
COMPUTER PROGRAMMING

Year : 2016 - 2017
Subject Code : ACS001
Regulations : R16
Class : I B.Tech
Branch : CSE/ ECE/ IT/ EEE

Team of Instructors

• Dr. K Srinivasa Reddy, Professor, CSE

• Dr. G Ramu, Professor, CSE

• Ms. B Padmaja, Associate Professor, CSE

• Ms. P. Ila Chandana Kumari, Associate Professor, IT

• Ms. K. Laxmi Narayanamma, Associate Professor, IT

• Ms. B Rekha, Assistant Professor, IT

Prepared By

Ms. K. Laxmi Narayanamma, Associate Professor, IT

Ms. B Rekha, Assistant Professor, IT

Text Books

1.Stephen G. Kochan, “Programming in C”,
Addison-Wesley Professional, 4th Edition,2014.

2.B. A. Forouzan, R. F. Gillberg, “C
Programming and Data Structures”,

CengageLearning, India, 3rdEdition, 2014.

UNIT-1

INTRODUCTION TO COMPUTERS

Introduction to Computers

Objectives:
 To review basic computer systems concepts

 To be able to understand the different computing
environments and their components

 To review the history of computer languages

 To be able to list and describe the classifications of
computer languages

 To understand the steps in the development of a
computer program

 To review the system development life cycle

 What is a Computer?

A COMPUTER is an electronic device that can:

Receive information,Perform processes,Produce output

and Store information for future use.

Fig: Information Processing Cycle

CPU(Processor)INPUT OUTPUT

MEMORY

 A computer system made of two major components:
hardware and software.

• Hardware - the physical parts that make up the computer.

Eg: CPU, memory, disks, CD-ROM drives, printer.

• Software - computer programs and applications.

Eg: Operating system, word processor, games, etc.

Basic Hardware Components

Software:

Types of Software:

System Software

 Operating system is a Software component that provides an interface
between user and system hardware.

Ex: Windows ,Linux,Unix,Solaris etc.

 System support Software provides system utilities and other
operating services.

Eg: Sort programs, Formatting programs, Linkers, Loaders

 System Development software includes the language translators
(Compilers, Assemblers etc.) that convert programs into machine
language for execution, debugging tools to ensure that the
programs are error-free and CASE tools for software engineering
processes

Eg: C Compiler,Java Compiler

ApplicationSoftware

 Application specific software can be used for a specific

intended purpose

Ex: Pay roll, Inventory Management, Library management

etc.

 General Purpose software is intended for use in more than

one application

Ex: Word Processors, Database Management systems and

Computer- aided Design Systems.

Relation Ship Between System and Application Software

Components of a Computer System:

• The Primary Components of a Computer System are

1) Input devices.
2) Central Processing Unit

3) Memory.

4) Output devices.

• Input Devices: Input devices are Hardware Components
that accepts the input from the User.

Ex: Keyboard , Mouse, Scanner, Microphone etc.

• CPU:(CU+ALU):

- The central processing unit (CPU) is the ―brain‖

of the computer.

- It performs a large number of operations at a high speed.

- Control Unit Interprets Instructions to the Computer.

- ALU Performs the Arithmetic and logical Operations.

Ex: Intel Pentium, Motorola, IBM RISC.

http://search1.rediff.com/dirsrch/srchred.cgi?red=http://search.rediff.com/imgsrch/preview.php?story-url=http://www.barrysclipart.com/barrysclipart.com/showphoto.php?photo=27401&papass=&sort=1&thecat=998&img-url=http://static.graphics.com/data/174/1scanner82-med.jpg&search-keyword=scanner&img-size=23k&img-height=449&img-width=600&img-type=JPEG&thumb-url=http://imsearch.rediff.com/images/preview?i=http://static.graphics.com/data/174/1scanner82-med.jpg.thumb&addr-url=http://search.rediff.com/imgsrch/default.php?MT=scanner&q=scanner+picture&src=ImageSearch

• Memory: The function of Memory is Storing the data
and Instructions.

- Memory is Divided into two types :

1) Primary Memory(RAM)

2) Secondary Memory(ROM)

- Primary Memory is a Volatile Memory that is when the

power loss the data stored in the Memory lost.

Ex: RAM(Random Access Memory).

- Secondary Memory is a Non-Volatile Memory that is
Even if the power loss it holds the data.

Ex: Harddisk,CD-ROM,DVD-ROM,Floppy Flash Memory
etc.

15

• Memory Data Representation :

– Data in memory is stored as binary digits (BITS) e.g.

011100101010

– 1 BYTE = 8 bits

– 1 byte usually stores 1 text character.

• The size of memory is measured in terms of how many bytes it can

hold.

– 1 kilobyte = 210 bytes = 1024 bytes

– 1 megabyte = 220 bytes = ~1 million bytes

– 1 gigabyte = 230 bytes = ~1 billion bytes

– 1 terabyte = 240 bytes = ~1 trillion bytes

• One megabyte can hold approximately 500 pages of text information.

16

Output devices

• Output devices make the information resulting from the

processing available for usage.

– printer - produces a hard copy of your

output

– screen - produces a visual display of your output for browsing

– speakers, etc.

Computing Environments

There are four computing environments:

1) Personal Computing Environment

2) Time-Sharing Environment

3) Client/Server Environment

4) Distributed Computing

Personal Computing Environment

 All of the computer hardware components are tied together in the

personal computer. The whole computer is available to the user.

Time-Sharing Environment

• Many users are connected to a computer system. The

terminals used are often non-programmable.

– The output devices and auxiliary storage devices are

shared by all of the users.

– In the time-sharing environment, all computing is done

by the central computer.

– Central computer controls the shared resources, manages

the shared data and printing.

Client/Server Environment

A client /server computing environment splits the computing

function between a central computer and users‘ computers.

 Some of the computational responsibility is moved from the central

computer and assigned to the client computers.

 The central computer called server that manages the shared data

and does some part of the computing

Because of the work sharing, the response time and monitor display

are faster and the users are more productive.

Distributed Computing

 A distributed computing environment provides integration of

computing functions between different clients and servers.

 Distributed computing utilizes a network of many computers, each

accomplishing a portion of an overall task, to achieve a

computational result much more quickly than with a single

computer.

Computer Languages

• To write a program for a computer, we must use a computer language.

- There are three types of Computer Languages

1) Machine Languages

2) Symbolic Languages

3) High-Level Languages

Machine Languages

• Each Computer has its own machine language which is
made up of 0‖s and 1‘s.

• The instructions in machine language must be in streams of
0‘s and 1‘s because internal circuits of a computer are made
of devices that can be in one of two states: on or off.

• Machine language is highly difficult to program as it needs
the complete knowledge of the computer‘s instructions

• Difficult and Rarely used

• NOTE:

The only language understood by computer hardware is
machine language.

24

Symbolic Languages

• The computer operations are represented in symbols or mnemonics

to represent various machine language instructions .

Ex: Add instead of 0001

• These languages are also called Assembly Languages.

• Each assembly language instruction translates to one machine

language instruction

• Programming is easier in Assembly language compared to

developing programs in machine language

• Symbolic languages are machine dependent

• Assemblers convert the assembly language instructions to machine

language instructions

25

High-level Languages

• The need to improve programmer efficiency and to change the focus

from the computer to the problem being solved led to the development

of high-level languages

• High level languages are portable to many different computers,

allowing the programmers to concentrate on the application problem

rather than on the computer

• Compilers are used to convert high-level language programs to

machine language programs

• The process of converting high-level language into machine language

is called compilation.

• One high-level language statement can get converted to one or more

machine language statements

26

• Example

A Statement A= A+B in Different Languages

Machine

Language

Assembly

Language

High Level

Language

0000 0000 CLA A= A+B

0001 0101 ADD A

0001 0110 ADD B

0011 0101 STA A

Creating and Running Programs

• The steps involved in Creating and Running
Programs are:

1) Writing and Editing Programs
2) Compiling Programs
3) Linking Programs
4) Executing Programs

Writing and Editing Programs:
• To solve a particular problem a Program has to be created as a file

using text editor / word processor. This is called source file.

• The program has to be written as per the structure and rules defined by
the high-level language that is used for writing the program (C, JAVA
etc).

Compiling Programs:
• The compiler corresponding to the high-level language will scan the

source file, checks the program for the correct grammar (syntax) rules

of the language.

• If the program is syntactically correct, the compiler generates an

output file called ‗Object File‘ which will be in a binary format and

consists of machine language instructions corresponding to the

computer on which the program gets executed.

• If the source program contains syntax errors, the compiler lists these

errors and will not generate the object file. The program is to be

corrected for the errors and recompiled.

• The object file contains references to other programs which will be

needed for the execution of the program. These programs are called

library functions. These programs are to be combined with the Object

File.

Linking Programs:

• Linker program combines the Object File with the required library
functions to produce another file called ― executable file‖. Object file
will be the input to the linker program.

• The executable file is created on disk. This file has to be put into
(loaded) the memory.

Executing Programs:

• Loader program loads the executable file from disk into the memory
and directs the CPU to start execution.

• The CPU will start execution of the program that is loaded into the
memory .

• During Program Execution, the program reads data for processing,
either from the user (key-board) or from a file.After the program
processes the data, it prepares the output. Output can be to the user‘s
monitor or to a file.

• When the program has finished its job, it informs the Operating
System.OS then removes the program from memory.

Fig: Building a C Program

Algorithm

– Precise step-by-step plan for a computational procedure
that begins with an input value and yields an output value
in a finite number of steps.

– It is an effective method which uses a list of well-defined
instructions to complete a task, starting from a given
initial state to achieve the desired end state.

– An algorithm is written in simple English and is not a
formal document.

– An algorithm must:
- Be lucid, precise and unambiguous
- Give the correct solution in all cases
- Eventually end

• it is important to use indentation when writing solution in algorithm

because it helps to differentiate between the different control

structures.

Instead of

Read n;for i=1 to n add all values of A[i] in sum;Print sum/n;

Write

Read n;

For i=1 to n add all values of A[i] in sum;

Print sum/n;

is more readable and easy to understand.

Properties of algorithms

1) Finiteness:

- an algorithm terminates after a finite numbers of steps.

2) Definiteness:

- each step in an algorithm is unambiguous. This means that

the action specified by the step cannot be interpreted in

multiple ways & can be performed without any confusion.

3) Input:
- An algorithm accepts zero or more inputs.

4) Output:
- It produces at least one output.

5) Effectiveness:

- It consists of basic instructions that are realizable. This
means that the instructions can be performed by using the
given inputs in a finite amount of time.

Flowcharts

– A flowchart is a type of diagram, that represents an

algorithm or process, showing the steps as boxes of

various kinds, and their order by connecting these with

arrows. This diagrammatic representation can give a

step-by-step solution to a problem.

– Data is represented in the boxes, and arrows connecting

them represent direction of flow of data.

– Flowcharts are used in analyzing, designing,

documenting or managing a process or program in

various fields .

Common Flowchart Symbols:

Terminator: Shows the starting and

ending points of a program

Data Input or output: Allows the user to

input data or to display the results .

Processing: Indicates an operation

performed by the computer, such as a variable

Assignment or mathematical operation

Decision: A diamond has two flow lines going

out. One is labeled as „Yes‟ Branch and the other

as „no‟ branch.

• Common Flowchart Symbols:

Predefined Process. Denotes a group of

previously defined statements. Ex: ―Calculate m!‖

Program executes the necessary Commands to

compute m factorial

Connector. Connectors avoid crossing flowlines,

Connectors come in pairs, one with a flowline in

and the other with a flowline out.

Off Page Connector: Come in Pairs, Extends

Flow charts to more than a page

Flowline. Flowlines connect the flowchart symbols

and show the sequence of operations during the

program execution.

Examples

• Example 1: Finding the sum of two numbers.

• – Variables:

– • A: First Number

– • B: Second Number

– • C: Sum (A+B)

• – Algorithm:

– • Step 1 – Start

– • Step 2 – Input A

– • Step 3 – Input B

– • Step 4 – Calculate C = A + B

– • Step 5 – Output C

– • Step 6 – Stop

38

Flowcharts:

Start

Read A

Read B

C= A+B Print C Stop

39

• Example 2: Find the difference and the division of two numbers

and display the results.

• – Variables: -- Algorithm:

• N1: First number * Step 1: Start

• N2: Second number * Step 2: Input N1

• D : Difference * Step 3: Input N2

• V : Division * Step 4: D=N1–N2

* Step 5: V=N1 /N2

* Step 6: Output D

* Step 7: Output V

* Step 8: Stop

40

Flow Chart

Start

Read N1

Read N2

D=N1-N2

V= N1/N2 Print D Print V Stop

41

Example 3:

Work on the algorithm and the flow chart of the problem of

calculating the roots of the equation Ax2 + Bx + C = 0

• Variables:

– A: Coefficient of X2

– B: Coefficient of X

– C: Constant term

– delta: Discriminant of the equation

– X1: First root of the equation

– X2: Second root of the equation

42

• Algorithm:

- Step 1: Start

– Step 2: Input A, B and C

– Step 3: Calculate delta = B2 – 4AC

– Step 4:

If delta<0 go to step 6, otherwise go to 5

– Step 5:

If delta>0 go to step 7, otherwise go to 8

– Step 6:

Output ―complex roots‖. Go to step 13

– Step 7: Output ―real roots‖. Go to step 9

– Step 8:

Output ―equal roots‖. Go to step 9

– Step 9: Calculate X1=(-b+√delta)/(2A)

– Step 10: Calculate X2=(-b-√delta)/(2A)

– Step 11: Output X1

– Step 12: Output X2

– Step 13: Stop

43

Flowcharts:

Start
Read

A,B,C
Delta=B*B- 4*A*C

Delta < 0

“Complex Roots” Delta>0

“Real Roots”
“Equal Roots”

X1=(-b+√delta)/(2*A)

X2=(-b-√delta)/(2*A)

Print X1 Print X2 Stop

Yes No

Yes

No

Intoduction to C :

• A high-level programming language developed in 1972 by Dennis
Ritchie at AT&T Bell Labs.

• C is a structured Language

• It was designed as a language to develop UNIX operating system

• American National Standards Institute (ANSI) approved first version
of C in 1989 which called C89

• Major changes were made in 1995 and is known as C95

• Another update was made in 1999 and is known as C99

Characteristics of C

• A high level programming language .

• Small size. C has only 32 keywords. This makes it relatively easy to

learn.

• Makes extensive use of function calls.

• C is a structured programming.

• It supports loose typing (as a character can be treated as an integer and

vice versa).

• Facilitates low level (bitwise) programming

• Supports pointers to refer computer memory, array, structures and

functions.

• C is a Portable language.

• C is a core language

• C is an extensible language

Uses of C Language:

• C language is primarily used for system programming. The portability,

efficiency, the ability to access specific hardware addresses and low

runtime demand on system resources makes it a good choice for

implementing operating systems and embedded system applications.

• C has been so widely accepted by professionals that compilers,

libraries, and interpreters of other programming languages are often

implemented in C.

• For portability and convenience reasons, C is sometimes used as an

intermediate language by implementations of other languages.

Example of compilers which use C this way are BitC, Gambit, the

Glasgow Haskell Compiler, Squeak, and Vala.

• C is widely used to implement end-user applications

• C Programs

Structure Of C Program:

Preprocessor directives:

• Every C program is made of one or more Preprocessor

directives or commands.

• They are special instructions to the preprocessor that tell

it how to prepare the program for compilation.

• The preprocessor directives are commands that give

instructions to the C preprocessor.

• A preprocessor directive begins with a number symbol

(#) as its first non-blank character.

• A common preprocessor command is ―include‖. The

―include‖ command tells the preprocessor that

information is needed from selected libraries known as

―header files‖.

• Preprocessor commands can start in any column, but they
traditionally start in column 1.

Ex: #include <stdio.h>

• This command tells the preprocessor that definitions from the
library file in the brackets < > is included in the program. The
name of the header file is ―stdio.h‖. This is an abbreviation
for ―standard input / output header file.

• C requires that certain standard libraries be provided in every
ANSI C implementation.

Global Declaration Section :

• Contains declarations that are visible to all parts of the
program

Declaration section :

• It is at the beginning of the function. It describes the data that
will be used in the function. Declarations in a function are
known as local declarations as they are visible only to the
function that contains them.

Statements:

• Statements follows the declaration section. It contains the
instructions to the computer.

• Every statement ends with a semi colon.

Comments:

Comment about the program should be enclosed within /* */.

 Any number of comments can be written at any place in the
program.

Comments in the code helps to understand the code

Comments cannot be nested.

 For example, /* Cal of SI /* Author sam date 01/01/2002 */ */

is invalid.

− A comment can be split over more than one line, as

/* This is

a jazzy

comment */

main():

• The executable part of the program begins with the

function ‗main‘. All statements that belong to main

are enclosed in a pair of braces { }.

First C Program

#include <stdio.h>

void main ()

{

printf(―Hello World:\n‖);

}

• The main function contains single statement to print the message.

• The print statement use a library function to do the printing.

C TOKENS

C TOKENS

KEYWORDS

IDENTIFIERS

CONSTANTS STRINGS

SPECIAL SYMBOLS

OPERATORS

KEYWORDS

• Keywords are predefined, reserved words
used in programming that have special
meaning. Keywords are part of the syntax and
they cannot be used as an identifier. For
example: int money;

• Here, int is a keyword that indicates 'money' is
a variable of type integer.

http://www.programiz.com/c-programming/c-variables-constants

Identifiers

 Identifiers are names given to program elements such as

variables, arrays and functions.

 Each identified object in the computer is stored at a unique address.

 If we didn‘t have identifiers that we could use to symbolically

represent data locations, we would have to know and use object‘s

addresses. Instead, we simply give data identifiers and let the compiler

keep track of where they are physically located.

Rules for Identifiers:

Examples of Valid and Invalid Names:

Constants:

• Constants are data values that cannot be changed during the
execution of a program.

• C constants can be divided into two major

categories:

Constants

Primary

Constants

Secondary

Constants

Boolean Constants

Integer Constants

Real Constants

Character Constants

Array

Pointer

Structure

Union

Enum etc..

• Boolean constants

A Boolean data type can take only two values. The values
are true and false.

• Integer Constants

Rules for Constructing Integer Constants

• An integer constant must have at least one digit.

• It must not have a decimal point.

• It can be either positive or negative.

• If no sign precedes an integer constant it is assumed to be

positive.

• No commas or blanks are allowed within an integer constant.

Example of Integer Constans

Real Constants:

• Rules for Constructing Real Constants
• Real constants are often called Floating Point constants. It

consists of integral part and fractional part. The real constants

can be in

– Fractional form

– Exponential form.

• In Fractional Form

– A real constant must have at least one digit.

– It must have a decimal point.

– It could be either positive or negative.

– Default sign is positive.

– No commas or blanks are allowed within a real constant.

Examples of Real Constants

• Exponential Form
• In exponential form of representation, the real constant is

represented in two parts. The part appearing before ‗e‘ is called
mantissa, whereas the part following ‗e‘ is called exponent.

Rules for constructing real constants expressed in
exponential form:

• The mantissa part and the exponential part should be separated
by a letter e.

• The mantissa and exponent part may have a positive or negative
sign.

• Default sign of mantissa part is positive.

• The exponent must have at least one digit, which must be a
positive or negative integer. Default sign is positive.

Ex: 1.23 x 105 = 123000.0 is written as 1.23e5 or 1.23E5

 0.34e-4 = 0.000034

Character Constants

• A character constant is a single alphabet, a single digit or

a single special symbol enclosed within two single quotes

(apostrophes).

• The maximum length of a character constant can be 1

character.

• The character in the character constant comes from the

character supported by the computer.

Ex: `A` `I` `5` `=` `a`

Fig: Symbolic Names for Control Characters

Coding constants

Literal Constant
• A literal is an unnamed constant used to specify data.

Ex: a=b+5;
hear 5 is a literal constant.

Defined constants

• A defined constant uses the preprocessor command #define
Ex: #define rate 0.85

Preprocessor replaces each defined name, rate with the value
0.85 wherever it is found in the source program

Memory Constants

• Memory constant use a C type qualifier, const to indicate that
the data cannot be changed

Ex:const float PI = 3.14159;

STRINGS

• A string in C is merely an array of characters.
The length of a string is determined by a
terminating null character: '\0' .

• So, a string with the contents, say, "abc" has
four characters: 'a' , 'b' , 'c' , and the
terminating null character. The terminating
null character has the value zero.

SPECIAL SYMBOLS
• The following special symbols are used in C having some

special meaning and thus, cannot be used for some other
purpose.

• *+ () ,- , ; : * … = #

• Braces{}: These opening and ending curly braces marks the
start and end of a block of code containing more than one
executable statement.

• Parentheses(): These special symbols are used to indicate
function calls and function parameters.

• Brackets[]: Opening and closing brackets are used as array
element reference. These indicate single and
multidimensional subscripts.

Variables:

 Variables are named memory locations that have a type, such as

integer or character, which is inherited from their type.

 The type determines the values that a variable may contain and the

operations that may be used with its values.

 To declare a variable specify data type of the variable followed by its

name. Variable declaration always ends with a semicolon

 Variable names should always be meaningful and must reflect the

purpose of their usage in the program.

Variable Declaration

Synatax: Type var_name;

Ex: int emp_num;

float alary;

char grade;

double balance_ amount;

unsigned short int acc_no;

Variable Initialization

– When a variable is defined, it contains unknown value. The
variable has to be initialized with a known value

– If a variable is not initialized, the value of variable may be either
0 or garbage depending on the storage class of the variable.

– We must initialize any variable with known data before executing
the function

Fig: Variable Initialization

Types

 A type defines a set of values and a set of operations that can be applied on
those values.

Ex: – Type - light switch
Values –‘ON‘ or ‗OFF‘
Operations – ‗turn on‘ and ‗turn off‘

Fig:Data Types

Void Type:
– Is identified by the key word ‗void‘ and no operations.
– It is used to designate that a function has no parameters.
– It can also be used to define that a function has no return

value.

Integral Type:
Boolean:

– Boolean type can represent only two values: true or false
– Referred by the keyword Bool
– Is stored in memory as 0 (false) or 1 (true)

Character:
– A character is any value that can be represented in the

computer‘s alphabet
– It is referred by the keyword char
– One byte is used to store char. With 8 bits, 256 different

values can be possible for the char type
– Character can be signed or unsigned.

Integer

– An integer type is a number without a fraction part

– C supports four different sizes of the integer type and is
denoted by the keyword int

» short int

» int

» long int

» long long int

– Each integer size can be signed or unsigned integer. If the
integer is signed, one bit is used for signed(0 is plus, 1 is
minus). An unsigned integer can store a positive number
that is twice as large as the signed integer of the same size.

Fig: Integer Types

sizeof (short) ≤ sizeof (int) ≤ sizeof (long) ≤ sizeof (long long)

Floating-point type:

Real
– Real type holds values that consists of integral and

fractional part.

– C support types float and double.

– Real type values are always signed.

Fig : Floating-Point Types

sizeof (float) ≤ sizeof (double) ≤ sizeof (long double)

73

• Data Types

Data Type Abbreviation Size

(byte)

Range

char char 1 -128 ~ 127

unsigned char 1 0 ~ 255

int

int 2 or 4 -215 ~ 215-1 or -231 ~ 231-1

unsigned int unsigned 2 or 4 0 ~ 65535 or 0 ~ 232-1

short int short 2 -32768 ~ 32767

unsigned short

int

unsigned

short

2 0 ~ 65535

long int long 4 -231 ~ 231-1

unsigned long

int

unsigned

long

4 0 ~ 232-1

float 4

double 8

Note: 27 = 128, 215 =32768, 231 = 2147483648

Operators in C

• C language supports a lot of operators to be used in expressions.

These operators can be categorized into the following major groups:

1) Arithmetic operators

2) Relational Operators

3) Equality Operators

4) Logical Operators

5) Unary Operators

6) Conditional Operators

7) Bitwise Operators

8) Assignment operators

9) Comma Operator

10) Sizeof Operator

Operators in C

Arithmetic operators

• Assume the values a=9 and b=3

OPERATION OPERATOR SYNTAX COMMENT RESULT

Addition + a + b result = a + b 12

Subtraction - a - b result = a – b 6

Multiply * a * b result = a * b 27

Divide / a / b result = a / b 3

Modulus % a % b result = a % b 0

Operators in C

Relational Operators

• Thease operators compares two values so also called

Comparison operators.

• Relational operators return true or false value,

depending on the conditional relationship between

the two operands.OPERATOR MEANING EXAMPLE

< LESS THAN 3 < 5 GIVES 1

> GREATER THAN 7 > 9 GIVES 0

<=
LESS THAN OR EQUAL TO

100 <=

100 GIVES 1

>= GREATER THAN EQUAL TO 50 >=100 GIVES 0

Operators in C

Equality Operators

• C language supports two kinds of equality operators to compare their

operands for strict equality or inequality. They are equal to (==) and

not equal to (!=) operator.

OPERATOR MEANING

== RETURNS 1 IF BOTH OPERANDS ARE

EQUAL, 0 OTHERWISE

!= RETURNS 1 IF OPERANDS DO NOT

HAVE THE SAME VALUE, 0 OTHERWISE

Operators in C

Logical Operators

• C language supports three logical operators.

They are 1) Logical AND (&&)

2) Logical OR (||)

3) Logical NOT (!)

• In case of arithmetic expressions, the logical expressions are evaluated

from left to right.

A B A &&B

0 0 0

0 1 0

1 0 0

1 1 1

A B A || B

0 0 0

0 1 1

1 0 1

1 1 1

A ! A

0 1

1 0

Operators in C

Unary Operators

 Unary operators act on single operands.

 C language supports three unary operators.

They are :

1) Unary minus(-)

2) Increment (++)

3) Decrement(--)

 When an operand is preceded by a minus sign, the unary operator
negates its value.

Ex: int x=5; int y= -x; then y store the value -5.

 The increment operator increases the value of its operand by 1.

Ex: int x=3,y;

printf(―x=%d―,x++); x=3

y=x; y=4;

printf(―y=%d‖,++y); y=5;

Operators in C

Unary Operators

• The decrement operator decreases the value of its operand by 1.

Ex: int x=3,y;

printf(―x=%d―,x--); x=3

y=x; y=2;

printf(―y=%d‖,--y); y=1;

Conditional Operator or Ternary Operator

• The conditional operator (?:) is just like an if .. else statement.

• The syntax of the conditional operator is

exp1 ? exp2 : exp3

Ex: a=10 b=5

large = (a > b) ? a : b

large=10.

Operators in C

Bitwise Operators

• Bitwise operators perform operations at bit level.

They are : 1) Bitwise AND(&)

2) Bitwise OR (|)

3) Bitwise XOR (^)

4) Bitwise Shift (<< and >>)

5) Bitwise NOT (~)

• The bitwise AND operator (&) is a small version of the boolean AND

(&&) as it performs operation on bits instead of bytes, chars, integers,

etc.

Ex: x=2 y=3 x&y

0 0 1 0

0 0 1 1

x&y= 0 0 1 0

A B A & B

0 0 0

0 1 0

1 0 0

1 1 1

Operators in C

• The bitwise OR operator (|) is a small version of the boolean OR (||) as

it performs operation on bits instead of bytes, chars, integers, etc.

Ex: x=2 y=3 x|y

0 0 1 0

0 0 1 1

x|y= 0 0 1 1

• The bitwise XOR operator (^) performs operation on individual bits of

the operands.

A B A | B

0 0 0

0 1 1

1 0 1

1 1 1

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

Ex: x=2 y=3 x^y

0 0 1 0

0 0 1 1

x^y= 0 0 0 1

Operators in C

• In bitwise Shift operations, the digits are moved, or shifted, to the left

or right.

• The CPU registers have a fixed number of available bits for storing

numerals, so when we perform shift operations; some bits will be

"shifted out" of the register at one end, while the same number of bits

are "shifted in" from the other end.

Ex:

In a left arithmetic shift,the right side end filled with 0‘s.

int x = 11000101;

Then x << 2 = 00010100

In a right arithmetic shift,the left side end filled with 0‘s.

int x = 11000101;

Then x >> 2 = 00110001

Operators in C

• The bitwise NOT (~), or complement, is a unary operation that

performs logical negation on each bit of the operand.

• By performing negation of each bit, it actually produces the 1‗s

complement of the given binary value.

Ex: int x=4,y;

y=(~x); Hear x is 0 1 0 0

y=11 ~x is 1 0 1 1

Operators in C

Assignment operators

• The assignment operator is responsible for assigning values to the variables.

• The equal sign (=) is the fundamental assignment operator.

• C supports other assignment operators that provide shorthand

(Compact)ways to represent common variable assignments.

OPERATOR SYNTAX EQUIVALENT TO

/= variable /= expression variable = variable / expression

\= variable \= expression variable = variable \ expression

*= variable *= expression variable = variable * expression

+= variable += expression variable = variable + expression

-= variable -= expression variable = variable - expression

&= variable &= expression variable = variable & expression

^= variable ^= expression variable = variable ^ expression

<<= variable <<= amount variable = variable << amount

>>= variable >>= amount variable = variable >> amount

Operators in C

Comma operator

• The Comma operator in C takes two operands. It works by evaluating

the first and discarding its value, and then evaluates the second and

returns the value as the result of the expression.

• Comma separated operands when chained together are evaluated in

left-to-right sequence with the right-most value yielding the result of

the expression.

• Among all the operators, the comma operator has the lowest

precedence.

Ex: int a=2, b=3, x=0;

x = (++a, b+=a);

Now, the value of x = 6.

Operators in C

Sizeof Operator

• Sizeof operator used to calculate the sizes of data types.

• It can be applied to all data types.

• The operator returns the size of the variable, data type or expression in

bytes.

Ex:

 sizeof(char) returns 1 byte, that is the size of a character data

type. If we have,

int a = 10;

unsigned int result;

result = sizeof(a);

then result = 2 bytes.

88

Basic Input - Output

• Data is input to and output from a stream. A stream is a source of or
destination for data.

• Stream is Associated with a Physical devices such as Terminals or
with a file stored in auxiliary memory.

• C language uses two types of Streams:
1) Text Stream
2) Binary Stream

• Text Stream: Text Stream is a sequence of Characters divided into
lines with each line terminated by a new line.

• Binary Stream: Binary Stream is a Sequence of data values such as
integer,real,or complex using their memory representation.

• In C language standard input device is a Keyboard and the out put
device is a Monitor.

Fig: Stream Physical Devices

Basic Input - Output

• C language provides two formatting functions

– printf for output formatting

– scanf for input formatting

• printf function converts data stored in program into a text stream for
output to the monitor.

• scanf converts the text stream coming from the keyboard to data
values and stores them in program variables .

• Printf and scanf functions are data to text stream and text stream to
data converters.

Basic Input - Output

Output Formatting:printf

• The printf function takes a set of data values ,converts them to a text

stream using formatting instructions contained in a format control

string and sends the resulting text stream to the standard output.

• In the above diagram an Integer 234 stored in the

program is converted to a text stream of three

numeric ASCII characters ‗2‘,‘3‘,‘4‘ and then is

Basic Input - Output

Basic Input – Output
• The following information is passed to the Printf Function:

1) The format control string including any textual data to be inserted

into the text stream.

2) A set of zero or more data values to be formatted.

Basic Input – Output

• In the above first diagram shows the format string

and the data values as parameters for the print

function.

• With in the control string we have specified

quantity(Qty:) and total(Tot:) as textual data and two

converstion specifications(%d and %f).

• In the Second diagram shows the formatting

operation and the resulting text stream.

• The first data value is a literal and second data value

Basic Input – Output

Format Control String Text
 The control string also contains text to be printed such as instructions to the

user,captions or identifiers and other text intended to make the output more readable.

 It also prints control characters like(\t,\n).

Conversion Specification

 To insert the data into the stream we use the conversion
specification .

 It contains a start token(%),a conversion code and four
optional modifiers.

Fig: Conversion Specification

Basic Input – Output

Code

• Approximately there are 30 different codes are available in C

language to describe data types.

• Hear we concern only three code like character(c),Integer(d),Floating

point(f).

Size

• The size modifier is used to modify the type specified by the

conversion code.

• There are four different sizes: h,l(el),ll(el,el) and L.

• The h is used with the integer codes to indicate a short integer value.

• The l is used to indicate a long integer value.

• The ll is used to indicate a long long integer value.

• The L is used with floating point numbers to indicate a long double

value.

Basic Input – Output

Fig:Format Codes for Output

Basic Input – Output

Precision

• The precision modifier is used if a floating point number is being

printed then we may specify the number of decimal places to be

printed.

The format of precision modifier is .m

Hear m is the number of decimal digits.

• If precision is not specified printf prints six decimal positions.

Width

• Width modifier is used to specify the minimum number of positions in

the output.

• This is very useful to align output in columns.

• If we don‘t use a width modifier each output value will take just

enough room for the data.

Basic Input – Output

Flag

• The flag modifier is used with four print modifications:

1. Justification 2. Padding 3. sign 4.numaric conversion

1.Justification

• It controls the placement of a value when it is shorter than the

specified width.

• By default the justification is right.

• To left justify a value the flag is set to minus(-).

2. Padding

• It defines the character that fills the unused space when the value is

smaller than the print width.

• It can be a space or zero.

• By default the unused width is filled with spaces.

• If the flag is 0 the unused width is filled with zeros.

Basic Input – Output

Sign

• The sign flag defines the use or absence of a sign in numeric value.

• There are three formats to specify the sign

1. default formatting inserts a sign when the value is negative.

2. When the flag is set to plus(+) signs are printed for both positive and
negative.

3. If the flag is space the positive numbers are printed with a leading
space and negative numbers with a minus sign.

Numeric conversions

• Prefix o to the output value when used with the octal conversion

specifier.

• Prefix 0x or 0X to the output value when used with the hexadecimal

conversion specifiers x or X.

Basic Input – Output

Fig: Flag Formatting Options

Basic Input – Output

Input formatting : scanf

• The standard input formatting function scanf takes a text stream from

the keyboard.

• Extracts and formats data from the stream according to a format

control string.

• Then stores the data in specified program variables.

Fig: Formatting Text from an Input Stream

• In the above diagram the stream of 5 characters ‗2‘,‘3‘,‘4‘,‘.‘,‘2‘ are

extracted as real number 234.2.

Basic Input – Output

• General syntax of Scanf function is:

scanf (―control string‖, arg1, arg2, ………….argn);

• The control string specifies the type and format of the data that has to

be obtained from the keyboard and stored in the memory locations

pointed by the arguments arg1, arg2,…, argn.

• With the exception of character specification , leading white spaces

are discarded.

Basic Input – Output

Fig: Input Stream Formatting

Basic Input – Output

Format Control String
• Like printf formatting string scanf is also enclosed with in a set of

quotation marks.

• It contains on or more conversion specifications that describe the data

type and indicate any special formatting rules and characters.

Conversion Specification

• To format input data stream we use a conversion specification that

contains a start token(%) , conversion code and three optional

modifiers.

Fig: Conversion Specification

Basic Input – Output

• There are three differences between the conversion codes for input

and output formatting:

1) There is no precision in an input conversion specification.

-It is an error to include a precision

2)There is only one flag for input formatting , the assignment

suppression flag(*).

-The assignment suppression flag tells the scanf the next input field is

to be read but not store.

Ex: scanf(―%d %*c %f‖,&x, &y);

3) The width modifier specifies the maximum number of characters that

are to be read for one format code.

Basic Input – Output

Input Parameters

• Every conversion specification there must be a matching variable in

the address list.

• The address of a variable is indicated by prefixing the variable name

with an ampersand (&).

• In C language ‗& ‗ is known as address operator.

• The first conversion specification matches the first variable address ,

the second conversion specification matches the second variable

address and so on.

• The variable type match the conversion type.

• The c compiler does not verify that they match . If they don‘t match

the input data will not be formatted properly when they are stored in

the variables.

Basic Input – Output

End of File and Errors

• The scanf terminate input process when the user

signal that there is no more input by keying end of

file(EOF).

Ex: Ctrl+Z

• If scanf encounters an invalid character when it is

trying to convert the input to the stored data type ,it

stops.

Ex: Character is trying to read a numeric .

Expressions

• An Expression is a sequence of operands and operators that reduces to

a single value.

• An expression is a simple or complex.

• A simple expression contain only one operator.

Ex: 3+6,-a

• A complex operator contains more than one operator.

Ex: 2*5+7-8

• An expression contains operator and operand.

• An operator is a syntactical token that requires an action to be taken.

• An operand is an object on which an operator is performed.

• An Expression always reduces to a single value.

Expressions

• A Simple Expression is divided into Six Categories
based on the number of operands , relative position
of the operand and operator and the precedence of
operator.

Fig: Expression Categories

Expressions

Primary Expressions
• A primary Expression Consists of only one operand with no operation.

• The operand in a primary expression can be a name, constant or a

parenthesized expression.

• A primary expression is evaluated first in a complex expressions.

Name

• Name is any identifier for a variable , a function , or any other

object .

Ex: a b12 price calc INT_MAX SIZE

Literal Constant

• A constant is a piece of data whose value can‘t change during the

execution of the program.

Ex: 5 123.98 ‗A‘ ―Welcome‖

Expressions

Parenthetical Expressions
• Any value enclosed in a parentheses must be reducible to a single

value and is therefore a primary expression.

• A complex expression enclosed with in parentheses to make a primary

expression.

Ex: (2*3+4) (a=23+b*6)

Postfix Expression
• Postfix Expression consists of one operand followed by one operator.

• Some of the operators that create a postfix expression are function

call,

postfix increment , and postfix decrement.

Fig: Postfix Expressions

Expressions

Function Call
 Function calls are postfix expressions.

 The function name is the operand and the operator is the parentheses
that follow the name.

 The parentheses may contain arguments or be empty.

Ex: printf(―Hello World‖); or printf();

Postfix Increment/Decrement
 Postfix increment and decrement are also postfix operators.

 Postfix increment the variable is incremented by 1.

Ex: int a=5,x;

x=a++;

x=6;

 Hear the effect of operation is same as a=a+1;

 Postfix decrement the variable value is decremented by 1.

Expressions

Ex: int a=5,x;

x=a--;

x=4;

Prefix Expressions

 In prefix expression the operator comes before the
operand.

Prefix Increment and Decrement

Similar to postfix increment and decrement the prefix
increment and decrement operators are shorthand
notations for adding or subtracting 1from the value.

Fig:Prefix Expression

Expressions

Ex: int a=5,x;

x=a++;

x=6;

• When we need the value of the expression to be the current value of

the variable we use the postfix operator.

• When we need the value to be the new value of the variable we use

prefix operator.

int a=5,x;

x=a--;

x=4;

Postfix Increment Postfix Decrement

Fig:Result of Prefix ++a

Expressions

Unary Expression
• It is like a prefix expression consists of one operator and one operand.

• Prefix expression need a variable as the operand.

• Unary Expression can have an expression or variable as the operand.

• Some of the Unary expressions are sizeofoperator, plus/minus

operator and the cast operator.

Fig:Unary Expressions

Expressions

Sizeof
• The size of operator tells the size , in bytes , of a type or a primary

expression.

• By specifying the size of an object during execution , we make our

program more portable to other hardware.

Syntax : sizeof(type);

Unary plus/Minus
• These two operators are use to compute the arithmetic value of an

operand.

• The plus operator does not change the value of an expression.

• The minus operator change the sign of a value algebraically.i.e to

change it from plus to minus and minus to plus.

Expressions

Cast Operator
• The cast operator converts one expression type to another.

Ex: To Convert integer type to float we use cast operator.

int x;

float y=float(x);

Binary Expressions
• Binary Expressions are formed by an operand-operator-operand

combination.

• Any two numbers are added , multiplied ,

Fig:Binary Expressions

Expressions

Multiplicative Expressions
• Name of the expression takes from the first operator , include the

multiply , divide , and modulus operator.

• These operators have the highest priority among other binary

operators.

• Multiply operator is the product of the two operands.

Ex: 10*3 //result=30

true*4 //result=4

‗A‘*2 //result=2

22.3 //result=44.6

• The type of the result depends on the conversion rules.

- if both operands are Integers result is Integer.

-if any one of the operand is floating point the result is floating point.

-if both operands are floating point the result is floating point.

Expressions

• The result of divide operator depends on the type of operand.

Ex: 10/3 //result=3

true/4 //result=0

‗A‘/2 //result=32

• The modulus(%) operator divides the first operator by the second

operator and returns the reminder rather than quotient.

Ex: 10%3 // result=1

true%4 // result=1

‗A‘%10 // result=5

22.3%2 // result=Error because modulo can not be float.

• Both operands must be integral types and operator returns the

remainder as an integer type.

Expressions

Additive Expressions

• In this type of Expressions the second operand is added to or

subtracted from the first operand , depending on the operator used.

Ex: 3+7 // result=10

3-7 // result=-4

Assignment Expressions
• The assignment expression evaluates the operand on the right side of

the operator(=) and places its value in the variable on the left.

• The assignment expression has a value and a side effect.

• The value of the total expression is the value of the expression on the

right of the assignment operator(=).

• The side effect places the expression value in the variable on the left

of the assignment operator.

• There are two forms of Assignment Expressions:

1.Simple 2.Compound

Expressions

1.Simple Expressions
• Simple assignment is found in algebraic expressions.

Ex: a=5 ; b=x+1 i=i+1

• The left variable must be able to receive the effect.

• That is it must be a variable , not a constant.

• If the left operand cannot receive a value and we assign a value we

get a compile time error.

2.Compound Assignment
• A compound assignment is a shorthand notation for a simple

assignment.

• It requires that the left operand be repeated as a part of the right

expression.

• To evaluate the compound expression first change it to simple

expression.

Expressions

• The left operand in an assignment expression must be a single

variable.

Ex: x*=y+3 evaluated as x=x*(y+3).

Fig: Expansion of Compound Expressions

Precedence and Associativity

Precedence
• To determine the order in which different operators in a complex

expression are evaluated.

Ex: 1) 2+3*4 is evaluated as (2+(3*4)) =(2+12)=14.

In the above example + having the precedence 12 and * having

the precedence 13 so first multiply 3*4 then add 2+12.

2) -6++ is evaluated as (-(6++))=-7.

Associativity
• Associativity is applied when we have more than one operator of the

same precedence level in an expression.

• Associativity can be left-to-right or right-to-left.

• Left-to-right associativity evaluates the expression by starting on the

left and moving to the right.

• Right-to-left associativity evaluates the expression by proceeding

from the right to left.

Operator Type Operator Associativity

Primary Expression

Operators
() [] . -> expr++ expr-- left-to-right

Unary Operators
* & + - ! ~ ++expr --expr

(typecast) sizeof
right-to-left

Binary Operators

* / %

left-to-right

+ -

>> <<

< > <= >=

== !=

&

^

|

&&

||

Ternary Operator ?: right-to-left

Assignment Operators
= += -= *= /= %= >>= <<=

&= ^= |=
right-to-left

Comma left-to-right

Precedence and Associativity

Ex: (LTR)

1. 3 * 8 / 4 % 4 * 5

((((3*8)/4)%4)*5) value is 10.

• Hear all the operators having the same precedence so the associativity

is Left to Right.

Fig:Left-to-Right Associativity

Precedence and Associativity

Ex:(RTL)

1. a += b *= c -= 5

(a += (b *= (c -= 5)))

(a = a + (b = b * (c = c-5)))

if a has initial value of 3 , b has initial value of 5 , and c has initial

value of 8 then expression becomes

(a = 3 + (b = 5 * (c =8-5)))

(a = 3 + (b = 5 * 3))

(a = 3 + 15)

a=18

Side Effects

• A side effect is an action that results from the evaluation of an

expression.

• C language evaluates the expression from right of the assignment

operator and place result in left variable.

• Changing the value of left variable is a side effect.

Ex: x=x+3 expression has three parts . Assume x=3

1. the value of right of the right of the assignment operator is 6

2. the value of hole expression is also 6

3. the side effect x receives the value 6.

• In c language six operators generate side effect.

– prefix increment and decrement

– postfix increment and decrement

– Assignment

– Function call

Expression Evaluation

Expressions Without Side Effects

Ex: 1. a * 4 + b / 2 – c * b

Assume the values for a=3 , b=4 , c=5

Substitute the values in the Expression

3 * 4 + 4 / 2 – 5 * 4

Evaluate expression based on their precedence

(3 * 4) + (4 / 2) – (5 * 4)

12 + 2 - 20

the value is -6.

• In the above expression there is no side effect , all the variables have

the same value after the expression has been evaluated.

Expression Evaluation

Expression With Side Effects

Ex: 1. --a * (3 + b) / 2 – c++ * b

Assume the values a=3 , b=4 , c=5

calculate the value of Parenthesized expression first

--a * 7 / 2 – c++ * b

--a * 7 / 2 – 5 * b

2 * 7 / 2 – 5 * b

14 /2 – 5 * b

7 – 5 * 4

7 – 20

-13

• After the side effect the variables have the value

a=2 , b=4 , c=6.

Type Conversion

• Converting one type of data to another type of data is called type

conversion.

• There are two types of Conversions .

1. Implicit type conversion

2. Explicit Type Conversion

Implicit Type Conversion

• When the two types of a binary expression are

different then the c compiler automatically converts

one type to another. This is known implicit type

casting.

• We can assign the conversion ranks to the integral

and floating point arithmetic types.

• A long double real has a higher rank than a long

Type Conversion

Fig: Conversion Rank

Type Conversion

Conversion in Assignment Statements
• In a simple assignment expression involve an assignment operator and

two operands.

• Depending on the rank of right expression the left variable takes

promotion or demotion.

• Promotion occurs if the right expression has lower rank.

• Demotion occurs if the right expression has higher rank.

Promotion
• The rank of the right expression is evaluated to the rank of the left

variable.

• Generally no problem with the promotion.

Ex: char c=‗A‘; i=c //value of i is 65

int i=1234; d=i // value of d is 1234.0

long double d=3456.2345;

Type Conversion

Demotion
• If the right expression having the higher rank than the left variable

then the right expression value is demoted to the left variable.

• When the integer or real is stored into a char , the least significant byte

is converted to a char and stored.

• When a real is stored in a int the fraction part is dropped.

Ex: bool b= false;

char c=‗A‘;

int k=65;

b=c; // value of b is 1(true)

c=k+1; // value of c is B.

Type Conversion

Explicit Type Conversion

• In Explicit type conversion the programmer convert data from one

type to another.

• It uses Unary cast operator.

• To convert the data from one type to another , specify the new type in

parentheses before the value to be converted.

Ex: int a;

float f=(float) a;

Statements

• A statement causes an action to be performed by the program.

• Most of the statements ends with semicolon , some do not.

• There are 11 types of statements.

Statements

Null Statement

• The null statement is just a semicolon.

Syntax: ; //null statement

• null statement is used where we must have a statement but no action is

required.

Expression Statement
• An expression is turned into a statement by placing a semicolon after

the expression.

Syantax: expression ;

Return Statement
• A return statement terminates a function.

• All functions , including main , must have a return statement.

• When there is no return statement at the end of the function , the

system inserts one with void.

Statements

Syntax: return statement;

• The return statement returns a value to the calling function.

• The main function returns 0 to the operating system.

• A return value of zero tells the operating system that the program

executed successfully.

Compound Statement
• A compound statement is a unit of code consisting of zero or more

statements.

• It is also called block.

• All the c functions contain a compound statement known as the

function body.

• A compound statement consists of an opening brace , an optional

declaration and definition section and an optional statement section ,

followed by a closing brace .

Statements

Fig:Compound Statement

Statements

• A compound statement does not need a semicolon.

• If we put semicolon after the compound statement the compiler thinks

that we have put an extra null statement.

The Role of Semicolon
• Semicolon is used in two different situations

1. Every declaration in c is terminated by a semicolon.

2. Most statements in c are terminated by a semicolon.

• Semicolon should not be used with a preprocessor directive such as

the include and define.

UNIT-II
CONTROL STRUCTURES, ARRAYS AND STRINGS

Conditional or Decision Statements
• Decision control statements are used to alter the flow of a sequence of

instructions.

• These statements help to jump from one part of the program to

another depending on whether a particular condition is satisfied or not.

• The decision is described to the computer as a conditional statement

that can be answered either true or false.

• Different types of control statements are:

1 . if statement

2 . if – else statement

3 . nested if Statement

4 . else if ladder

5 . Switch statement

Statements

1.If statement or Null Else Statement
• If statement is the simplest form of decision control statements that is

frequently used in decision making.

Syntax:

if (test expression)

{

statement 1;

..............

statement n;

}

statement x;

Fig: If Statement flow chart

Statements

• First the test expression is evaluated. If the test expression is true, the

statements of if block (statement 1 to n) are executed otherwise these

statements will be skipped and the execution will jump to statement x.

• In this case the else statement is not required.

2.If- else Statement
• In the if-else construct, first the test expression is evaluated.

• If the expression is true, statement block 1 is executed and statement

block 2 is skipped.

• Otherwise, if the expression is false, statement block 2 is executed and

statement block 1 is ignored.

• In any case after the statement block 1 or 2 gets executed the control

will pass to statement x.

Statements

Fig:if...else Logic Flow

Statements

Fig : Syntactical Rules for if…else Statements

Statements

• In the first rule the expression must be enclosed in parentheses.

• The second rule no semicolon for if else statement and statement 1

and statement 2 ends with semi colon.

Ex:

• The third rule it is common in c code expressions that have side effect.

Ex: if(++lineCnt > 10){

pritf(―\n‖);

lineCnt=0;

}

else printf(….);

Statements

• Rules 4 and 5 are related .the multiple statements

can be used through the braces.

• The sixth rule states that the true and false

statements can be exchanged by complementing the

expression.

Statements

3 . Nested if Statement

• An if else is included within an if else is called nested if statement.

• There is no limit to how many level can be nested , but if the number

of levels are increased it becomes more difficult.

Statements

Dangling Else Problem

• when there is no matching else for every if .

Fig : Dangling else

Statements

Solution to Dangling else Problem

• Always pair an else to the most recent un paired if in the current

block.

• By using a compound statement , we simply enclose the true actions

in braces to make the second if a compound statement .

Statements

Conditional Expressions
• An alternative for traditional if –else for two way selection.

• The conditional expression has three operands and a two token

operator.

Syntax: expression1 ? expression2 : expression3

• It first evaluates the left most expression1. If the expression1 is true ,

then the value of the conditional expression is the value of

expression2.

• If the expression1 is false , then the value of the conditional

expression is the value of expression3.

Ex:

a == b ? c++ : d++ ;

Statements

Else if ladder
 To make a multi way decision on the basis of a value that not an

integral. We go for else if .

 Else if is not a c construct ,it is a style of coding to make a multi way

selection based on a value that is not integral.

Syntax: if(expression)

{

Statements;

}

else if(expression2)

{

Statements;

}

else

{

Statements;

}

Statements

Fig : Flow chart for else if ladder

Statements

Switch
• Switch is a composite statement used to make a decision between

many alternatives.

• The switch statement can be used only when the selection condition is

reduced to an integral expression.

Statements

switch (expression)

{

case value-1:

block-1

break;

…………

…………

default:

default-block

break;

}

statement-x;

Fig : switch Statement Syntax

Statements

• The switch expression can use any expression that reduces to an

integral value.

• The selection alternatives known as case labels must be integral types.

• Every possible value in the switch expression a separate case label is

defined.

• Every thing from a case label to the next case label is sequence.

• Case label simply provides an entry point to start the execution of the

code.

• The default label is a special form of the case label . It is executed

none of the other case values matches the value in the switch

expression.

• Once the program enters into a case it executes the code for all the

following cases until the end .

Statements

Switch Statement Rules

Statements

Loop
• To repeat an operation or a series of operation many times is called

looping .

• The loop must terminate when the work is completed.

• Design the loop to check condition before or after the loop.

Statements

Pretest Loops
• In each iteration, the control expression is tested first. If it is true, the

loop continues; otherwise, the loop is terminated.

Posttest Loops

• In each iteration, the loop action(s) are executed. Then the control

expression is tested. If it is true, a new iteration is started; otherwise,

the loop terminates.

Statements

Loop Initialization

• Initialization is the process of set the stage for the loop actions.

• It is done before the first execution of the loop body.

• Initialization may be explicit or implicit.

• In an explicit initialization we include code to set the beginning values

of key loop variables.

• In an implicit initialization there is no direct initialization code ,it

relies on preexisting situation to control the loop.

Loop Update

• The action that causes when the loop is executed is known as loop

update.

• Update is done in each iteration , usually in the last action.

• The body of the loop is repeated n times , then the updating is also

done n times.

Statements

Event Controlled Loops
• An event changes the control expression from true or false.

Ex : when Reading data , reaching the end of the data changes the

expression from true to false.

Statements

Counter – Controlled Loops
• When we know the number of times an action is to be repeated then

we use counter controlled loops.

• We must initialize , update , and test the counter.

Statements

• There are three loop statements in c language

1) do..while loop

2) while loop

3) for loop

• The first one is post test loop and remaining two are pretest loops.

• All the three loops support event and counter controlled loops.

• While and do while are commonly used for event controlled and for is

used for counter controlled.

Statements

Do…while loop
• The do while statement is a pretest loop.

• Do while statement test the expression after the execution of the body.

• Do while is concluded with a semicolon.

Fig : do…while Statement

Statements

While loop

• The while loop is a pretest loop.

• It test the expression before every iteration of the

loop.

• No semicolon is needed at the end of the while

statement.

• Hear the body of the loop must be only one

statement.

Statements

• To include multiple statements in the body , we must put them in a

compound statement.

Statements

For Loop

• It is a pretest loop.

• It uses three expressions.

• The first expression contains any initialization

statements , the second contains the limit-test

expression , and the third contains the updating

expression.

Syntax:

for(exp1 ; exp2 ; exp3)

Initialization

condition

Updating

Statements

• The body of the for loop must be one and only one statement.

• To include more statements in the body we must code them in a

compound statement.

Fig : Compound for Statement

• A for loop is used when a loop is to be executed a known number of

times .

• The same thing can be implemented with a while loop but the for loop

is easier to read and more natural for counting loops.

Fig : Comparing for and while Loops

Statements

Nested For Loops
• Including the for loop with in the body of another for loop.

• By using nested for loops we create looping applications.

The comma Expression
• The comma expression is a complex expression made up of two

expressions separated by a comma.

• The expressions are evaluated left to right.

• The value and type of the expression are the value and type of the

right expression.

• The comma expression has the lowest priority of all expressions , i.e

is 1.

Ex:

for(sum=0,i=1; i<=20; i++)

sum=sum+i;
Fig : Nested Comma Expression

Statements

Break
• The break statement causes a loop to terminate.

• The break statement can be used in any of the loop statements like

while , do-while , for and in the selection switch statement.

Fig : break and Inner Loops

Statements

The for and while as Perpetual Loops

Statements

Using a break Flag

Statements

Continue

• The continue statement does not terminate the loop.

• It simply transfer to the testing expression in while and do-while

statements and transfer to the updating expression in a for statement.

Fig : The continue Statement

Statements

goto

• The goto statement is used to transfer control to a specified label.

• Label is an identifier that specifies the place where the branch is to be

made. Label can be any valid variable name that is followed by a

colon (:).

• label can be placed anywhere in the program either before or after the

goto statement. Whenever the goto statement is encountered the

control is immediately transferred to the statements following the

label.

• If the label is placed after the goto statement then it is called a forward

jump and in case it is located before the goto statement, it is said to be

a backward jump.

ARRAYS

• A collection of objects of the same type stored contiguously in

memory under one name.

―May be type of any kind of variable

―May even be collection of arrays!

• The elements of the array are stored in consecutive memory

locations and are referenced by an index (subscript).

• To refer to an element, specify

―Array name

―Position number

• Syntax:

array_name[position number]
176

ARRAYS

Array Declaration

• When declaring arrays

– Name

– Type of data elements

– Number of elements

• Syntax

Data_Type array_Name[Number_Of_Elements];

• Examples:

int c[10];

float myArray[3284];

• Declaring multiple arrays of same type

– Format similar to regular variables

– Example:

int b[100], x[27];

177

ARRAYS

• int c[12]

• An array of ten integers

• c[0], c[1], …, c[11]

• double B[20]

• An array of twenty long floating

point numbers

• B[0], B[1], …, B[19]

• Arrays of structs, unions,

pointers, etc., are also allowed

• Array indexes always

start at zero in C

178

Name of array (Note

that all elements of

this array have the

same name, c)

Position number of

the element within

array c

c[6]

-45

6

0

72

1543

-89

0

62

-3

1

6453

78

c[0]

c[1]

c[2]

c[3]

c[11]

c[10]

c[9]

c[8]

c[7]

c[5]

c[4]

-89

1

ARRAYS

Two Dimensional Array

• Syntax

Data_Type array_Name[Row_Elements][Column_Elements];

• Example

int D[10][20]

– An array of ten rows, each of which is an array of twenty

integers

– D[0][0], D[0][1], …, D[1][0], D[1][1], …, D[9][19]

– Not used so often as arrays of pointers

179

ARRAYS

Two Dimensional Array

• Multiple subscripted arrays as

– Tables with rows and columns (m×n array)

– Like matrices: specify row, then column

180

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

a[1][3]

a[2][3]

Row subscript

Array name

Column subscript

ARRAYS

Multi Dimensional Arrays

• Array declarations read right-to-left

• Syntax

Data_Type array_Name[Size][Size][Size] … Size];

• Example

int a[10][3][2];

―an array of ten arrays of three arrays of two elements‖

• In memory

181

2 2 2 2 2 2

3

2 2 2

...

10

3 3

ARRAYS
Array initialization

• Example

int days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

– Values must be compile-time constants (for static arrays)

– Values may be run-time expressions (for automatic arrays)

int A[5] = {2, 4, 8, 16, 32};

– Static or automatic

int B[20] = {2, 4, 8, 16, 32};

– Unspecified elements are guaranteed to be zero

int C[4] = {2, 4, 8, 16, 32};

– Error — compiler detects too many initial values

int D[5] = {2*n, 4*n, 8*n, 16*n, 32*n};

– Automatically array initialized to expressions

182

ARRAYS
Array initialization

• Example

int n[5] = { 1, 2, 3, 4, 5 };

– If not enough initializers, rightmost elements become 0

int n[5] = { 0 }

– All elements 0

int n[] = { 1, 2, 3, 4, 5 };

– 5 initializers, therefore 5 element array

int b[2][2] = { { 1, 2 }, { 3, 4 } };

– Initializers grouped by row in braces

– If not enough, unspecified elements set to zero

int b[2][2] = { { 1 }, { 3, 4 } };

183

1 2

3 4

1 0

3 4

STRINGS

String is a series of characters treated as a unit.

All string implementations treat a string as a variable length piece

of data.

Strings can vary in size.

Length of strings-Strings can be of fixed length or variable length.

185

FIGURE String Taxonomy

186

FIGURE String Formats

Fixed length:

Fixed length strings have their length controlled. Their length

fixed once cannot be changed.

There are disadvantages with fixed length because if the length is
fixed small all the data may not be stored.

If the length is made big memory gets wasted.

Variable length:

The size of the string can be either by length controlled or

delimited.

If it is length controlled string of variable length the number of
characters in the string are represented before the string.

Length of the Strings

Length of the Strings

If it is delimiter controlled string of variable length then a ‗\0‘ is
filled in after the string completes.

C O N F U S I O N \0

C strings

C String is a variable length array of characters that is

delimited by the null character.

1) Storing strings:

Strings are stored in an array of characters. It is

terminated by the null character(\0).

e.g. H E L L O \0

C strings

 for the above characters the memory locations required are 6.

 A character requires only one memory location.

 e.g. ‗H‘ this requires only one memory location.

 A character string requires memory locations based on number of

characters and a null character.

e.g. H \0 requires 2 memory locations.

 An empty string is shown as \0.

2) String delimiter

 A string is not a data type but is a data structure since delimiter is
used.

 The physical structure of a string is an array but logically it should be
stored with delimiter including.

190

C strings

the above is a string.

This is a array.

190

h e l l \0

g o o d b Y e \0

h e l l o

C strings

3) string literal:

String literal also known as string constant.

It is a sequence of characters enclosed in double quotes.

e.g. “C is a high-level language.”

“hello” , “abcd”

A string is stored in memory just like an object is stored. It has an
address.

Using pointers string literals can be referred.

192

H HELLO[0]

E HELLO[1]

L HELLO[2]

L HELLO[3]

O HELLO[4]

\O HELLO[5]

C Strings

Example program

#include<stdio.h>

int main(void)

{

Printf(―%c\n‖,‖hello‖[1]);

Return 0;

}

O/P: E

C strings

4)Declaring strings

C has no string type.

As strings are sequence of characters char data type is used

for string declaring.

e.g. Char str[9];

The size of the string declared should be one memory space

more than the data size.

If the size of the data is 6 then including delimeter it is 7.

So char str[7];

C STRINGS

To declare a string pointer:

data type is followed by *p and the string name.

e.g. Char *pstr;

This allows in pointing to the first location of the string by a pointer.

Memory of the string must be allocated before the string can be
used.

195

FIGURE Defining Strings

196

C strings

5)initializing strings:

a) Char str[9]=“good day”;

196

g o o d d a y \0

str

In the above counting with the characters, space and

delimeter there are totally 9 characters which are been

specified in the array.

C STRINGS

b) Char month[]=―Januar‖;

In the above compiler will create an array of 8 bytes including

delimeter .

c) Char *pstr=―good day‖;

―good day‖

d)Char str[9]={‗G‘,‘O‘,‘O‘,‘D‘,‘ ‗,‘D‘,‘A‘,‘Y‘,‘\O‘}

The method is not used too often because it is so tedious to code.

String Input/Output Functions

• C provides two basic ways to read and write strings.

1) We can read and write strings with the formatted input/output

functions, scanf/fscanf and printf/fprintf.

2) We can use a special set of string-only functions, get string

(gets/fgets) and put string (puts/fputs).

Fig : gets and fgets Functions

String Input/Output Functions

Fig : puts and fputs Operations

String Input/Output Functions

Fig : Array of Strings

String Manipulation Functions

• strcpy()---- copies one string over another.

Syntax:

strcpy(destination,source);

Ex: s1=―bombay‖; s2=―delhi‖;

strcpy(s1,s2);

output: s1=―delhi‖;

• The string 1 should large enough to hold the characters of
string 2 or else the no. of letters sufficient in the available
string will be taken.

String Manipulation Functions

Fig : String Copy

String Manipulation Functions

• strncpy()---copy characters of a string to another string with the
given number of characters in a string.

Syntax:

strncpy(dest,source,n);

Ex:

s1=―come‖; s2=―gone‖;

strncpy(s2,s1,2);

output:

s2= ―co‖;

String Manipulation Functions

Fig : String-number Copy

String Manipulation Functions

• strcmp()----- compares two strings

Syntax:

strcmp(string1,string2);

Ex: s1=―their‖; s2=―there‖;

strcmp(s1,s2);

Output: -9

• The result will be ASCII code of ‗i‘ minus(-) ASCII code of ‗r‘ = -9

• The letters are checked according to dictionary.

String Manipulation Functions

Fig : String Compares

String Manipulation Functions

• stricmp() ---- doesn't discriminate between small and capital letters.

syntax:

Stricmp(source , destination);

Ex :

S1=―come‖ s2=―COME‖

Stricmp(s1,s2);

output: 0

• Compares both string with out considering the case of the string.

• strncmp()---- compares characters of two strings up to specified
length

syntax:

strncmp(source,destination,length);

Ex: S1=―come‖ s2=―computer‖

Strncmp(s1,s2,2);

Output: 1

String Manipulation Functions

• strlen()----finds the length of a string
syntax:

strlen(string);
Ex: string=― computer‖

n= strlen(string1);
Output: 8

• No. of characters in a string.
• strlwr(): converts uppercase characters of a string to lower case

syntax: strlwr(string);
Ex : s2=―COMPUTER‖

Strlwr(s2);
output: s2= computer;

• strupr() --- converts lower case to characters of a string
to a upper case.

Syntax: strupr(string);

Ex: s1=―computer‖

strupr(s1);

Output: s1=―COMPUTER‖;

String Manipulation Functions

• C library supports a large number of string
manipulation functions

• Strcat() -----concatenates two strings

Syntax:

strcat(string1, string2);

Ex:

string1=―very‖; s2=―good‖;

strcat(s1,s2);

Output: s1=―verygood‖;

• The string 1 should large enough to hold the characters of string 2.

String Manipulation Functions

Fig : String Concatenation

String Manipulation Functions

• strchr() — determines the first occurrence of a given character in a string.

Syntax:

strchr(string,character);

Ex:

Char c=‗p‘;

S1=‗computer‘;

int i= strchr(s1,c);

Output:

i=3

• strrchr() ----- determines the last occurrence of the
given character in string.

Syntax: strrchr(string, character);

String Manipulation Functions

Fig : Character in String (strchr)

String Manipulation Functions

• strstr() – determines the first occurance of a given string in another

string.

Syntax:

strstr(string1,string2);

Ex:

S1=―computer engg‖;

S2=―engg‖;

strstr(s1,s2);

Output: engg

String Manipulation Functions

Fig : String in String

String Manipulation Functions

Fig : String Span

String Manipulation Functions

• strrev(): reverses all characters of a string.

Syntax: strrev(source);

Ex : S1=―madam‖

Strrev(s1)

Output: S1=madam

• strdup(): these function duplicates the string.

Syntax:

strdup(source);

Ex: Char s1[10],c[10];

S1=―raju‘

C=strdup(s1)

Output: C=raju

UNIT-3

FUNCTIONS AND POINTERS

• Breaking up a program into segments commonly known as functions.

• Each function can be written more or less independently of the others.

• The purpose of a function is to receive zero or more pieces of data, operate on

them, and return at most one piece of data.

• The side effect of a function is an action that results in a change in the state of a

program. If occurs, it effects while the function is executing and before the

function returns.

218

main()

{

…………..

…………..

f=func1(a,b);

…………

………..

return 0;

}

int func1(int x, int

y)

{

Statement Block;

return z;

}

Calling Function

Function Call

Called Function

Function Definition

Actual Arguments

Formal arguments

FUNCTIONS

Fig: Terminology of Functions
219

FUNCTIONS

Terminology

• main() calls another function, func1() to perform a well defined

task. main() is known as the calling function and func1() is

known as the called function.

• When the compiler encounters a function call, instead of

executing the next statement in the calling function, the control

jumps to the statements that are a part of the called function.

• After the called function is executed, the control is returned

back to the calling program.

• The inputs that the function takes are known as arguments .
220

FUNCTIONS

Terminology

• When a called function returns some result back to the calling

function, it is said to return that result.

• Main() is the function that is called by the operating system

and therefore, it is supposed to return the result of its

processing to the operating system.

• The arguments in function call referred as actual arguments.

• The arguments in function definition call referred as formal

arguments.

221

• main() can call as many functions as it wants and as many

times as it wants.

• It is not that only the main() can call another functions.

Any function can call any other function.

222

main()

{

…………..

…………..

func1();

…………

………..

return 0;

}

func1()

{

………..

…………

func2();

………..

……….

return;

}

func2()

{

………..

…………

func3();

………..

……….

return;

}

func3()

{

………..

…………

………..

……….

return;

}

FUNCTIONS

Fig: Multi function call illustration

223

Advantages of functions

• Each function to be written and tested separately. This

simplifies the process of getting the total program to work.

• Understanding, coding and testing multiple separate

functions are easier than one huge function.

• Provide a way to reuse code that is required in more than

one place in a program.

• A library of functions can be built to carry out repetitive

work like math library, standard I/O library.

223

FUNCTIONS

224

• Advantages of functions

• Functions can protect the data.

• Functions can have local data described within a function.

These data are available only to the function and only while

the function is executing. When the function is not active, the

data are not accessible.

• With local data, data in one function cannot be seen or

changed by a function outside of its scope.

224

FUNCTIONS

FUNCTIONS

Function Declaration / Prototype

• Function declaration identifies a function with its name, a list of

arguments that it accepts and the type of data it returns.

• Syntax:

return_type function_name(data_type variable1, data_type

variable2,..);

• No function can be declared within the body of another

function.

Eg: float avg(int , int);

225

FUNCTIONS

Function Definition

• Function definition consists of a function header that identifies the

function, followed by the function body containing the executable

code for that function.

• Syntax:

return_type function_name(data_type variable1, data_type variable2,..)

{ //function body

………….

statements

………….

return(variable);

}

226

FUNCTIONS

Function Definition

• When a function defined, space is allocated for that function in

the memory.

• The number of and the order of arguments in the function

header must be same as that given in function declaration

statement.

227

FUNCTIONS

Function call

• The function call statement invokes the function.

• When a function is invoked the compiler jumps to the called

function to execute the statements that are a part of that

function.

• Once the called function is executed, the program control

passes back to the calling function.

• Syntax:

function_name(variable1, variable2, …);

228

FUNCTIONS

Function Call

• Names (not the types) of variables in function declaration,

function call and function definition may vary.

• Arguments may be passed in the form of expressions to the

called function.

• In such a case, arguments are first evaluated and converted to

the type of formal parameter and then the body of the function

gets executed.

• If the return type of the function is not void, then the value

returned by the called function may be assigned to some

variable as given below.

variable_name = function_name(variable1, variable2, …);

229

FUNCTIONS

Function Call

230Fig: Declaring, Calling, and Defining Functions

FUNCTIONS

Multiple Function Call

231

#include<stdio.h>
void y();
void y()
{

printf(“y”);
}
void main()
{

void a(), b(), c(), d();
clrscr();
y();
a();
b();
c();
d();

}

void a()
{

printf(“ a ”);
y();

}

void b()
{

printf(“ b ”);
a();

}

void c()
{

a();
b();
printf(“ c ”);

}

void d()
{

printf(“ d ”);
c();
b();
a();

}

OUTPUT:
y a y b a y a y b a y c
d a y b a y c b a y a y

FUNCTIONS

Return Statement

• The return statement is used to terminate the execution of a

function and return control to the calling function.

• When the return statement is encountered, the program execution

resumes in the calling function at the point immediately following

the function call.

• A return statement may or may not return a value to the calling

function.

• Syntax:

return <expression> ;
232

FUNCTIONS

Return Statement

• The value of expression, if present, is returned to the calling

function. However, in case expression is omitted, the return value

of the function is undefined.

• Programmer may or may not place the expression within

parentheses (,).

• By default, the return type of a function is int.

• Functions that has no return statement, the control automatically

returns to the calling function after the last statement of the called

function is executed.

233

FUNCTIONS

Passing Parameters To The Function

• There are two ways in which arguments(parameters) can be

passed to the called function.

• Call by value in which values of the variables are passed by the

calling function to the called function.

• Call by reference in which address of the variables are passed by

the calling function to the called function.

Passing parameters to function

Call by value Call by reference

234

FUNCTIONS

Passing Parameters To The Function

―Call By Value:

• The called function creates new variables (formal arguments) to

store the value of the arguments passed to it. Therefore, the

called function uses a separate copy of the actual arguments

(formal arguments) to perform its intended task.

• If the called function is supposed to modify the value of the

parameters passed to it, then the change will be reflected only in

the called function. In the calling function no change will be

made to the value of the variables.
235

FUNCTIONS

Passing Parameters To The Function – Call By Value

236

#include<stdio.h>

void add(int n);

int main()

{

int num = 2;

printf("\n The value of

num before calling the

function = %d", num);

add(num);

printf("\n The value of

num after calling the

function = %d", num);

return 0;

}

void add(int n)

{

n = n + 10;

printf("\n The value

of num in the called

function = %d", n);

}

OUTPUT :

The value of num before

calling the function = 2

The value of num in the

called function = 12

The value of num after

calling the function = 2

FUNCTIONS

Passing Parameters To The Function

― Call By Reference

• In call by value method, the only way to return the modified

value of the argument to the caller is explicitly using the return

statement.

• The better option when a function can modify the value of the

argument is to pass arguments using call by reference technique.

• In call by reference, we declare the function parameters as

references rather than normal variables.

237

FUNCTIONS

Passing Parameters To The Function

―Call By Reference

• Any changes made by the function to the arguments it received

are visible by the calling program.

• To indicate that an argument is passed using call by reference, an

ampersand sign (&) is placed after the type in the parameter list.

238

FUNCTIONS
Passing Parameters To The Function --Call By References

239

#include<stdio.h>
void add(int *n);
int main()
{

int num = 2;

printf("\n The value of

num before calling the

function = %d", num);

add(&num);

printf("\n The value of

num after calling the

function = %d", num);

return 0;

}

void add(int *n)
{

*n = *n + 10;

printf("\n The value
of num in the called
function = %d", *n);

}

Output:

The value of num before
calling the function = 2

The value of num in the
called function = 12

The value of num after
calling the function = 12

240

User Defined Functions

Five types of functions are possible:

• Functions with no arguments and no return values.

• Functions with arguments and no return values.

• Functions with arguments and return values.

• Functions with no arguments and return values.

• Functions that return multiple values.

240

FUNCTIONS

241

User Defined Functions

• Functions with no arguments and no return value

(void functions without parameters)

– Function without any arguments means no data is passed

(values like int, char, etc..) to the called function.

– Similarly, function with no return type does not pass back

data to the calling function.

– This type of function which does not return any value cannot

be used in an expression.

– It can be used only as independent statement.

241

FUNCTIONS

242

User Defined Functions

• Functions with no arguments and no return value

(void functions without parameters) ― Example

242

FUNCTIONS

#include<stdio.h>
#include<conio.h>
void printline();
void main()
{

clrscr();
printf("Welcome to function in
C");
printline();
printf("Function easy to learn.");
printline();
getch();

}

void printline()
{

int i;
printf("\n");
for(i=0;i<30;i++)
{

printf("-");
}
printf("\n");

}

243

User Defined Functions

• Functions with arguments and no return value

(void functions with parameters)

– Function with arguments can perform much better than a

function without arguments.

– This type of function can accept data from calling function.

– Data can be sent to the called function from calling function

but you cannot send result data back to the calling function.

– Output of function can be controlled by providing various

values as arguments.

243

FUNCTIONS

244

User Defined Functions

• Functions with arguments and no return value

(void functions with parameters) ― Example

244

FUNCTIONS

#include<stdio.h>
#include<conio.h>
void add(int , int);
void main()
{

clrscr();

add(30,15);

add(63,49);

add(952,321);

getch();
}

void add(int x, int y)
{

int result;

result = x+y;

printf("Sum of %d and %d is
%d.\n\n",x,y,result);

}

245

FUNCTIONS

User Defined Functions

• Functions with no arguments but returns value

(non-void functions without parameters)

– Function does not take any argument but only returns

values to the calling function

245

#include<stdio.h>
#include<conio.h>
int send()
{

int no1;
printf("Enter a no : ");
scanf("%d",&no1);
return(no1);

}

void main()
{

int z;
clrscr();
z = send();
printf("\nYou entered : %d.", z);
getch();

}

246

FUNCTIONS

User Defined Functions

• Functions with arguments and return value

(non-void functions with parameters)

– This type of function can send arguments (data) from the

calling function to the called function and wait for the result

to be returned back from the called function back to the

calling function.

– The data returned by the function can be used later in the

program for further calculations.

246

247

FUNCTIONS

User Defined Functions

• Functions with arguments and return value

(non-void functions with parameters) ― Example

247

#include<stdio.h>

#include<conio.h>

int add(int , int);

void main()

{

int z;

clrscr();

z = add(952,321);

printf("Result %d.\n\n",add(30,55));

printf("Result %d.\n\n",z);

getch();

}

int add(int x, int y)

{

int result;

result = x+y;

return(result);

}

248

FUNCTIONS

User Defined Functions

• Functions that return multiple values ― Example

248

#include<stdio.h>

#include<conio.h>

void calc(int x, int y, int *add, int *sub)

{

*add = x+y;

*sub = x-y;

}

void main()

{

int a=20, b=11, p,q;

clrscr();

calc(a,b,&p,&q);

printf("Sum =%d,

Sub=%d", p, q);

getch();

}

249

FUNCTIONS

Inter-function Communication

– Functions have to communicate between them to exchange

data

– The data flow between the calling and called functions can

be divided into

• A downward flow – from the calling to the called function

• An upward flow from the called to the calling function

• A bi-directional flow in both directions

249

250

FUNCTIONS

Inter-function Communication

– Downward flow

• In downward communication, the calling function sends data

to the called function

• No data flows in the opposite direction

• Copies of data items are passed from the calling function to

the called function.

• The called function may change the values passed, but the

original values in the calling function remain untouched

250

Fig: Downward Communication

FUNCTIONS

Inter-function Communication

251

252

FUNCTIONS

Inter-function Communication

– Upward flow

• Upward communication occurs when the called function

sends data back to the calling function without receiving any

data from it

252

FUNCTIONS

Inter-function Communication

253

Fig: Upward Communication

254

FUNCTIONS

Inter-function Communication

– Bi-directional flow

• Bi-directional communication occurs when the calling

function sends data down to the called function.

• During or at the end of its processing, the called function

then sends data up to the calling function

254

FUNCTIONS

Inter-function Communication

255

Fig: Bi-directional Communication

256

FUNCTIONS

Standard Functions

– C provides a large set of functions whose definitions have been

written and are ready to be used in user programs.

– To use these functions, we include (#include<math.h> or

#include<stdlib.h>) in programs.

– The function declarations of these functions are grouped

together and collected in several header files.

256

257

FUNCTIONS

Standard Functions

– The header files are included in the program instead of adding

the individual function declarations.

– The include statement causes the header file of the function to

be copied into the program.

– When the program is linked, the object code for the function is

combined with the program code to build the complete

program.

257

258

FUNCTIONS

Standard Functions

258

Fig: Library functions and the linker

259

FUNCTIONS

Standard Functions

– Math Functions

• These are collections of functions for mathematical

calculations. These include

– Absolute value functions – abs – returns the positive

value regardless of sign

int abs (int number);

abs (3)

– Complex Number functions – cabs, creal, cimag

– Ceiling functions – ceil -returns smallest integral value

greater than or equal to a number

float ceil (float number)

ceil (-1.9) returns -1.0

ceil (1.1) returns 2.0

260

FUNCTIONS

Standard Functions

• Math Functions

– Floor functions – floor – returns the largest integral value

that is equal to or less than a number

float floor (float number)

floor (-1.1) returns -2.0

floor (1.9) returns 1.0

– Truncate functions – trunc – returns the integral in the

direction of 0

double trunc (double number)

trunc (-1.1) returns -1.0

trunc (1.9) returns 1.0

261

FUNCTIONS

Standard Functions

– Math Functions

– Floor functions – floor – returns the largest integral value

that is equal to or less than a number

float floor (float number);

floor (-1.1) returns -2.0

floor (1.9) returns 1.0

– Truncate functions – trunc – returns the integral in the

direction of 0

double trunc (double number);

trunc (-1.1) returns -1.0

trunc (1.9) returns 1.0

262

FUNCTIONS

Standard Functions

– Math Functions

– Round functions – round – returns the nearest integral

value

double round (double number);

round (-1.1) returns -1.0

round (1.9) returns 2.0

round (-1.5) returns -2.0

– Power functions – pow – returns the value of the x raised to

the power y. Error occurs if the base(x) is negative and the

exponent (y) is not an integer or if the base is zero and the

exponent is not positive

double power (double n1, double n2);

pow (3.0, 4.0) returns 81.0

263

FUNCTIONS

Standard Functions

– Math Functions

– Square root functions – sqrt – returns the non-negative

square root of a number. Error occurs if the number is

negative.

double sqrt (double n1);

sqrt (25) returns 5.0

264

FUNCTIONS

Standard Functions

• Random numbers

– A random number is a number selected from a set in which

all members have the same probability of being selected.

– C provides two functions to build a random number series

seed random (srand) and random (rand).

– These functions are found in stdlib.h

srand (997)

FUNCTIONS
Standard Functions

265

266

STORAGE CLASSES
• Scope

– Scope determines the region of the program in which a

defined object is visible in the part of the program in

which we can use the object‘s name.

– Scope pertains to any object that can be declared like a

variable or a function declaration.

– A block is zero or more statements enclosed in a set of

braces.

– A block has a declarations section and a statement section.

266

267

• Scope

– Blocks can be nested within the body of a function and

each block will be an independent group of statements

with its own isolated definitions.

– Global area of a program consists of all statements that

are outside functions.

– An objects scope extends from its declaration until the end

of the its block.

– Variables are in scope from their point of declaration until

the end of their block.

267

STORAGE CLASSES

268

STORAGE CLASSES

• Scope ― Example

268

#include<stdio.h>

int fun (int , int); //Global area

int p; //Global variable

int main (void)

{

int x; //main‘s area

float y; //Local variables

{ // beginning of nested block

float a = y /2;

float y; //Nested block area

float z;

….

z = a * b;

….

} // end of nested block

}

int fun (int i, int j)

{

int a;

int y;

//function area

…

} // function block

269

STORAGE CLASSES

• Scope

– Global Scope

• Any object defined in the global are of a program is visible

from its definition until the end of the program.

• The function declaration for fun is a global definition.

• It is visible everywhere in the program.

269

270

STORAGE CLASSES• Scope

– Local Scope

• Variables defined within a block have local scope.

• They exist only from the point of their declaration until the

end of the block in which they are declared

• Outside the block they are invisible

– There are two blocks in main.

– The first block is all of main.

– The second block is nested within main.

– All definitions in main are visible to the second block

unless local variables with an identical name are defined.

– In the inner block a local version of ‗a‘ is defined and its

type is float.
270

271

STORAGE CLASSES

• Storage Class

– The storage class of a variable defines the scope (visibility)

and life time of variables and/or functions declared within

a C Program.

– To fully define a variable it is necessary to define its ‗type‘

and also its ‗storage class‘.

– If we don‘t specify the storage class of a variable in its

declaration, the compiler will assume a storage class

depending on the context in which the variable is used.

Thus, variables have certain default storage classes.

271

272

STORAGE CLASSES

• Storage Class

– A variable name identifies some physical location within

the computer where the string of bits representing the

variable‘s value is stored.

– There are basically two kinds of locations in a computer

where such a value may be kept— Memory and CPU

registers.

– It is the variable‘s storage class that determines in which of

these two locations the value is stored.

272

273

STORAGE CLASSES

• Object Storage Attributes

Storage class specifiers control three attributes of an object‘s

storage.

– Scope

– Extent

– Linkage

273

274

STORAGE CLASSES

• Object Storage Attributes

274

275

STORAGE CLASSES

• Object Storage Attributes

– Scope

• Scope defines the visibility of an object.

• It defines where an object can be referenced.

• Scope can be

― Block Scope

― Global(File) Scope.

275

276

STORAGE CLASSES

• Object Storage Attributes

– Scope

– Block (Local) Scope

» When the scope of an object is block, it is visible only in

the block in which it is defined. This object is called a

local object.

» Example – A variable declared in the formal parameter

list of a function has block scope.

» A variable declared in the initialization section of a for

loop also has a block scope, but only within the for

statement.

276

277

STORAGE CLASSES

• Object Storage Attributes

– Scope

– File (Global) Scope

» File scope includes the entire source file for a program,

including any files included in it.

» An object with file scope has visibility through the whole

source file in which it is declared.

» Objects within block scope are excluded from file scope

unless specifically declared to have file scope i.e. block

scope hides objects from file scope.

» File scope includes all declarations outside a function and

all function headers.

» An object with file scope is referred as Global object. .277

278

STORAGE CLASSES

• Object Storage Attributes

– Extent

• The extent of an object defines the duration for which the

computer allocated memory for it.

• Extent can be

– Automatic extent

– Static Extent

– Dynamic Extent

278

279

STORAGE CLASSES

• Object Storage Attributes

– Extent

– Automatic extent

» An object with automatic extent is created each time its

declaration is encountered and is destroyed each time its

block is exited.

» Example– a variable declared in the body of a loop is created

and destroyed in each iteration.

» Declarations in a function are not destroyed until the

function is complete.

» When a function calls a function, they are out of scope but

not destroyed.

279

280

STORAGE CLASSES

• Object Storage Attributes

– Extent

– Static extent

» A variable with a static extent is created when the program

is loaded for execution and is destroyed when the execution

stops.

– Dynamic extent

» Dynamic extent is created by the program through

malloc() library functions.

280

281

STORAGE CLASSES

• Object Storage Attributes

– Linkage

• When a program is divided into modules, these module are

to be linked for the whole program to function.

• Linkage can be

– Internal

– External

281

282

STORAGE CLASSES

• Object Storage Attributes

– Linkage

– Internal

» An object with internal linkage is declared and visible

only in one module. Other modules cannot refer to this

object.

– External

» An object with an external linkage is declared in one

module but is visible in all other modules that declare it

with a special keyword, extern.

282

283

STORAGE CLASSES

• Types of Storage Classes

There are four storage classes in C:

– Automatic storage class

– Register storage class

– Static storage class

– External storage class

283

FEATURE
STORAGE CLASS

Auto Extern Register Static

Accessibility

Accessible

within the

function or

block in

which it is

declared

Accessible

within all

program files

that are a

part of the

program

Accessible

within the

function or

block in which

it is declared

Local:

Accessible

within the

function or

block in which

it is declared

Global:

Accessible

within the

program in

which it is

declared

Storage
Main

Memory

Main

Memory
CPU Register Main Memory

284

STORAGE CLASSES

Table: Storage Classes Features

FEATURE
STORAGE CLASS

Auto Extern Register Static

Existence

Exists when

the function or

block in which

it is declared is

entered.

Ceases to exist

when the

control returns

from the

function or the

block in which

it was declared

Exists

throughout

the execution

of the

program

Exists when the

function or

block in which

it is declared is

entered. Ceases

to exist when

the control

returns from

the function or

the block in

which it was

declared

Local:

Retains value

between

function calls

or block

entries

Global:

Preserves

value in

program files

Default

value
Garbage Zero Garbage Zero

STORAGE CLASSES

285

Table: Storage Classes Features

286

STORAGE CLASSES

• Automatic Storage Class

Keyword -- auto

Storage − Memory.

Default value − An unpredictable value, which is

often called a garbage value.

Scope − Local to the block in which the

variable is defined.

Life − Till the control remains within the

block in which the variable is

defined.

286

287

STORAGE CLASSES

• Automatic Storage Class

Example:

#include<stdio.h>

void call1();

void call2();

main()

{

int v=10;

call1();

call2();

printf(―\n v=%d‖,v);

}

void call1()

{

int v=20;

printf(―\n v=%d‖,v);

}

void call2()

{

int v=30;

printf(―\n v=%d‖,v);

}

287

288

STORAGE CLASSES

• Register storage class

The features of a variable defined to have an automatic storage

class , declaration includes a recommendation to the compiler to

use a CPU register for the variable:

Keyword -- register

Storage − Register / Memory.

Default initial value − Garbage value.

Scope − Local to the block in which the

variable is defined.

Life − Till the control remains within the

block in which the variable is

defined.

288

289

STORAGE CLASSES

• Register storage class

Example:

#include<stdio.h>

main()

{

register int m=1;

for(;m<=5;m++)

printf(―%d‖,m);

}

289

290

STORAGE CLASSES

• Static storage class (Block scope)

The features of a variable defined to have static storage class
are as under:

Key word -- static

Storage − Memory.

Default value -- only one time initialization ,

if not initialized it will be zero .

Scope − Local to the block in which the

variable is defined.

Life − is created when the program is

loaded for execution and is

destroyed when the execution stops.

290

291

STORAGE CLASSES

• Static storage class

(Block scope)
Example:

#include<stdio.h>

void call1();

void call2();

main()

{

call1();

call2();

call1();

call2();

}

void call1()

{

static int v;

v=v+10;

printf(―\n in

call1()v=%d‖,v);

}

void call2()

{

static int v;

v=v+15;

printf(―\n in call2()

v=%d‖,v);

}
291

292

STORAGE CLASSES

• Static storage class (File scope)

The features of a variable defined to have static storage class
are as under:

Key word -- static

Storage − Memory.

Default value -- only one time initialization ,

if not initialized it will be zero .

Scope − visible to the whole source file in

which the variable is defined.

Life − is created when the program is

loaded for execution and is

destroyed when the execution

stops.
292

293

STORAGE CLASSES

• Static storage class

(File scope)
Example:

#include<stdio.h>

void call1();

void call2();

static int v;

main()

{

call1();

call2();

call1();

call2();

}

void call1()

{

v=v+10;

printf(―\n in call1()v=%d‖,v);

}

void call2()

{

static int v;

v=v+15;

printf(―\n in call2() =%d‖,v);

}

293

294

STORAGE CLASSES
• External storage class

The features of a variable defined to have extern storage class
are as under:

Key word -- extern

Storage − Memory

Default value -- initialized with zero

Scope − visible to the whole source file in which

the variable is defined

Life − is created when the program is loaded

for execution and is destroyed when the

execution stops

294

295

STORAGE CLASSES
• External storage class

Example:

void call1();

void call2();

int v=10;

main()

{

call1();

call2();

printf(―in main() =%d‖,v);

}

void call1()

{

int v=20;

printf(―in call1() =%d‖,v);

}

void call2()

{

extern int v;

printf(―in call2() =%d‖,v);

}

295

RECURSION

• A recursive function is a function that calls itself to solve a

smaller version of its task until a final call is made which does

not require a call to itself.

• Every recursive solution has two major cases, they are:

– Base Case

– Recursive Case

Base case:

• The problem is simple enough to be solved directly without

making any further calls to the same function.

296

RECURSION

Recursive case:

• first, the problem is divided into simpler sub parts.

• Second, the function calls itself but with sub parts of the problem

obtained in the first step.

• Third, the result is obtained by combining the solutions of simpler

sub-parts.

• Therefore, recursion is defining large and complex problems in

terms of a smaller and more easily solvable problem.

• In recursive function, complicated problem is defined in terms of

simpler problems and the simplest problem is given explicitly.

297

RECURSION

Factorial of A Number Using Recursion

• Base case is when n=1, because if n = 1, the result is known to be 1

• Recursive case of the factorial function will call itself but with a

smaller value of n, this case can be given as

factorial(n) = n × factorial (n-1)
298

PROBLEM

5!

= 5 X 4!

= 5 X 4 X 3!

= 5 X 4 X 3 X 2!

= 5 X 4 X 3 X 2 X 1!

SOLUTION

5 X 4 X 3 X 2 X 1!

= 5 X 4 X 3 X 2 X 1

= 5 X 4 X 3 X 2

= 5 X 4 X 6

= 5 X 24

= 120

RECURSION

Factorial of A Number Using Recursion ― Example

#include<stdio.h>

int Fact(int)

{if(n==1)

retrun 1;

return (n * Fact(n-1));

}

main()

{int num;

scanf(―%d‖, &num);

printf(―\n Factorial of %d = %d‖, num, Fact(num));

return 0;

}
299

RECURSION

Factorial of A Number Using Recursion ― Illustration

300

RECURSION
Fibonacci Series Using Recursion

• The Fibonacci series can be given as:

0 1 1 2 3 5 8 13 21 34 55……

• The third term of the series is the sum of the first and second

terms.

• On similar grounds, fourth term is the sum of second and third

terms, so on and so forth.

• Now we will design a recursive solution to find the nth term of the

Fibonacci series. The general formula to do so can be given as

301

1, if n<=2

FIB(n) =

FIB (n - 1) + FIB (n – 2),

otherwise

RECURSION
Fibonacci Series Using Recursion

302

FIB(7)

FIB(5)

FIB(4) FIB(4)

FIB(4) FIB(3) FIB(3) FIB(2) FIB(3) FIB(2) FIB(2) FIB(1)

FIB(3) FIB(2)

FIB(2) FIB(1)

FIB(2) FIB(1) FIB(2) FIB(1)FIB(2) FIB(1)

FIB(3)

FIB(6)

FIB(5)

RECURSION
Fibonacci Series Using Recursion ― Program

int Fibonacci(int num)

{ if(num <= 2)

return 1;

return (Fibonacci (num - 1) + Fibonacci(num – 2));

}

main()

{

int n;

printf(―\n Enter the number of terms in the series : ―);

scanf(―%d‖, &n);

for(i=0;i<n;i++)

printf(―\n Fibonacci (%d) = %d―, i, Fibonacci(i));

} 303

RECURSION

Types Of Recursion

• Any recursive function can be characterized based on:

– whether the function calls itself directly or indirectly

(direct or indirect).

– whether any operation is pending at each recursive call

(tail-recursive or not).

– the structure of the calling pattern (linear or tree-recursive).

Recursion

Direct Indirect Linear Tree Tail
304

RECURSION

Types of Recursion

– Direct Recursion

• A function is said to be directly recursive if it explicitly calls

itself.

• Example

int Func(int n)

{

if(n==0)

retrun n;

return (Func(n-1));

}

305

RECURSION

Types of Recursion

– Indirect Recursion

• A function is said to be indirectly recursive if it contains a call

to another function which ultimately calls it.

• Example

• These two functions are indirectly recursive as they both call

each other.
306

int Func1(int n)

{

if(n==0)

return n;

return Func2(n);

}

int Func2(int x)

{

return Func1(x-1);

}

• Types of Recursion

– Tail Recursion

• A recursive function is said to be tail recursive if no operations

are pending to be performed when the recursive function

returns to its caller.

• That is, when the called function returns, the returned value is

immediately returned from the calling function.

• Tail recursive functions are highly desirable because they are

much more efficient to use as in their case, the amount of

information that has to be stored on the system stack is

independent of the number of recursive calls.

RECURSION

• Types of Recursion

– Tail Recursion

• Example

RECURSION

int Fact(n)

{

return Fact1(n, 1);

}

int Fact1(int n, int res)

{

if (n==1)

return res;

return Fact1(n-1, n*res);

}

RECURSION

• Types of Recursion

– Linear Recursion

• A recursive function is said to be linearly recursive when no

pending operation involves another recursive call to the

function.

• For example, the factorial function is linearly recursive as

the pending operation involves only multiplication to be

performed and does not involve another call to Fact.

int Fact(int)

{ if(n==1)

retrun 1;

return (n * Fact(n-1));

}

RECURSION

• Types of Recursion

– Tree Recursion

• A recursive function is said to be tree recursive (or non-
linearly recursive) if the pending operation makes another
recursive call to the function.

• For example, the Fibonacci function Fib in which the
pending operations recursively calls the Fib function.

int Fibonacci(int num)

{

if(num <= 2)

return 1;

return (Fibonacci (num - 1) +
Fibonacci(num – 2));

}

RECURSION

Pros and Cons of Recursion

Pros:

• Recursive solutions often tend to be shorter and simpler than non-

recursive ones.

• Code is clearer and easier to use

• Recursion represents like the original formula to solve a problem.

• Follows a divide and conquer technique to solve problems

• In some (limited) instances, recursion may be more efficient

311

RECURSION

Pros and Cons of Recursion

Cons:

• Recursion is implemented using system stack. If the stack

space on the system is limited, recursion to a deeper level will

be difficult to implement.

• Aborting a recursive process in midstream is slow and

sometimes nasty.

• Using a recursive function takes more memory and time to

execute as compared to its non-recursive counter part.

• It is difficult to find bugs, particularly when using global

variables

312

RECURSION

Limitations Of Recursion

• Recursive solutions may involve extensive overhead because

they use function calls.

• Each function call requires push of return memory address,

parameters, returned results, etc. and every function return

requires that many pops.

• Each time we make a call we use up some of our memory

allocation. If the recursion is deep that is, if there are many

recursive calls then we may run out of memory.

313

RECURSION
Towers Of Hanoi

• Tower of Hanoi is one of the main applications of a recursion. It says, "if you

can solve n-1 cases, then you can easily solve the nth case?"

A B C B C

If there is only one ring, then move the ring from source to the Destination

A B C A B C
A B C

A B C

If there are two rings, then first move ring 1 to the

spare pole and then move ring 2 from source to the

destination. Finally move ring 1 from the source to the

destination

A

314

RECURSION

Towers Of Hanoi

• Consider the working with three rings.

315

A B C
A B C

A B C

C

A B C A B C A B C

A B C

A B

PRE-PROCESSOR

• There are many steps involved in turning a C program into an

executable program. The first step is called pre-processing.

• The pre-processor performs textual manipulation on the source

code before it is compiled. There are a number of major parts to

this:

1. Deleting comments

2. Inserting the contents of files mentioned in #include directives

3. Defining and substituting symbols from #define directives

4. Deciding which code should be compiled depending on

conditional compiler directives

5. To act on recognized #pragma statements, which are

implementation dependent.

316

PRE-PROCESSOR

Predefined Symbols

_ _DATE_ _ provides a string constant in the form ―mm dd yyyy‖

_ _FILE_ _ provides a string constant containing the name of

the source file.

_ _LINE_ _ provides a string constant containing the current

statement number in the source file.

_ _TIME_ _ provides a string constant in the form hh:mm:ss

_ _STDC_ _ provides a integer constant with value 1 if and only

if the compiler confirms with ISO implementation.

317

PRE-PROCESSOR

Macro Substitution

• Definition:

#define name replacement text

This causes a simple macro substitution, each occurrence of

name is replaced by replacement text.

• Example:

#define XDIM 10

causes all occurrences of XDIM to be replaced by the literal 10.

318

PRE-PROCESSOR

Macro Substitution

• The replacement text spreads over more than one line a forward

slash(\) is used to indicate continuation.

• Example:

#define WHERE_AM_I printf("In file %s at line %d", \

__FILE__,__LINE__)

319

PRE-PROCESSOR

Macro Substitution

• Example

#define TWO_PLUS_J 2+j

Such substitutions should be undertaken with care as there may be

more than one j in scope.

If the following were to appear in the program:

int j=100;

i= TWO_PLUS_J;

After pre-processing, it would be:

int j=100;

i= 2+j;
320

PRE-PROCESSOR

Macro Substitution

• Example

#define TWO_PLUS_J 2+j

Such substitutions should be undertaken with care as there may

be more than one j in scope.

The programmer must realize that the replacement text is used

exactly.

5* TWO_PLUS_J

will after pre-processing be:

5* 2+j

which might not be what the programmer expected?
321

PRE-PROCESSOR

Macros

• A macro allows parameters to be used in substitution text.

• Syntax

#define name(parameters) code

The bracket of the parameter list must be next to the name,

otherwise it will be part of the code substituted.

• Example

#define SQUARE(x) x*x

x= SQUARE(5); → x= 5*5;

y= SQUARE(x); → y= x*x;

z= SQUARE(2.5); → z= 2.5*2.5;

10+SQUARE(5); → 10+5*5 322

PRE-PROCESSOR

Conditional Compilation

• Conditional compilation provides a way where by code can be

selectively included into the compilation - depending on values

available at pre-processing.

• Syntax:

#if constant expression

…..

statements

......

#endif

323

PRE-PROCESSOR

Conditional Compilation:

― The pre-processor evaluates the constant expression if it is

zero (false) the statements are deleted from the code passed to

the compiler, if the constant expression is non-zero (true) the

statements are passed to the compiler.

― The constant expression is made up of literals and variables

that have been defined using a #define.

― It is illegal to use anything where the value will not be known

until execution time, as the compiler is unable to predict the

values.

324

PRE-PROCESSOR

Conditional Compilation

• A simple example is to bracket the code used for debugging in

the following manner:

#if DEBUG

printf("At line %d: a=%d, b=%d\n",__LINE__,a,b);

#endif

• Therefore, the listing may contain many instances of this

conditional inclusion, protecting the printing of interesting

variables.

325

PRE-PROCESSOR

Conditional Compilation

― If the following is present:

#define DEBUG 1

then at compile time, all the debugging print statements will

be included in the object code produced.

― Whereas if the definition is:

#define DEBUG 0

none of the debug statements will be included in the object

code generated.

326

PRE-PROCESSOR

Conditional Compilation

• Conditional compilation is also useful if developing a software

product that has different functionality depending on whether

the user has purchased the full version, the economy version or

is trying a cover disc sample.

• A single set of code can exist for all versions. Where there is

functionality, that is available, differs between versions then

the code can be delimited within a conditional inclusion.

• This can be achieved using this enumeration and definition.

327

PRE-PROCESSOR

Conditional Compilation

• Example

enum VERSION {FULL, ECONOMY, SAMPLE};

#define VERSION FULL

in conjunction with conditional compilations of the following

sort:

#if (VERSION == FULL) \\statements for full implementation

#elif(VERSION == ECONOMY) \\statements for economy

implementation

#else \\statements for sample implementation

#endif

328

PRE-PROCESSOR

Conditional Definitions

• The #ifdef command conditionally includes code if a symbol is

defined.

• If the symbol is not defined, the code is not included.

• The opposite command is #ifndef which includes code only if the

symbol is not defined.

• For example, if the program includes a library file that, in some

implementations, does not define a symbol.

329

PRE-PROCESSOR

Conditional Definitions

• MAXLINES, then the program may have a fragment like this:

1: #include <somelib.h>

2: #ifndef MAXLINES

3: #define MAXLINES 100

4: #endif

– Line 1 includes the library, which may vary between machines.

– Line 2 checks if MAXLINES is already defined. If it isn't

defined then Line 3 defines it.

– Line 4 is the end of the conditional definition.

330

PRE-PROCESSOR

Conditional Definitions

• This is necessary as it is not possible to define the same

symbol twice.

• An alternative would be to undefined the symbol and then

redefine it, for example:

#undef MAXCHARS

#define MAXCHARS 60

331

PRE-PROCESSOR

Pragma

• The #pragma command is a mechanism that supports

implementation dependent directives.

• An environment may provide pragma to allow special options.

Where a pragma is not recognized, it is ignored.

• Program with pragma will run on different machines.

• The actions of the pragma may not be the same across

machines, so the program is not truly portable.

• Pragma is used in a number of ways by C++ Builder.

332

PRE-PROCESSOR

Pragma

• Example:

when generating forms, the corresponding unit will contain code

like:

#pragma resource "*.dfm"

This is equivalent to: {$R *.DFM}

Error command

The error command is of the form # error message

It is used to print the message detected by the preprocessor.

333

Pointer

• A pointer is a constant or variable that contains an address that can be used to

access data.

(or)

A pointer is a variable that contains the memory location of another variable.

• Pointers deals with memory address, it can be used to access and manipulate

data stored in memory.

‗*‘ And ‗&‘ Operators

• When is * used?

*‖dereferencing operator‖ which provides the contents in the memory

location specified by a pointer.

• when is & used?

&‖address operator‖ which gives or produces the memory address of a data

variable.

• verify the following declaration

int x=10;

• In the above statement the c compiler reserve the memory space for the integer

value

Use of & and *

Name this memory location as x.

Store the value 10 at the location 65325.

Use of & and *

• When we declared an integer variable x and assigned value 10

then compiler occupied a 2 byte memory space at memory

address 65325 and stored value 10 at that location.

• Compiler named this address x so that we can use x instead of

65325 in our program

address of variable example
Line 1: #include<stdio.h>
Line 2: #include<conio.h>
Line 3: void main()
Line 4: {
Line 5: int i=9;
Line 6: clrscr();
Line 7: printf("Value of i : %d\n",i);
Line 8: printf("Address of i : %u",&i);
Line 9: getch();
Line 10: }

Use of & and *

• This is a very simple c program which prints value and address of an integer.

• But did you notice line no. 8 in above program?

• This line output the address of i variable and to get address of i variable we

have used ampersand (&) operator.

• This operator is known as "Address of" operator and we already used this

operator many times in our program, just recall scanf statement which is used

to accept input from computer keyboard.

• So when we use ampersand operator (&i) before any variable then we are

instructing c compiler to return its address instead of value.

• Another operator is "*" called "Value at address" operator. It is the same

operator which we use for multiplication of numbers.

Use of & and *

• As the name suggest, "value at address" operator returns value stored at

particular address.

• The "value at address" operator also called indirection operator.

• Following example extends above C program and puts "value at address"

operator in action.

Value at address (*) example:
#include<stdio.h>
#include<conio.h>
void main()
{

int i=9;
clrscr();
printf("Value of i : %d\n",i);
printf("Address of i : %u\n",&i);
printf("Value at address of i : %d",*(&i));
getch();

}

Benefits of using Pointer in C Program
• Pointer is one of the most exciting features of C language and it has added

power and flexibility to the language.

• Pointer is in C language because it offers following benefits to the

programmers:

1.Pointers can handle arrays and data table efficiently.

2.Pointers support dynamic memory management.

3.Pointer helps to return multiple values from a function through function

argument.

4.Pointer increases program execution speed.

5.Pointer is an efficient tool for manipulating structures, linked lists, queues

stacks etc

Pointer Declaration

Example on how we can use pointer in our C program.

Syntax: datatype *pointer_name;

Example : int *iPtr; float *fPtr;

float *fPtr;

Pointers for inter function communication

There are two ways to be discussed with pointers, for inter function

communication among pointers.

1. call by value

2. call by reference

Call By Value:

In this mechanism a variable is declared and defined in the called function for

each value to the called function.

It means it is one –way communication.

The calling function can send data to the called function, ut the called

function cannot send data to the calling function.

Explanation:

• In the above program, two data items are passed from main to the down

function.

• One data value is a literal, the other is the value of a variable.

• Downward communication or the call by value is the one way communication.

Call by reference:

• This method is also called as pass by reference or upward communication.

• Here in this method instead of passing the values of the variables to the called

• Function.

• We pass their addresses so that the called function can change the values stored

• In the calling routine.

• This is known as ―call by reference‖ since we are referencing the variables.

344Fig : An Unworkable Exchange

345

Fig: Exchange Using Pointers

Pointers to Pointers
Pointers to pointers is using of pointers that point to other pointers

Fig: Pointers to Pointers

347

Fig: Using Pointers to Pointers

Explanation:

• Each level of pointer indirection requires a separate indirection operator when

it is dereference.

• In the above example, to refer to variable a using the pointer p, we have to

dereference it once. i.e.*p.

• To refer to variable a using the pointer q, we have to dereference it twice to

get the integer a because

• There are two levels of indirection (pointers) invoked. i.e.**q.

Compatibility:

• Pointer have a type associate with it.

• They are not just pointer types but rather are pointers to a specific type

• Such as character.

• Each pointer therefore takes on the attributes of the type to which it refers

• in addition to its own attributes.

Types Of Compatibility:

• Pointer Size Compatibility.

• Déréférence Type Compatibility.

• Dereference Level Compatibility.

Pointer size compatibility:
The size of all pointers is same.

Every pointer holds the address of one memory location in the computer.

Size of the variable that the pointer references can be different.

Trace the following example:

int a;

int *p;

printf(―%d‖,sizeof(a));

printf(―%d‖,sizeof(p));

printf(―%d‖,sizeof(*p));

Dereference type compatibility:
• The dereference type compatibility is the type of the variable that the pointer

is referencing.

• In C, we can‘t use the assignment operator with pointers to different types;

• If we try to, we get a compile error.

• We cannot assign one type of pointer to another type of pointer.

• A pointer to a char is only compatible with a pointer to a char

• And a pointer to an int is only compatible with a pointer to an int.

• We cannot assign a pointer to a char to a pointer to an int.

Construct an example in which we have two variables:

one int and one char

We also define one pointer to char and one pointer to int as shown in the below

Figure.

char c;
char* pc;

int a;
int * pa;

pc=&c; //are valid
pa=&a; //are valid

type: pointer to char

123450

pc c

type: pointer to int

234560

pa a

123450 z

58234560

pc=&a; //error: different types

pa=&a; //error: different levels

The first pair of assignments are valid, we store the address of a

character variable in a pointer to character variable.

In the second assignment, we store the address of an integer(int)

variable in a pointer to an integer(int) variable.

There is an error in the third assignment because we try to store

the address of a character variable into a pointer variable whose

type is pointer to pointer to integer(int).

We also get an error in the fourth assignment.

Dereference level compatibility

Compatibility also includes dereference level compatibility.

For example, a pointer to int is not compatible with a pointer-to-

pointer to int.

The pointer to int has a reference type of int, while a pointer-to-

pointer to int has a reference type of pointer to int.

• The following figure shows two pointers declared at different levels.

The pointer pa is a pointer to int;

•

The pointer ppa is a pointer-to-pointer to int.

ppa pa a

•
int a; //type int

•
int b; //type int

•
int* pa; //type pointer to int

•
int** ppa;// type pointer to pointer to int

pa=&a;//valid : same level

•
ppa=&pa; //valid : same level

•
b=**pa; //valid : same level

pa=&a;//invalid: different level

•
ppa=pa ;//invalid: different level

•
b=*ppa; //invalid: different level

Pointer to void

The exception to the reference type compatibility rule is the pointer to void.

A pointer to void is a generic type that is not associated with a reference type;

that is, it is not the address of a character , an integer, a real, or any other type.

One restriction, void pointer has no object type, it cannot be dereferenced

unless it is cast.

The following declaration shows how we can declare a variable of pointer to

void type.

void* pvoid;

It is important to understand the difference between a null pointer and a

variable pointer to void.

A null pointer is a pointer of any type that is assigned the constant NULL.

The reference type of the pointer will not change with the null assignment.

A variable of pointer to void is a pointer with no reference type that can store only

the address of any variable.

The following example shows the difference

void* pvoid; //pointer to void type

int* pint=NULL; //NULL pointer of type int

char* pchar=NULL; //NULL pointer of type char

A void pointer cannot be dereferenced.

• Casting pointers

•
The problem of type incompatibility can be solved by using casting.

•

For example, if we need to use the char pointer, pc in the previous example, to

point to an int(a), we could cast it as shown below

•

int* pc;

•

pc=(char*)&a;

• Lvalue and rvalue

• Every expression has a value.

• The value of the expression after evaluation can be used in two

ways:

(i) lvalue

(ii) rvalue

• Lvalue: It is used whenever the object is receiving a value, it is

being modified.

• Rvalue: it is used to supply a value for further use.

• What does=(equal to) really mean?

int f(void)

{

int s=1;

int t=1;

t=s;

t=2;

• }

• Left side of = is an ―lvalue‖

• it evaluates to a location(address)!

• Right side of= is an ―rvalue‖

• it evaluates to a value

• There is an implicit * when a variable is used as an rvalue!

Arrays and Pointers

• The name of an array is a pointer constant to the first element.

• Because the array‘s name is a pointer constant, its value cannot be changed.

• Since the array name is a pointer constant to the first element,

• the address of the first element and the name of the array both represent the

same location in memory.

FIGURE Pointers to Arrays

Pointers to Arrays

same
a &a[0]

• a is a pointer only to the first element—not the whole array.

The name of an array is a pointer constant; it cannot be used as an lvalue.

Pointers to Arrays

Dereference of Array Name

Dereference of Array Name

Array Names as Pointers

Array Names as Pointers

Multiple Array Pointers

Multiple Array Pointers

To access an array, any pointer to the first element can be used instead of the name

of the array.

Pointer Arithmetic and Arrays

• Given pointer, p, p ± n is a pointer to the value n elements away.

Pointer Arithmetic

a + n * (sizeof (one element))

a + n

Pointer Arithmetic

Pointer Arithmetic and Different Types

Dereferencing Array Pointers

Dereferencing Array Pointers

The following expressions are identical.*(a + n) and a[n]

Arithmetic Operations on Pointers

Pointers and Relational Operators

FIGURE (Part I) Find Smallest

FIGURE (Part II) Find Smallest

375

Pointers And Two-dimensional Arrays

POINTERS AND TWO DIMENSIONAL ARRAY

• Individual elements of the array mat can be accessed using

either: mat[i][j] or *(*(mat + i) + j) or*(mat[i]+j);

• See pointer to a one dimensional array can be declared as,

int arr[]={1,2,3,4,5};

int *parr;

parr=arr;

• Similarly, pointer to a two dimensional array can be declared as,

int arr[2][2]={{1,2},{3,4}};

int (*parr)[2];

parr=arr;

• Look at the code given below which illustrates the use of a

pointer to a two dimensional array.

• #include<stdio.h>

main()

{ int arr[2][2]={{1,2}.{3,4}};

int i, (*parr)[2];

parr=arr;

for(i=0;i<2;i++)

{ for(j=0;j<2;j++)

printf(" %d", (*(parr+i))[j]);

}

}

OUTPUT

1 2 3 4

Passing an Array to a Function

• The name of an array is actually a pointer to the first element, we

can send the array name to a function for processing.

• When we pass the array, we do not use the address operator.

• Remember, the array name is a pointer constant, so the name is

already the address of the first element in the array.

FIGURE Variables for Multiply Array Elements By 2

Memory Allocation Functions

C gives us two choices when we want to reserve memory locations

for an object: static allocation and dynamic allocation.

static memory allocation:

It requires that the declaration and definition of memory be fully

specified in the source program.

The number of bytes reserved cannot be changed during runtime.

Dynamic memory allocation:

It uses predefined function to allocate and release memory for

data while the program is running.

It effectively postpones the data definition, but not the data

declaration, to run time.

FIGURE Accessing Dynamic Memory

MEMORY USAGE
We can refer to memory allocated in the heap only through a

pointer.

Dynamic memory allocation has no identifier associated with it; it

has only an address that must be used to access it.

To access data in dynamic memory, therefore, we must use a

pointer.

FIGURE A Conceptual View of Memory

Memory management functions
There are four memory management functions used with dynamic

memory.

They are:

(i)malloc()

(ii)calloc()

(iii)realloc()

(iv)free()

Malloc(): Block memory allocation is Malloc function.

The Malloc function allocates a block of memory that contains the

number of bytes specified in its parameter.

It returns a void pointer to the first byte of the allocated memory.

The allocated memory is not initialized.

FIGURE malloc

The malloc function declaration is as shown below.

Void* malloc(size_t size);

the type, size_t, is defined in several header files including stdio.h.

The processed data finds a place in a heap rather than stack.

The contents of the heap should be free immediately after operation.

For example:

void* malloc(size_t size);

main()

{

int *p;

p=(int*)malloc(sizeof(int));

*p=60;

printf(―*p=%d‖,*p);

printf(―*p=%u‖,p);

printf(―*p=%u‖,&p);

free(p);

}

calloc(): It is contiguous memory allocation function.

It is primarily used to allocate memory for arrays.

• It differs from malloc only in that it sets memory to null characters.

The calloc function declaration is shown below.

void *calloc(size_t element_count,size_t element_size);

• The result is the same for both malloc() and calloc() when overflow

occurs and when a zero size is given.

• Realloc(): realloc is the reallocation of memory .

The operation of realloc() is as shown below:

void *realloc(void* ptr,size_t,newsize);

realloc() is highly inefficient.

It changes the size of the block by deleting or extending the memory

at the end of the block.

• If the memory cannot be extended because of other allocations,

realloc() allocates a completely new block, copies the existing

memory allocation to the new allocation, and deletes the old

allocation.

• For example:

ptr=realloc(ptr,15*sizeof(int));

Free():

it is used for releasing memory.

It is an error:

(1)To free memory with a NULL pointer.

(2)A pointer to other than the first element of an allocated block.

(3)A pointer that is different type than the pointer that allocated the

memory.

(4)Referring to a memory after releasing it, which is a logical error.

void free(void* ptr);

Releasing memory doesn't change the value in a pointer.

It still contains the address in a heap.

Immediately after freeing the memory, the pointer should be cleared

by setting it to NULL.

The pointer used to free memory must be of the same type as a pointer

used to allocate the memory.

• Array of pointers
Array name itself is an address or pointer.

• Name of an array indicates the address of the first cell.

• The address of the first byte is often known as base address.

Arrays are stored in contiguous memory location.

• This structure is especially helpful when the number of elements in

the array is variable.

Syntax declaration:

<type> *variable_name[size];

•

Example:

int *pa[5];

Here, pa is a 5 element array of pointers to integer quantities.

FIGURE A Ragged Array

• include<stdio.h>

#include<conio.h>

void main()

{

double a,b,c;

double *pa[5];

clrscr();

a=2.3;

b=6.7;

c=1.3;

pa[0]=&a;

pa[1]=&b;

pa[2]=&c;

printf(―\n a=%lf‖,a);

printf(―\n b=%lf‖,b);

printf(―\n c=%lf‖,c);

getch();

}

PROGRAMMING APPLICATIONS
pointers can be used with:

(i)arrays

(ii)functions

(iii)pointers

(iv)structures

(v)dynamic memory allocation

POINTER TO VOID

• The exception to the reference type compatibility rule is the pointer to

void

• A pointer to void is a generic type that is not associated with a

reference type; that is, it is not the address of a character , an integer, a

real, or any other type

• One restriction, void pointer has no object type, it cannot be

dereferenced unless it is cast.

• The following declaration shows how we can declare a variable of

pointer to void type.

void* pvoid;

It is important to understand the difference between a null pointer and

a variable pointer to void.

• A null pointer is a pointer of any type that is assigned the constant

NULL.

The reference type of the pointer will not change with the null

assignment.

A variable of pointer to void is a pointer with no reference type that

can store only the address of any variable.

• The following example shows the difference

void* pvoid; //pointer to void type

int* pint=NULL; //NULL pointer of type int

char* pchar=NULL; //NULL pointer of type char

A void pointer cannot be dereference.

UNIT-4
Structures and Unions

398

A structure is a collection of related elements, possibly of different

types, having a single name.

Syntax:

struct tag_name

{

data type var_name1;

data type var_name2;

data type var_name3;

};

Definition

399

Example:

struct student

{

int id;

char name[10];

float gradepoint;

};

•struct introduces the definition for structure student

•student is the structure name and is used to declare variables of the structure type

•student contains three members of different types id ,name,gradepoint

Structures

400

Elements in a structure can be of the same or different types. However, all

elements in the structure

should be logically related.

Note

Structures

401

FIGURE Tagged Structure Format

Structures

402

Structures

Initializing a Structure

Example:

struct student

{

int mark;

char name[10];

float average;

} struct student report;

struct student report = {100, “Mani”, 99.5};

403

Accessing structures

Structures

•Dot operator is used to access members of a structure.

Example

struct student

{

int mark;

char name[10];

float average;

} struct student report;

struct student report = {100, “Mani”, 99.5};

report.mark

report.name

report.average

404

FIGURE Structure Direct Selection Operator

Structures

405

Example

#include <stdio.h>

#include <string.h>

struct student

{ int id;

char name[20];

float percentage;

} record;

int main()

{ record.id=1;

strcpy(record.name, "Raju");

record.percentage = 86.5;

printf(" Id is: %d \n", record.id);

printf(" Name is: %s \n", record.name);

printf(" Percentage is: %f \n", record.percentage);

return 0;

}

Structures

406

PROGRAM 12-2 Multiply Fractions

407

Operations on Structures

Structures

•Assigning a structure to a structure of the same type

•Taking the address (&) of a structure

•Accessing the members of a structure

•Using the sizeof operator to determine the size of a structure

408

Structures
Nested structures

• Nested structure in C is nothing but structure within structure.

• One structure can be declared inside other structure as we declare structure

members inside a structure.

•The structure variables can be a normal structure variable or a pointer variable to

access the data.

1.Structure within structure in C using normal variable

……

2.Structure within structure in C using pointer variable

409

#include <stdio.h>

#include <string.h>

struct student_college_detail

{

int college_id;

char college_name[50];

};

struct student_detail

{

int id;

char name[20];

float percentage;

// structure within structure

struct student_college_detail clg_data;

}stu_data;

410

int main()

{

struct student_detail stu_data = {1, "Raju", 90.5, 71145,

"Anna University"};

printf(" Id is: %d \n", stu_data.id);

printf(" Name is: %s \n", stu_data.name);

printf(" Percentage is: %f \n\n", stu_data.percentage);

printf(" College Id is: %d \n", stu_data.clg_data.college_id);

printf(" College Name is: %s \n", stu_data.clg_data.college_name);

return 0;

}

411

Structures
Pointers in a structures

• Structure may contain the pointer variable as member

•Pointer are used to store address of memory location

•They can be derefenced by the „*‟ operator

412

FIGURE Pointers in Structures

Structures
Pointers in a structures

413

Structures

•Structures and functions

•Structure can be passed to a function as a parameter

•Functions can also have a structure as return type

414

FIGURE Passing Structure Members to Functions

Structures

•Structures and functions

415

PROGRAM 12-5 Passing and Returning Structures

416

PROGRAM 12-5 Passing and Returning Structures

417

PROGRAM 12-5 Passing and Returning Structures

418

PROGRAM 12-5 Passing and Returning Structures

419

PROGRAM Passing and Returning Structures

420
FIGURE Passing Structures Through Pointers

•Structures and functions

Structures

421

(*pointerName).fieldName pointerName->fieldName.

Note

Structures

Pointer s to structures

Dot(.) operator is used to access the data using normal structure variable and

arrow (->) is used to access the data using pointer variable.

422

struct student *report, rep;

struct student rep = {100, “Mani”, 99.5};

report = &rep;

report -> mark

report -> name

report -> average

Pointer s to structures

Structures

Example:

struct student

{

int mark;

char name[10];

float average;

};

423

FIGURE Interpretation of Invalid Pointer Use

424

#include <stdio.h>

#include <string.h>

struct student

{

int id;

char name[30];

float percentage;

};

int main()

{int i;

struct student record1 = {1, "Raju", 90.5};

struct student *ptr;

ptr = &record1;

printf("Records of STUDENT1: \n");

printf(" Id is: %d \n", ptr->id);

printf(" Name is: %s \n", ptr->name);

printf(" Percentage is: %f \n\n", ptr->percentage);

return 0;

}

425

PROGRAM Clock Simulation with Pointers

426

PROGRAM Clock Simulation with Pointers

427

PROGRAM Clock Simulation with Pointers

Complex Structures

 Nested Structures

 Self referential structures

 A structure may have

 Data variables

 Internal structures/unions

 Pointer links

 Function pointers

Self-Referential Structures

• Self-referential structures contain a pointer member that points
to a structure of the same structure type.

Example:

struct node {
int data;
struct node *nextPtr;

}

• nextPtr

– is a pointer member that points to a structure of the same
type as the one being declared.

– is referred to as a link. Links can tie one node to another
node.

• Self-referential structures can be linked together to form useful
data structures such as lists, queues, stacks and trees.

429

Structures

430

Unions

Definition:

The union is a construct that allows memory to be shared by different

types of data. This redefinition can be as simple as redeclaring an integer as

four characters or as complex as redeclaring an entire structure.

Syntax:

union tag_name

{

data type var_name1;

data type var_name2;

data type var_name3;

};

431

FIGURE A Name Union

Unions

432

PROGRAM 12-7 Demonstrate Effect of Union

433

• The variables defined with a predefined width are called bit fields.

• A bit field can hold more than a single bit.

• for example if you need a variable to store a value from 0 to 7

only then you can define a bit field with a width of 3 bits .

Bit Field

Bit Field Declaration

the declaration of a bit-field has the form inside a structure:

struct

{

type [member_name] : width ;

};

434

Below the description of variable elements of a bit field:

Elements Description

type An integer type that determines how the bit-field's value is
interpreted. The type may be int, signed int, unsigned int.

member_nam
e

The name of the bit-field.

width The number of bits in the bit-field. The width must be less than or
equal to the bit width of the specified type.

Bit Field

Bitfiled.txt

435

 Type Definition (typedef)

A type definition, typedef, gives a name to a data type by creating a

new type that can then be used anywhere a type is permitted.

Structures

436

Enumerated Types

The enumerated type is a user-defined type based on the standard integer

type. In an enumerated type, each integer value is given an identifier called an

enumeration constant.

Structures

Syntax:

enum identifier {value1, value2,.... Value n};

•enum is Enumerated Data Type .

enum is user defined data type

•In the above example “identifier” is nothing but the user defined data type .

•Value1,Value2,Value3….. etc creates one set of enum values.

•Using “identifier” we are creating our variables

Enum.txt

Memory Allocation Functions

C gives us two choices when we want to reserve memory locations for

an object: static allocation and dynamic allocation.

static memory allocation:

It requires that the declaration and definition of memory be fully

specified in the source program.

The number of bytes reserved cannot be changed during runtime.

Dynamic memory allocation:

It uses predefined function to allocate and release memory for data

while the program is running.

It effectively postpones the data definition, but not the data

declaration, to run time.

MEMORY USAGE
We can refer to memory allocated in the heap only through a pointer.

Dynamic memory allocation has no identifier associated with it; it has

only an address that must be used to access it.

To access data in dynamic memory, therefore, we must use a pointer.

Memory management functions
There are four memory management functions used with dynamic

memory.

They are:

(i)malloc()

(ii)calloc()

(iii)realloc()

(iv)free()

Malloc(): Block memory allocation is Malloc function.

The Malloc function allocates a block of memory that contains the

number of bytes specified in its parameter.

It returns a void pointer to the first byte of the allocated memory.

The allocated memory is not initialized.

The malloc function declaration is as shown below.

Void* malloc(size_t size);

the type, size_t, is defined in several header files including stdio.h.

The processed data finds a place in a heap rather than stack.

The contents of the heap should be free immediately after operation.

For example:

void* malloc(size_t size);

main()

{

int *p;

p=(int*)malloc(sizeof(int));

*p=60;

printf(―*p=%d‖,*p);

printf(―*p=%u‖,p);

printf(―*p=%u‖,&p);

free(p);

}

calloc(): It is contiguous memory allocation function.

It is primarily used to allocate memory for arrays.

• It differs from malloc only in that it sets memory to null characters.

The calloc function declaration is shown below.

void *calloc(size_t element_count,size_t element_size);

• The result is the same for both malloc() and calloc() when overflow

occurs and when a zero size is given.

• Realloc(): realloc is the reallocation of memory .

The operation of realloc() is as shown below:

void *realloc(void* ptr,size_t,newsize);

realloc() is highly inefficient.

It changes the size of the block by deleting or extending the memory

at the end of the block.

• If the memory cannot be extended because of other allocations,

realloc() allocates a completely new block, copies the existing

memory allocation to the new allocation, and deletes the old

allocation.

• For example:

ptr=realloc(ptr,15*sizeof(int));

Free():

it is used for releasing memory.

It is an error:

(1)To free memory with a NULL pointer.

(2)A pointer to other than the first element of an allocated block.

(3)A pointer that is different type than the pointer that allocated the

memory.

(4)Referring to a memory after releasing it, which is a logical error.

void free(void* ptr);

Releasing memory doesn't change the value in a pointer.

It still contains the address in a heap.

Immediately after freeing the memory, the pointer should be cleared

by setting it to NULL.

The pointer used to free memory must be of the same type as a pointer

used to allocate the memory.

UNIT-5
FILES

File:

A file represents a sequence of bytes on the
disk where a group of related data is stored.
File is created for permanent storage of data.
It is a ready made structure.

File I/O Streams in C Programming Language :

• In C all input and output is done with streams

• Stream is nothing but the sequence of bytes of data

• A sequence of bytes flowing into program is called input
stream

• A sequence of bytes flowing out of the program is called
output stream

• Use of Stream make I/O machine independent.

Basic File Operations

• Creating a new file

• Opening an existing file

• Reading from and writing information to a file

• Closing a file

CREATING A FILE

• Working with file

• While working with file, you need to declare a
pointer of type file. This declaration is needed
for communication between file and program.

• FILE *ptr;

Opening a file

• Opening a file is performed using library
function fopen(). The syntax for opening a file
in standard I/O is:

• ptr=fopen("fileopen","mode") For Example:
fopen("E:\\cprogram\program.txt","w");

Closing a File

• The file should be closed after reading/writing
of a file. Closing a file is performed using
library function fclose().

• fclose(ptr); //ptr is the file pointer associated
with file to be closed.

Reading and writing of a binary file.

• Functions fread() and fwrite() are used for reading from and
writing to a file on the disk respectively in case of binary files.

• Function fwrite() takes four arguments, address of data to be
written in disk, size of data to be written in disk, number of
such type of data and pointer to the file where you want to
write.

• fwrite(address_data,size_data,numbers_data,pointer_to_file);

File Types

• 1) Ordinary Files or Simple File

• 2) Directory files

• 3) Special Files

• 4) FIFO Files:

FILE OPENING MODES

FILE INPUT AND OUTPUT
FUNCTIONS

FILE STATUS FUNCTIONS

• stat, fstat, lstat - get file status

• These functions return information about a file. No
permissions are required on the file itself, but-in the case of
stat() and lstat() - execute (search) permission is required on
all of the directories in path that lead to the file.

• stat() stats the file pointed to by path and fills in buf.

• lstat() is identical to stat(), except that if path is a symbolic
link, then the link itself is stat-ed, not the file that it refers to.

• fstat() is identical to stat(), except that the file to be stat-ed is
specified by the file descriptor fd.

FILE POSITIONING FUNCTIONS

• The C library function int fseek(FILE *stream, long int offset, int whence) sets the
file position of the stream to the given offset.

• Declaration

• Following is the declaration for fseek() function.

• int fseek(FILE *stream, long int offset, int whence) Parameters

• stream − This is the pointer to a FILE object that identifies the stream.

• offset − This is the number of bytes to offset from whence.

• whence − This is the position from where offset is added. It is specified by one of
the following constants −

• Constant Description SEEK_SET Beginning of file SEEK_CUR Current position of the
file pointer SEEK_END End of file

Command Line Argument

• Command line argument is a parameter supplied to the
program when it is invoked. Command line argument is an
important concept in C programming. It is mostly used when
you need to control your program from outside. command
line arguments are passed to main() method.

• Syntax :

• int main(int argc, char *argv[]) Here argc counts the number
of arguments on the command line and argv[] is a pointer
array which holds pointers of type char which points to the
arguments passed to the program.

