v) 
 

   

4
0 (Rc  R  v)

2 



 

10.3.2 (2) 

R ct r 
 

(R  v)  (R )v  (v )R  R  ( v)  v  ( R) 

(R )v  R 

 

 i v 

 

(t 

 

) j  R 

 

v  j 

t r ˆ 
   

i 

 

i j r t r i j  a(R t r ) 
 

(v )R  (v )r  (v )w 
 

ˆ ˆ 

 
a  v 

(v   )r  vii rjz j  viij j  v 

(v )w  v  w (t ) j  v 
 w j  

t 
  

i
 t r  i  i i j r 

ˆ v j  
t 

ˆ 
 

 

r ˆ  
   

 v i v j (t r )k 

t r 

   k  a ji t r k  

 i  

 
 

 
r
  j  v(v t ) 

 

r 
 

 

a t r 

 R  r  w(t r ) (v t r )  v t r  

(R  v)  a(R t r )  v v(v  

t
 r 

) 

0
 

=
  

 

 R  (a t r )  v (v t r ) 

0

a(R t r ) t r (R  a) 



10.3.2 (4) 
 

V 
 qc 1 

(Rc  R  v) 
  

  

 

   

    0 (Rc  R  v)   

 


  qc 1 

 c
2
t r  v (R  a  v 

2
 )t r 

   

  

 

    

    0 (Rc  R   v)   

 1   qc  22  R   
 


 

 

 

2 v  (c  v   R  a)     

   40 (Rc  R  v)   
1     qc 

(Rc  R 

 

 

  

(Rc   R  v)  0 

A Prob.10.17 1 qc 
         

3(Rc 
         

t  
 

 v)       40 (Rc  R 
 

 

Rc  R  v
 

v)v  (c   v  R  a)R    

  Ra  R   2 2 

 R  v)(v 
 

) 
 

(c   v 
 

 R  a)v   

  c  c  



 

10.3.2 (3) 
 

0  v  (vt r )  
v(v

 
t

 r 
)
 
t

 r 
(v

 

 
v)

 

 

v(v t r ) v
2
t r 

(R  v)  v  (R  a  v
2

 )t r 
1 

 

 ct r R ( R  R )  (RR) 

2 R  R 
 

 (R)RR(R) 
 

 

 

R 

=
 

v t r  
R  v(R t r ) 


1 
R   v(R t r )  R  (v t r )

 

R    


1 
R   (R   v)t r 

v(R t r ) t r (R  v) 

R 
 

    
 R 



t
 
r
 


Rc  R  v 
 



 

10.3.2 (5) 
 

       A   1   qc      2 2   

E(r, t) V t 

   

( Rc  R  v) 3 (Rc  R  v)v  (c  v   R  a)R 

 

 4  
           0            

R 
  

                     Ra  2 2 
             

  (Rc  R  v)(v   )  
 (cv  R  a)v               

           

3 (c 
2 

        c  c   

1    qR   2     ˆ    ˆ  v)a   


            

 v   R  a)(cR  v)  R  (cR ] 
  

40 (Rc  R  v) 
    

                   

      ˆ 
 R  u  Rc  R  v 

                

define 
  u  cR  v                 

                         

1    qR   2  2                

E(r, t) 

  

( R  u) 3 (c    v  )u u(R  a)  a(R  u)

        

40         

1    qR   2  2                

E(r, t)  

      

3 (c  v   )u  R   (u  a)  

 

u 

 

 cR  v 
ˆ 

  

40 (R  u)     
                       

       generalized Coulomb field radiation field or acceleration  

              

1   q 
 field dominates at large R  

if           ˆ Electrostatic field    
                             

a  0, v  0, E(r, t)  40  R 
2 

           



 



10.3.2 (6) 
 

 

   

A 

 v 

V  1 

            
 

  

  

1 
          

  c2 

V( v)  v  (V)

    
         

 

     

              

B  A     c2  (Vv) c2     

           a  R         

   v  a t r           

           Rc  R  v         

       1    qc   2 2     
 

 V 
     

3 (Rc  R  v)v  (c 
 

 v   R  a)R
 

        

      40 (Rc  R  v)         


1 

  1  qc a  R 1  qc  2  2 
)a 

B                   

 v v R 


 

 

      


    

3 (c 
 

 R              

 

c
2   40 (Rc  R  v) (Rc  R  v) 40 (Rc  R  v) 

   
 



10.3.2 (7) 
 

 

1  q      1      2 2 


        

 3 R  a(R  u)  v(R  a)  v(c  v )        

 c 40 (R  u)       

1  ˆ  1  qR   2 2  


 

R 
   

3 (R  v)(c  v  )  (R  v )(R  a)  a(R  u)    

 c   40 (R  u)      
1  ˆ  1  qR  2 2   


 

R 
    

3 u(c  v  )  u(R  a)  a(R  u)     

 c   40 (R  u)      
1  ˆ  1  qR  2 2    


 

R 
    

3 u(c  v  )  R  (u  a)
  

       

 c   40 (R  u)        

1 ˆ 
  

c R  E(r, t) 
 

1 ˆ 
  

B(r, t) c R E(r, t) 
 



10.3.2 (8) 
 

The force on a test charge Q with velocity due to aVmoving   

  charge q with velocity is       

     v       

F  Q(E VB)          

  qQR   2 2   V   ˆ 2 2 


 

 3  (
c 

 v  )u  R  (u  a) 
 

 R   (c    v 
 

)u  R  (u  a)    
           

 40 (R  u)      c   

  Where 

R, u, v, and a 
    

t r 
  

   are all evaluated  at    



 

10.3.2 (9) 
 
 
 

 

Example 10.4 q 

 
 

 ( , )  ? 

v  const E r t 
( , )  ? 

 B r t 
 

Solution:                    

a  0 w  v t t  0  w at origin   

E(r, t) 
q  (c

2
  v

2
 )R           

   
3   u           

40 

          

  (R  u)             

Ru  cR  Rv  c(r  Vt r )  c(t  t r )v  c(r  vt)  c2 t 2 )
1 

     Ex.10.3 2   2 2   2 2 

R  u  Rc  R v 

   

(c t  r  v)   (c   v )(r 
2 

   

   

     Prob.10.14  

1  v
2

 sin
2

  / 
  

              

  

q2 

     

Rc 
 

c 
 

R   r   vt          

         

  2     cR         

E(r, t) 
 

(c   v  ) 
        

3 
 

  

40        1   

        Rc(1  v  sin  / c)     

                   
                    



10.3.2 (10) 
 

 

q 1  v 2 / c 2 ˆ 
  R 

E(r, t)  
4 0 (1  v2 si n2  / c2 )3  2 R 2 

  p 
 
 
 
 
 

 

1 ˆ 

B(r, t) c R  E(r, t)
 

1 
    r   vt 

v  E(r, t)
  

R 

r 

B(r, t) c2   R 

when  v
2
  c

2
 ,    

1 q ˆ  
      

E(r ,t) 4 0 P
2
 R , B(r ,t) 

 
 
 
 

 
 

E point to   pˆ     

by coincidenc e     
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Coulomb`s law ―Biot-savart Law for a point charge.‖ 
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What is an antenna? 
 
 

 

• Region of transition between guided and free space propagation  
• Concentrates incoming wave onto a sensor (receiving case) 
 
• Launches waves from a guiding structure into space or 

air (transmitting case)  
• Often part of a signal transmitting system over some distance  
• Not limited to electromagnetic waves (e.g. acoustic waves) 



Free space electromagnetic wave 
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y z 
 

Magnetic  

field 
 
 

 

•Disturbance of EM field 
 

•Velocity of light (~300 000 000 m/s)  

•E and H fields are orthogonal 
•E and H fields are in phase 

•Impedance, Z0: 377 ohms 
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EM wave in free space 
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Wave in lossy medium 
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Attenuation  

increases with z 

 
 
 
 
 
 

 

Phase 
varies with z 

 
 
 
 
 
 

 

Periodic time  

variation 
 
 
 

 

    jPropagation constant
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Attenuation constant 
 

 

 Phase constant 



Power flow 
 
 
 

 

Poynting vector 

 
 
 

 

S  E  H 
 
 
 

 

Average power density S 
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Polarisation of EM wave 
 
 
 
 

 

circular 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

vertical 
 
 
 
 
 

 Electrical field, E horizontal 



Reflection, refraction 
 
 

Reflection ri    

Reflection coefficient:  Er Depends on media, polarisation 


 

   

   Ei of incident wave and angle of incidence.  
 
 
 
 
 
 

 


Refraction sin( t )  1 sin( i ) 

 

2  
 

11 

if both media are losslesssin( t )  22  sin( i ) 
 
 
 
 
 
 
 
 

 

Reflection and refraction affect polarisation 



Guided electromagnetic wave 
 
 
 
 

• Cables  
–  Used at frequencies below 35 GHz  

• Waveguides  
–  Used between 0.4 GHz to 350 GHz  

• Quasi-optical system  
–  Used above 30 GHz 



Guided electromagnetic wave (2) 
 
 

 

• TEM wave in cables and quasi-optical systems (same as 
free space)  

• TH,TE and combinations in waveguides  
–  E or H field component in the direction of propagation  
–  Wave bounces on the inner walls of the guide  
–  Lower and upper frequency limits  
–  Cross section dimensions proportional to wavelength 



Rectangular waveguide 
 



Launching of EM wave 
 
 
 
 
 
 
 

 

Open up the cable and 
separate wires 

 

 
 
 
 
 
 
 

 

Open and flare up 
 

wave guide 
 

 
 
 
 
 
 
 
 
 
 
 
 

Dipole antenna Horn 

antenna 



Transition from guided wave to free space wave 
 



Reciprocity 
 
 
 

 

• Transmission and reception antennas can be used interchangeably  
• Medium must be linear, passive and isotropic 
 
• Caveat: Antennas are usually optimised for reception 

or transmission not both ! 



Basic antenna parameters 
 
 
 
 
 
 

 

• Radiation pattern  
• Beam area and beam efficiency  
• Effective aperture and aperture efficiency  
• Directivity and gain  
• Radiation resistance 



Radiation pattern 
 
 
 
 
 
 

 

•Far field patterns 
•Field intensity decreases with increasing distance, as 1/r  

•Radiated power density decreases as 1/r
2

 

•Pattern (shape) independent on distance 
•Usually shown only in principal planes 

 
 

 

Far field : r
 


 
2

 
D2

 D : largest dimension of the 

antenna e.g. r > 220 km for APEX at 1.3 mm ! 



Radiation pattern (2) 
 
 
 
 
 

 

Field patterns 
 

E ( ,) E (,) 
 

 

+ phase patterns 
 

 (,) (,) 
 

P(,)  

E
2 

(,)
 


 

E
2 

(,)
 r 2 

 

Z0  

Pn (,)  
P


(


,) 

 

P(  , )max 
 

HPBW: half power beam width 



Beam area and beam efficiency 
 
 

 

Beam area 
 
 
 

 

Main beam area 
 
 
 
 

 

Minor lobes area 

 

A   0
2

 0


 Pn (,) sin(  )dd   Pn (,)d
 

4
 

M   Pn (,)d
Main 
beam 

 

m   Pn (,)d
min or 
lobes 

 

AMm 
 
 
 

 

Main beam efficiency MM 

A 



Effective aperture and aperture efficiency 
 
 
 
 
 

Receiving antenna extracts power from incident wave 
 

 

P S A 
 

rec in e 
 

Aperture and beam area are linked: 
A 

e 


2 
  A 

   

 
 
 
 

 

For some antennas, there is a clear physical 

aperture and an aperture efficiency can be defined 
 

ap
A

e 

 

Ap 



Directivity and gain 
 
 
 

 

Directivity    P(,)max   
   

P(,)     

 D    average 

From pattern 
   4    4
           

D
 


  Pn (,)d

A  

  4        

   A        

From aperture D  4  e  Isotropic antenna:   4 D  1 
2    

          A 
           

 

Gain G  kg  D 
 
 
 

kg   efficiency factor (0  kg  1) 
 

G is lower than D due to ohmic losses only 



Radiation resistance 
 

 

• Antenna presents an impedance at its terminals 
 

ZA  RA  jX A 
 
 
 

•Resistive part is radiation resistance plus loss resistance 
 

RA   RR  RL 
 

 

The radiation resistance does not correspond to a real 
resistor present in the antenna but to the resistance of 
space coupled via the beam to the antenna terminals. 

 



Types of Antenna 
 
 

 

• Wire  
• Aperture  
• Arrays 



Wire antenna 
 

 

• Dipole  
• Loop  
• Folded dipoles  
• Helical antenna  
• Yagi (array of dipoles)  
• Corner reflector  
• Many more types 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Horizontal dipole  



Wire antenna - resonance 
 
 
 

 

• Many wire antennas (but not all) are used at or near resonance  
• Some times it is not practical to built the whole resonant length  
• The physical length can be shortened using loading techniques  

–  Inductive load: e.g. center, base or top coil (usually adjustable)  
–  Capacitive load: e.g. capacitance ―hats‖ (flat top at one or both ends) 



Yagi-Uda 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Elements Gain Gain 

 dBi dBd 
   

3 7.5 5.5 
   

4 8.5 6.5 
   

5 10 8 
   

6 11.5 9.5 
   

7 12.5 10.5 
   

8 13.5 11.5 
    



Aperture antenna 
 
 
 
 
 
 

 

• Collect power over a well defined aperture  
• Large compared to wavelength  
• Various types: 

 
 

–  Reflector antenna  
–  Horn antenna  
–  Lens 



Reflector antenna 
 

• Shaped reflector: parabolic dish, cylindrical antenna … 
 

– Reflector acts as a large collecting area and concentrates power 
onto  
a focal region where the feed is located  

• Combined optical systems: Cassegrain, Nasmyth … 
 

– Two (Cassegrain) or three (Nasmyth) mirrors are used to bring the 
focus 

 

to a location where the feed including the transmitter/receiver 
can be 

  

installed more easily. 



Cassegrain antenna 
 
 

• Less prone to back scatter than simple parabolic antenna  
• Greater beam steering possibility: secondary mirror 

motion amplified by optical system  
• Much more compact for a given f/D ratio 

 



Cassegrain antenna (2) 
 

• Gain depends on diameter, wavelength, illumination  
• Effective aperture is limited by surface accuracy, blockage  
• Scale plate depends on equivalent focal length  
• Loss in aperture efficiency due to:  

– Tapered illumination  
–  Spillover (illumination does not stop at the edge of the dish)  
–  Blockage of secondary mirror, support legs  
–  Surface irregularities (effect depends on wavelength) 

  2   
K g  cos4      rms of surface deviation 

    

At the SEST: taper efficiency : t  0.87 

 spillover efficiency : s  0.94 

 blockage efficiency : b  0.96 



Horn antenna 
 
 
 

• Rectangular or circular waveguide flared up 
 

• Spherical wave fronts from phase centre 
 

• Flare angle and aperture determine gain 



Short dipole 
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0 

 
 

 
 

( 

1  



 1   

) 
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 sin(  ) 

( j 1 ) 
   


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cr 

 
r 2 

 
    

 
 
 
 

•Length much shorter than wavelength 
•Current constant along the length 
•Near dipole power is mostly reactive 

•As r increases Er vanishes, E and H gradually become in phase 
 

   1  j60I e 
j
 
(t

 
r

 
)
 sin(  ) l 

for r 
 

, E and H vary as 
 

E 
0   

2 r r  
      

P varies as 
1 

 

r 2 



Short dipole pattern 
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Short dipole power pattern 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Short dipole power pattern 
 

 

( X Y Z)  
. 
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Thin wire antenna 
 

•Wire diameter is small compared to wavelength •Current 

distribution along the wire is no longer constant 
 

0 
2L 
  

e.g.  I ( y)  I sin 
   

 y    

    2 
  

centre - fed dipole 
 
 
 
 
 
 

 

•Using field equation for short dipole, 
 

replace the constant current with actual distribution 
 

   L cos   L 

E   j60I0e 
j (t r )   cos    cos

 

2 
  

      2 
  


        


 r


  sin  


  

      

           

centre - fed dipole, I0   current at feed point 



Thin wire pattern 
 
 

thin wire centre fed dipole power pattern  
 
 
 
 
 
 
 
 
 

 
thin wire centre fed dipole power pattern  

 
 
 
 
 
 

 
thin wire centre fed dipole power pattern 

 
( X Y Z) 

l  1  
2 

 


 A 
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7.735

 D  1.625 

 
 
 
 
 

( X Y Z)  
l  1.395 

 A  5.097 D  2.466 

 
 

 

( X Y Z)  
l  10 

 A  1.958 D  6.417 
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Array of isotropic point sources – beam shaping 
 
 Field Pattern of 2 isotropic sources     
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Array of isotropic point sources – centre-fed array 
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2d
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Array of isotropic point sources – end-fired 
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end-fired array,n elements power pattern 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

( X Y Z)  

n  10 d  0.25 

 A  0.713 D  17.627 



Pattern multiplication 
 
 
 

 

The total field pattern of an array of non-isotropic but similar point 
sources is the product of the individual source pattern and the pattern of 
an array of isotropic point sources having the same locations,relative 
amplitudes and phases as the non-isotropic point sources. 

 
 
 

 

Primary field pattern   Secondary field pattern 

 90   90  
120 60   120   60 

 0.8   0.8  

150 0.6 30 150 0.6 30 

 0.4   0.4  
Ef1i 0.2  Ef2 

0.2 
 

     i  
         

180  0  0 180  0  0 

210    330 210 
   

330 
        

240 300   
240 

  
300 

 

270 
    

   270  
       

   i     


i 

 

n  2 1 104 deg d1  0.3      
n  2 2  180 deg d2  0.6       

 
 
 

 

Total field pattern  
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Patterns from line and area distributions 
 
 
 

•When the number of discrete elements in an array becomes 
large, it may be easier to consider the line or the aperture 
distribution as continuous. 

 

 

• line source: 
 

E(u) l 1 f (x)e 

jux
dx u l sin( ) , l  length,   anglefrom normal to line 

 

2 1  
 

 

•2-D aperture source: 
 
 

E, f(x,y)ejsinxcosysindx dy 
 

aperture 
 

f (x, y)  aperture field distributi on 



Fourier transform of aperture illumination 
 

Diffraction limit 
 
 

 

HPBW  rough estimate only 
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Far field pattern from FFT of Aperture field distribution 
 
 

 
Predicted power pattern - SEST 1.3 mm - on axis  

 
 
 

 
Predicted power pattern - SEST 1.3 mm - off axis 130 mm  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Predicted power pattern - flat illumination 
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Effect of edge taper 
 
 
 
 
 
 

 

Predicted power pattern -8dB taper  Predicted power pattern -16dB taper 

   
 
 
EFN 
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dBi versus dBd 
 

 

•dBi indicates gain vs. isotropic antenna 
 

•Isotropic antenna radiates equally well in 
all directions, spherical pattern 

 

 

•dBd indicates gain vs. reference half-wavelength dipole 
 

•Dipole has a doughnut shaped pattern with a gain of 2.15 dBi 
 
 
 
 
 
 
 
 
 
 

dBi  dBd  2.15 dB 



Feed and line matching 
 
 
 

 

•The antenna impedance must be matched by the line 
feeding it if maximum power transfer is to be achieved 
•The line impedance should then be the complex 

conjugate of that of the antenna 
 

•Most feed line are essentially resistive 



Signal transmission, radar echo 
 
 
 
 
 

• Transmitting antenna  Aet , Pt , Gt ,  
 

• Receiving antenna Aer , Pr , Gr        

     G P 
2
G    2    

  P     t  t          G G P  
                     

  r  4  r 
2 

  4 4  r  t r  t  

 S, power densityEffective receiving area  

      G P     G 
2 

  2 
 

      t  t         r      

 Radar return P  4  r 
2
 4  r 

2 
   4  P G G 4 

3
 r 

4 


  r                 t  t r  

 S, power density Reflected     Effective receiving area 
 

power density 
    

           
 

 

  radar cross section (area)



Antenna temperature 
 
 
 
 
 
 

 

• Power received from antenna as from a black body or 
the radiation resitance at temperature Ta 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The end 
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Radiation fundamentals 
 
 
 
 
 

Recall, that using the Poynting‘s theorem, the total power radiated from 
a source can be found as: 

rad    E  H ds (10.2.1)  

s 
 

Which suggests that both electric and magnetic energy will be radiated 
from the region. 
 

A stationary charge will NOT radiate EM waves, since a zero current 
flow will cause no magnetic field. 
 
 

In a case of uniformly moving charge, the static electric field:  

E  Q 1 u  
4

2
  x

2  


(10.2.2)  

     
 
 

The magnetic field is: 



H  4
Q
2 

1
 x2 v u  

 

(10.2.3)  
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In this situation, the Poynting vector does not point in the radial direction and 

represent a flow rate of electrostatic energy – does not contribute to radiation! 
 

 

A charge that is accelerated radiates EM waves. The radiated field is: 

Et 
Q  0 [ a]sin 

(10.3.1)  

4 R 
    

Where  is the angle between the point of observation and the velocity of the  

accelerated charge and [a] is the acceleration at the earliest time (retarded  

acceleration). Assuming that the charge is moving in vacuum, the magnetic  

field can be found using the wave impedance of the vacuum:  

H 
Q[ a]sin 

 (10.3.2)  

t  

4 cR 
 

    

And the Poynting vector directed radially outward is: 

St 
Q 

2 
 0 [ a]

2
 sin

2 


   

(10.3.3)  

16 
2
 cR

2  

    



 

Radiation fundamentals 
 
 
 
 
 

A current with  

a time-harmonic variation (AC current) satisfies this requirement. 
 

Example 10.1: Assume that an antenna could be described as an ensemble of 

N oscillating electrons with a frequency  in a plane that is orthogonal to the  

distance R. Find an expression for the electric field E that would be detected 
at that location. 
 

The maximum electric field is when  = 90
0

: 

       dJ   

E 
NQ  dv  0 


 


 

 

 0   



 

(10.4.1) 
    

 

4 R  dt 

 

4 R  dt     

Where we introduce the electric current density J = NQv of the oscillating current. 

Assuming that the direction of oscillation in the orthogonal plane is x, then 
 

x (t )  xm sin t (10.4.2) 

v (t ) dx   x cost (10.4.3) 
 

dt 
m 
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The current density will become: 

J (t )   NQxm cost 
 

Finally, the transverse electric field is 
 

E ( R , t )   
2
 NQxm 0 sin t 

 4 R 
 

 

 

The electric field is proportional to the square of frequency implying 
that radiation of EM waves is a high-frequency phenomenon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(10.5.1) 
 
 
 
 
 

 

(10.5.2) 



Infinitesimal electric dipole 
 

antenna 
 

 

We assume the excitation as 
 

a signal at the frequency , 
which results in a time-
harmonic radiation. 
 

The length of the antenna L is 
assumed to be much less 
than the wavelength: 
 

. Typically: L < 

/50. The antenna is also 

assumed as very thin: 
 

.  

The current along the antenna 
 

is assumed as : 
 
 
 

 

For a time-harmonic excitation: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

I  dQ 
(10.6.1)  

I ( r )  jQ ( r) (10.6.2) 



Infinitesimal electric 
dipole antenna 

 

The vector potential can be computed as: 
 


2 

A( r , t ) 
1 

2 
A( r , t) 

0 J ( r , t) c 2   t 2 
     

 

With the solution that can be found in the form: 
 

A( r , t )  0  J ( r ', t  R c) dv ' 
 

4 v R 
 
 
 

 

Assuming a time-harmonic current density: 
 

J r ', t  R c   J (r ')e


 
j
 
(t

 


 
k
 
R) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(10.7.1) 
 
 
 
 
 
 
 

 

(10.7.2) 
 
 
 
 
 
 
 
 
 

 

(10.7.3) 

 

The distance from the center of the dipole R = r and k is the wave number.  

The volume of the dipole antenna can be approximated as dv’ = Lds’. 



Infinitesimal electric dipole 
 

antenna 
 
 
 

Considering the mentioned assumptions and simplifications, the 
vector potential becomes: 

A( r )  uz 
 IL  e


 
jkr 

  
          

0      (10.8.1) 
      

 4  r   
 

This infinitesimal antenna with the current element IL is also known as a  

. 
 

Assuming that the distance from the antenna to the observer is much greater 
 

than the wavelength ( ), i.e. r >> , let us find the components of the field 
generated by the antenna. Using the spherical coordinates: 
 
 

 

u 

 
 
 

 

z 

 
 

 



 
 

 

cos 

 
 

 

 ur 

 
 

 

sinu

 
 
 

 

(10.8.2) 



Infinitesimal electric dipole 
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The components of the vector potential are: 

IL e jkr 

A  A ( r) cos    0         cos (10.9.1) 

4
  

r z r  
   

      IL e jkr  
A  A ( r) sin      0     sin (10.9.2) 

   

4
   

 z      r  

A  0              (10.9.3) 
 

The magnetic field intensity can be computed from the vector potential 
using the definition of the curl in the SCS: 
 

 1  1   rA  A  I ( z) 2  1  1    jkr 

H ( r ) 
 

 A 
  


  


 r

  u 
 

k sin 
 


  

 eu   (10.9.4)     

r 
 

4
 

 jkr 
2 

 0 0 r       ikr  

                 



Infinitesimal electric dipole 
 

antenna 
 

 

Which can be rewritten as 
 

Hr   0    (10.10.1) 

H 
jkIL e jkr 

sin (10.10.2) 4  r     

H  0    (10.10.3) 
 

Note: the equations above are approximates derived for the far field assumptions. 
 

The electric field can be computed from Maxwell‘s equations: 
 

E ( r ) 
1 
 H ( r ) 

1  1    H  sin  


1 rH    
     u    u    (10.10.4) 
 

j 0 

      

 j 0   r sin  r  r    r   

              



Infinitesimal electric 
dipole antenna 

 

The components of the electric field in the far field region are: 
 
 

Er  0    

  jZ 0kIL e


 
jkr 

E 
 

 
 sin

4
 

   r 

E  0 
 
 
 
 
 

where  

E ( r) 
     

 

 

0
   377Z 0 

 

 
  

  H  ( r) 
  0  
        

is the wave impedance of vacuum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(10.11.1) 
 
 

 

(10.11.2) 
 

 

(10.11.3) 
 
 
 
 
 
 
 
 

(10.11.4) 



Infinitesimal electric 
dipole antenna 

 

 

The angular distribution of the radiated fields is called the 
 

. 
 
 

Both, electric and magnetic fields depend on 

the angle and have a maximum when  = 90
0

 
(the direction perpendicular to the dipole axis)  

and a minimum when  = 0
0

. 
 

The blue contours depicted are called lobes. They 

represent the antenna‘s radiation pattern. The lobe 

in the direction of the maximum is called the 

, while any others are called . 
 

A is a minimum value that occurs 
between two lobes. 
 

For the radiation pattern shown, the main lobes are at 90
0

 and 270
0

 and 

nulls at 0
0

 and 180
0

. 

Lobes are due to the constructive and destructive interference. 



Infinitesimal electric dipole 
 

antenna 
 
 
 
 

 

Every null introduces a 180
0

 phase shift. 
 

In the far field region (traditionally, the region of greatest interest) both field 
components are transverse to the direction of propagation. The radiated power: 
 

P 
         2  2   

rad 
1 Re    E ( r )  H * ( r ) av  ds 1 Z 0  

 

H  ( r ) 
 

av r 2 sin  d  d   
        
                 

   

2  s 

 

 2   0  0 

      

           

 Z 0 k 
2
 I av L 

2
 
 sin 

3
  d Z 0k 

2
 I av L

2
  

 1  sin 
2
   d (cos  ) 

16 0 16 0  


Z 0k 

2
 I av

2
 L

2 

(10.13.1) 
12  

 

We have replaced the constant current by the averaged current 
accounting for the fact that it may have slow variations in space. 



Infinitesimal electric dipole 
antenna 

 

 

Example 10.2: A small antenna that is 1 cm in length and 1 mm in diameter is 
designed to transmit a signal at 1 GHz inside the human body in a medical 

experiment. Assuming the dielectric constant of the body is approximately 80 
(a value for distilled water) and that the conductivity can be neglected, find the 
maximum electric field at the surface of the body that is approximately 20 cm 

away from the antenna. The maximum current that can be applied to the 

antenna is 10 A. Also, find the distance from the antenna where the signal will 

be attenuated by 3 dB. 
 
 

The wavelength within the body is: 



 c  3  10
8

    3.3cm 
 


     

f 10
9
   80 

  

 r    

The characteristic impedance of the body is: 

Zc   
Z

0 
377

42
 


r 80 



Infinitesimal electric 
dipole antenna 

 

 

Since the dimensions of the antenna are significantly less than the 

wavelength, we can apply the far field approximation for  = 90
0

, therefore: 

E 
 
I  L Z k 1 10 

5
 10 

2 
 42  2  1  320V m  



  

4  c    r 
 

4 0.033 
 

0.2 
 

      
 

An attenuation of 3 dB means that the power will be reduced by a factor of  

2. The power is related to the square of the electric field. Therefore, an  
attenuation of 3 dB would mean that the electric field will be reduced by 
a square root of 2. The distance will be 
 

r1  2r  1.41  0.2  0.28m 
 



Finite electric dipole antenna 
 
 
 
 
 
 

Finite electric dipole consists of 
two thin metallic rods of the total 
length L, which may be of the order 

of the free space wavelength. 
 

Assume that a sinusoidal 
signal generator working at the 

frequency  is connected to 
the antenna. Thus, a current 
I(z) is induced in the rods. 
 

We assume that the current is zero 

at the antenna‘s ends (z = L/2) 

and that the current is symmetrical 

about the center (z = 0). 
 

The actual current distribution 
depends on antenna‘s length, 
 

shape, material, surrounding,… 



Finite electric dipole antenna 
 
 
 
 

 

A reasonable approximation for the current distribution is 

I ( z )  I m sin  k L 2  z  (10.17.1) 
  

 

 

Far field properties, such as the radiated power, power 
density, and radiation pattern, are not very sensitive to the 
choice of the current distribution. However, the near field 
properties are very sensitive to this choice. 
 

Deriving the expressions for the radiation pattern of this antenna, 

we represent the finite dipole antenna as a linear combination of 

infinitesimal electric dipoles. Therefore, for a differential current 

element I(z)dz, the differential electric field in a far zone is 

dE  jZ 0k I ( z ) dz e jkr ' 
sin (10.17.2)  

4
 

r ' 
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The distance can be expressed as: 
 

 

r '  r 
2
  z 

2
  2rz cos   r  z cos (10.18.1) 

 

This approximation is valid since r >> z 
 

Replacing r’ by r in the amplitude term will 

have a very minor effect on the result. 

However, the phase term would be changed 

dramatically by such substitution! Therefore, 

we may use the approximation r’  r in the 

amplitude term but not in the phase term. 

 

The EM field radiated from the antenna can be calculated by selecting the 

appropriate current distribution in the antenna and integrating (11.17.2) over z. 

 Z  I  k sin e 


 
jkr 

L 2   L   
 

  ikz cos
  

E  Z 0 H   j 0 m      
     

sin  k 
   z  


e 

dz 
(10.18.2)    

4
  

 2 
  

     

r L 2 
    


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Since e 
jkz

 
cos

  cos kz cos    j sin kz cos 
 

and the limits of integration are symmetric about the origin, only a 
―non-odd‖ term will yield non-zero result: 

 Z 0 I mk sin e 


 
jkr L

 
2 

  



  L 


 

z 

    
        

E  j 2 
       

sin  k 
     

  

 

 cos kz cos dz 

4
           
     

    r 0   2         

The integration results in:        

e jkr 

              

   E   j 60 I  
  F ( )     

           

       m    r           
                      

Where F() is the radiation pattern:      kL      kL 
            

cos 
     

cos    cos 
               

2 
   

 
F    F1   F a    sin 

           2 
              sin 2    
   

 kL 
  


 

 kL 
        

                
 

 cos 
    

cos    cos 
             

                  

   2      2            
      

sin
                    

                            

 
 
 
 
 
 
 
 
 

 

(10.19.1) 
 
 
 
 
 
 
 

 

(10.19.2) 
 
 
 
 
 

 

(10.19.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(10.19.4) 



Finite electric dipole antenna 
 
 

 

The first term, F1() is the radiation characteristics of one of the elements used 
 

to make up the complete antenna – . 

The second term, Fa() is the array (or space) factor – the result of adding all 
the radiation contributions of the various elements that form the antenna array 
as well as their interactions. 

 

The E-plane radiation patterns for dipoles of different lengths. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

infinitesimal dipole 
 

L = /2 L =  L = 3/2 L = 2
 

If the dipole length exceeds wavelength, the location of the maximum shifts. 



Loop antenna 
 
 
 
 

 

A loop antenna consists of a 

small conductive loop with a 

current circulating through it. 
 

We have previously discussed that 

a loop carrying a current can 

generate a magnetic dipole 

moment. Thus, we may consider 

this antenna as equivalent to a 

magnetic dipole antenna. 
 

If the loops circumference C < /10  

The antenna is called . If C is in order of  or larger, the antenna is . Commonly, 

these antennas are used in a frequency 
 

band from about 3 MHz to about 3 GHz. Another application of loop antennas 
is in magnetic field probes. 



 

Loop antenna 
 
 
 

 

Assuming that the antenna carries a harmonic current: 
 

 i (t )  I cos t 

and that ka 2a1 
 

  
 

The retarded vector potential can be found as: 

A( r ) 
 Iu 

0ejkr

'
dl' 

 4 L r ' 
 
 

If we rewrite the exponent as: 

e  jkr '  e  jkr e  jk ( r '  r )  e  jkr 1  jk ( r ' r)
 

where we assumed that the loop is small: i.e. a << r, we arrive at 
 

 


 

I 

   

dl ' 

 

A( r )  0 e 

 
jkr

  1   jkr  
 

 ik  dl 'u
  

    

 4  L  r ' L 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

(10.22.1) 
 

 

(10.22.2) 
 
 
 
 
 
 

 

(10.22.3) 
 
 
 
 
 
 

 

(10.22.4) 
 
 
 
 
 
 
 

(10.22.5) 



Loop antenna 
 
 
 

 

Evaluating the integrals, we arrive at the following expression: 

  2  1 jkr 
e 
 jkr  2 k e 

 jkr  
    

   
0 

 I    a     
 

sin u 
   

0 
 I     a   

sin u (10.23.1) A( r ) 
      

 j 
    

                     

 

         

r 
2 

  

         
             

          

4
     

4 r 


                

Recalling the magnetic dipole moment:                   

                m  I  a 
2
uz                  (10.23.2) 

 

Therefore, the electric and magnetic fields are found as 
 

 
H 

mke  jkr 

sin
   

 

    

   

 

 

0 
  

(10.23.3)          
              

  4 Z 0r    
             

E  Z 0 H  0mke  jkr 
 sin (10.23.4) 

  

 
        

   

4 r 
          

           
 

We observe that the fields are similar to the fields of short 
electric dipole. Therefore, the radiation patterns will be the same. 



Antenna parameters 
 
 
 

 

In addition to the radiation pattern, other parameters can be used to 
characterize antennas. Antenna connected to a transmission line can 
be considered as its load, leading to: 
 
 
 

 

We consider the antenna to be a load impedance ZL 

of a transmission line of length L with the characteristic  

impedance Zc. To compute the load impedance, 
we use the Poynting vector… 
 
 
 

If we construct a large imaginary sphere of radius r 

(corresponding to the far region) surrounding the 

radiating antenna, the power that radiates from the 

antenna will pass trough the sphere. The sphere‘s 

radius can be approximated as r  L
2

/2. 



Antenna parameters 
 
 
 

 

The total radiated power is computed by integrating the time-average  

Poynting vector over the closed spherical surface: 
 

 

1 

 

1 

 2  

P
rad    Re  E ( r )  H ( r )

* 
ds  Re   d   r 

2
 sin  E H 

*
 d  (10.25.1)   

2 s  2  0 0 
  

Notice that the factor ½ appears since we are considering power averaged over 

time. This power can be viewed as a ―lost power‖ from the source‘s concern. 

Therefore, the antenna is ―similar‖ to a resistor connected to the source: 
 

R  rad 
  

rad I 2 (10.25.2)  

 0  
 

where I0 is the maximum amplitude of the current at the input of the antenna. 



Antenna parameters: Example 
 
 
 

 

Example 10.3: Find the radiation resistance of an infinitesimal 
 

dipole. The radiated power from the Hertzian dipole is computed as: 

P   Z 0k 
2

 I av 2 L2 
(10.26.1) 

  

rad
 12

 

Using the free space impedance and assuming a uniform current distribution: 
 

Rrad  80
2  L 

2
 I 

av 

2 

 80
2  L 

2 
 


 

 
  

 
 

 (10.26.2)      

     I0    

Assuming a triangular current distribution, the radiation  

resistance will be:      

 L 
2       

R   20 
2       

rad      (10.26.3)   
         


 

Small values of radiation resistance suggest 
that this antenna is not very efficient. 
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For the small loop antennas, the antennas radiation resistance, assuming 
a uniform current distribution, will be:  

Rrad   20 
2
 ka 

4 
(10.27.1) 

 

For the large loop antennas (ka >> 1), no simple general expression 
exists for antennas radiation resistance. 
 

Example 10.4: Find the current required to radiate 10 W from a 

loop, whose circumference is /5. 
 

We can use the small loop approximation since ka = 2a/ = 0.2. The resistance: 

R  20 
2
  0.2 

4
  0.316 

rad 

The radiated power is:  

1 
   

I ()
2  

P   R  
  

rad 2   rad    
         

 I ()  rad   
2 10  7.95A  

R 
  

0.316 
 

        
rad 
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The equation (10.25.1) for a radiated power can also be written as an  

integral over a solid angle. Therefore, we define the as  

I ( ,  )  r 
2
 Sr ( , )  (10.28.1) 

The power radiated is then:   Time-averaged radial component of a Poynting vector  

 Prad    I ( , )d  (10.28.2) 
          

  4        

Introducing the  as        

I  ( , ) 
I ( , )   

(10.28.3) n 

I ( , )max 

 
    

     

The beam solid angle of the antenna is        

 A    I n ( 2 d  I n ( ,  ) sin  d  
,  ) d    (10.28.4)           

4      00     
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It follows from the definition that for an isotropic (directionless – radiating the 

equal amount of power in any direction) antenna, In(,) = 1 and the beam 

solid angle is A = 4. 

We introduce the  of the antenna:     

         

 D I ( , )max  4 4 (10.29.1)    

A   Prad  4  In (,)d   
    4     
          
 
 

Note: since the denominator in (10.29.1) is always less than 4, the  

directivity . 
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Example 10.5: Find the directivity of an infinitesimal (Hertzian) 
 

dipole. Assuming that the normalized radiation pattern is 
 

 In ( ,  )  sin
2
     

the directivity will be     

 4 2 2  
       

D  2 
 sin 

2
  sin  d 

cos 
2
  1d (cos  )  2 3  2  1.5 

0  0     
 

Note: this value for the directivity is approximate. We conclude that for 
the short dipole, the directivity is D = 1.5 = 10lg(1.5) = 1.76 dB. 
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The is related to directivity and is defined as  

 G D (10.31.1) 

Here  is the . For the lossless antennas,  = 1, and gain   

equals directivity. However, real antennas always have losses, among 

which the main types of loss are losses due to energy dissipated in the 

dielectrics and conductors, and reflection losses due to impedance 

mismatch between transmission lines and antennas. 
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is associated with the lobes in the antenna pattern. It is defined as 
the angular separation between two identical points on the opposite sides of the 
main lobe. 
 

The most common type of beamwidth is the (HPBW). To find HPBW, in the 
equation, defining the radiation pattern, we set power equal to 0.5 and solve it for 
angles. 
 

Another frequently used measure of beamwidth is the 
 

, which is the angular separation between the first nulls on either sides 
of the main lobe. 
 

Beamwidth defines the resolution capability of the antenna: i.e., the ability 
of the system to separate two adjacent targets. 
 

For antennas with rotationally symmetric lobes, the directivity can be approximated: 

D  
4

 (10.32.1) 


  



HP HP 
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Example 10.6: Find the HPBW of an infinitesimal (Hertzian) dipole. 
 
 

Assuming that the normalized radiation pattern is 
 

In ( ,  )  sin
2
 

 

and its maximum is 1 at  = /2. The value In = 0.5 is found at the angles  

= /4 and  = 3/4. Therefore, the HPBW is HP = /2. 
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Antennas exhibit a property of : the properties of an antenna are the same 
whether it is used as a transmitting antenna or receiving antenna. 
 
 
 
 

 

For the receiving antennas, the can be loosely defined as a ratio of the 
power absorbed by the antenna to the power incident on it. 
 

More accurate definition: ―in a given direction, the ratio of the power at the 

antenna terminals to the power flux density of a plane wave incident on the 

antenna from that direction. Provided the polarization of the incident wave is 

identical to the polarization of the antenna.‖ 
 
 

The incident power density can be found as: 
 

Sav 
E 2 


E2 

(10.34.1) 

2 Z0 240    
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Assuming that the antenna is matched with the transmission line, 
the power received by the antenna is 
 

PL   S av Ae (10.35.1) 

where Ae is the of the antenna. 
 

Maximum power can be delivered to a load impedance, if it has a value that is 

complex conjugate of the antenna impedance: ZL = ZA
*
. Replacing the 

antenna with an equivalent generator with the same voltage V and impedance 

ZA, the current at the antenna terminals will be: 
 

           
I0 

  V         

(10.35.2)                       

   

* 

       

Z A  ZL 

     

                   

Since Z 
A 

+ Z = 2R  , the maximum power dissipated in the load is  
  A A         


   


      

      

1 
 

2 
   

1 V 
  2   

V  
2   

    P  I R      R    (10.35.3)      

0 L 

   

* L 
 

    L                 

     2      2  Z A  Z A    8RA  
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For the Hertzian dipole, the maximum voltage was found as EL and the antenna 

resistance was calculated as 20
2

(L/)
2

. Therefore, for the Hertzian dipole: 

P   EL
2 

 E
2
 

2 
(10.36.1) 

880 
2
 L 

2 
640 

2 
L   

     
 

 

Therefore, for the Hertzian dipole: 

A    2  3  3
2 

 

e 
 

 

 


 

 

 

4 2 8 (10.36.2) 
 

In general, the effective area of the antenna is: 
 

A 
e 


2 

 
  

D 
 

 4 (10.36.3) 

A 
e 


2 

 
  

G 
 

 4 (10.36.4) 
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Assuming that both antennas are in the far 
field region and that antenna A transmit to 
antenna B. The gain of the antenna A in the  

direction of B is Gt, therefore the 
average power density at the receiving  

antenna B is 

S av  
Pt 

Gt (10.37.1) 

4 R
2 

   

The power received by the antenna B is: 

P S A  Pt  
G 

 

r av e ,r  4 R 2 
t       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


2 

PG G 
2 

(10.37.2)  G  tt   r 
   

4 
r 

4 R 
2 

   

The  (ignoring polarization and impedance mismatch) is: 
         

  Pr Gt Gr 
2 
 e , t   e ,r (10.37.3) 

      

  Pt   4 R
2 

 2 R2  
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It is not always possible to design a single antenna with the radiation 
pattern needed. However, a proper combination of various types of 
antennas might yield the required pattern. 
 

An is a cluster of antennas arranged in a specific physical configuration 
(line, grid, etc.). Each individual antenna is called an 
 

. We initially assume that all array elements (individual antennas) 

are identical. However, the excitation (both amplitude and phase) applied to 

each individual element may differ. The far field radiation from the array in a 

linear medium can be computed by the superposition of the EM fields 

generated by the array elements. 
 

 

We start our discussion from considering a 
 

(elements are located in a straight line) consisting of 
two elements excited by the signals with the same 

amplitude but with phases shifted by . 
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The individual elements are characterized 

by their element patterns F1(,). 
 

At an arbitrary point P, taking into account 
the phase difference due to physical 
separation and difference in excitation, 
the total far zone electric field is: 

E ( r )  E ( r ) e 
j

 
2
  E ( r )e


 
j

 
2 

(10.39.1) 
 1 2  

 Field due to antenna 1 Field due to antenna 2  

Here:   kd cos   (10.39.2)  
 

The phase center is assumed at the array center. Since the elements are identical 

E ( r )  2 E1 ( r ) e j 2       e j 2  2 E1 ( r) cos 
   
 

(10.39.3)  

2  2    

Relocating the phase center point only changes the phase of the result but 
not its amplitude. 
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The can be written as a product of the radiation pattern of  

an individual element and the radiation pattern of the array (array pattern):  

     

  F ( ,  )  F1 ( ,  )  Fa ( , )  (10.40.1) 
 

 

where the array factor is: 

 kd cos  
a ( , )  cos   (10.40.2)  

 2 
 

Here  is the phase difference between two antennas. We notice that the 

array factor depends on the array geometry and amplitude and phase of the 

excitation of individual antennas. 
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Example 10.7: Find and plot the array factor for 3 two-element antenna 

arrays, that differ only by the separation difference between the elements, 

which are isotropic radiators. Antennas are separated by 5, 10, and 20 cm 

and each antenna is excited in phase. The signal‘s frequency is 1.5 GHz. 
 

The separation between elements is normalized by the wavelength via 
 

  kd 2   d 
 

The free space wavelength: 
3  10

8  

c   20cm 
 

1.5 10
9 

 f  

Normalized separations 

are /4, /2, and . Since 

phase difference is zero ( 
= 0) and the element 
patterns are uniform 
(isotropic radiators), the 

total radiation pattern F() 
 

= Fa(). 
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Another method of modifying the radiation pattern of the array is to change 

electronically the phase parameter  of the excitation. In this situation, it is 

possible to change direction of the main lobe in a wide range: the antenna is 

scanning through certain region of space. Such structure is called a 

. 
 

We consider next an antenna array with more identical elements. 
 
 

There is a linearly progressive 

phase shift in the excitation 

signal that feeds N elements. 
 

The total field is: 

  j  j ( N 1) 

E ( r )  E0 ( r ) 1  e    ...  e 
      (10.42.1) 

Utilizing the following relation: 
N 1  

1 q 
N  


q 

n   (10.42.2) 

n0 

  

1 q 
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the total radiated electric field is 

E  E  1 e 
jN

 

0
  1  e j

Considering the magnitude of the electric field only and using 

 

 

1  e 
j 


 

2 je 
j

 
2
 sin 

 

 2 sin  

 

   
         2       2  

we arrive at 

             

    N  
  

E ( )  E0 sin 
 

  sin 
   

      

       2    2 

where    kd cos         
 

 is the progressive phase difference between the elements. When  = 0:
 

E ( )  Emax   NE0 

 
 
 
 
 
 
 
 
 
 
 
 

 

(10.43.1) 
 
 
 
 
 
 

 

(10.43.2) 
 
 
 
 

 

(10.43.3) 
 
 

 

(10.43.4) 
 
 
 
 
 

 

(10.43.5) 
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The normalized array factor:  N 
 sin 

    


 2 
Fa ( ) 

 

  
 N sin    

 2 
 

The angles where the first null occur in the numerator of (10.43.1) 
define the beamwidth of the main lobe. This happens when 
 

  k 2 N ,k isinteger
 

Similarly, zeros in the denominator will yield maxima in the pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(10.44.1) 
 
 
 
 
 
 
 
 
 
 

 

(10.44.2) 
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Field patterns of a 
four-element (N = 4) 

phased-array with 
the physical 

separation of the 
isotropic elements d 
 

= /2 and various 

phase shift. 
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4 4 
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
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4 4 



 
 
 

 Antenna arrays 
 
 
 
 
 

Another method to analyze behavior of a phase-array is by considering a 
of its elements. 


 

Let us consider a three-element array shown. The elements are excited in 

phase ( = 0) but the excitation amplitude for the center element is twice the 
amplitude of the other elements. This system is called a . 




 
 
 
 
 
 
 
 

Because of this type of excitation, we can assume that this three-element array is 
equivalent to 2 two-element arrays (both with uniform excitation of their 

elements) displaced by /2 from each other. Each two-element array will have a 
radiation pattern:  





 


  

 F ( )  cos 
   

 cos  (10.46.1) 
1 

    

     2     
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Next, we consider the initial three-element binomial array as an equivalent 

two-element array consisting of elements displaced by /2 with radiation 
patterns (10.46.1). The array factor for the new equivalent array is also 
represented by (10.46.1). Therefore, the magnitude of the radiated field in 
the far-zone for the considered structure is: 

F ( )  F1 ( ) FA ( )  cos 
2    

 cos  (10.47.1) 

  2   

    N
o

 s
id

e
lo

b
e

s
!!

 

  

Element pattern F1() Array factor FA() Antenna pattern F() 
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Example 10.8: Using the concept of multiplication of patterns (the one we just 

used), find the radiation pattern of the array of four elements shown below. 
 
 
 
 
 
 
 
 
 
 
 

This array can be replaced with an array of two elements containing three 
sub-elements (with excitation 1:2:1). The initial array will have an excitation 
1:3:3:1 and will have a radiation pattern, according to (10.40.1), as: 

 

  2  
 cos 

3  
F ( )  cos    cos   cos   cos     cos 

 2   2   2  

 

Array factor Antenna 
 

 array 

 pattern 

Element  

pattern  
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Continuing the process of adding elements, it is possible to synthesize a 
radiation pattern with arbitrary high directivity and no sidelobes if the excitation 
amplitudes of array elements correspond to the coefficients of binomial series.  

This implies that the amplitude of the k
th

 source in the N-element 
binomial array is calculated as 

I k  
N ! 

,k  0,1,..., N 
 

  

(10.49.1) k !( N  k)!    

 

It can be seen that this array will be symmetrically excited: 

N k   Ik (10.49.2) 
 

Therefore, the resulting radiation pattern of the binomial array of 
N elements separated by a half wavelength is 
 

F ( )  cos 
N 1  

(10.49.3)   cos 

  2   
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During the analysis considered so far, the effect of between the elements of the 
antenna array was ignored. In the reality, however, fields generated by one 

antenna element will affect currents and, therefore, radiation of other elements. 
 

 

Let us consider an array of two dipoles with lengths L1  

and L2. The first dipole is driven by a voltage V1 while 
the second dipole is passive. We assume that the  

currents in both terminals are I1 and I2 and the following 
circuit relationshold: 

Z I Z I V 
11 1 12 2 1 

(10.50.1) 

Z 21 I1  Z 22 I2   0 

where Z11 and Z22 are the self-impedances of antennas 
 

(1) and (2) and Z12 = Z2 1 are the mutual impedances 
between the elements. If we further assume that the 
dipoles are equal, the self-impedances will be equal too. 
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In the case of thin half-
wavelength dipoles, 
the self-impedance is 
 

Z11  73.1  j42.5
 

The dependence of the mutual 

impedance between two 

identical thin half-wavelength 

dipoles is shown. When 

separation between antennas d 
 

 0, mutual impedance 
approaches the self-impedance.
 

For the 2M+1 identical array      

elements separated by /2, the   

 2 

  

directivity is:   M  

   

n   In 
2 

M   (10.51.1) 
  

   n M 
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Example 10.9: Compare the directivities of two arrays consisting 
of three identical elements separated by a half wavelength for the: 

a) Uniform array: I-1 = I0 = I1 = 1A;  
b) Binomial array: I-1 = I1 = 1A; I0 = 2A. 
 

 

We compute from (10.51.1): 
 

Uniform array: 
 

D 1  1 1
2
  3  

4.77dB 1  1 1 
 

Binomial array:  

1  2 1
2     

 
D  

16 
 4.26dB  

1  4 1 
  

 

6     

 

The directivity of a uniform array is higher than of a binomial array. 


