

COMPUTER ORGANIZATION
AND

OPERATING SYSTEMS
BY

Ms. A Swapna

Assistant Professor

Ms. A Lakshmi
Assistant Professor

Mr.Ch.Srikanth

 Assistant Professor

 Mr.P.Sunil Kumar
 Assistant Professor

UNIT-1

Computer Types

Functional Units

Basic Operational Concept

Bus Structures

Software

Performance

Multi processors and Multi Computers

Data Representation

Types of computers

Analog computer

Analog computer measures and answer the questions by the
method of “HOW MUCH”. The input data is not a number
infect a physical quantity like tem, pressure, speed, velocity.

• Signals are continuous of (0 to 10 V)

• Accuracy 1% Approximately

• High speed

• Output is continuous

• Time is wasted in transmission time

Digital Computers

Digital computer counts and answer the questions by the
method of “HOW Many”. The input data is represented by a
number. These are used for the logical and arithmetic
operations.

• Signals are two level of (0 V or 5 V)

• Accuracy unlimited

• low speed sequential as well as parallel processing

• Output is continuous but obtain when computation is

completed.

•

Micro Computer

Micro computer are the smallest computer
system. There size range from calculator to
desktop size. Its CPU is microprocessor. It also
known as Grand child Computer.

• Application : - personal computer, Multi user
system, offices.

Mini Computer

These are also small general purpose system.
They are generally more powerful and most
useful as compared to micro computer. Mini
computer are also known as mid range
computer or Child computer.

• Application :- Departmental systems, Network
Servers, work group system.

Main Frame Computer

Mainframe computers are those computers
that offer faster processing and grater storage
area. The word “main frame” comes from the
metal frames. It is also known as Father
computer.

• Application – Host computer, Central data
base server.

Super Computer

• Super computer are those computer which are
designed for scientific job like whether forecasting
and artificial intelligence etc. They are fastest and
expensive. A super computer contains a number of
CPU which operate in parallel to make it faster. It
also known as grand father computer.

• Application – whether forecasting, weapons research
and development.

Classification of Digital computer

• Desktop

• Workstation

• Notebook

• Tablet PC

• Handheld computer

• Smart Phone

FUNCTIONAL UNITS OF COMPUTER

• Input Unit
• Output Unit
• Central processing Unit (ALU and Control

Units)
• Memory
• Bus Structure

The Big Picture

Since 1946 all computers have had 5 components!!!

Control

ALU

Processor

Memory

Input

Output

Data =

Function

• ALL computer functions are:

– Data PROCESSING

– Data STORAGE
Information

– Data MOVEMENT

– CONTROL

• NOTHING ELSE!

Coordinates How
Information is Used

INPUT UNIT:

•Converts the external world data to a binary format, which can be
understood by CPU.

•Eg: Keyboard, Mouse, Joystick etc

OUTPUT UNIT:

•Converts the binary format data to a format that a common man can
understand.

•Eg: Monitor, Printer, LCD, LED etc

Central Processing Unit

• The “brain” of the machine

• Responsible for carrying out computational task

• Contains ALU, CU, Registers

• ALU Performs Arithmetic and logical operations

• CU Provides control signals in accordance with some
timings which in turn controls the execution process

•Register Stores data and result and speeds up the operation

Example
Add R1, R2

T1 Enable R1

T2
Enable R2

T3
Enable ALU for addition operation

T4

Enable ALU for addition operation

T1

T2

R1 R2

R2

•Control unit works
with a reference signal
called processor clock

•Processor divides the
operations into basic
steps

•Each basic step is
executed in one clock
cycle

MEMORY

• Stores data, results, programs
• Two class of storage

Primary (ii) Secondary
• Two types are RAM or R/W memory and ROM read

only memory
• ROM is used to store data and program which is not

going to change.
• Secondary storage is used for bulk storage or mass

storage

Basic Operational Concepts

Basic Function of Computer

• To Execute a given task as per the appropriate program

• Program consists of list of instructions stored in
memory

Interconnection between Processor and
Memory

Registers

Registers are fast stand-alone storage locations that hold data
temporarily. Multiple registers are needed to facilitate the operation of
the CPU. Some of these registers are

 Two registers-MAR (Memory Address Register) and MDR
(Memory Data Register) : To handle the data transfer
between main memory and processor. MAR-Holds addresses,
MDR-Holds data

 Instruction register (IR) : Hold the Instructions that is
currently being executed

 Program counter: Points to the next instructions that is to
be fetched from memory

• (PC) the contents of PC transferred to MAR)

• (MAR) (Address bus) Select a particular
memory location

• Issues RD control signals

• Reads instruction present in memory and

loaded into MDR

• Will be placed in IR (Contents transferred from
MDR to IR)

•Instruction present in IR will be decoded by which
processor understand what operation it has to perform.

•Increments the contents of PC by 1, so that it points to the
next instruction address.

•If data required for operation is available in register, it
performs the operation.

•If data is present in memory following sequence is
performed

•Address of the data MAR

•MAR Address bus select memory
location where is issued RD signal

•Reads data via data bus MDR

•From MDR data can be directly routed to ALU or
it can be placed in register and then operation can
be performed

•Results of the operation can be directed towards
output device, memory or register

•Normal execution preempted (interrupt)

DATA REPRESENTATION

•Data Types

•Complements

•Fixed Point Representations

•Floating Point Representations

•Other Binary Codes

•Error Detection Codes

Data Types

DATA REPRESENTATION

Information that a Computer is dealing with

* Data
- Numeric Data

Numbers(Integer, real)
- Non-numeric Data

Letters, Symbols

* Relationship between data elements
- Data Structures

Linear Lists, Trees, Rings, etc

* Program(Instruction)

Data Types

NUMERIC DATA REPRESENTATION

Data
Numeric data - numbers(integer, real)
Non-numeric data - symbols, letters

Number System
Nonpositional number system

- Roman number system
Positional number system

- Each digit position has a value called a weight
associated with it

- Decimal, Octal, Hexadecimal, Binary
Base (or radix) R number

- Uses R distinct symbols for each digit
- Example AR = an-1 an-2 ... a1 a0 .a-1…a-m

- V(AR) =
n1


im

ai R
Radix point(.) separates the integer
portion and the fractional portion

R = 10 Decimal number system, R = 2 Binary
R = 8 Octal, R = 16 Hexadecimal

i

Data Types

WHY POSITIONAL NUMBER SYSTEM IN DIGITAL COMPUTERS ?

Major Consideration is the COST and TIME

- Cost of building hardware

Arithmetic and Logic Unit, CPU, Communications
- Time to processing

Arithmetic - Addition of Numbers - Table for Addition

* Non-positional Number System
- Table for addition is infinite
--> Impossible to build, very expensive even

if it can be built

* Positional Number System

- Table for Addition is finite
--> Physically realizable, but cost wise

the smaller the table size, the less
expensive --> Binary is favorable to Decimal

Binary Addition Table

 0 1

0 0 1

1 1 10

Decimal Addition Table
0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 1011
3 3 4 5 6 7 8 9 101112
4 4 5 6 7 8 9 10111213
5 5 6 7 8 9 1011121314
6 6 7 8 9 101112131415
7 7 8 9 10111213141516
8
9

8 9 1011121314151617
9 101112131415161718

Data Types

REPRESENTATION OF NUMBERS - POSITIONAL NUMBERS

Decimal Binary Octal Hexadecimal
00 0000 00 0

01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Binary, octal, and hexadecimal conversion

 1 2 7 5 4 3
1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 1

A F 6 3

Octal
Binary
Hexa

Data Types

CONVERSION OF BASES

Base R to Decimal Conversion

A = an-1 an-2 an-3 … a0 . a-1 … a-m

V(A) =  ak R
k

(736.4)8 = 7 x 82 + 3 x 81 + 6 x 80 + 4 x 8-1

= 7 x 64 + 3 x 8 + 6 x 1 + 4/8 = (478.5)10

(110110)2 = ... = (54)10

(110.111)2 = ... = (6.785)10

(F3)16 = ... = (243)10

(0.325)6 = ... = (0.578703703)10

Decimal to Base R number

- Separate the number into its integer and fraction parts and convert
each part separately.

- Convert integer part into the base R number

→ successive divisions by R and accumulation of the remainders.

- Convert fraction part into the base R number

→ successive multiplications by R and accumulation of integer digits

Data Types

Convert 41.687510 to base 2.

Integer = 41

EXAMPLE

Fraction = 0.6875
0.6875

 x 2

41 1.3750
20 1 x 2
10 0 0.7500
5 0 x 2
2 1 1.5000
1 0 x 2
0 1 1.0000

(41)10 = (101001)2 (0.6875)10 = (0.1011)2

Exercise

(41.6875)10 = (101001.1011)2

Convert (63)10 to base 5: (223)5

Convert (1863)10 to base 8: (3507)8

Convert (0.63671875)10 to hexadecimal: (0.A3)16

Complements

COMPLEMENT OF NUMBERS

Two types of complements for base R number system:
- R's complement and (R-1)'s complement

Example

- 9's complement of 83510 is 16410

- 1's complement of 10102 is 01012(bit by bit complement operation)

Example

- 10's complement of 83510 is 16410 + 1 = 16510

- 2's complement of 10102 is 01012 + 1 = 01102

The (R-1)'s Complement

Subtract each digit of a number from (R-1)

The R's Complement

Add 1 to the low-order digit of its (R-1)'s complement

Fixed Point Representations

FIXED POINT NUMBERS

Numbers: Fixed Point Numbers and Floating Point Numbers

Binary Fixed-Point Representation

X = xnxn-1xn-2 ... x1x0. x-1x-2 ... x-m

Sign Bit(xn): 0 for positive - 1 for negative

Remaining Bits(xn-1xn-2 ... x1x0. x-1x-2 ... x-m)

SIGNED NUMBERS

Need to be able to represent both positive and negative numbers

- Following 3 representations

Example: Represent +9 and -9 in 7 bit-binary number

Only one way to represent +9 ==> 0 001001
Three different ways to represent -9:

In signed-magnitude: 1 001001
In signed-1's complement: 1 110110
In signed-2's complement: 1 110111

In general, in computers, fixed point numbers are represented
either integer part only or fractional part only.

Signed magnitude representation
Signed 1's complement representation
Signed 2's complement representation

Fixed Point Representations

CHARACTERISTICS OF 3 DIFFERENT REPRESENTATIONS

Complement

Signed magnitude: Complement only the sign bit
Signed 1's complement: Complement all the bits including sign bit
Signed 2's complement: Take the 2's complement of the number,

including its sign bit.

Maximum and Minimum Representable Numbers and Representation of Zero

X = xn xn-1 ... x0 . x-1 ... x-m

Signed Magnitude

Max: 2n - 2-m 011 ... 11.11 ... 1
Min: -(2n - 2-m) 111 ... 11.11 ... 1
Zero: +0 000 ... 00.00 ... 0

-0 100 ... 00.00 ... 0

Signed 1’s Complement

Max: 2n - 2-m 011 ... 11.11 ... 1
Min: -(2n - 2-m) 100 ... 00.00 ... 0
Zero: +0 000 ... 00.00 ... 0

-0 111 ... 11.11 ... 1

Signed 2’s Complement

Max: 2n - 2-m 011 ... 11.11 ... 1
Min: -2n 100 ... 00.00 ... 0
Zero: 0 000 ... 00.00 ... 0

2’s COMPLEMENT REPRE“ENTATION WEIGHT“

• “igned 2’s complement representation follows a “weight” scheme similar to that of

unsigned numbers

– Sign bit has negative weight

– Other bits have regular weights

X = xn xn-1 ... x0

n-1

 V(X) = - xn  2n + xi  2i

i = 0

Fixed Point Representations

ARITHMETIC ADDITION: SIGNED MAGNITUDE

[1] Compare their signs
[2] If two signs are the same ,

ADD the two magnitudes - Look out for an overflow
[3] If not the same , compare the relative magnitudes of the numbers and

then SUBTRACT the smaller from the larger --> need a subtractor to add
[4] Determine the sign of the result

6 + 9 -6 + 9

6 0110
 +) 9 1001

15 1111 -> 01111

9 1001
-) 6 0110

3 0011 -> 00011

6 + (- 9) -6 + (-9)

9 1001
-) 6 0110
- 3 0011 -> 10011

Overflow 9 + 9 or (-9) + (-9)
9 1001

+) 9 1001

6 0110
+) 9 1001
-15 1111 -> 11111

overflow (1)0010

Fixed Point Representations

ARITHMETIC ADDITION: “IGNED 2’s COMPLEMENT

Add the two numbers, including their sign bit, and discard any carry out of
leftmost (sign) bit - Look out for an overflow

Example
6 0 0110

+) 9 0 1001
15 0 1111

-6 1 1010

+) 9 0 1001
3 0 0011

6 0 0110

+) -9 1 0111
-3 1 1101

-9 1 0111
+) -9 1 0111

-18 (1)0 1110
x’n-1y’n-1sn-1

(cn-1  cn)

n-1

(cn-1  cn)

overflow

2 operands have the same sign
and the result sign changes

xn-1yn-1s’n-1 + x’n-1y’n-1sn-1 = cn-1 cn

9 0 1001

+) 9 0 1001

18 1 0010
xn-1yn s’

Fixed Point Representations

ARITHMETIC ADDITION: “IGNED 1’s COMPLEMENT

Add the two numbers, including their sign bits.

- If there is a carry out of the most significant (sign) bit, the result is
incremented by 1 and the carry is discarded.

Example end-around carry

+) 1
3 0 0011

not overflow (cn-1  cn) = 0

-9 1 0110
 +) -9 1 0110

(1)0 1100
 +) 1

0 1101

9 0 1001
+) 9 0 1001

1 (1)0010

overflow
(cn-1  cn)

 6 0 0110 -6 1 1001

+) -9 1 0110 +) 9 0 1001
 -3 1 1100 (1) 0(1)0010

Fixed Point Representations

COMPARISON OF REPRESENTATIONS

* Easiness of negative conversion

S + M > 1’s Complement > 2’s Complement

* Hardware

- S+M: Needs an adder and a subtractor for Addition
- 1’s and 2’s Complement: Need only an adder

* Speed of Arithmetic

2’s Complement > 1’s Complement(end-around C)

* Recognition of Zero

2’s Complement is fast

Fixed Point Representations

ARITHMETIC SUBTRACTION

Arithmetic Subtraction in 2’s complement

Take the complement of the subtrahend (including the sign bit)
and add it to the minuend including the sign bits.

( A) - (- B) = ( A) + B

( A) - B = ( A) + (- B)

Floating Point Representation

FLOATING POINT NUMBER REPRESENTATION

* The location of the fractional point is not fixed to a certain location
* The range of the representable numbers is wide

F = EM

mn ekek-1 ... e0 mn-1mn-2 … m0 . m-1 … m-m

sign exponent mantissa

- Mantissa
Signed fixed point number, either an integer or a fractional number

- Exponent
Designates the position of the radix point

Decimal Value

V(F) = V(M) * RV(E) M: Mantissa

E: Exponent
R: Radix

Floating Point Representation

Example

Note:

FLOATING POINT NUMBERS

sign sign
0 .1234567 0 04

mantissa exponent

==> +.1234567 x 10+04

In Floating Point Number representation, only Mantissa(M) and
Exponent(E) are explicitly represented. The Radix(R) and the position
of the Radix Point are implied.

Example
A binary number +1001.11 in 16-bit floating point number representation
(6-bit exponent and 10-bit fractional mantissa)

or

0 0 00100 100111000

Sign

0

Exponent

0 00101

Mantissa

010011100

Floating Point Representation

CHARACTERISTICS OF FLOATING POINT NUMBER REPRESENTATIONS

Normal Form

- There are many different floating point number representations of
the same number

→ Need for a unified representation in a given computer

- the most significant position of the mantissa contains a non-zero digit

Representation of Zero

- Zero
Mantissa = 0

- Real Zero
Mantissa = 0
Exponent

= smallest representable number
which is represented as
00 ... 0
 Easily identified by the hardware

INTERNAL REPRESENTATION AND EXTERNAL REPRESENTATION

External
Representation

External
Representation Internal

Representation Human

Device

External
Representation

Another

Computer

CPU
Memory

External Representations

Numbers

EXTERNAL REPRESENTATION

Most of numbers stored in the computer are eventually changed
by some kinds of calculations

→ Internal Representation for calculation efficiency
→ Final results need to be converted to as External Representation

for presentability

Alphabets, Symbols, and some Numbers
Elements of these information do not change in the course of processing
→ No needs for Internal Representation since they are not used

for calculations
→ External Representation for processing and presentability

Example
Decimal Number: 4-bit Binary Code

BCD(Binary Coded Decimal)

Decimal BCD Code
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

External Representations

OTHER DECIMAL CODES

Note: 8,4,2,-2,1,-1 in this table is the weight
associated with each bit position.

d3 d2 d1 d0: symbol in the codes

BCD: d3 x 8 + d2 x 4 + d1 x 2 + d0 x 1

 8421 code.

2421: d3 x 2 + d2 x 4 + d1 x 2 + d0 x 1
84-2-1: d3 x 8 + d2 x 4 + d1 x (-2) + d0 x (-1)
Excess-3: BCD + 3

BCD: It is difficult to obtain the 9's complement.

However, it is easily obtained with the other codes listed above.

→ Self-complementing codes

Decimal BCD(8421) 2421 84-2-1 Excess-3

0 0000 0000 0000 0011
1 0001 0001 0111 0100
2 0010 0010 0110 0101
3 0011 0011 0101 0110
4 0100 0100 0100 0111
5 0101 1011 1011 1000
6 0110 1100 1010 1001
7 0111 1101 1001 1010
8 1000 1110 1000 1011
9 1001 1111 1111 1100

Other Binary codes

GRAY CODE

* Characterized by having their representations of the binary integers differ
in only one digit between consecutive integers

* Useful in some applications

4-bit Gray codes

Decimal
number

g3

Gray

g2 g1

g0

Binary

b3 b2 b1

b0

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 1 0 0 1 0
3 0 0 1 0 0 0 1 1
4 0 1 1 0 0 1 0 0
5 0 1 1 1 0 1 0 1
6 0 1 0 1 0 1 1 0
7 0 1 0 0 0 1 1 1
8 1 1 0 0 1 0 0 0
9 1 1 0 1 1 0 0 1

10 1 1 1 1 1 0 1 0
11 1 1 1 0 1 0 1 1
12 1 0 1 0 1 1 0 0
13 1 0 1 1 1 1 0 1
14 1 0 0 1 1 1 1 0
15 1 0 0 0 1 1 1 1

Other Binary codes

GRAY CODE - ANALYSIS

Letting gngn-1 ... g1 g0 be the (n+1)-bit Gray code

for the binary number bnbn-1 ... b1b0

gi = bi  bi+1 , 0  i  n-1

gn = bn

and

bn-i = gn  gn-1  . . .  gn-i

bn = gn

Reflection of Gray codes

  0 0 0 0 00 0 000

Note:

The Gray code has a reflection property
- easy to construct a table without calculation,
- for any n: reflect case n-1 about a

mirror at its bottom and prefix 0 and 1
to top and bottom halves, respectively

1 10 0 110
1 11 0 111
1 01 0 101
1 00 0 100

1 0 1 0 01 0 001
 1 1 0 11 0 011

1 0 0 10 0 010

1 100
1 101
1 111
1 010
1 011
1 001
1 101
1 000

Other Binary codes

CHARACTER REPRESENTATION ASCII

ASCII (American Standard Code for Information Interchange) Code

MSB (3 bits)

LSB

(4 bits)

 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ‘ P

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ‘ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y I y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N m n ~

F SI US / ? O n o DEL

Other Binary codes

CONTROL CHARACTER REPRESENTAION (ACSII)

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE

Null
Start of Heading (CC)
Start of Text (CC)
End of Text (CC)
End of Transmission (CC)
Enquiry (CC)
Acknowledge (CC)
Bell
Backspace (FE)
Horizontal Tab. (FE)
Line Feed (FE)
Vertical Tab. (FE)
Form Feed (FE)
Carriage Return (FE)
Shift Out
Shift In
Data Link Escape (CC)

DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
DEL

Device Control 1
Device Control 2
Device Control 3
Device Control 4
Negative Acknowledge (CC)
Synchronous Idle (CC)
End of Transmission Block (CC)
Cancel
End of Medium
Substitute
Escape
File Separator (IS)
Group Separator (IS)
Record Separator (IS)
Unit Separator (IS)
Delete

(CC) Communication Control
(FE) Format Effector
(IS) Information Separator

Error Detecting codes

ERROR DETECTING CODES

Parity System

- Simplest method for error detection
- One parity bit attached to the information
- Even Parity and Odd Parity

Even Parity
- One bit is attached to the information so that

the total number of 1 bits is an even number

1011001
1010010

Odd Parity
- One bit is attached to the information so that

the total number of 1 bits is an odd number

1011001
1010010

0
1

1
0

PARITY BIT GENERATION

Parity Bit Generation

For b6b5... b0(7-bit information); even parity bit beven

beven = b6  b5  ...  b0

For odd parity bit

bodd = beven  1 = beven

Error Detecting codes

PARITY GENERATOR AND PARITY CHECKER

Parity Generator Circuit (even parity)

b6

b5
beven

b4

b3

b2

b1

b0

Parity Checker

beven

b6

b5

b4

b3

b2

b1

b0

Even Parity
error indicator

REGISTER TRANSFER AND MICROOPERATIONS

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Micro-operations

• Logic Micro-operations

• Shift Micro-operations

• Arithmetic Logic Shift Unit

SIMPLE DIGITAL SYSTEMS

• Combinational and sequential circuits (learned in Chapters 1 and 2)

can be used to create simple digital systems.

• These are the low-level building blocks of a digital computer.

• Simple digital systems are frequently characterized in terms of

– the registers they contain, and

– the operations that they perform.

• Typically,

– What operations are performed on the data in the registers

– What information is passed between registers

Register Transfer Language

MICROOPERATIONS (1)

• The operations on the data in registers are called
micro-operations.

• The functions built into registers are examples of
micro-operations

– Shift

– Load

– Clear

– Increment
– …

Register Transfer Language

MICROOPERATION (2)

1 clock cycle

R  f(R, R)

f: shift, load, clear, increment, add, subtract, complement,
and, or, xor, …

An elementary operation performed (during
one clock pulse), on the information stored
in one or more registers

Registers
(R)

ALU
(f)

Register Transfer Language

ORGANIZATION OF A DIGITAL SYSTEM

• Definition of the (internal) organization of a computer

- Set of registers and their functions

- Micro-operations set

Set of allowable micro-operations provided
by the organization of the computer

- Control signals that initiate the sequence of

micro-operations (to perform the functions)

Register Transfer Language

REGISTER TRANSFER LEVEL

• Viewing a computer, or any digital system, in this way is called
the register transfer level

• This is because we’re focusing on

– The system’s registers

– The data transformations in them, and

– The data transfers between them.

Register Transfer Language

REGISTER TRANSFER LANGUAGE

• Rather than specifying a digital system in words, a specific notation is
used, register transfer language

• For any function of the computer, the register transfer language can be

used to describe the (sequence of) micro-operations

• Register transfer language

– A symbolic language

– A convenient tool for describing the internal organization of digital
computers

– Can also be used to facilitate the design process of digital systems.

Register Transfer Language

DESIGNATION OF REGISTERS

• Registers are designated by capital letters, sometimes followed by numbers (e.g.,
A, R13, IR)

• Often the names indicate function:

– MAR - memory address register

– PC - program counter

– IR - instruction register

• Registers and their contents can be viewed and represented in various ways

– A register can be viewed as a single entity:

– Registers may also be represented showing the bits of data they contain

MAR

Register Transfer Language

DESIGNATION OF REGISTERS

PC(H) PC(L)

R1

R2

• Designation of a register

- a register
- portion of a register
- a bit of a register

• Common ways of drawing the block diagram of a register

Register Showing individual bits

15 0 15 8 7 0

Numbering of bits Subfields

7 6 5 4 3 2 1 0

Register Transfer

REGISTER TRANSFER

• Copying the contents of one register to another is a register transfer

• A register transfer is indicated as

R2  R1

– In this case the contents of register R2 are copied (loaded) into register

R1

– A simultaneous transfer of all bits from the source R1 to the
destination register R2, during one clock pulse

– Note that this is a non-destructive; i.e. the contents of R1 are not
altered by copying (loading) them to R2

Register Transfer

REGISTER TRANSFER

• A register transfer such as

R3  R5

Implies that the digital system has

– the data lines from the source register (R5) to the destination register
(R3)

– Parallel load in the destination register (R3)

– Control lines to perform the action

Register Transfer

CONTROL FUNCTIONS

• Often actions need to only occur if a certain condition is true

• This is similar to an “if” statement in a programming
language

• In digital systems, this is often done via a control signal,
called a control function

– If the signal is 1, the action takes place

• This is represented as:

R2  R1

Which means “if P = 1, then load the contents of register R1
into register R2”, i.e., if (P = 1) then (R2  R1)

Register Transfer

HARDWARE IMPLEMENTATION OF CONTROLLED TRANSFERS

Implementation of controlled transfer

P: R2  R1

Block diagram
Clock

Timing diagram

Clock

t t+1

Load

Transfer occurs here

• The same clock controls the circuits that generate the control function
and the destination register

• Registers are assumed to use positive-edge-triggered flip-flops

P Load
R2

n

R1

Control
Circuit

Register Transfer

SIMULTANEOUS OPERATIONS

• If two or more operations are to occur

simultaneously, they are separated with commas

P: R3  R5, MAR  IR

• Here, if the control function P = 1, load the

contents of R5 into R3, and at the same time
(clock), load the contents of register IR into
register MAR

Register Transfer

BASIC SYMBOLS FOR REGISTER TRANSFERS

Symbols Description Examples

Capital letters

& numerals

Parentheses ()

Arrow 

Colon :

Comma ,

Denotes a register

Denotes a part of a register

Denotes transfer of information

Denotes termination of control function

Separates two micro-operations

MAR, R2

R2(0-7), R2(L)

R2  R1

P:

A  B, B  A

Register Transfer

CONNECTING REGISTRS

• In a digital system with many registers, it is impractical to have data

and control lines to directly allow each register to be loaded with the
contents of every possible other registers

• To completely connect n registers  n(n-1) lines

• O(n2) cost

– This is not a realistic approach to use in a large digital system

• Instead, take a different approach

• Have one centralized set of circuits for data transfer – the bus

• Have control circuits to select which register is the source, and which
is the destination

Bus and Memory Transfers

1 2 3 4

0 4 x1
MUX

0 4 x1
MUX

0 4 x1
MUX

0 4 x1
MUX

BUS AND BUS TRANSFER

Bus is a path(of a group of wires) over which information is transferred, from any of
several sources to any of several destinations.

From a register to bus: BUS  R

Register A Register B Register C Register D

B1 C1 D1 B2 C2 D2 B3 C3 D3 B4 C4 D 4

x
select
y

4-line bus

Bus lines

Register A Register B Register C Register D

1 2 3 4 1 2 3 4 1 2 3 4

Bus and Memory Transfers

0
1
2
3

TRANSFER FROM BUS TO A DESTINATION REGISTER

Bus lines

Three-State Bus Buffers

Normal input A

Control input C

Output Y=A if C=1
High-impedence if C=0

Bus line with three-state buffers
A0
B0
C0
D0

Bus line for bit 0

S0

Select
S1

Enable

D0 D1 D2 D3

2 x 4

Decoder

Load

Select
z

w
E (enable)

Reg. R0 Reg. R1 Reg. R2 Reg. R3

Bus and Memory Transfers

BUS TRANSFER IN RTL

• Depending on whether the bus is to be mentioned
explicitly or not, register transfer can be indicated as
either

R2  R1

or BUS  R1, R2  BUS

• In the former case the bus is implicit, but in the latter, it is
explicitly indicated

Bus and Memory Transfers

MEMORY (RAM)

• Memory (RAM) can be thought as a sequential circuits containing

some number of registers

• These registers hold the words of memory

• Each of the r registers is indicated by an address

• These addresses range from 0 to r-1

• Each register (word) can hold n bits of data

• Assume the RAM contains r = 2k words. It needs the following
– n data input lines

– n data output lines

– k address lines

– A Read control line

– A Write control line

address lines

k

Read

Write

data input lines

n

n

data output lines

RAM
unit

Bus and Memory Transfers

MEMORY TRANSFER

• Collectively, the memory is viewed at the register level as a device,

M.

• Since it contains multiple locations, we must specify which address
in memory we will be using

• This is done by indexing memory references

• Memory is usually accessed in computer systems by putting the

desired address in a special register, the Memory Address Register
(MAR, or AR)

• When memory is accessed, the contents of the MAR get sent to the
memory unit’s address lines

M
Read

AR
Write

Data out Data in

Memory

unit

Bus and Memory Transfers

MEMORY READ

• To read a value from a location in memory and load it into a register,

the register transfer language notation looks like this:

R1  M[MAR]
• This causes the following to occur

– The contents of the MAR get sent to the memory address lines

– A Read (= 1) gets sent to the memory unit

– The contents of the specified address are put on the memory’s
output data lines

– These get sent over the bus to be loaded into register R1

Bus and Memory Transfers

MEMORY WRITE

• To write a value from a register to a location in memory looks like

this in register transfer language:

M[MAR]  R1

• This causes the following to occur
– The contents of the MAR get sent to the memory address lines

– A Write (= 1) gets sent to the memory unit

– The values in register R1 get sent over the bus to the data input lines of the
memory

– The values get loaded into the specified address in the memory

Bus and Memory Transfers

SUMMARY OF R. TRANSFER MICROOPERATIONS

A  B Transfer content of reg. B into reg. A

Transfer content of AD portion of reg. DR into reg. AR

Transfer a binary constant into reg. A

Transfer content of R1 into bus A and, at the same time,

transfer content of bus A into R2

Address register
Data register
Memory word specified by reg. R
Equivalent to M[AR]

Memory read operation: transfers content of

memory word specified by AR into DR

Memory write operation: transfers content of

DR into memory word specified by AR

AR  DR(AD)

A  constant

ABUS  R1,

R2  ABUS

AR

DR
M[R]
M

DR  M

M  DR

Arithmetic Microoperations

MICROOPERATIONS

• Computer system microoperations are of four types:

- Register transfer microoperations

- Arithmetic microoperations

- Logic microoperations

- Shift microoperations

Arithmetic Microoperations

ARITHMETIC MICROOPERATIONS

• The basic arithmetic microoperations are
– Addition
– Subtraction
– Increment
– Decrement

• The additional arithmetic microoperations are
– Add with carry
– Subtract with borrow
– Transfer/Load
– etc. …

Summary of Typical Arithmetic Micro-Operations

R3  R1 + R2 Contents of R1 plus R2 transferred to R3

R3  R1 - R2 Contents of R1 minus R2 transferred to R3

R2  R2’ Complement the contents of R2

R2  R2’+ 1 2's complement the contents of R2 (negate)

R3  R1 + R2’+ 1 subtraction

R1  R1 + 1 Increment

R1  R1 - 1 Decrement

Arithmetic Microoperations

x y

HA
x y

HA
x y

HA
x y

HA

C S C S C S C S

BINARY ADDER / SUBTRACTOR / INCREMENTER

Binary Adder

B3 A3

FA

B2 A2

C3 FA

B1 A1

C2 FA

B0 A0

C1 FA

 C0

C4 S3 S2

Binary Adder-Subtractor

S1 S0

B3 A3 B2 A2 B1 A1 B0 A0

C4

Binary Incrementer

S3

A3

C4 S3

S2 S1

A2 A1

S2 S1

S0

A0 1

S0

M

FA C3 FA C2 FA C1 FA C0

Arithmetic Microoperations

ARITHMETIC CIRCUIT

Cin
S1
S0

A0

D0

B0

A1

D1

B1

A2

D2

B2

A3

D3

B3

Cout

S1 S0 Cin Y Output Microoperation

0 0 0 B D = A + B Add

0 0 1 B D = A + B + 1 Add with carry

0 1 0 B’ D = A + B’ Subtract with borrow

0 1 1 B’ D = A + B’+ 1 Subtract

1 0 0 0 D = A Transfer A

1 0 1 0 D = A + 1 Increment A

1 1 0 1 D = A - 1 Decrement A

1 1 1 1 D = A Transfer A

X0 C0

FA
Y0 C1

S1
S0
0 4x1
1 MUX
3
2

X1 C1

FA
Y1 C2

X2 C2

FA
Y2 C3

S1
S0
0
1

4x1
MUX

3
2

X3 C3

FA
Y3 C4

S1
S0
0
1

4x1
MUX

3
2

S1
S0
0 4x1
1

3
2 MUX

0 1

Logic Microoperations

LOGIC MICROOPERATIONS

• Specify binary operations on the strings of bits in registers

– Logic microoperations are bit-wise operations, i.e., they work on the individual bits
of data

– useful for bit manipulations on binary data

– useful for making logical decisions based on the bit value

• There are, in principle, 16 different logic functions that can be defined
over two binary input variables

A B F0 F1 F2 … F13 F14 F15

0 0 0 0 0 … 1 1 1
0 1 0 0 0 … 1 1 1
1 0 0 0 1 … 0 1 1
1 1 0 1 0 … 1 0 1

• However, most systems only implement four of these

– AND (), OR (), XOR (), Complement/NOT

• The others can be created from combination of these

Logic Microoperations

LIST OF LOGIC MICROOPERATIONS

• List of Logic Microoperations
- 16 different logic operations with 2 binary vars.

- n binary vars → 2 2 nfunctions

• Truth tables for 16 functions of 2 variables and the
corresponding 16 logic micro-operations

x
y

0 0 1 1
0 1 0 1

Boolean
Function

Micro-
Operations

Name

 0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

F0 = 0
F1 = xy
F2 = xy'
F3 = x
F4 = x'y
F5 = y
F6 = x  y
F7 = x + y
F8 = (x + y)'
F9 = (x  y)'
F10 = y'
F11 = x + y'
F12 = x'
F13 = x' + y
F14 = (xy)'
F15 = 1

F  0
F  A  B
F  A  B’
F  A
F  A’ B
F  B
F  A  B
F  A  B
F  A  B)’
F  (A  B)’
F  B’
F  A  B
F  A’
F  A’ B
F  (A  B)’
F  all 1's

Clear
AND

Transfer A

Transfer B

Exclusive-OR
OR
NOR

Exclusive-NOR
Complement B

Complement A

NAND
Set to all 1's

Logic Microoperations

0

1
4 X 1
MUX

2

3 Select

HARDWARE IMPLEMENTATION OF LOGIC MICROOPERATIONS

Ai

Bi

 Fi

S1
S0

Function table

S1 S0 Output -operation
0 0

0 1

1 0

1 1

F = A  B

F = A  B

F = A  B

F = A’

AND

OR

XOR

Complement

Logic Microoperations

APPLICATIONS OF LOGIC MICROOPERATIONS

• Logic microoperations can be used to manipulate individual bits or a

portions of a word in a register

• Consider the data in a register A. In another register, B, is bit data that will

be used to modify the contents of A

– Selective-set A  A + B

– Selective-complement A  A  B

– Selective-clear A  A • B’

– Mask (Delete) A  A • B

– Clear A  A  B

– Insert A  (A • B) + C

– Compare A  A  B

– . . .

Logic Microoperations

SELECTIVE SET

• In a selective set operation, the bit pattern in B is used to set certain

bits in A

1 1 0 0 At

 1 0 1 0 B

1 1 1 0 At+1 (A  A + B)

• If a bit in B is set to 1, that same position in A gets set to 1, otherwise
that bit in A keeps its previous value

Logic Microoperations

SELECTIVE COMPLEMENT

• In a selective complement operation, the bit pattern in B is used to

complement certain bits in A

1 1 0 0 At

 1 0 1 0 B

0 1 1 0 At+1 (A  A  B)

• If a bit in B is set to 1, that same position in A gets complemented from
its original value, otherwise it is unchanged

Logic Microoperations

SELECTIVE CLEAR

• In a selective clear operation, the bit pattern in B is used to clear

certain bits in A

1 1 0 0 At

 1 0 1 0 B

0 1 0 0 At+1 (A  A  B’)

• If a bit in B is set to 1, that same position in A gets set to 0, otherwise it
is unchanged

Logic Microoperations

MASK OPERATION

• In a mask operation, the bit pattern in B is used to clear certain bits in

A

1 1 0 0 At

 1 0 1 0 B

1 0 0 0 At+1 (A  A  B)

• If a bit in B is set to 0, that same position in A gets set to 0, otherwise it
is unchanged

Logic Microoperations

CLEAR OPERATION

• In a clear operation, if the bits in the same position in A and B are the

same, they are cleared in A, otherwise they are set in A

1 1 0 0 At

1 0 1 0 B

0 1 1 0 At+1 (A  A  B)

Logic Microoperations

INSERT OPERATION

• An insert operation is used to introduce a specific bit pattern into A register, leaving
the other bit positions unchanged

• This is done as

– A mask operation to clear the desired bit positions,
followed by

– An OR operation to introduce the new bits into the
desired positions

– Example
• Suppose you wanted to introduce 1010 into the low order four

bits of A: 1101 1000 1011 0001 A (Original)
1101 1000 1011 1010 A

(Desired)

• 1101 1000 1011 0001 A (Original)

1111 1111 1111 0000 Mask
1101 1000 1011 0000 A
(Intermediate)

0000 0000 0000 1010 Added bits
1101 1000 1011 1010 A (Desired)

Shift Microoperations

SHIFT MICROOPERATIONS

• There are three types of shifts
– Logical shift

– Circular shift

– Arithmetic shift

• What differentiates them is the information that goes into the
serial input

• A right shift operation

Serial
input

• A left shift operation Serial
input

Shift Microoperations

LOGICAL SHIFT

• In a logical shift the serial input to the shift is a 0.

• A right logical shift operation:

0

• A left logical shift operation:
0

• In a Register Transfer Language, the following notation is used
– shl for a logical shift left

– shr for a logical shift right

– Examples:

• R2  shr R2

• R3  shl R3

Shift Microoperations

CIRCULAR SHIFT

• In a circular shift the serial input is the bit that is shifted out of the other
end of the register.

• A right circular shift operation:

• A left circular shift operation:

• In a RTL, the following notation is used
– cil for a circular shift left
– cir for a circular shift right
– Examples:

• R2  cir R2
• R3  cil R3

Shift Microoperations

ARITHMETIC SHIFT

sign
bit

• An arithmetic shift is meant for signed binary numbers (integer)

• An arithmetic left shift multiplies a signed number by two

• An arithmetic right shift divides a signed number by two

• The main distinction of an arithmetic shift is that it must keep the sign
of the number the same as it performs the multiplication or division

• A right arithmetic shift operation:

• A left arithmetic shift operation:

0

sign
bit

Shift Microoperations

ARITHMETIC SHIFT

sign
bit

V

• An left arithmetic shift operation must be checked for the overflow

0

Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

• In a RTL, the following notation is used

– ashl for an arithmetic shift left

– ashr for an arithmetic shift right

– Examples:

» R2  ashr R2

» R3  ashl R3

Shift Microoperations

S

0
1

MUX

S

0
1

MUX

S

0
1

MUX

S

0
1

MUX

HARDWARE IMPLEMENTATION OF SHIFT MICROOPERATIONS

Serial
input (IR)

0 for shift right (down)
1 for shift left (up)

H0

A0

A1 H1

A2

A3

H2

H3

Serial
input (IL)

Select

Shift Microoperations

Arithmetic

Circuit
Select

0
1
2
3

4 x 1
MUX

Logic

 Circuit

ARITHMETIC LOGIC SHIFT UNIT

S3
S2 Ci
S1
S0

Di

C F

i+1 i

Bi
Ai
Ai-1

E i

 shr

Ai+1
 shl

S3 S2 S1 S0 Cin Operation Function
0
0
0
0
0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
1
1
1
1
0
1

0
0
0
0
1
1
1
1
0
0
1
1
X
X

0
0
1
1
0
0
1
1
0
1
0
1
X
X

0
1
0
1
0
1
0
1
X
X
X
X
X
X

F = A
F = A + 1
F = A + B
F = A + B + 1
F = A + B’
F = A + B’+ 1
F = A - 1
F = A
F = A  B
F = A  B
F = A  B
F = A’
F = shr A
F = shl A

Transfer A
Increment A
Addition
Add with carry
Subtract with borrow
Subtraction
Decrement A
TransferA
AND
OR
XOR
Complement A
Shift right A into F
Shift left A into F

BASIC COMPUTER ORGANIZATION AND DESIGN

• Instruction Codes

• Computer Registers

• Computer Instructions

• Timing and Control

• Instruction Cycle

• Memory Reference Instructions

• Input-Output and Interrupt

• Complete Computer Description

• Design of Basic Computer

• Design of Accumulator Logic

INTRODUCTION

• Every different processor type has its own design (different registers, buses,

micro-operations, machine instructions, etc)

• Modern processor is a very complex device

• It contains
– Many registers

– Multiple arithmetic units, for both integer and floating point calculations

– The ability to pipeline several consecutive instructions to speed execution

– Etc.

• However, to understand how processors work, we will start with a
simplified processor model

• This is similar to what real processors were like ~25 years ago

• M. Morris Mano introduces a simple processor model he calls the Basic
Computer

• We will use this to introduce processor organization and the relationship of
the RTL model to the higher level computer processor

THE BASIC COMPUTER

• The Basic Computer has two components, a processor and memory

• The memory has 4096 words in it

– 4096 = 212, so it takes 12 bits to select a word in memory

• Each word is 16 bits long

CPU RAM

0

4095

15 0

Instruction codes

INSTRUCTIONS

• Program

– A sequence of (machine) instructions

• (Machine) Instruction

– A group of bits that tell the computer to perform a specific
operation (a sequence of micro-operation)

• The instructions of a program, along with any needed data are stored
in memory

• The CPU reads the next instruction from memory

• It is placed in an Instruction Register (IR)

• Control circuitry in control unit then translates the instruction into the
sequence of microoperations necessary to implement it

Instruction codes

INSTRUCTION FORMAT

• A computer instruction is often divided into two parts

– An opcode (Operation Code) that specifies the operation for that instruction

– An address that specifies the registers and/or locations in memory to use for that
operation

• In the Basic Computer, since the memory contains 4096 (= 212) words,
we needs 12 bit to specify which memory address this instruction will
use

• In the Basic Computer, bit 15 of the instruction specifies the
addressing mode (0: direct addressing, 1: indirect addressing)

• Since the memory words, and hence the instructions, are 16 bits long,
that leaves 3 bits for the instruction’s opcode

Instruction Format

15 14 12 11 0

Addressing
mode

I Opcode Address

Instruction codes

AC

+

AC

+

ADDRESSING MODES

• The address field of an instruction can represent either
– Direct address: the address in memory of the data to use (the address of the operand), or
– Indirect address: the address in memory of the address in memory of the data to use

Direct addressing Indirect addressing

22 35

300

457

1350

• Effective Address (EA)

– The address, that can be directly used without modification to access an operand for a

computation-type instruction, or as the target address for a branch-type instruction

0 ADD 457

Operand

1 ADD 300

1350

Operand

Instruction codes

PROCESSOR REGISTERS

• A processor has many registers to hold instructions, addresses, data, etc

• The processor has a register, the Program Counter (PC) that holds the
memory address of the next instruction to get

– Since the memory in the Basic Computer only has 4096 locations, the
PC only needs 12 bits

• In a direct or indirect addressing, the processor needs to keep track of
what locations in memory it is addressing: The Address Register (AR) is
used for this

– The AR is a 12 bit register in the Basic Computer

• When an operand is found, using either direct or indirect addressing, it is
placed in the Data Register (DR). The processor then uses this value as
data for its operation

• The Basic Computer has a single general purpose register – the
Accumulator (AC)

Instruction codes

PROCESSOR REGISTERS

• The significance of a general purpose register is that it can be referred to in
instructions

– e.g. load AC with the contents of a specific memory location; store the contents of AC into
a specified memory location

• Often a processor will need a scratch register to store intermediate results or
other temporary data; in the Basic Computer this is the Temporary Register
(TR)

• The Basic Computer uses a very simple model of input/output (I/O)
operations

– Input devices are considered to send 8 bits of character data to the processor

– The processor can send 8 bits of character data to output devices

• The Input Register (INPR) holds an 8 bit character gotten from an input
device

• The Output Register (OUTR) holds an 8 bit character to be send to an output
device

Registers

BASIC COMPUTER REGISTERS

11 0

11 0

AR

15 0

15 0 15 0

7 0 7 0 15 0

Memory

4096 x 16

PC

IR

DR

AC

TR

OUTR INPR

Registers in the Basic Computer

CPU

List of BC Registers
DR 16 Data Register Holds memory operand
AR 12 Address Register Holds address for memory

AC 16 Accumulator Processor register

IR 16 Instruction Register Holds instruction code

PC 12 Program Counter Holds address of instruction

TR 16 Temporary Register Holds temporary data

INPR 8 Input Register Holds input character

OUTR 8 Output Register Holds output character

Registers

COMMON BUS SYSTEM

• The registers in the Basic Computer are connected using
a bus

• This gives a savings in circuitry over complete
connections between registers

Registers

COMMON BUS SYSTEM

Memory unit
4096 x 16

AR

PC

DR

AC

IR

TR

OUTR

INPR

Bus
S2
S1
S0

7

Address

Write Read

1

LD INR CLR

2

LD INR CLR

3

LD INR CLR

E
ALU 4

LD INR CLR

5

LD

6

LD INR CLR

Clock
LD

16-bit common bus

Registers

COMMON BUS SYSTEM

Memory
4096 x 16

PC

AR

Read

Write

Address

L

L I C

L I C

INPR

DR

AC

IR

TR

OUTR

ALU

L I C

I C L

L I C

E

LD

16-bit Common Bus

S0 S1 S2

7 1 2 3 4 5 6

Registers

COMMON BUS SYSTEM

• Three control lines, S2, S1, and S0 control which register the bus
selects as its input

S2 S1 S0 Register

0 0 0 x
0 0 1 AR
0 1 0 PC
0 1 1 DR
1 0 0 AC
1 0 1 IR
1 1 0 TR
1 1 1 Memory

• Either one of the registers will have its load signal activated, or the
memory will have its read signal activated

– Will determine where the data from the bus gets loaded

• The 12-bit registers, AR and PC, have 0’s loaded onto the bus in the
high order 4 bit positions

• When the 8-bit register OUTR is loaded from the bus, the data
comes from the low order 8 bits on the bus

Instructions

BASIC COMPUTER INSTRUCTIONS

• Basic Computer Instruction Format

Memory-Reference Instructions (OP-code = 000 ~ 110)

15 14 12 11 0

I Opcode Address

Register-Reference Instructions (OP-code = 111, I = 0)

15 12 11 0

0 1 1 1 Register operation

Input-Output Instructions (OP-code =111, I = 1)

15 12 11 0

1 1 1 1 I/O operation

Instructions

BASIC COMPUTER INSTRUCTIONS

Symbol
Hex Code

Description I = 0 I = 1
AND
ADD
LDA
STA
BUN
BSA
ISZ

0xxx 8xxx
1xxx 9xxx
2xxx Axxx
3xxx Bxxx
4xxx Cxxx
5xxx Dxxx
6xxx Exxx

AND memory word to AC
Add memory word to AC
Load AC from memory
Store content of AC into memory
Branch unconditionally
Branch and save return address
Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

Instructions

INSTRUCTION SET COMPLETENESS

A computer should have a set of instructions so that the user can
construct machine language programs to evaluate any function that is known to
be computable.

• Instruction Types

Functional Instructions

- Arithmetic, logic, and shift instructions

- ADD, CMA, INC, CIR, CIL, AND, CLA

Transfer Instructions

- Data transfers between the main memory

and the processor registers

- LDA, STA

Control Instructions

- Program sequencing and control

- BUN, BSA, ISZ

Input/Output Instructions

- Input and output

- INP, OUT

Instruction codes

CONTROL UNIT

• Control unit (CU) of a processor translates from machine instructions
to the control signals for the microoperations that implement them

• Control units are implemented in one of two ways

• Hardwired Control

– CU is made up of sequential and combinational circuits to generate
the control signals

• Microprogrammed Control

– A control memory on the processor contains microprograms that
activate the necessary control signals

• We will consider a hardwired implementation of the control unit for
the Basic Computer

Timing and control

TIMING AND CONTROL

4-bit
sequence
counter

(SC)

15 14 13 12 11 - 0

Combinational
Control

logic

Control unit of Basic Computer

Instruction register (IR)

Other inputs

I

T15

Control
signals

Increment (INR)

Clear (CLR)

Clock

3 x 8
decoder

7 6 5 4 3 2 1 0

 D0

D7

T0

15 14 2 1 0
4 x 16

decoder

Timing and control

TIMING SIGNALS

- Generated by 4-bit sequence counter and 416 decoder
- The SC can be incremented or cleared.

- Example: T0, T1, T2, T3, T4, T0, T1, . . .
Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC 


Clock

T0 0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

INSTRUCTION CYCLE

• In Basic Computer, a machine instruction is executed in the following

cycle:
1. Fetch an instruction from memory

2. Decode the instruction

3. Read the effective address from memory if the instruction has an indirect address

4. Execute the instruction

• After an instruction is executed, the cycle starts again at step 1, for the

next instruction

• Note: Every different processor has its own (different)

instruction cycle

Instruction Cycle

FETCH and DECODE

• Fetch and Decode

Memory
unit

AR

PC

IR

S2

S1 Bus

S0

T1

T0

7

Address
Read

1

LD

2

INR

5

LD

Common bus

Clock

T0: AR  PC (S0S1S2=010, T0=1)
T1: IR  M [AR], PC  PC + 1 (S0S1S2=111, T1=1)
T2: D0, . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15)

DETERMINE THE

D'7IT3: AR  M[AR]
D'7I'T3: Nothing
D7I'T3: Execute a register-reference
D7IT3: Execute an input-output

Execute
input-output
instruction

SC  0

Execute
register-reference

instruction
SC  0

(Register or I/O) = 1
D7

(I/O) = 1 = 0 (register)
I

T3

AR  PC

IR  M[AR], PC

Decode Opcode in IR(12
AR  IR(0-11),

Start
SC  

Instrction Cycle

THE TYPE OF INSTRUCTION

reference instr.
output instr.

Execute
reference

instruction
0

T0

T1

T2

= 0 (Memory-reference)

= 0 (register) (indirect) = 1 = 0 (direct)
 I

T3 T3
AR  M[AR]

T3
Nothing

T4

PC

M[AR], PC  PC + 1

Decode Opcode in IR(12-14),
 I  IR(15)

Execute
memory-
reference

instruction
SC  0



Instrction Cycle

Instruction Cycle

REGISTER REFERENCE INSTRUCTIONS

Register Reference Instructions are identified when

- D7 = 1, I = 0
- Register Ref. Instr. is specified in b0 ~ b11 of IR
- Execution starts with timing signal T3

r = D7 IT3 => Register Reference Instruction
Bi = IR(i) , i=0,1,2,...,11

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

r:
rB11:
rB10:
rB9:
rB8:
rB7:
rB6:
rB5:
rB4:
rB3:
rB2:
rB1:
rB0:

SC  0
AC  0
E  0
AC  AC’
E  E’
AC  shr AC, AC(15)  E, E  AC(0)
AC  shl AC, AC(0)  E, E  AC(15)
AC  AC + 1
if (AC(15) = 0) then (PC  PC+1)
if (AC(15) = 1) then (PC  PC+1)
if (AC = 0) then (PC  PC+1)
if (E = 0) then (PC  PC+1)
S  0 (S is a start-stop flip-flop)

MR Instructions

MEMORY REFERENCE INSTRUCTIONS

Symbol
Operation
Decoder

Symbolic Description

AND
ADD
LDA
STA
BUN
BSA
ISZ

D0
D1
D2
D3
D4
D5
D6

AC  AC  M[AR]
AC  AC + M[AR], E  Cout
AC  M[AR]
M[AR]  AC
PC  AR
M[AR]  PC, PC  AR + 1
M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1

- The effective address of the instruction is in AR and was placed there during
timing signal T2 when I = 0, or during timing signal T3 when I = 1

- Memory cycle is assumed to be short enough to complete in a CPU cycle
- The execution of MR instruction starts with T4

AND to AC

D0T4: DR  M[AR] Read operand
D0T5: AC  AC  DR, SC  0 AND with AC

ADD to AC

D1T4: DR  M[AR] Read operand

D1T5: AC  AC + DR, E  Cout, SC  0 Add to AC and store carry in E

MEMORY REFERENCE INSTRUCTIONS
LDA: Load to AC

D2T4: DR  M[AR]
D2T5: AC  DR, SC  0

STA: Store AC
D3T4: M[AR]  AC, SC  0

BUN: Branch Unconditionally
D4T4: PC  AR, SC  0

BSA: Branch and Save Return Address
M[AR]  PC, PC  AR + 1

Memory, PC, AR at time T4

20

PC = 21

Memory, PC after execution

20

21

AR = 135

136

135

PC = 136

Memory Memory

0 BSA 135

Next instruction

Subroutine

1 BUN 135

0 BSA 135

Next instruction

21

Subroutine

1 BUN 135

MR Instructions

MEMORY REFERENCE INSTRUCTIONS

BSA:
D5T4: M[AR]  PC, AR  AR + 1
D5T5: PC  AR, SC  0

ISZ: Increment and Skip-if-Zero
D6T4: DR  M[AR]
D6T5: DR  DR + 1

D6T4: M[AR]  DR, if (DR = 0) then (PC  PC + 1), SC  0

MR Instructions

FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS

Memory-reference instruction

DR  M[AR] DR  M[AR] DR  M[AR]

M[AR]  PC
AR  AR + 1

DR  M[AR]

DR  DR + 1

AND ADD LDA STA

D0T4 D1T4 D2T4 D3T4
M[AR]  AC

SC  0

D0T5 D1T5 D2T5
AC  AC DR

SC  0
AC  AC + DR
E  Cout
SC  0

AC  DR
SC  0

BUN BSA ISZ

D4T4

PC  AR
SC  0

D5T4 D6T4

D5T5 D6T5

PC  AR
SC  0

D6T6

M[AR]  DR
If (DR = 0)
then (PC  PC + 1)
SC  0

INPUT-OUTPUT

• Input-Output Configuration

Input-

terminal

- The terminal sends and receives serial
- The serial info. from the keyboard is shifted into
- The serial info. for the printer is stored in the
- INPR and OUTR communicate with the

serially and with the AC in
- The flags are needed to synchronize

difference between I/O device and the com

A Terminal with a keyboard and a Printer

Printer

Keyboard
INPR Input register - 8 bits
OUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

I/O and Interrupt

AC

Receiver
interface

Transmitter
interface

OUTPUT AND INTERRUPT

-output
terminal

Serial
communication

interface

Computer
registers and
flip-flops

OUTR

INPR

Serial Communications Path
Parallel Communications Path

The terminal sends and receives serial information
keyboard is shifted into INPR

The serial info. for the printer is stored in the OUTR
INPR and OUTR communicate with the terminal

in parallel.
synchronize the timing

difference between I/O device and the computer

A Terminal with a keyboard and a Printer

FGI

Printer FGO

Keyboard

I/O and Interrupt

Parallel Communications Path

PROGRAM CONTROLLED

-- CPU --

/* Input */ /* Initially FGI = 0 */
loop: If FGI = 0 goto loop

AC  INPR, FGI  0

/* Output */ /* Initially FGO = 1 */
loop: If FGO = 0 goto loop

OUTR  AC, FGO  0

FGI  0

AC  INPR

FGI=0

Start Input

yes
FGI=0

no

yes More
Character

no

END

I/O and Interrupt

AC  Data

Start Output

yes
FGO=0

no

yes More
Character

no

END

CONTROLLED DATA TRANSFER

 -- I/O Device --

loop: If FGI = 1 goto loop

INPR  new data, FGI  1

loop: If FGO = 1 goto loop

consume OUTR, FGO  1

OUTR  AC

FGO  0

FGO=1

I/O and Interrupt

INPUT-OUTPUT INSTRUCTIONS

D7IT3 = p
IR(i) = Bi, i = 6, …, 11

p: SC  0 Clear SC
INP pB11: AC(0-7)  INPR, FGI  0 Input char. to AC
OUT pB10: OUTR  AC(0-7), FGO  0 Output char. from AC
SKI pB9: if(FGI = 1) then (PC  PC + 1) Skip on input flag
SKO pB8: if(FGO = 1) then (PC  PC + 1) Skip on output flag
ION pB7: IEN  1 Interrupt enable on
IOF pB6: IEN  0 Interrupt enable off

I/O and Interrupt

PROGRAM-CONTROLLED INPUT/OUTPUT

• Program-controlled I/O

- Continuous CPU involvement
I/O takes valuable CPU time

- CPU slowed down to I/O speed
- Simple
- Least hardware

Input

LOOP, SKI DEV
 BUN

INP
LOOP
DEV

Output

LOOP, LDA DATA
LOP, SKO DEV
 BUN LOP
 OUT DEV

INTERRUPT INITIATED INPUT/OUTPUT

- Open communication only when some data has to be passed --> interrupt.

- The I/O interface, instead of the CPU, monitors the I/O device.

- When the interface founds that the I/O device is ready for data transfer,

it generates an interrupt request to the CPU

- Upon detecting an interrupt, the CPU stops momentarily the task

it is doing, branches to the service routine to process the data
transfer, and then returns to the task it was performing.

* IEN (Interrupt-enable flip-flop)

- can be set and cleared by instructions

- when cleared, the computer cannot be interrupted

I/O and Interrupt

Execute
instructions

Store return address
in location 0
M[0]  PC

Branch to location 1
PC  1

IEN  0
R  0

FLOWCHART FOR INTERRUPT CYCLE
R = Interrupt f/f

Instruction cycle =0 R =1 Interrupt cycle

IEN =0

=1

=1
FGI

=0

=1
FGO

=0

- The interrupt cycle is a HW implementation of a branch
and save return address operation.

- At the beginning of the next instruction cycle, the
instruction that is read from memory is in address 1.

- At memory address 1, the programmer must store a branch instruction
that sends the control to an interrupt service routine

- The instruction that returns the control to the original
program is "indirect BUN 0"

Fetch and decode
instructions

R  1

REGISTER TRANSFER OPERATIONS IN INTERRUPT CYCLE

Before interrupt

Memory

Register Transfer Statements for Interrupt Cycle
- R F/F  1 if IEN (FGI +

 T0T1T2

- The fetch and decode phases of the instruction
must be modified Replace T

- The interrupt cycle :

RT0: AR  0, TR  PC

RT1: M[AR]  TR, PC

RT2: PC  PC + 1, IEN

0

1 0 BUN 1120 PC = 1

Main

255 Program 255
PC = 256 256

1120
I/O

Program

1 BUN 0

1120

I/O and Interrupt

REGISTER TRANSFER OPERATIONS IN INTERRUPT CYCLE

After interrupt cycle

Register Transfer Statements for Interrupt Cycle
if IEN (FGI + FGO)T0T1T2

2 (IEN)(FGI + FGO): R  1

The fetch and decode phases of the instruction cycle
Replace T0, T1, T2 with R'T0, R'T1, R'T2

PC

TR, PC  0

IEN  0, R  0, SC  0

256

0 BUN 1120

Main
Program

I/O

Program

1 BUN 0

0
PC = 1

255
256

1120

I/O and Interrupt

I/O and Interrupt

FURTHER QUESTIONS ON INTERRUPT

How can the CPU recognize the device

requesting an interrupt ?

Since different devices are likely to require

different interrupt service routines, how can

the CPU obtain the starting address of the

appropriate routine in each case ?

Should any device be allowed to interrupt the

CPU while another interrupt is being serviced ?

How can the situation be handled when two or

more interrupt requests occur simultaneously ?

Description

Execute
RR

Instruction

AR <- M[AR] Idle

COMPLETE COMPUTER DESCRIPTION
Flowchart of Operations

 =0(Instruction R =1(Interrupt
Cycle) Cycle)

R’T0
RT0

AR  PC
R’T1

AR  0, TR  PC
RT1

IR  M[AR], PC  PC + 1
R’T2

M[AR]  TR, PC  0
RT2

AR  IR(0~11), I  IR(15)
D0...D7  Decode IR(12 ~ 14)

PC  PC + 1, IEN  0
R  0, SC  0

=1(Register or I/O) D7
 =0(Memory Ref)

=1 (I/O)
I

 =0 (Register) =1(Indir)
I

 =0(Dir)

D7IT3 D7I’T3 D7’IT3 D7’I’T3
Execute

I/O
Instruction

Execute MR D7’T4
Instruction

start
SC  0, IEN  0, R  0

Description

Microoperations COMPLETE COMPUTER DESCRIPTION

Fetch

Decode

Indirect
Interrupt

RT0:
RT1:
RT2:

D7IT3:

AR  PC
IR  M[AR], PC  PC + 1
D0, ..., D7  Decode IR(12 ~ 14),

AR  IR(0 ~ 11), I  IR(15)
AR  M[AR]

T0T1T2(IEN)(FGI + FGO):
RT0:
RT1:
RT2:

Memory-Reference

R  1
AR  0, TR  PC
M[AR]  TR, PC  0
PC  PC + 1, IEN  0, R  0, SC  0

AND

ADD

LDA

STA
BUN
BSA

D0T4:
D0T5:
D1T4:
D1T5:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D5T5:

DR  M[AR]
AC  AC  DR, SC  0
DR  M[AR]
AC  AC + DR, E  Cout, SC  0
DR  M[AR]
AC  DR, SC  0
M[AR]  AC, SC  0
PC  AR, SC  0
M[AR]  PC, AR  AR + 1
PC  AR, SC  0

ISZ D6T4:
D6T5:

DR  M[AR]
DR  DR + 1

 D6T6: M[AR]  DR, if(DR=0) then (PC  PC + 1),
 SC  0

Description

Microoperations COMPLETE COMPUTER DESCRIPTION

Register-Reference
 D7IT3 = r (Common to all register-reference instr)

IR(i) = Bi
(i = 0,1,2, ..., 11)

r: SC  0
CLA rB11: AC  0
CLE rB10: E  0
CMA rB9: AC  AC
CME rB8: E  E
CIR rB7: AC  shr AC, AC(15)  E, E  AC(0)
CIL rB6: AC  shl AC, AC(0)  E, E  AC(15)
INC rB5: AC  AC + 1
SPA rB4: If(AC(15) =0) then (PC  PC + 1)
SNA rB3: If(AC(15) =1) then (PC  PC + 1)
SZA rB2: If(AC = 0) then (PC  PC + 1)
SZE rB1: If(E=0) then (PC  PC + 1)
HLT rB0: S  0

Input-Output D7IT3 = p (Common to all input-output instructions)
 IR(i) = Bi

(i = 6,7,8,9,10,11)
 p: SC  0

INP pB11: AC(0-7)  INPR, FGI  0
OUT pB10: OUTR  AC(0-7), FGO  0
SKI pB9: If(FGI=1) then (PC  PC + 1)
SKO pB8: If(FGO=1) then (PC  PC + 1)
ION pB7: IEN  1
IOF pB6: IEN  0

Design of Basic Computer

DESIGN OF BASIC COMPUTER(BC)

Hardware Components of BC

A memory unit: 4096 x 16.
Registers:

AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
Flip-Flops(Status):

I, S, E, R, IEN, FGI, and FGO
Decoders: a 3x8 Opcode decoder

a 4x16 timing decoder
Common bus: 16 bits
Control logic gates:
Adder and Logic circuit: Connected to AC

Control Logic Gates

- Input Controls of the nine registers

- Read and Write Controls of memory

- Set, Clear, or Complement Controls of the flip-flops

- S2, S1, S0 Controls to select a register for the bus

- AC, and Adder and Logic circuit

T

CONTROL OF REGISTERS

Address Register; AR
Scan all of the register transfer statements that change the content of AR:

R’T0: AR  PC
R’T2: AR  IR(0
D’7IT3: AR  M[AR]
RT0: AR  0
D5T4: AR  AR + 1

D'7
I

T3
2

R
T0
D

T4

From bus
12

LD(AR) = R'T0 + R'T
CLR(AR) = RT0

INR(AR) = D5T4

Design of Basic Computer

AR

REGISTERS AND MEMORY

Scan all of the register transfer statements that change the content of AR:

 LD(AR)
IR(0-11) LD(AR)
M[AR] LD(AR)

CLR(AR)
AR + 1 INR(AR)

LD

INR

CLR

12
To bus

Clock

+ R'T2 + D'7IT3

Design of Basic Computer

Scan all of the register transfer statements that change the content of AR:

Design of Basic Computer

CONTROL OF FLAGS

IEN: Interrupt Enable Flag

pB7: IEN  1 (I/O Instruction)

pB6: IEN  0 (I/O Instruction)

RT2: IEN  0 (Interrupt)

p = D7IT3 (Input/Output Instruction)

D
7

I

T3

p

B7
J Q IEN

B6 K

R

T2

Design of Basic Computer

CONTROL OF COMMON BUS

x1

x2

x3

x4

x5

x6

x7

x1 x2 x3 x4 x5 x6 x7

S2

S1

S0
selected
register

0 0 0 0 0 0 0 0 0 0 none
1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 1 0 0 AC
0 0 0 0 1 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

For AR

x1 = D4T4 + D5T5

Encoder

 S 2

S 1

S 0

Multiplexer

bus select

inputs

D4T4: PC  AR
D5T5: PC  AR

Design of AC Logic

Adder and

logic

circuit

AC

Control

gates

DESIGN OF ACCUMULATOR LOGIC

Circuits associated with AC
16

16 16 16

From DR

From INPR 8
To bus

LD INR CLR Clock

All the statements that change the content of AC

D0T5:
D1T5:
D2T5:
pB11:
rB9:
rB7 :
rB6 :
rB11 :
rB5 :

AC  AC  DR
AC  AC + DR
AC  DR
AC(0-7)  INPR
AC  AC
AC  shr AC, AC(15)  E
AC  shl AC, AC(0)  E
AC  0
AC  AC + 1

AND with DR
Add with DR
Transfer from DR
Transfer from INPR
Complement
Shift right
Shift left
Clear
Increment

Design of AC Logic

AC

CONTROL OF AC REGISTER

Gate structures for controlling
the LD, INR, and CLR of AC

From Adder
and Logic

D0 AND
T 5

 16

LD
INR

 16 To bus

Clock

D1

D2
T 5

p
B11
r

B9

B7

B6

B5

B11

ADD

DR

INPR

COM

SHR

SHL

INC

CLR

CLR

Design of AC Logic

ALU (ADDER AND LOGIC CIRCUIT)

One stage of Adder and Logic circuit

DR(i) AC(i)

J Q

K

FA

AND

C i ADD LD

Ii
AC(i)

C
i+1

DR

From
INPR
bit(i)

INPR

COM

SHR

AC(i+1)

SHL

AC(i-1)

MICROPROGRAMMED CONTROL

 Control Memory

 Sequencing Microinstructions

 Micro-program Example

 Design of Control Unit

 Microinstruction Format

 Nano storage and Nano program

Control Data

Memory I R Status F/Fs

Combinational
Logic Circuits

Control Data

I R Status F/Fs

Next Address
Generation
Logic

C
S
A
R

Control
Storage

(-program
memory)

e

o

COMPARISON OF CONTROL

Control Unit Implementation

Combinational Logic Circuits (Hard

Control Unit's State

Timing State

 Ins. Cycle State

Microprogram

M

m
r
y

Control
Points

CPU

Status F/Fs

Combinational
Logic Circuits

C
P
s

CPU D

}

Control
Storage
program

memory)

C
S
D
R

Implementation of Control Unit

CONTROL UNIT IMPLEMENTATIONS

(Hard-wired)

Implementation of Control Unit

TERMINOLOGY

Micro-program
- Program stored in memory that generates all the control signals required

to execute the instruction set correctly
- Consists of microinstructions

Microinstruction
- Contains a control word and a sequencing word

Control Word - All the control information required for one clock cycle
Sequencing Word - Information needed to decide

the next microinstruction address
- Vocabulary to write a micro-program

Control Memory(Control Storage: CS)
- Storage in the micro-programmed control unit to store the micro-program

Writeable Control Memory(Writeable Control Storage:WCS)
- CS whose contents can be modified

-> Allows the micro program can be changed
-> Instruction set can be changed or modified

Dynamic Microprogramming
- Computer system whose control unit is implemented with

a micro-program in WCS
- Micro-program can be changed by a systems programmer or a user

TERMINOLOGY

Sequencer (Micro-program Sequencer)

A Micro-program Control Unit that determines
the Microinstruction Address to be executed

in the next clock cycle

- In-line Sequencing
- Branch
- Conditional Branch
- Subroutine
- Loop
- Instruction OP-code mapping

Multiplexers

Control address register

Control memory (ROM)

MICROINSTRUCTION

Status
bits

MUX

select

select a status

bit

Branch address

Sequencing Capabilities Required in a Control Storage

- Incrementing of the control address register
- Unconditional and conditional branches
- A mapping process from the bits of the machine

instruction to an address for control
- A facility for subroutine call and return

Instruction code

Mapping

Branch
logic

Sequencing

Subroutine
register
(SBR)

Incrementer

Multiplexers

Control address register
(CAR)

Control memory (ROM)

MICROINSTRUCTION SEQUENCING

Microoperations

Sequencing Capabilities Required in a Control Storage

Incrementing of the control address register
branches

A mapping process from the bits of the machine
instruction to an address for control memory

return

Instruction code

Mapping
logic

Sequencing

MUX

CONDITIONAL

Load address

Increment

...
Status bits
(condition)

Condition select

Conditional Branch

Next address

If Condition is true, then Branch (address from
the next address field of the current microinstruction)
else Fall Through

Conditions to Test: O(overflow), N(negative),
Z(zero), C(carry), etc.

Unconditional Branch
Fixing the value of one status bit at the

Control

Sequencing

Control memory

CONDITIONAL BRANCH

Micro-operations

(address from
the next address field of the current microinstruction)

Conditions to Test: O(overflow), N(negative),
Z(zero), C(carry), etc.

Fixing the value of one status bit at the input of the multiplexer to 1

Control address register

Sequencing

MAPPING OF INSTRUCTIONS

Mapping from the OP-code of an instruction to the address of the Microinstruction which is
the starting microinstruction of its execution micro

Machine
Instruction

OP
1 0

Mapping bits

Microinstruction
address

Mapping function implemented by ROM or PLA

OP-code

Mapping memory
(ROM or PLA)

Control address register

Control Memory

0 x

0 1

Sequencing

INSTRUCTIONS TO MICROROUTINES

code of an instruction to the address of the Microinstruction which is
the starting microinstruction of its execution micro-program.

OP-code
0 1 1 Address

Mapping function implemented by ROM or PLA

Mapping memory
PLA)

Control address register

Control Memory

 x x x 0 0

 0 1 1 0 0

Sequencing

code of an instruction to the address of the Microinstruction which is

15

Arithmetic
logic and
shift unit

MICROPROGRAM

Computer Configuration

10 0

AR
 Address

10 0

PC

15

MUX

Memory

2048 x 16

Control memory
128 x 20

6 0 6 0

SBR CAR

Control unit

Microprogram

0
AC

Arithmetic
logic and
shift unit

MICROPROGRAM EXAMPLE

0

Memory

2048 x 16

MUX

DR

Microprogram

Microprogram

MACHINE INSTRUCTION FORMAT

Machine instruction format

15 14 11 10 0

I Opcode Address

Sample machine instructions

EA is the effective address

Microinstruction Format

3 3 3 2 2 7

F1 F2 F3 CD BR AD

F1, F2, F3: Microoperation fields
CD: Condition for branching
BR: Branch field
AD: Address field

Symbol OP-code Description

ADD 0000 AC  AC + M[EA]

BRANCH 0001 if (AC < 0) then (PC  EA)

STORE 0010 M[EA]  AC

EXCHANGE 0011 AC  M[EA], M[EA]  AC

Microprogram

SYMBOLIC MICROINSTRUCTIONS

• Symbols are used in microinstructions as in assembly language
• A symbolic micro-program can be translated into its binary equivalent by a micro-
program assembler.

Sample Format

five fields: label; micro-ops; CD; BR; AD

Label: may be empty or may specify a symbolic
address terminated with a colon

Micro-ops: consists of one, two, or three symbols

separated by commas

CD: one of {U, I, S, Z}, where U: Unconditional Branch
I: Indirect address bit
S: Sign of AC
Z: Zero value in AC

BR: one of {JMP, CALL, RET, MAP}

AD: one of {Symbolic address, NEXT, empty}

Microprogram

SYMBOLIC MICROPROGRAM - FETCH ROUTINE

Sequence of microoperations in the fetch cycle:

Symbolic microprogram for the fetch cycle:

ORG 64

FETCH: PCTAR U JMP NEXT
READ, INCPC U JMP NEXT
DRTAR U MAP

Binary equivalents translated by an assembler

Binary
address

F1

F2

F3

CD

BR

AD

1000000 110 000 000 00 00 1000001
1000001 000 100 101 00 00 1000010
1000010 101 000 000 00 11 0000000

During FETCH, Read an instruction from memory
and decode the instruction and update PC

AR  PC
DR  M[AR], PC  PC + 1
AR  DR(0-10), CAR(2-5)  DR(11-14), CAR(0,1,6)  0

Microprogram

SYMBOLIC MICROPROGRAM

Partial Symbolic Microprogram
Label Microops CD BR AD

 ORG 0
ADD: NOP I CALL INDRCT

 READ U JMP NEXT
 ADD U JMP FETCH

 ORG 4

BRANCH: NOP S JMP OVER
 NOP U JMP FETCH

OVER: NOP I CALL INDRCT
 ARTPC U JMP FETCH

 ORG 8
STORE: NOP I CALL INDRCT

 ACTDR U JMP NEXT
 WRITE U JMP FETCH

 ORG 12

EXCHANGE: NOP I CALL INDRCT
 READ U JMP NEXT
 ACTDR, DRTAC U JMP NEXT
 WRITE U JMP FETCH

 ORG 64
FETCH: PCTAR U JMP NEXT

 READ, INCPC U JMP NEXT
 DRTAR U MAP

INDRCT: READ U JMP NEXT
 DRTAR U RET

• Control Storage: 128 20-bit words
• The first 64 words: Routines for the 16 machine instructions
• The last 64 words: Used for other purpose (e.g., fetch routine and other subroutines)
• Mapping: OP-code XXXX into 0XXXX00, the first address for the 16 routines are

0(0 0000 00), 4(0 0001 00), 8, 12, 16, 20, ..., 60

Microprogram

BINARY MICROPROGRAM

68 1000100 101 000 000 00 10 0000000

This microprogram can be implemented using ROM

Micro Routine

Address Binary Microinstruction

Decimal Binary F1 F2 F3 CD BR AD

ADD 0 0000000 000 000 000 01 01 1000011
 1 0000001 000 100 000 00 00 0000010
 2 0000010 001 000 000 00 00 1000000
 3 0000011 000 000 000 00 00 1000000

BRANCH 4 0000100 000 000 000 10 00 0000110
 5 0000101 000 000 000 00 00 1000000
 6 0000110 000 000 000 01 01 1000011
 7 0000111 000 000 110 00 00 1000000

STORE 8 0001000 000 000 000 01 01 1000011
 9 0001001 000 101 000 00 00 0001010
 10 0001010 111 000 000 00 00 1000000
 11 0001011 000 000 000 00 00 1000000

EXCHANGE 12 0001100 000 000 000 01 01 1000011
 13 0001101 001 000 000 00 00 0001110
 14 0001110 100 101 000 00 00 0001111
 15 0001111 111 000 000 00 00 1000000

FETCH

64

1000000

110

000

000

00

00

1000001

 65 1000001 000 100 101 00 00 1000010
 66 1000010 101 000 000 00 11 0000000

INDRCT 67 1000011 000 100 000 00 00 1000100

MICROPROGRAM

3
S1
S0

External
(MAP)

Address
source
selection

Clock

Control Storage

- NEXT MICROINSTRUCTION ADDRESS LOGIC

MUX-1 selects an address from one of four sources and routes it into a CAR

- In-Line Sequencing  CAR + 1
- Branch, Subroutine Call  CS(AD)
- Return from Subroutine  Output of
- New Machine instruction  MAP

S1S0 Address Source
00 CAR + 1, In-Line
01 SBR RETURN
10 CS(AD), Branch or CALL
11 MAP

Design of Control Unit

MICROPROGRAM SEQUENCER

 2 1 0

MUX1

Incrementer

External RETURN form
(MAP)

In-Line

SBR

CAR

Control Storage

NEXT MICROINSTRUCTION ADDRESS LOGIC -
 Branch, CALL Address

Subroutine

L Subroutine
CALL

1 selects an address from one of four sources and routes it into a CAR

CS(AD)
Output of SBR
MAP

Design of Control Unit

1 selects an address from one of four sources and routes it into a CAR

Design of Control Unit

MICROPROGRAM SEQUENCER

S
S

I0 logic

T
Input

I1

- CONDITION AND BRANCH CONTROL -

From
CPU

1
I

S
Z

CD Field of CS

of CS

L L(load SBR with PC)
for subroutine Call

0 for next address

1 selection

Input Logic

I0I1T Meaning Source of Address S1S0 L

000 In-Line CAR+1 00 0
001 JMP CS(AD) 10 0
010 In-Line CAR+1 00 0
011 CALL CS(AD) and SBR <- CAR+1 10 1
10x RET SBR 01 0
11x MAP DR(11-14) 11 0

S0 = I0

S1 = I0I1 + I0’T
L = I0’I1T

MUX2

Select

Test

BR field

MICROPROGRAM

3 2 1

S1

S0

MUX1

Control memory

Microops CD

External
(MAP)

L

1
I
S
Z

Test

Clock

. . .

I0 Input
I1 logic
T

MUX2

Select
CAR

Design of Control Unit

MICROPROGRAM SEQUENCER

Incrementer

1 0

MUX1

Control memory

BR AD

Load

. . .

SBR

Design of Control Unit

Microinstruction Format

MICROINSTRUCTION FORMAT

Information in a Microinstruction
- Control Information
- Sequencing Information
- Constant

Information which is useful when feeding into the system

These information needs to be organized in some way for
- Efficient use of the microinstruction bits
- Fast decoding

Field Encoding

- Encoding the microinstruction bits
- Encoding slows down the execution speed
due to the decoding delay

- Encoding also reduces the flexibility due to
the decoding hardware

HORIZONTAL
MICROINSTRUCTION

Horizontal Microinstructions
Each bit directly controls each micro-operation or each control point
Horizontal implies a long microinstruction word
Advantages: Can control a variety of components operating in parallel.

--> Advantage of efficient hardware utilization
Disadvantages: Control word bits are not fully utilized

--> CS becomes large
Vertical Microinstructions

A microinstruction format that is not horizontal
Vertical implies a short microinstruction word
Encoded Microinstruction fields

--> Needs decoding circuits for one

One-level decoding

1 of 4 1 of 8

Field A
2 bits

Field B
3 bits

2 x 4
Decoder

3 x 8
Decoder

Microinstruction Format

2 x 4
Decoder

6 x 64
Decoder

HORIZONTAL AND VERTICAL
MICROINSTRUCTION FORMAT

operation or each control point
Horizontal implies a long microinstruction word
Advantages: Can control a variety of components operating in parallel.

> Advantage of efficient hardware utilization
word bits are not fully utilized

> CS becomes large --> Costly

horizontal
implies a short microinstruction word

> Needs decoding circuits for one or two levels of decoding

Two-level decoding

Field A
2 bits

Field B
6 bits

Decoder and
selection logic

Microinstruction Format

Control Storage Hierarchy

NANOSTORAGE AND NANOINSTRUCTION

The decoder circuits in a vertical microprogram
storage organization can be replaced by a ROM
=> Two levels of control storage

First level - Control Storage
Second level - Nano Storage

Two-level microprogram

First level
-Vertical format Microprogram
Second level
-Horizontal format Nanoprogram
- Interprets the microinstruction fields, thus converts a vertical

microinstruction format into a horizontal
nanoinstruction format.

Usually, the microprogram consists of a large number of short
microinstructions, while the nanoprogram contains fewer words with longer
nanoinstructions.

TWO-LEVEL MICROPROGRAMMING
* Micro-program: 2048 microinstructions of 200 bits each
* With 1-Level Control Storage: 2048 x 200 = 409,600
* Assumption:

256 distinct microinstructions among 2048
* With 2-Level Control Storage:

Nano Storage: 256 x 200 bits to store 256 distinct nanoinstructions
Control storage: 2048 x 8 bits

To address 256 nano storage locations 8 bits are needed
* Total 1-Level control storage: 409,600 bits
Total 2-Level control storage: 67,584 bits (256 x 200 + 2048 x 8)

11 bits

Microinstruction (8 bits)
Nanomemory address

Nanoinstructions

Control address register

Control memory
2048 x 8

Nanomemory
256 x 200

Control Storage Hierarchy

MICROPROGRAMMING - EXAMPLE
program: 2048 microinstructions of 200 bits each
Level Control Storage: 2048 x 200 = 409,600 bits

256 distinct microinstructions among 2048

Nano Storage: 256 x 200 bits to store 256 distinct nanoinstructions

To address 256 nano storage locations 8 bits are needed
ontrol storage: 409,600 bits

Level control storage: 67,584 bits (256 x 200 + 2048 x 8)

11 bits

Microinstruction (8 bits)
Nanomemory address

Nanoinstructions (200 bits)

Control address register

Control memory
2048 x 8

Nanomemory
256 x 200

Control Storage Hierarchy

Memory Organization

� Memory hierarchy

� Main Memory

� RAM ,ROM Chips

� Memory Address map

� Memory Connection to CPU

� Associate memory

� Cache Memory

� Data cache ,Instruction cache, Miss and Hit ratio, Access time

� Associative ,Set associative ,mapping, waiting into cache

� Introduction to virtual memory

Learning Objectives

In this chapter, you will be able to know

Define memory system of the computer

State the need for memory system

Explain memory hierarchy of the system

Describe the function of ROM and RAM chips

Demonstrate the connection between CPU and
memory system

Memory System

• Memory refers to the physical devices used to store data on a
temporary or permanent basis for the use in computer.

• Memory system is a collection of storage cells together with
associated circuits needed to transfer information in and out of
storage

Need for memory system

• Von Neumann's “stored program "concept demands for it.

• Computers would run more effectively if they were equipped
with additional storage beyond the capacity of its own
memory(registers) and main memory

• Memory system serves as a backup for storing the information
that is not currently used by the CPU.

Memory Hierarchy

• The three key features which are a constraint to the design of
a computer memory are capacity, access time and cost.

• The memory must be capable of storing huge amount of data.

• To achieve greatest performance, the memory must be able to
keep up with the processor

• The cost of memory must be reasonable in relationship to
other components.

• There is a trade-off among the three key characteristics of
memory: namely , capacity , access time and cost.

MEMORY

Auxiliary memory

Magnetic
tapes

Memory Hierarchy is to obtain the highest possible
access speed while minimizing the total cost of the memory system

Magnetic
disks

Register

Cache

Main Memory

Magnetic Disk

Magnetic Tape

I/O
processor

CPU

MEMORY HIERARCHY

Memory Hierarchy

Memory Hierarchy is to obtain the highest possible
access speed while minimizing the total cost of the memory system

Main Memory

Magnetic Disk

Magnetic Tape

Main

memory

Cache
memory

Memory Hierarchy

MEMORY HIERARCHY

A variety of technologies are used to implement memory
systems, and across this spectrum of technologies, the
following relationship hold:

• Faster access time, grater cost per bit

• Greater capacity, smaller cost per bit

• Greater capacity. Slower access time

As one goes down the hierarchy, the following occur:

• Decreasing cost per bit

• Increasing capacity

• Increasing access time

Main Memory

• The main memory is the central storage unit in a
computer system.

• It is relatively large and fast memory used to
store programs and data during the computer
operation.

• The principal technology used for the main
memory is based on semiconductor integrated
circuits.

• Integrated RAM chips are available in two
possible operating modes , static and dynamic.

Main Memory

Static RAM(SRAM):
• The static RAM consists essentially of internal flip-flops that store the

binary information.
• The stored information remains valid as long as power is applied to the

unit.
• It is easier to use and has shorter read and write cycles.
• SRAM is used in implementing the cache memory.
Dynamic RAM(DRAM):
• the dynamic RAM stores the binary information in the form of electric

charges that are applied to capacitors.
• It offers reduced power consumption.
• It has larger storage capacity
• DRAM is used in implementing the main memory.

RAM CHIP
• The capacity of the memory is 128 words of eight bits(one

byte)per word.

• This requires a 7-bit address and an 8-bit bidirectional data
bus.

• The read and write inputs specify the memory operation and
the two chips select(CS) control inputs are for enabling the
chip only when it is selected by the microprocessor.

• The read and write inputs are sometimes combined in to one
line labeled R/W.

• When the chip is selected , the two binary states in this line
specify the two operations of read or write.

a bus

The Operation of the RAM chip

� The unit is in operation when CS1=1 and CS2=0
• The bar on top of the second select variable indicates that this input

is enabled when it is equal to 0.
• If the chip select inputs are not enabled, or if they are enabled but

the read or write inputs are not enabled, the memory is inhibited
and its data bus is in a high-impedance state.

� When CS1=1 and CS2=0,the memory can be placed in write or read
mode.

• When the WR input is enabled, the memory stores a byte from the
data bus into a location specified by the address input lines.

• When the RD input is enabled, the content of the selected byte is
placed into the data bus. the RD and WR signals control the
memory operation as well as the bus buffers associated with the
bidirectional dat

Read Only Memory(ROM)

• ROM is a type of “built-in” memory that is capable of
holding data.

• It is used for storing the bulk of the programs and
data that are permanently reside in the computer.

• The ROM portion of main memory is needed for
storing an initial program called a bootstrap loader,
whose function is to start the computer software
operating.

• The content of ROM remains unchanged when
power is turned off.

Types of ROM

PROM (Programmable ROM)

• data is allowed to be loaded by user but this process is
irreversible

• provide a faster and less expensive approach when only a
small number of data are required

EPROM (Erasable, Programmable ROM)

• stored data can be erased by exposing the chip to ultraviolet
light and new data to be loaded

EEPROM

• stored data can be erased electrically and selectively

• different voltages are needed for erasing, writing, and
reading the stored data

ROM Chip

• The data bus can only be in an output mode since ROM can
only read.

• The nine address lines in the ROM chip specify any one of the
512 bytes stored in it.

• The two chip select inputs must be CS1=1 and CS2=0 for the
unit to operate.

• There is no need for a read or write control because the unit
can only read.

MEMORY ADDRESS MAP

• The addressing of memory can be established by means of a
table that specifies the memory address assigned to each
chip.

• Memory Address Map is a pictorial representation of assigned
address space for each chip in the system.

• To demonstrate an example, assume that a computer system

needs 512 bytes of RAM and 512 bytes of ROM.

• The RAM have 128 byte and need seven address lines, where

the ROM have 512 bytes and need 9 address lines.

Memory Address Map

Memory Address Map

• The hexadecimal address assigns a range of
hexadecimal equivalent address for each chip

• Line 8 and 9 represent four distinct binary

combination to specify which RAM we chose

• When line 10 is 0, CPU selects a RAM. And when it’s

1, it selects the ROM

CONNECTION OF MEMORY TO CPU

CONNECTION OF MEMORY TO CPU

• The lower order lines in the address bus select the byte within

the chips and other lines and select a particular chip through its
chip select inputs.

• The selection between RAM and ROM is achieved through
bus line 10.

• The RAMs are selected when the bit in this line is 0,and the
ROM when the bit is 1.

• Address bus lines 1 to 9 are applied to the input address of
ROM without going through the decoder. this assigns
addresses 0 to 511 to RAM and 512 to 1023 to ROM.

• The data bus of the ROM has only an output capability, where
as the data bus connected to the RAMS can transfer
information in both directions

Associate memory

• The time required to find an item stored in memory can be reduced
considerably if stored data can be identified for access by the content of the
data itself rather than by an address.

• A memory unit accessed by content is called an associative memory or
content addressable memory(CAM)

• This type of memory is accessed simultaneously and in parallel on the
basis of data content rather than by specific address or location

• Associative memory is more expensive than a RAM because each cell must
have storage capability as well as logic circuits

• Argument register – holds an external argument for content matching.

• Key register – mask for choosing a particular field or key in the argument
word.

Associative Memory

Argument register(A)

Key register (K)

Associative memory
array and logic

m words

n bits per word

Block Diagram
-

Input

Read

Write

Match
register

- Compare each word in CAM in parallel with the
content of A(Argument Register)

- If CAM Word[i] = A, M(i) = 1
- Read sequentially accessing CAM for CAM Word(i) for M(i) = 1
- K(Key Register) provides a mask for choosing a

particular field or key in the argument in A
(only those bits in the argument that have 1’s in
their corresponding position of K are compared)

M

K1 Kj

C11 C1j

Ci1 Cij

Cm1 Cmj

Output

ORGANIZATION

Word 1

Word i

Word m

Bit 1 Bit j

Internal organization of a typical cell Cij

Input

Write

Read

A1 Aj

Associative Memory

Kn

C1n

Cin

Cmn

R S Match
logic F ij

Output

ORGANIZATION OF CAM

 Bit n

Aj Kj

An

M1

Mi

Mm

Associative Memory

Associative Memory

MATCH LOGIC

K 1 A 1 K 2 A 2 K n A n

Mi

F' i1 F i1 F' i2 F i2 F' in F in

Cache Memory

Locality of Reference

CACHE MEMORY

- The references to memory at any given time
interval tend to be confined within a localized areas

- This area contains a set of information and
the membership changes gradually as time goes by

- Temporal Locality
The information which will be used in near future
is likely to be in use already(e.g. Reuse of information in loops)

- Spatial Locality
If a word is accessed, adjacent(near) words are likely accessed soon
(e.g. Related data items (arrays) are usually stored together;
instructions are executed sequentially)

Cache
- The property of Locality of Reference makes the

Cache memory systems work
- Cache is a fast small capacity memory that should hold those information

which are most likely to be accessed

Main memory

CPU
Cache memory

CACHE MEMORY

• If the active portions of the program and data are
placed in a fast small memory, the average
memory access time can be reduced,

• Thus reducing the total execution time of the
program

• Such a fast small memory is referred to as cache
memory

• The cache is the fastest component in the
memory hierarchy and approaches the speed of
CPU component

Working

• When the CPU needs to access memory, the cache is
examined.

• If the word is found in the cache, it is read from the fast
memory.

• If the word addressed by the cpu is not found in the cache the
main memory is accessed to read the word

• A block of words containing the one just accesses is then
transferred from main memory to cache memory.

• The block size may vary from one word(the one just accessed)
to about 16 words adjacent to the one just accessed.

• In this manner, some data are transferred to cache so that
future references to memory find the required words in the fast
cache memory.

Working

• Existence of a cache is transparent to the processor. The
processor issues Read and
Write requests in the same manner.

• If the data is in the cache it is called a Read or Write hit.

• Read hit:
� The data is obtained from the cache.

• Write hit:
� Cache has a replica of the contents of the main memory.
� Contents of the cache and the main memory may be updated

simultaneously. This is the write-through protocol.
� Update the contents of the cache, and mark it as updated by

setting a bit known as the dirty bit or modified bit. The
contents of the main memory are updated when this block is
replaced. This is write-back or copy-back protocol.

Working

• If the data is not present in the cache, then a Read miss or
Write miss occurs.

• Read miss:
� Block of words containing this requested word is transferred

from the memory.
� After the block is transferred, the desired word is forwarded to

the processor.
� The desired word may also be forwarded to the processor as

soon as it is transferred without waiting for the entire block to
be transferred. This is called load-through or early-restart.

• Write-miss:
� Write-through protocol is used, then the contents of the main

memory are updated directly.
� If write-back protocol is used, the block containing the

addressed word is first brought into the cache. The desired word
is overwritten with new information.

Working

• In a read operation, the block containing the
location specified is transferred in to the cache
from the main memory, if it is not in the cache(a
miss).otherwise(a hit),the block can be read from
the cache directly

• The performance of cache memory is frequently
measured in terms of hit ratio . High hit ratio
verifies the validity of the local reference
property.

• Hit ratio=Number of hits/total number of
memory references

Working

Two different ways of write access for system with
cache memory :

1) Write-through method –the cache and the main
memory locations are updated simultaneously.

2) Write-back method -cache location updated
during a write operation is marked with a dirty or
modified bit. The main memory location is
updated later when the block is to be removed
from the cache.

• Processor issues a Read request, a block of words is
transferred from the main memory to the cache, one word at
a time.

• Subsequent references to the data in this block of words are
found in the cache.

• At any given time, only some blocks in the main memory are
held in the cache. Which blocks in the main memory are in
the cache is determined by a “mapping function”.

• When the cache is full, and a block of words needs to be
transferred from the main memory, some block of words in
the cache must be replaced. This is determined by a
“replacement algorithm”.

Mapping functions

The correspondence between the main memory blocks
and those in the cache is specified by a mapping
function.

• Associative Mapping

• Set-associative Mapping

To explain the mapping procedures, we consider

• a 2K cache consisting of 128 blocks of 16 words each,
and

• a 64K main memory addressable by a 16-bit address,
4096 blocks of 16 words each.

Associative Mapped Cache
•Main memory block can be
placed into any cache position.
•Memory address is divided into
two fields:

- Low order 4 bits identify the
word within a block.

- High order 12 bits or tag bits
identify a memory block when it
is resident in the cache.
•Flexible, and uses cache space
efficiently.
•Replacement algorithms can be
used to replace an existing block
in the cache when the cache is
full.
•Cost is higher than direct-
mapped cache because of the
need to search all 128 patterns to
determine whether a given block
is in the cache.

• The cost of an associative cache is relatively
high because of the need to search all 128
tags to determine whether a given block is in
the cache.

• For performance reasons, associative search
must be done in parallel.

Set-associative Mapping

• Blocks of the cache are grouped into sets, and

the mapping allows a block of the main
memory to reside in any block of a specific set.

• A cache that has k blocks per set is referred to
as a k-way set-associative cache.

• The contention problem of the direct method is
eased.

• The hardware cost of the associative method is
reduced.

e main
cific set.
blocks per set.
lock 0, and they

ields:
ber.
ed to the tag

f direct and

arameter.
ks in one set,

ative mapping).
k per set, is

Set Associative Mapped Cache with two blocks
per set

Blocks of cache are grouped into sets.
Mapping function allows a block of th
memory to reside in any block of a spe
Divide the cache into 64 sets, with two
Memory block 0, 64, 128 etc. map to b
can occupy either of the two positions.
Memory address is divided into three f

- 6 bit field determines the set num
- High order 6 bit fields are compar
fields of the two blocks in a set.

Set-associative mapping combination o
associative mapping.
Number of blocks per set is a design p

- One extreme is to have all the bloc
requiring no set bits (fully associ
- Other extreme is to have one bloc

the same as direct mapping.

VIRTUAL MEMORY

• Virtual memory is a concept used in some large
computer systems that permit the user to construct
programs as though a large memory space were
available, equal to the totality of auxiliary memory

• Each address that is referenced by the CPU goes
through an address mapping from the so-called virtual
address to a physical address in main memory.

• A virtual memory system provides a mechanism for
translating program-generated addresses in to correct
main memory locations

• The translation or mapping is handled automatically by
the hardware by means of a mapping table.

Address space and memory space
• An address used by a programmer will be called a

virtual address, and the set of such addresses the
address space.

• An address in main memory is called a location or
physical address. the set of such location is called the
memory space.

Relation between Address and memory space in a virtual memory system

Mapping using Memory table

• The mapping table may be stored in a
separate memory or in main memory

Memory table for mapping a virtual address

Mapping using paging or page table

• The physical memory is broken down in to groups of

equal size blocks.

• The term page refers to groups to groups of address
space of the same size as block.

Address space and memory space split in to group of 1K words

Organization of memory Mapping
Table in a paged system

PAGE REPLACEMENT
Decision on which page to displace to make room for
an incoming page when no free frame is available

Modified page fault service routine
1. Find the location of the desired page on the backing
2. Find a free frame

- If there is a free frame, use it
- Otherwise, use a page-replacement algorithm to select a
- Write the victim page to the backing

3. Read the desired page into the (newly) free
4. Restart the user process

valid/
frame invalid bit

page table

2 change to
invalid

4
reset page
table for
new page

f 0 v i

f v

1

swap
out
victim
page

3
swap
desired

REPLACEMENT
Decision on which page to displace to make room for
an incoming page when no free frame is available

Find the location of the desired page on the backing store

replacement algorithm to select a victim frame
the victim page to the backing store

sired page into the (newly) free frame

Virtual Memory

change to

page
for

page

page in
backing store

physical memory

victim

Virtual Memory

PAGE REPLACEMENT Virtual Memory

FIFO

Reference string
ALGORITHMS

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 4 4 4 0 0 0 7 7 7
 0 0 0 3 3 3 2 2 2 1 1 1 0 0
 1 1 1 0 0 0 3 3 3 2 2 2 1

Page frames

FIFO algorithm selects the page that has been in memory the longest time
Using a queue - every time a page is loaded, its

- identification is inserted in the queue
Easy to implement
May result in a frequent page fault

Optimal Replacement (OPT) - Lowest page fault rate of all algorithms

Reference string

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 2 7
 0 0 0 0 4 0 0 0

 1 1 3 3 3 1 1

Page frames

Replace that page which will not be used for the longest period of time

INPUT-OUTPUT ORGANIZATION

� Peripheral Devices

� Input-Output Interface

� Asynchronous Data Transfer

� Modes of Transfer

� Priority Interrupt

� Direct Memory Access

� Input-Output Processor

� Serial Communication

Learning objectives

In this chapter, you will be able to know

� Peripheral devices and their use

� I/O interface connection

� Asynchronous data Transfer

� Modes of Transfer

� Define priority interrupt

� Functioning of DMA Controller

PERIPHERAL DEVICES
� The input-output subsystem of a computer provides an efficient

mode of communication between the central system and the
outside environment.

 Input System – programs and data must be entered in to
computer memory for processing.

� Output System- Results obtained from computations must be
recorded or displayed for the user.

� Input and Output Devices that are under the direct control of
the computer are designed to read information in to and out of
the memory unit upon command from the CPU are called
peripheral devices.

� There are three types of peripherals such as input , output , and
input-output peripherals .

PERIPHERAL DEVICES
Input Devices

Peripheral Devices

• Keyboard

• Optical input devices

- Card Reader

- Paper Tape Reader

- Bar code reader

- Digitizer

- Optical Mark Reader

• Magnetic Input Devices

- Magnetic Stripe Reader

• Screen Input Devices

- Touch Screen

- Light Pen

- Mouse

• Analog Input Devices

Output Devices

• Card Puncher, Paper Tape Puncher

• CRT

• Printer (Impact, Ink Jet,

Laser, Dot Matrix)

• Plotter

• Analog

• Voice

INPUT/OUTPUT INTERFACES
• Provides a method for transferring information between internal storage

(such as memory and CPU registers) and external I/O devices
• Resolves the differences between the computer and peripheral device

The major differences are:

• Peripherals - Electromechanical Devices
CPU or Memory - Electronic Device

• Data Transfer Rate
Peripherals - Usually slower
CPU or Memory - Usually faster than peripherals
Some kinds of Synchronization mechanism may be needed

• Unit of Information
Peripherals - Byte
CPU or Memory - Word

• Operating Modes
Peripherals - Autonomous, Asynchronous
CPU or Memory - Synchronous

I/O BUS AND INTERFACE MODULES

Data

Address

Control

• The I/O bus consists of data lines, address lines, and control lines.
• Each peripheral device has associated with it an interface unit.
• Each interface decodes the address and control received from the I/O bus,

interprets them for the peripheral, and provides signals for the peripheral
controller.

• To communicate with a particular device , the processor places a device address
on the address lines.

• With the address in address lines, the processor provides a function code in the
control lines.

• The function code is referred to as an I/O command.

Processor

Interface Interface Interface Interface

Keyboard
and

terminal

Printer

Magnetic

disk

Magnetic

tape

I/O bus

I/O BUS AND INTERFACE MODULES

There are four types of commands that an interface may receive

classified as control, status, data output , and data input

• A control command is used to activate the peripheral and to
inform it what to do.

• A status command is used to test various status conditions in
the interface and the peripheral.

• A data output command causes the interface to respond by
transferring data from the bus into one of its registers.

• The interface receives an item of data from the peripheral and
places it in its buffer register. the processor checks if data are
available by means of a status command and then issues a data
input command

I/O versus Memory Bus
In addition to communicating with I/O, the processor must

communicate with the memory unit.

Like the I/O bus , the memory bus contains data , address , and
read/write control lines.

There are three ways that computer buses can be used to
communicate with memory and I/O.

1.Use two separate buses, one for memory and the other for I/O.

2.Use one common bus for both memory and I/O but have separate
control lines for each.

3. Use one common bus for memory and I/O with common control
lines.

Input/Output Interfaces

ISOLATED vs. MEMORY MAPPED I/O

Isolated I/O

• Separate I/O read/write control lines in addition to memory

read/write control lines

• Separate (isolated) memory and I/O address spaces

• Distinct input and output instructions
Memory-mapped I/O

•A single set of read/write control lines
(no distinction between memory and I/O transfer)

•Memory and I/O addresses share the common address space

-> reduces memory address range available

• No specific input or output instruction

-> The same memory reference instructions can
be used for I/O transfers

• Considerable flexibility in handling I/O operations

Input/Output Interfaces

Bidirectional

data bus

CPUChip select

I/O INTERFACE-Example

I/O data

I/O
data

I/O

Register select

Register select
I/O read
I/O write

Control

Status

Device

ed

Programmable Interface

• Information in each port can be assigned a meaning
depending on the mode of operation of the I/O device
→ Port A = Data; Port B = Command; Port C = Status

•CPU initializes(loads) each port by transferring a byte to the Control Register
→ Allows CPU can define the mode of operation of each port
→ Programmable Port: By changing the bits in the control register, it is

possible to change the interface characteristics

Port A
register

buffers
Bus

rPeogristtBer

CS
RS1
RS0
RD
WR

and
Control

Timing
Control
register

register
Status

CS RS1 RS0 Register selected
0
1
1
1
1

x
0
0
1
1

x
0
1
0
1

None - data bus in high-imp
Port A register
Port B register
Control register
Status register

Asynchronous Data Transfer

ASYNCHRONOUS DATA TRANSFER

Synchronous and Asynchronous Operations
Synchronous - All devices derive the timing

information from common clock line
Asynchronous - No common clock

Asynchronous Data Transfer
Asynchronous data transfer between two independent units requires that
control signals be transmitted between the communicating units to
indicate the time at which data is being transmitted

Two Asynchronous Data Transfer Methods
Strobe pulse
• A strobe pulse is supplied by one unit to indicate

the other unit when the transfer has to occur
Handshaking
• A control signal is accompanied with each data

being transmitted to indicate the presence of data
• The receiving unit responds with another control

signal to acknowledge receipt of the data

STROBE

• The strobe control method of Asynchronous data transfer Employs
single control line to time each transfer

• The strobe may be activated by either the source or the
unit

Source-Initiated Strobe
for Data Transfer

Block Diagram

Timing Diagram

Valid data
Data

Strobe

Source
unit

Data bus

Strobe

Destination
unit

Asynchronous Data Transfer

 CONTROL

The strobe control method of Asynchronous data transfer Employs
line to time each transfer

The strobe may be activated by either the source or the destination

Destination-Initiated Strobe
for Data Transfer

Block Diagram

Timing Diagram

Data

Source
unit

Data bus

Strobe

Destination
unit

Strobe

Destination

Asynchronous Data Transfer

The strobe control method of Asynchronous data transfer Employs a

destination

Initiated Strobe

Destination

Source-Initiated Strobe for Data Transfer

The block diagram shows a source initiated transfer in which
• The data bus carries the binary information from source unit to the

destination unit.
• Typically, the bus has multiple lines to transfer an entire byte or

word.
• The strobe is a single line that informs the destination unit when a

valid data word is available in the bus.
The timing diagram shows
• Source unit first places the data on the data bus.
• After a brief delay to ensure that the data settle to a steady value, the

source activates the strobe pulse.
• The information on the data bus and the strobe signal remain

activate state for a sufficient time period to allow the destination unit
to receive the data.

Destination-Initiated Strobe for Data Transfer

• The destination unit activates the strobe pulse, informing the

source to provide the data.

• The source unit responds by placing the requested binary
information on the data bus.

• The data must be valid and remain in the bus long enough for
the destination unit to accept it.

• The falling edge of the strobe pulse can be used again to
trigger a destination register.

• The destination unit then disables the strobe.

• The source removes the data from the bus after a
predetermined time interval.

Disadvantages of Strobe methods

• Source-Initiated

The source unit that initiates the transfer has no way of
knowing whether the destination unit has actually
received data

• Destination-Initiated
The destination unit that initiates the transfer no way of

knowing whether the source has actually placed the data
on the bus

To solve this problem, the HANDSHAKE method

introduces a second control signal to provide a Reply to
the unit that initiates the transfer

Hand Shaking

The basic principle of the two-wire handshaking method
of data transfer is as follows

• One control line is in the same direction as the data
flow in the bus from the source to destination.

• It is used by the source unit to inform the destination
unit whether there are valid data in the bus .

• The other control line is in the other direction from the
destination to source .

• It is used by the destination unit to inform the source
whether it can accept data.

• The sequence of control during the transfer depends
on the unit that initiates the transfer.

Asynchronous Data Transfer

Disable data accepted.
Ready to accept data

Source
unit

Destination
unit

SOURCE-INITIATED TRANSFER USING HANDSHAKE
Data bus

Block Diagram Data valid
Data accepted

Timing Diagram Data bus
Valid data

Data valid

Data accepted

Sequence of Events

Source unit Destination unit
Place data on bus.
Enable data valid.

Disable data valid.
Invalidate data on bus.

Accept data from bus.
Enable data accepted

• Allows arbitrary delays from one state to the ne(xintitial state).

• Permits each unit to respond at its own data transfer rate
• The rate of transfer is determined by the slower unit

Asynchronous Data Transfer

Source
unit

Place data on bus.
Enable data valid.

 ta

DESTINATION-INITIATED TRANSFER USING HANDSHAKE

Data bus
Block Diagram

Timing Diagram

Ready for data

Data valid
Ready for da

Destination
unit

Sequence of Events

Data valid

Data bus Valid data

Source unit Destination unit
Ready to accept data.
Enable ready for data.

Disable data valid.

Invalidate data on bus
(initial state).

Accept data from bus.
Disable ready for data.

• Handshaking provides a high degree of flexibility and reliability because the
successful completion of a data transfer relies on active participation by both units

•If one unit is faulty, data transfer will not be completed
-> Can be detected by means of a timeout mechanism

Asynchronous Data Transfer

ASYNCHRONOUS SERIAL TRANSFER

Four Different Types of Transfer

Asynchronous Serial Transfer

• Employs special bits which are inserted at both
ends of the character code

• Each character consists of three parts; Start bit; Data bits; Stop bits.

1 1 0 0 0 1 0 1

Start
bit

(1 bit)

 Character bits Stop
bits

(at least 1 bit)

A character can be detected by the receiver from the knowledge of 4 rules;
•When data are not being sent, the line is kept in the 1-state (idle state)
•The initiation of a character transmission is detected

by a Start Bit , which is always a 0
• The character bits always follow the Start Bit
• After the last character , a Stop Bit is detected when

the line returns to the 1-state for at least 1 bit time
The receiver knows in advance the transfer rate of the

bits and the number of information bits to expect

Asynchronous serial transfer
Synchronous serial transfer
Asynchronous parallel transfer
Synchronous parallel transfer

Receiver
register

Asynchronous Communication Interface

A typical asynchronous communication interface available as an IC

Bidirectional
data bus

Chip select

Register select

I/O read

I/O write

Transmitter Register
- Accepts a data byte(from CPU) through the data
- Transferred to a shift register for serial

Receiver
- Receives serial information into another shift
- Complete data byte is sent to the receiver

Status Register Bits
- Used for I/O flags and for recording

Control Register Bits
- Define baud rate, no. of bits in each character,
to generate and check parity, and no. of stop

Transmitter
register Bus

buffers

Control
register

CS

RS Timing

and
RD Control

WR

Status
register In

te
rn

al
 B

u
s

Asynchronous Data Transfer

Shift
register

Asynchronous Communication Interface

A typical asynchronous communication interface available as an IC
Transmit

data

Receiver
control

and clock

Shift

register

Transmitter
 clock

Receiver
 clock

Receive
 data

Accepts a data byte(from CPU) through the data bus
Transferred to a shift register for serial transmission

Receives serial information into another shift register
Complete data byte is sent to the receiver register

Used for I/O flags and for recording errors

Define baud rate, no. of bits in each character, whether
and no. of stop bits

Transmitter
control
and clock

CS RS Opera. Register selected

0 x x None
1 0 WR Transmitter register
1 1 WR Control register
1 0 RD Receiver register
1 1 RD Status register

Asynchronous Data Transfer

MODES OF TRANSFER

• Information transferred from the central computer into an

external device originates in the memory unit.

• The CPU merely executes the I/O instructions and accepts the
data temporarily, but the ultimate source or destination is the
memory unit.

• Data transfer to and from peripherals may be handled in one
of three possible modes.

1.Programmed I/O.

2.Interrupt-initiated I/O

3.Direct memory access(DMA)

Programmed I/O

• Programmed I/O operations are the result of I/O instructions
written in the computer program.

• Each data item transfer is initiated by an instruction in the
program.

• Once a data transfer is initiated, the CPU is required to
monitor the interface to see when a transfer can again be made.

• The CPU stays in a program loop until the I/O unit indicates
that it is ready for data transfer. this is time consuming process
which can be avoids by using an interrupt facility and special
commands to inform the interface to issue an interrupt request
signal when the data are available from the device.

Data bus

Address bus
I/O read

I/O write

I/O bus

Data valid

Data accepted

Data register

Interface

register Status F

device
I/O

CPU

Example of programmed I/O
Modes of Transfer

A transfer from an I/O device to memory requires the execution of several
instructions by the CPU ,including an input instruction to transfer the data from
the device to the CPU and a store instruction to transfer the data from the CPU
to memory
Data transfer from I/O device to CPU

• Continuous CPU involvement
• CPU slowed down to I/O speed
• Simple
• Least hardware

Flowchart for CPU program to input data

Polling or Status Checking

Continue with
program

flag

= 1

= 0

Read data register
Transfer data to memory

 no Operation
complete?

yes

Read status register
Check flag bit

Interrupt-Initiated I/O
• In the programmed I/O method, the CPU stays in a program

loop until the I/O unit indicates that it is ready for data transfer.
This is a time-consuming process since it keeps the processor
busy needlessly.

• It can be avoided by using an interrupt facility and special
commands to inform the interface to issue an interrupt request
signal when the data are available from the device.

• In the meantime the CPU can proceed to execute another
program. The interface meanwhile keeps monitoring the
device. When the interface determines that the device is ready
for data
transfer, it generates an interrupt request to the computer.

• Upon detecting the external interrupt signal, the CPU
momentarily stops the task it is processing, branches to a
service program to process the I/O transfer, and then returns to
the task it was originally performing.

Example of Interrupt initiated I/O:

• Vectored interrupt

• Non vectored interrupt

Vectored interrupt :
In vectored interrupt, the source that interrupts
supplies the branch information to the computer.
This information is called the interrupt vector.

• Non vectored interrupt
In a non vectored interrupt, the branch address is
assigned to a fixed location in memory.

DIRECT MEMORY ACCESS

• The transfer of data between a fast storage device such as
magnetic disk and memory is often limited by the speed of the
CPU.

• Removing the CPU from the path and letting the peripheral
device manage the memory buses directly would improve the
speed of transfer.

This transfer technique is called direct memory access(DMA)

DMA Function

• During DMA transfer, the CPU is idle and has no control of
the memory buses.

• A DMA controller takes over the buses to manage the transfer
directly between the I/O devices and memory.

• The CPU may be placed in an idle state in variety of ways.

• One common method exclusively used in microprocessors is
to disable the Buses through Special control signals.

DIRECT MEMORY ACCESS
• BUS REQUEST

The bus request(BR) input is used by the DMA controller to
request the CPU to relinquish control of the buses.

• BUS GRANT

The CPU activates the bus grant(BG) output to inform the
external DMA that the buses are in the high-impedance state

• BUS TRANSFER

In DMA burst transfer, a block sequence consisting of a
number of memory words is transferred in a continuous burst while
the DMA controller is mater of the memory buses.

• CYCLE STEALING

An alternative technique called cycle stealing allows the
DMA controller to transfer one data word at a time, after which it
must return control of the buses to the CPU.

DMA Controller
• The DMA controller needs the usual circuits of an interface to

communicate with the CPU and I/O device.

• The address register and lines are used for direct
communication with the memory.

• The word count register specifies the number of words that
must be transferred. The data transfer may be done directly
between the device and memory under control of the DMA.

Working Of DMA Controller

• The unit communicate with the CPU via the data bus and control lines. The
registers in the DMA are selected by the CPU through the address bus by
enabling the DS(DMA select) and RS(register select) inputs. The RD(read)
and WR(write) input are bidirectional.

• When the BG(bus grant) input is 0,the CPU can communicate with the
DMA registers through the data bus to read from or write to the DMA
registers. when BG=1,the CPU has relinquished the buses and the DMA
can communicate directly with the memory by specifying an address in the
address bus and activating the RD or WR control.

• The DMA communicate with the external peripheral through the request
and acknowledge lines by using a prescribed handshaking procedure. The
DMA controller has three registers: an address register, a word count
register, and a control register.

• The address register contains an address to specify the desired location in
memory. The address bits go through bus buffers in to the address bus.

DMA controller working

The CPU initializes the DMA by sending the following
information through the data bus.

1. The starting address of the memory block where data are
available(for read) or where data are to be stored(for write).

2. The word count, which is the number of words in the memory
block.

3. Control to specify the mode of transfer such as read or write.

4.A control to start the DMA transfer.

DMA TRANSFER
• The CPU communicate with the DMA through the address and

data buses as with any interface unit.

• The DMA has its own address, which activates the DS and RS
lines

• The CPU initializes the DMA through the data bus. once the
DMA receives the start control command, it can start the transfer
between the peripheral device and the memory.

Input-Output Processor
IOP :

• Communicate directly with all I/O devices

• Fetch and execute its own instruction

– IOP instructions are specifically designed to facilitate I/O transfer

– DMAC must be set up entirely by the CPU

• Designed to handle the details of I/O processing

Command

• Instruction that are read form memory by an IOP

– Distinguish from instructions that are read by the CPU

– Commands are prepared by experienced programmers and are
stored in memory

– Command word = IOP program

CPU-IOP Communication

– : Fig. 11-23

Control block Parameter block Task block

8089
IOP

program

Busy CCW

PB address

Intel 8089 IOP
 Location of Information :

TB address

Memory address

Byte count

Device address

Track and sector

Status

 CPU enables channel attention
 Select one of two channels of 8089
 8089 gets attention of the CPU by

sending an interrupt request

 Channel Command Word
(CCW) : message center

» Start command

» Suspend command

» Resume command

» Halt command

8086
CPU

 

System
bus

Local bus

Memory unit

Bus

Controller

Output device

8089

IOP

Interface Interface

Input device

In
te

rr
u
p
t

S
e
le

c
t

C
h
a
n
n
e
l

a
tt
e
n
ti
o
n

UNTI-1
� Operating systems overview-operating systems functions

� overview of computer operating systems

� protection and security

� distributed systems

� special purpose systems

� operating systems structures-operating system services , system calls,
system programs, operating system structures, operating system
generations

Operating System 1

What is an Operating System?

• A program that acts as an intermediary between a user of a computer
and the computer hardware

• Operating system goals:

• Execute user programs and make solving user problems easier

• Make the computer system convenient to use

• Use the computer hardware in an efficient manner

Operating System 2

What operating systems do

• computer system can be divided roughly into four components the hardware,

the operating system, the application programs and the users.

• The hardware – which consists of CPU, memory and I/O devices, provides
the basic computing resources for the system.

• The application programs define the ways in which these resources are used
to solve users’ computing problems. The operating system controls and co-
ordinates the use of hardware among the various application programs for
the various users.

Operating System 3

Four Components of a Computer
System

Operating System 4

Operating system from the user view

• The user’s view of the computer varies according to the interface being used.

• While designing a PC for one user, the goal is to maximize the work that the user
is performing.

• Here OS is designed mostly for ease of use. In another case the user sits at a

terminal connected to a main frame or minicomputer. Other users can access the

same computer through other terminals.

Operating System 5

Operating system from the user view

• OS here is designed to maximize resource utilization to assure that all
available CPU time, memory and I/O are used efficiently.

• In other cases, users sit at workstations connected to networks of other
workstations and servers.

• These users have dedicated resources but they also share resources such as
networking and servers. Here OS is designed to compromise between
individual usability and resource utilization.

Operating System 6

Operating system from the system
view

• From the computer’s point of view, OS is the program which is widely involved
with hardware.

• Hence OS can be viewed as resource allocator where in resources are – CPU time,

memory space, file storage space, I/O devices etc.

• OS must decide how to allocate these resources to specific programs and users so

that it can operate the computer system efficiently.

Operating System 7

Operating system from the system
view

• OS is also a control program. A control program manages the execution of
user programs to prevent errors and improper use of computer.

• It is concerned with the operation and control of I/O devices. Defining

operating systems- OS exists because they offer a reasonable way to solve
the problem of creating a usable computing system. Goal of computer
systems is to execute user program and to make solving user problems
easier.

• Hence hardware is constructed. Since hardware alone is not easy to use,
application programs are developed.

Operating System 8

Operating systems functions
•Operating system is a large and complex software consisting of several components.
•Each component of the operating system has its own set of defined inputs and outputs.
•Different components of OS perform specific tasks to provide the overall functionality
of the operating system .

Operating System 9

Operating systems functions

• Process Management— The process management activities handled
by the OS are—

i. control access to shared resources like file, memory, I/O and CPU

ii. control execution of applications

iii. create, execute and delete a process (system process or user process)

iv. cancel or resume a process

v. schedule a process

vi. synchronization, communication and deadlock handling for processes.

Operating System 10

Operating systems functions

• memory Management— The activities of memory management handled by
OS are—(1) allocate memory, (2) free memory, (3) re-allocate memory to a
program when a used block is freed, and (4) keep track of memory usage.

• File Management— The file management tasks include—(1) create and delete

both files and directories, (2) provide access to files, (3) allocate space for files,
(4) keep back-up of files, and (5) secure files.

Operating System 11

Operating systems functions

• Device Management— The device management tasks handled by OS
are—(1) open, close and write device drivers, and (2) communicate, control
and monitor the device driver.

• Protection and Security— OS protects the resources of system. User
authentication, file attributes like read, write, encryption, and back-up of
data are used by OS to provide basic protection.

• User Interface or Command Interpreter— Operating system provides an
interface between the computer user and the computer hardware. The user
interface is a set of commands or a graphical user interface via which the

user interacts with the applications and the hardware.

Operating System 12

Overview of computer operating
systems

• Computer-system operation

– One or more CPUs, device controllers connect through common bus providing
access to shared memory

– Concurrent execution of CPUs and devices competing for memory cycles

Operating System 13

Computer-System Operation

• I/O devices and the CPU can execute concurrently.

• Each device controller is in charge of a particular device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from local buffers

• I/O is from the device to local buffer of controller

• Device controller informs CPU that it has finished its operation by causing an
interrupt.

Operating System 14

Storage Structure
• Main memory – only large storage media that the CPU can access

directly

• Secondary storage – extension of main memory that provides large
nonvolatile storage capacity

• Magnetic disks – rigid metal or glass platters covered with magnetic
recording material

– Disk surface is logically divided into tracks, which are subdivided
into sectors

– The disk controller determines the logical interaction between the
device and the computer

Operating System 15

Storage Hierarchy
• Storage systems organized in hierarchy

– Speed

– Cost

– Volatility

• Caching – copying information into faster storage system; main memory
can be viewed as a last cache for secondary storage

16 Operating System

I/O Structure
• After I/O starts, control returns to user program only upon I/O completion

• Wait instruction idles the CPU until the next interrupt

• Wait loop (contention for memory access)

• At most one I/O request is outstanding at a time, no simultaneous I/O
processing

• After I/O starts, control returns to user program without waiting for I/O
completion

• System call – request to the operating system to allow user to wait for I/O
completion

• Device-status table contains entry for each I/O device indicating its type,
address, and state

• Operating system indexes into I/O device table to determine device status
and to modify table entry to include interrupt.

Operating System 17

Computer-System Architecture

• Most systems use a single general-purpose processor

(PDAs through mainframes)
– Most systems have special-purpose processors as well

• Multiprocessors systems growing in use and
importance
– Also known as parallel systems, tightly-coupled systems
– Advantages include

1. Increased throughput
2. Economy of scale
3. Increased reliability – graceful degradation or fault tolerance

– Two types
1. Asymmetric Multiprocessing
2. Symmetric Multiprocessing

Operating System 18

How a Modern Computer Works

Operating System 19

Symmetric Multiprocessing Architecture

Operating System 20

A Dual-Core Design

Operating System 21

Clustered Systems

• Like multiprocessor systems, but multiple systems
working together
• Usually sharing storage via a storage-area network

(SAN)
• Provides a high-availability service which survives

failures
• Asymmetric clustering has one machine in hot-standby

mode
• Symmetric clustering has multiple nodes running

applications, monitoring each other

• Some clusters are for high-performance computing
(HPC)

• Applications must be written to use parallelization

Operating System 22

Operating System Structure

• Multiprogramming needed for efficiency
• Single user cannot keep CPU and I/O devices busy at all times
• Multiprogramming organizes jobs (code and data) so CPU always has

one to execute
• A subset of total jobs in system is kept in memory
• One job selected and run via job scheduling
• When it has to wait (for I/O for example), OS switches to another job

• Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running,
creating interactive computing
• Response time should be < 1 second
• Each user has at least one program executing in memory process
• If several jobs ready to run at the same time  CPU scheduling
• If processes don’t fit in memory, swapping moves them in and out to

run
• Virtual memory allows execution of processes not completely in

memory

Operating System 23

Memory Layout for Multiprogrammed System

Operating System 24

Operating-System Operations

• Interrupt driven by hardware
• Software error or request creates exception or trap

• Division by zero, request for operating system service
• Other process problems include infinite loop, processes

modifying each other or the operating system
• Dual-mode operation allows OS to protect itself and other

system components
• User mode and kernel mode
• Mode bit provided by hardware

• Provides ability to distinguish when system is running
user code or kernel code

• Some instructions designated as privileged, only
executable in kernel mode

• System call changes mode to kernel, return from call
resets it to user

Operating System 25

Protection and security-

• If a computer system has multiple users and allows the concurrent

execution of multiple processes, then access to data must be
regulated. Hence mechanisms ensure that files, memory segments,
CPU and other resources can be operated on by only those processes
that have gained proper authorization from the OS.

• Protection is a mechanism for controlling the access of processes or

users to the resources defined by a computer system. This
mechanism must provide means for specification of the controls to
be imposed and means for enforcement. Protection improves
reliability by detecting latent errors at the interfaces between
component sub systems.

• It is the job of security to defend a system from external and internal

attacks. Such attacks spread across a huge range and include viruses
and worms, denial of service attacks, identity theft and theft of
service.

Operating System 26

Distributed Systems

• A distributed system is a collection of physically separate,

possibly heterogeneous computer systems that are
networked to provide the users with access to the various
resources that the system maintains.

• Access to a shared resource increases computation speed,

functionality, data availability and reliability.

• The protocols that create a distributed system can greatly

affect that system’s utility and popularity. A network is a
communication path between two or more systems.

Operating System 27

Distributed Systems

• Distributed systems depend on networking for their

functionality. Networks are characterized based on the
distances between their nodes.

• A local area network (LAN) connects computers within a room,

a floor or a building.

• A wide area network (WAN) links buildings, cities or countries.

• A metropolitan area network (MAN) could link buildings within

a city.

Operating System 28

Special Purpose Systems

• Classes of computers whose functions are limited and objective is to

deal with limited computation domains.
• Real Time Embedded Systems: Embedded computers are devices found

from car engines and manufacturing robots to VCR’s and microwave
ovens. These have specific tasks to accomplish. Embedded systems
almost always run real time operating system.

• Multimedia systems: Most operating systems are designed to handle
conventional data such as text files, programs, and word processing
documents and spread sheets. A recent trend is incorporation of
multimedia data into computer systems. Multimedia data consist of
audio and video files as well as conventional files.

• Handheld systems: Handheld systems include personal digital assistants
(PDA’s), cellular telephones many of which use special purpose
embedded operating systems.

Operating System 29

Operating systems structures
OS services-
• OS provides an environment for execution of programs. It provides certain

services to programs and to the users of those programs.
• OS services are provided for the convenience of the programmer, to make

the programming task easier.
One set of SOS services provides functions that are helpful to the user –

a. User interface: All OS have a user interface(UI).Interfaces are of three

types-

Command Line Interface: uses text commands and a method for entering

them Batch interface: commands and directives to control those
commands are entered into files and those files are executed. Graphical
user interface: This is a window system with a pointing device to direct I/O,
choose from menus and make selections and a keyboard to enter text.

Operating System 30

• b. Program execution: System must be able to load a program into

memory and run that program. The program must be able to end its
execution either normally or abnormally.

• c. I/O operations: A running program may require I/O which may involve
a file or an I/O device. For efficiency and protection, users cannot control
I/O devices directly.

• d. File system manipulation: Programs need to read and write files and
directories. They also need to create and delete them by name, search for a
given file, and list file information.

• e. Communications: One process might need to exchange information
with another process. Such communication may occur between processes
that are executing on the same computer or between processes that are
executing on different computer systems tied together by a computer
network. Communications may be implemented via shared memory or
through message passing.

Operating System 31

System Calls

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application Program

Interface (API) rather than direct system call use

• Three most common APIs are Win32 API for Windows, POSIX API

for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

Operating System 32

Example of System Calls

• System call sequence to copy the contents of one file to another file

Operating System 33

Example of Standard API

• Consider the ReadFile() function in the

• Win32 API—a function for reading from a file

• A description of the parameters passed to ReadFile()

– HANDLE file—the file to be read

– LPVOID buffer—a buffer where the data will be read into and written from

– DWORD bytesToRead—the number of bytes to be read into the buffer

– LPDWORD bytesRead—the number of bytes read during the last read

– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

Operating System 34

System Call Implementation

• Typically, a number associated with each system call

– System-call interface maintains a table indexed according to
these numbers

• The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values

• The caller need know nothing about how the system call is
implemented

– Just needs to obey API and understand what OS will do as a
result call

– Most details of OS interface hidden from programmer by API

• Managed by run-time support library (set of functions
built into libraries included with compiler)

Operating System 35

API – System Call – OS Relationship

Operating System 36

Standard C Library Example

• C program invoking printf() library call, which calls write() system call

Operating System 37

System Call Parameter Passing

• Often, more information is required than simply identity of
desired system call

– Exact type and amount of information vary according to OS
and call

• Three general methods used to pass parameters to the OS

– Simplest: pass the parameters in registers

• In some cases, may be more parameters than registers

– Parameters stored in a block, or table, in memory, and address
of block passed as a parameter in a register

• This approach taken by Linux and Solaris

– Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

– Block and stack methods do not limit the number or length of
parameters being passed

Operating System 38

Parameter Passing via Table

Operating System 39

Types of System Calls

• Process control

• File management

• Device management

• Information maintenance

• Communications

• Protection

Operating System 40

Examples of Windows and Unix System Calls

Operating System 41

MS-DOS execution

(a) At system startup (b) running a program

Operating System 42

FreeBSD Running Multiple Programs

Operating System 43

System Programs

• System programs provide a convenient environment for program
development and execution. They can be divided into these categories-

• File management: These programs create, delete, copy, rename, print,

dump, list and manipulate files and directories.

• Status information: Some programs ask the system for the date, time,

and amount of available memory or disk space, number of users.

•

• File modification: Text editors may be available to create and modify
the content of files stored on disk or other storage devices.

Operating System 44

System Programs

• Programming language support: Compilers, assemblers,
debuggers and interpreters for common programming
languages are often provided to the user with the OS.

• Program loading and execution: Once a program is
assembled or compiled, it must be loaded into memory
to be executed. System provides absolute loaders,
relocatable loaders, linkage editors and overlay loaders.

• Communications: These programs provide the
mechanism for creating virtual connections among
processes, users and computer systems.

Operating System 45

Operating System Structure

Operating System 46

Layered approach:

•With proper hardware support, OS can be broken into pieces
that are smaller and more appropriate.
•OS can then retain much greater control over the computer
and over the applications that make use of the computer.
•Under the top down approach, the overall functionality and
features are determined and are separated into components.
•A system can be made modular in many ways – one method
is the layered approach in which the OS is broken up into
number of layers (levels).
•The bottom layer is the hardware and the highest layer is the
user interface

Operating System 47

Layered approach

Operating System 48

Micro kernels

• This method structures the OS by removing all non essential
components from the kernel and implementing them as system and
user level programs which results in a smaller kernel.

• Micro kernels provide minimal process and memory management in

addition to a communication facility.

• The main function of micro kernel is to provide a communication

facility between the client program and the various services that are
also running in user space.

• Communication is provided by message passing. Advantage of the

micro kernel approach is ease of extending the operating system.

Operating System 49

Micro kernels

• All new users are added to user space and hence do not

require modification of the kernel.

• The resulting operating system is easier to port from one

hardware design to another. Microkernel also provides
more security and reliability since most services are
running as user processes.

• But micro kernels can suffer from performance decreases

due to increased system function over head.

Operating System 50

Modules:

The best current methodology for operating system design involves using
object oriented programming techniques to create a modular kernel. The
kernel has a set of core components and dynamically links in additional
services either during boot time or run time.

Operating System 51

Solaris loadable kernel modules

Solaris OS structure is organized around a core kernel with
seven types of loadable kernels. Such a design allows the
kernel to provide core services and also allows certain
features to be implemented dynamically.

52 Operating System

Operating System Generation

• Operating systems are designed to run on any class of machines at a
variety of sites with a variety of peripheral configurations. The
system must then be configured or generated for

• each specific computer site, a process known as system generation
(SYSGEN). This SYSGEN program reads from a given file or asks
the operator of the system for information concerning the specific
configuration of the hardware system or probes the hardware
directly to determine what components are there. The following
information must be determined:

• a) What CPU is to be used? What options are installed? For multiple
CPU systems, each CPU system must be described.

• b) How much memory is available?
• c) What devices are available?
• d) What operating system options are desired or what parameter

values are to be used?

Operating System 53

Operating System Generation

• Once this information is determined, it can be used in several
ways. It can be used by the system administrator to modify a
copy of the source code of the OS. OS is then completely
compiled.

• All the code is always part of the system and selection occurs
at execution time rather than compile time or link time.

• The major differences among these approaches are the size and
generality of the generated system and the ease of modification
as the hardware configuration changes.

Operating System 54

Unit 4

Memory Management

Memory Management
• Background

• Swapping

• Contiguous memory allocation

• Paging

• Structure of the page table

• Segmentation

• Virtual memory

• Demand paging

• Page- replacement

• Algorithms

• Allocation of frames

• Thrashing

Background

• Program must be brought (from disk) into memory and

placed within a process for it to be run

• Main memory and registers are only storage CPU can
access directly

• Register access in one CPU clock (or less)

• Main memory can take many cycles

• Cache sits between main memory and CPU registers

• Protection of memory required to ensure correct
operation

Base and Limit Registers

• A pair of base and limit registers define the logical address space

Base and Limit Registers

Binding of Instructions and Data to Memory

• Address binding of instructions and data to memory addresses

can happen at three different stages

– Compile time: If memory location known a priori,
absolute code can be generated; must recompile code if
starting location changes

– Load time: Must generate relocatable code if memory
location is not known at compile time

– Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support for
address maps (e.g., base and limit registers)

Multistep Processing of a User Program

Logical vs. Physical Address Space

• The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management

– Logical address – generated by the CPU; also referred to
as virtual address

– Physical address – address seen by the memory unit

• Logical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme

Memory-Management Unit (MMU)

• Hardware device that maps virtual to physical address

• In MMU scheme, the value in the relocation register is added to

every address generated by a user process at the time it is sent to
memory

• The user program deals with logical addresses; it never sees the

real physical addresses

Dynamic relocation using a relocation register

Dynamic Loading

• Routine is not loaded until it is called

• Better memory-space utilization; unused routine is never loaded

• Useful when large amounts of code are needed to handle
infrequently occurring cases

• No special support from the operating system is required
implemented through program design

Dynamic Linking

• Linking postponed until execution time

• Small piece of code, stub, used to locate the appropriate
memory-resident library routine

• Stub replaces itself with the address of the routine, and
executes the routine

• Operating system needed to check if routine is in processes’
memory address

• Dynamic linking is particularly useful for libraries

• System also known as shared libraries

Swapping

• A process can be swapped temporarily out of memory to a backing store, and then
brought back into memory for continued execution

• Backing store – fast disk large enough to accommodate copies of all memory

images for all users; must provide direct access to these memory images

• Roll out, roll in – swapping variant used for priority-based scheduling algorithms;

lower-priority process is swapped out so higher-priority process can be loaded and
executed

• Major part of swap time is transfer time; total transfer time is directly proportional
to the amount of memory swapped

• Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and

Windows)
• System maintains a ready queue of ready-to-run processes which have memory

images on disk

Schematic View of Swapping

Swapping

• Pending I/O swapping  problem

1. Never swap a process with pending I/O

2. Execute I/O operations only into operating
system buffers

Contiguous Allocation

• Main memory - partitions:

– Resident operating system, usually held in low memory with
interrupt vector

– User processes then held in high memory

• Relocation registers used to protect user processes from each

other, and from changing operating-system code and data

– Base register contains value of smallest physical address

– Limit register contains range of logical addresses – each logical
address must be less than the limit register

– MMU maps logical address dynamically

Hardware Support for Relocation and Limit Registers

Contiguous Allocation (Cont)
• Multiple-partition allocation

– Hole – block of available memory; holes of various size are
scattered throughout memory

– When a process arrives, it is allocated memory from a hole
large enough to accommodate it

– Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

OS

process 5

process 9

process 10

process 2

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes?

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size

– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire list

– Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

Fragmentation

• External Fragmentation – total memory space exists to satisfy a request, but it
is not contiguous

• 50-percent rule

• Internal Fragmentation – allocated memory may be slightly larger than
requested memory

• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory together in one large
block

– Compaction is possible only if relocation is dynamic, and is done at
execution time

Fragmentation

• Solutions to external fragmentation:

1. Paging

2. segmentation

Paging

• Logical address space of a process can be noncontiguous; process is allocated

physical memory whenever the latter is available

• Physical memory  frames

• Logical memory  pages

Address Translation Scheme
• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page table

– Page offset (d) – combined with base address to define

the physical memory address that is sent to the memory
unit

Logical address:
p

m - n n

– logical address space  2m and page size  2n

age number page offset

p d

Paging Hardware

Paging Model of Logical and Physical Memory

Paging Example32-byte memory and 4-byte pages

paging

1. No external fragmentation

2. May have internal fragmentation

Frame table: data structure with information on

• Which frames are allocated

• Which frames are available

• How many total frames are there etc.,

Free Frames

Before allocation After allocation

Hardware support

• Page table is kept in main memory

1. Page-table base register (PTBR) points to the page table

– In this scheme every data/instruction access requires two memory
accesses. One for the page table and one for the data/instruction.

• Solution: special fast-lookup h/w cache called associative memory or
translation look-aside buffers (TLBs)

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry –
uniquely identifies each process to provide address-space protection for that
process.

Associative Memory
• Associative memory – parallel search

Page # Frame #

Address translation (p, d)

– If p is in associative register, get frame # out

– Otherwise get frame # from page table in memory

Paging Hardware With TLB

Effective Access Time
• Associative Lookup =  time unit

• Assume memory cycle time is 1 microsecond

• Hit ratio – percentage of times that a page number is found in the
associative registers; ratio related to number of associative registers

• Hit ratio = 

• Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

Protection
• Memory protection implemented by associating protection bit with

each frame

• Valid-invalid bit attached to each entry in the page table:

– “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

– “invalid” indicates that the page is not in the process’ logical
address space

Valid (v) or Invalid (i) Bit In A Page
Table

• Shared code

Shared Pages

– One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

– Shared code must appear in same location in the logical
address space of all processes

• Private code and data

– Each process keeps a separate copy of the code and data

– The pages for the private code and data can appear
anywhere in the logical address space

Shared Pages Example

Structure of the Page Table

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

Hierarchical Page Tables
• Break up the logical address space into multiple page tables

• A simple technique is a two-level page table

Two-Level Page-Table Scheme

Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page size) is divided into:

– a page number consisting of 22 bits

– a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided into:

– a 12-bit page number

– a 10-bit page offset

• Thus, a logical address is as follows:

p

12 10 10
where pi is an index into the outer page table, and p2 is the displacement within the page
of the outer page table

age number page offset

pi p2 d

Address-Translation Scheme

Three-level Paging Scheme

Hashed Page Tables

• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to the
same location

• Virtual page numbers are compared in this chain searching for a

match

– If a match is found, the corresponding physical frame is
extracted

Hashed Page Table

Inverted Page Table

• One entry for each real page of memory

• Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page

• Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

• Use hash table to limit the search to one — or at most a
few — page-table entries

Inverted Page Table Architecture

Segmentation

• Memory-management scheme that supports user view of memory

• A program is a collection of segments

– A segment is a logical unit such as:

main program

procedure

function

method

object

local variables, global variables

common block

stack

symbol table

arrays

User’s View of a Program

1

2

3

4

1

4

2

3

Logical View of Segmentation

user space physical memory space

Segmentation Architecture
• Logical address consists of a two tuple:

<segment-number, offset>,

• Segment table – maps two-dimensional physical addresses; each
table entry has:

– base – contains the starting physical address where the
segments reside in memory

– limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment table’s
location in memory

• Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

Segmentation Architecture (Cont.)

• Protection

– With each entry in segment table associate:

• validation bit = 0  illegal segment

• read/write/execute privileges

• Protection bits associated with segments; code sharing
occurs at segment level

• Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

• A segmentation example is shown in the following diagram

Segmentation Hardware

Example of Segmentation

Virtual Memory

• Background

• Demand Paging

• Page Replacement

• Allocation of Frames

• Thrashing

Background
• Virtual memory – separation of user logical memory from physical memory.

– Only part of the program needs to be in memory for execution

– Logical address space can therefore be much larger than physical address
space

– Allows address spaces to be shared by several processes

– Allows for more efficient process creation

• Virtual memory can be implemented via:

– Demand paging

– Demand segmentation



Virtual Memory That is Larger Than Physical Memory

ual-address Virt Space

Shared Library Using Virtual
Memory

Demand Paging

• Bring a page into memory only when it is needed

– Less I/O needed

– Less memory needed

– Faster response

– More users

• Page is needed  reference to it

– invalid reference  abort

– not-in-memory  bring to memory

• Lazy swapper – never swaps a page into memory unless page will be needed

– Swapper that deals with pages is a pager

Transfer of a Paged Memory to Contiguous Disk Space

Valid-Invalid Bit

� V/I bit is a hardware support

 associated with each page table entry (PTE)

1: page is legal & in-memory

0: page is invalid OR valid but on the disk  page
fault

Page Table When Some Pages Are Not in Main Memory

Page Fault
• If there is a reference to a page, first reference to that page

will trap to operating system:

page fault

1. Operating system looks at another table to decide:

– Invalid reference  abort

– Just not in memory

2. Get free frame

3. Swap page into frame

4. Reset tables

5. Set validation bit = v

6. Restart the instruction that caused the page fault

Steps in Handling a Page Fault

Page Fault (Cont..)
• Pure demand paging : Never bring a page into

memory until it is required

• H/w for demand paging: (same as for paging and
swapping)

– Page-table

– Secondary memory

• Restart instruction – save state
– Computes and attempts to access both ends of both

blocks

– Temporary registers to hold values of overwritten
locations

Performance of Demand Paging
• Page Fault Rate 0  p  1.0

– if p = 0 no page faults

– if p = 1, every reference is a fault

• Effective Access Time = (1 – p) x ma + p x page fault

time

• page fault overhead:

swap page out

swap page in

restart overhead

Demand Paging Example
• Memory access time = 200 nanoseconds

• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

Process Creation

• Virtual memory allows other benefits during process
creation:

- Copy-on-Write

- Memory-Mapped Files (later)

Copy-on-Write

• Copy-on-Write (COW) allows both parent and child processes to initially share the
same pages in memory

If either process modifies a shared page, only then is the page copied

• COW allows more efficient process creation as only modified pages are copied

• Free pages are allocated from a pool of zeroed-out pages

Before Process 1 Modifies Page C

After Process 1 Modifies Page C

What happens if there is no free frame?

• Page replacement – find some page in memory, but not really in

use, swap it out

– algorithm

– performance – want an algorithm which will result in
minimum number of page faults

• Same page may be brought into memory several times

Need For Page Replacement

Basic Page Replacement
1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it
- If there is no free frame, use a page replacement

algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame; update

the page and frame tables

4. Restart the process

Page Replacement

Page Replacement
• No free frames  two page transfers (one out & one in)

Sol: modify (dirty) bit -- only modified pages are written to

disk

• Frame-allocation algorithm

• Page-replacement algorithm  lowest page fault rate

• Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

• In all our examples, the reference string is

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1

Graph of Page Faults Versus The Number of Frames

ame

First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames (3 pages can be in memory at a time per process)

1

2

• 4 frames 3

1

2

3

4
• Belady’s Anomaly: more fr

1 4 5

2 1 3 9 page faults

3 2 4

1 5 4

2 1 5 10 page faults

3 2

4 3
s  more

page faults

FIFO Page Replacement

FIFO Illustrating Belady’s Anomaly

Optimal Algorithm

• Replace page that will not be used for longest period of time

• 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

4

6 page faults

5

• How do you know this?

• Used for measuring how well your algorithm performs

1

2

3

4

Optimal Page Replacement

Least Recently Used (LRU)
Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 1 1 1 5

2 2

2

2

2

3 5

5

4

4

4 4

3

3

3

• Counter implementation

– Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

– When a page needs to be changed, look at the counters to
determine which are to change

LRU Page Replacement

LRU Algorithm (Cont.)

• Stack implementation – keep a stack of page numbers in a double link
form:

– Page referenced:

• move it to the top

• requires 6 pointers to be changed

– No search for replacement

Use Of A Stack to Record The Most Recent Page References

LRU Approximation Algorithms
• Reference bit

– With each page associate a bit, initially = 0

– When page is referenced bit set to 1

– Replace the one which is 0 (if one exists)

• We do not know the order, however

• Second chance

– Need reference bit

– Clock replacement

– If page to be replaced (in clock order) has reference bit = 1
then:

• set reference bit 0

• leave page in memory

• replace next page (in clock order), subject to same rules

Second-Chance (clock) Page-Replacement Algorithm

Counting Algorithms

• Keep a counter of the number of references that have been made
to each page

• LFU Algorithm: replaces page with smallest count

• MFU Algorithm: based on the argument that the page with the

smallest count was probably just brought in and has yet to be used

Allocation of Frames

• Each process needs minimum number of pages

• Example: IBM 370 – 6 pages to handle SS MOVE instruction:

– instruction is 6 bytes, might span 2 pages

– 2 pages to handle from

– 2 pages to handle to

• Two major allocation schemes

– fixed allocation

– priority allocation

Fixed Allocation

• Equal allocation – For example, if there are 100 frames and 5 processes,
give each process 20 frames.

• Proportional allocation – Allocate according to the size of process

si  size of

S   si

process pi

m  total number of frames

ai  allocation for pi

m  64


si  m
S

si  10

s2  127

a1 
 10

 64  5
137

a 
127

 64  59
2

137

Priority Allocation

• Use a proportional allocation scheme using priorities rather than
size

• If process Pi generates a page fault,

– select for replacement one of its frames

– select for replacement a frame from a process with lower
priority number

Global vs. Local Allocation

• Global replacement – process selects a replacement frame
from the set of all frames; one process can take a frame
from another

• Local replacement – each process selects from only its

own set of allocated frames

Thrashing

• If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

– low CPU utilization

– operating system thinks that it needs to increase the degree of
multiprogramming

– another process added to the system

• Thrashing  a process is busy swapping pages in and out

Thrashing (Cont.)

Demand Paging and Thrashing

• Why does demand paging work?

Locality model

– Process migrates from one locality to another

– Localities may overlap

• Why does thrashing occur?

 size of locality > total memory size

Locality In A Memory-Reference Pattern

Working-Set Model

•   working-set window  a fixed number of page references
Example: 10,000 instruction

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in time)

– if  too small will not encompass entire locality

– if  too large will encompass several localities

– if  =   will encompass entire program

• D =  WSSi  total demand frames

• if D > m  Thrashing

• Policy if D > m, then suspend one of the processes

Working-set model

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example:  = 10,000

– Timer interrupts after every 5000 time units

– Keep in memory 2 bits for each page

– Whenever a timer interrupts copy and sets the values of all reference
bits to 0

– If one of the bits in memory = 1  page in working set

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time units

Page-Fault Frequency Scheme

• Establish “acceptable” page-fault rate

– If actual rate too low, process loses frame

– If actual rate too high, process gains frame

Working Sets and Page Fault Rates

Unit - 5
Deadlocks

Deadlocks

• The Deadlock Problem

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection

• Recovery from Deadlock

The Deadlock Problem
• A set of blocked processes each holding a resource and waiting to

acquire a resource held by another process in the set

• Example

– System has 2 disk drives

– P1 and P2 each hold one disk drive and each needs another one

• Example

– semaphores A and B, initialized to 1

P0 P1

wait (A);

wait (B);

 wait(B)

wait(A)

Bridge Crossing Example

• Traffic only in one direction

• Each section of a bridge can be viewed as a resource

• If a deadlock occurs, it can be resolved if one car backs up

– preempt resources and rollback

• Several cars may have to be backed up if a deadlock occurs

• Starvation is possible

• Note : Most OSes do not prevent or deal with deadlocks

Tanenbaum,

Deadlock Principles

� A deadlock is a permanent blocking of a set of threads
 a deadlock can happen while threads/processes are competing for system

resources or communicating with each other

Illustration of a deadlock

A. S. (2001)
Modern Operating Systems (2nd Edition).

System Model
• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:

– request

– use

– release

Deadlock Characterization
Deadlock can arise if four conditions hold simultaneously.

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

• Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by

P2, …, Pn–1 is waiting for a resource that is held by

Pn, and P0 is waiting for a resource that is held by P0.

NECESSARY CONDITIONS
ALL of these four must happen simultaneously for a deadlock to occur:

Mutual exclusion

One or more than one resource must be held by a process in a non-
sharable (exclusive) mode.

Hold and Wait

A process holds a resource while waiting for another resource.

No Preemption

There is only voluntary release of a resource - nobody else can make a
process give up a resource.

Circular Wait

Process A waits for Process B waits for Process C waits for Process
A.

Resource-Allocation Graph
A set of vertices V and a set of edges E.

• V is partitioned into two types:

– P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all resource

types in the system

• request edge :directed edge P1  Rj

• assignment edge : directed edge Rj  Pi

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

Rj

• Pi is holding an instance of Rj

Rj

Pi

Pi

Example of a Resource Allocation
Graph

Resource Allocation Graph With A Deadlock

P1 R1  P2  R3  P3  R2  P1
P2  R3  P3  R2  P2

Graph With A Cycle But No Deadlock

P1 R1  P3  R2  P1

Basic Facts

• If graph contains no cycles  no deadlock

• If graph contains a cycle 

– if only one instance per resource type, then
deadlock

– if several instances per resource type,
possibility of deadlock

Methods for handling deadlocks

• Ensure that the system will never enter a deadlock state.

– Prevention: Prevent any one of the 4 conditions from
happening.

– Avoidance : Allow all deadlock conditions, but calculate cycles
about to happen and stop dangerous operations.

• Allow the system to enter a deadlock state and then

– detect and

– recover

• Ignore the problem and pretend that deadlocks never
occur in the system; used by most OS, including UNIX.

Deadlock prevention

1. Mutual exclusion:

• Hold for non-sharable resources ex: printer

• not required for sharable resources

• Can’t deny mutual exclusion condition

2. Hold and wait:

a. Collect all resources before execution resource
utilization is low

b. Allow a process to request resources only when it has
none  starvation possible

Deadlock prevention

3. No preemption:

• If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released.

• Preempted resources are added to the list of resources for which
the process is waiting.

• Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

4. Circular wait:

• impose a total ordering of all resource types,

• each process requests resources in an increasing order

Avoidance algorithms
• Single instance of a resource type  resource

allocation graph algorithm.

• Multiple instances of a resource type  banker’s
algorithm.

Resource-Allocation Graph Scheme
• Claim edge Pi  Rj ==>process Pj may request resource

Rj;(-->).

• Claim edge request edge when a process

requests a resource.

• Request edge assignment edge when the resource is
allocated to the process.

• When a resource is released by a process, assignment
edge reconverts to a claim edge.

• Resources must be claimed a priori in the system.

Resource-Allocation Graph

Unsafe state in resource-
allocation graph

Resource-Allocation Graph Algorithm

Pi  Rj

• The request can be granted only if
converting the request edge to an
assignment edge does not result in the
formation of a cycle in the resource
allocation graph

Banker’s Algorithm

• Multiple instances.

• Each process must a priori claim maximum
use.

• When a process requests a resource it may
have to wait.

• When a process gets all its resources it must
return them in a finite amount of time

DATA STRUCTURES FOR THE BANKER’S ALGORITHM

SAFETY ALGORITHMALGORITHM

Resource-Request Algorithm for Process
Pi

• If Requesti [j] = k then process Pi wants k instances of
resource type Rj.

1. If Requesti ≤ Needi go to step 2. else, raise error

condition, since process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must

wait, since resources are not available.

3. Pretend to allocate requested resources to Pi by
modifying the state as follows:

Resource-Request Algorithm for
Process Pi

Available = Available – Request;

Allocationi= Allocationi + Requesti;

Needi = Needi – Requesti;

If safe ==> resources are allocated to Pi.

If unsafe==> Pi must wait, and the old resource-
allocation state is restored

Example of Banker’s Algorithm
5 processes P0 … P4;

3 resource types: A (10 instances), B (5), and C (7)

Snapshot at time T0:

System is in safe state -- sequence < P1, P3, P4, P2, P0>

Example: P1 Request (1,0,2)
• Check that Request ≤ Available (that is, (1,0,2) ≤

(3,3,2) ==> true.

< P1, P3, P4, P0, P2> satisfies safety requirement.
Can request for (3,3,0) by P4 be granted?
Can request for (0,2,0) by P0 be granted?

Deadlock Detection
o Allow system to enter deadlock state

o Detection algorithm

o Recovery scheme

Single instance
Several instances

Single Instance of Each Resource Type

• Maintain wait-for graph

– Nodes are processes.

– Pi  Pj if Pi is waiting for Pj.

• Periodically invoke an algorithm that
searches for a cycle in the graph. If there
is a cycle, there exists a deadlock.

Several Instance of Resource Type

Example of Detection Algorithm

• 5 processes P0 … P4;

• 3 resource types: A (7 instances), B (2), and C (6)

• Snapshot at time T0:

Sequence <P0, P2, P3, P1, P4>

Detection-Algorithm Usage

• When, and how often, to invoke depends on:

– How often a deadlock is likely to occur?

– How many processes will need to be rolled back?

• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and so we
would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

Recovery from Deadlock

1. Process Termination

2. Resource Preemption

Process Termination

• Abort all deadlocked processes.

• Abort one process at a time until the deadlock cycle is
eliminated.

• In which order should we choose to abort?

– what the priority of the process is

– How long process has computed, and how much longer to
completion.

– how many & what type of resources the process has used

– How many more resources process needs to complete

– How many processes will need to be terminated

– Is process interactive or batch?

Resource Preemption

Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart
process for that state.

 Starvation – same process may always be
picked as victim, include number of rollback in
cost factor.

Unit – 5

File-System Interface

File-System Interface

• File Concept

• Access Methods

• Directory Structure

• File-System Mounting

• File Sharing

• Protection

• File System Implementation-

• File system structure

• File system implementation

• Directory implementation

• Allocation methods

• Free-space management

• Efficiency and performance

File Concept
• File : named collection of related information that is

recorded on secondary storage.

• Contiguous logical address space

• Types:

– Data

• numeric

• character

• binary

– Program

File Attributes
 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within file system

 Type – needed for systems that support different types

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection, security,
and usage monitoring

 Information about files are kept in the directory structure, which
is maintained on the disk

File Operations
• File is an abstract data type

– Create  space in file system, directory entry

– Write  system call (name, inf.), write pointer

– Read  system call, read pointer

– Reposition within file (file seek)

– Delete

– Truncate

Current file-position
pointer

• Open(Fi) – search the directory structure on disk for entry Fi,
and move the content of entry to memory (open-file table)

• Close (Fi) – move the content of entry Fi in memory to
directory structure on disk

File Operations (Cont…)

• OS uses two levels of internal tables:

1. Per-process table:

– Keeps track of all files that a process has open

– Each entry in per-process table points to a system-wide
table

2. System-wide table:

– Contains process-independent information ex: file size,
access dates

Open Files

• Several pieces of data are needed to manage open files:

– File pointer: pointer to last read/write location, per
process that has the file open

– File-open count:

• keeps track of number of times a file is open/close

• to allow removal of data from open-file table when last
processes closes it

– Disk location of the file: cache of data access information

– Access rights: per-process table stores this mode
information (access)

File Locking

• Provided by some operating systems and file systems

• File locks allow one process to lock a file and prevent other
processes from gaining access to it

1. Shared lock: several processes can acquire lock concurrently
(reader lock)

2. Exclusive lock: only one process can acquire such lock at a time
(writer lock)

• File locking mechanisms:

– Mandatory – access is denied depending on locks held and
requested

– Advisory – processes can find status of locks and decide what
to do

File Types – Name, Extension

File Structure
• OS  multiple file structures

– disadvantage code to support them

• Packing a no. of logical records into physical blocks.

– User’s application program

– OS

• All files suffer from internal fragmentation

– Larger the block size, greater the internal
fragmentation

Access Methods
1. Sequential Access

Ex: editors, compilers

read next
write next
reset
no read after last write

(rewrite)

2. Direct Access (file operations  include block no. as parameter ‘n’)
read n
write n
position to n

read next
write next

rewrite n

Sequential-access File

Direct access (or relative access)
• File is viewed as a numbered sequence of blocks or

records

– Ex: read block 14 then read block 53 and then write
block 7

• No restrictions on the ordering of reading or writing

• Great use for immediate access to large amounts of
information

Simulation of Sequential Access on Direct-access File

Example of Index and Relative Files

Index: contains pointers to the various blocks
Large files large index
Sol: create an index for index file

Directory Structure
• A collection of nodes containing information about all files

Directory

Files

Both the directory structure and the files reside on disk
Backups of these two structures are kept on tapes

F 1 F 2

F 3

F 4

F n

Disk Structure

• Disk can be subdivided into partitions

• Disks or partitions can be RAID protected against failure

• Disk or partition can be used raw – without a file system, or
formatted with a file system

• Partitions also known as minidisks, slices

• Entity containing file system known as a volume

• Each volume containing file system also tracks that file
system’s info in device directory or volume table of contents

• As well as general-purpose file systems there are many
special-purpose file systems, frequently all within the same
operating system or computer

A Typical File-system Organization

Operations Performed on Directory

• Search for a file

• Create a file

• Delete a file

• List a directory

• Rename a file

• Traverse the file system

Organize the Directory (Logically) to Obtain

• Efficiency – locating a file quickly

• Naming – convenient to users

– Two users can have same name for different files

– The same file can have several different names

• Grouping – logical grouping of files by properties,
(e.g., all Java programs, all games, …)

Single-Level Directory
• A single directory for all users

Naming problem

Grouping problem

Two-Level Directory
• Separate directory for each user

� Path name

� Can have the same file name for different user

� Efficient searching

� Isolation of one user from another

Tree-Structured Directories

Tree-Structured Directories (Cont)

• Directory entry: File – 0; subdirectory - 1

• Efficient searching

• Current directory (working directory)

– cd /spell/mail/prog

– type list

• Absolute or relative path name

• Absolute: begins at root & follows a path down to
specified file

• Relative: defines a path from the current directory

Tree-Structured Directories (Cont)

• Absolute or relative path name

• Creating a new file is done in current directory

• Delete a file(directory empty?)

rm <file-name>

• Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example: if in current directory /mail

mkdir count

Deleting “mail”  deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories
• Have shared subdirectories and files

Acyclic-Graph Directories (Cont.)

• Two different names (aliasing)

• If dict deletes list  dangling pointer

Solutions:

– Backpointers, so we can delete all pointers
Variable size records a problem

– Backpointers using a daisy chain organization

– Entry-hold-count solution

• New directory entry type

– Link – another name (pointer) to an existing file

– Resolve the link – follow pointer to locate the file

General Graph Directory

General Graph Directory (Cont.)

• How do we guarantee no cycles?

– Allow only links to file not subdirectories

– Garbage collection

– Every time a new link is added use a cycle detection
algorithm to determine whether it is OK

File System Mounting
• A file system must be mounted before it can be

accessed

• A unmounted file system (i.e.(b)) is mounted at a
mount point

• Mount point: location within file structure where
the file system is to be attached.

(a) Existing. (b) Unmounted
Partition

Mount Point

File Sharing

• Sharing of files on multi-user systems is desirable

• Sharing may be done through a protection scheme

• On distributed systems, files may be shared across a network

• Network File System (NFS) is a common distributed file-sharing method

File Sharing – Multiple Users

• User IDs identify users, allowing permissions and protections to be per-
user

• Group IDs allow users to be in groups, permitting group access rights

File Sharing – Remote File Systems
• Uses networking to allow file system access between systems

– Manually via programs like FTP

– Automatically, seamlessly using distributed file systems

– Semi automatically via the world wide web

• Client-server model allows clients to mount remote file systems from
servers

– Server can serve multiple clients

– Client and user-on-client identification is insecure or complicated

– NFS is standard UNIX client-server file sharing protocol

– CIFS is standard Windows protocol

– Standard operating system file calls are translated into remote
calls

• Distributed Information Systems (distributed naming services) such
as LDAP, DNS, NIS, Active Directory implement unified access to
information needed for remote computing

File Sharing – Failure Modes
• Remote file systems add new failure modes, due

to network failure, server failure

• Recovery from failure can involve state
information about status of each remote
request

• Stateless protocols such as NFS include all
information in each request, allowing easy
recovery but less security

File Sharing – Consistency
Semantics

• Consistency semantics specify how multiple users are to access a
shared file simultaneously

– Similar to process synchronization algorithms

• Tend to be less complex due to disk I/O and network
latency (for remote file systems

– Andrew File System (AFS) implemented complex remote file
sharing semantics

– Unix file system (UFS) implements:

• Writes to an open file visible immediately to other users of
the same open file

• Sharing file pointer to allow multiple users to read and
write concurrently

– AFS has session semantics

• Writes only visible to sessions starting after the file is
closed

Protection

• File owner/creator should be able to control:

– what can be done

– by whom

• Types of access

– Read

– Write

– Execute

– Append

– Delete

– List

Access Lists and Groups
• Mode of access: read, write, execute

• Three classes of users
RWX

a) owner access 7  1 1 1

b) group access

6


RWX
1 1 0

c) public access

1


RWX
0 0 1

• Ask manager to create a group (unique name), say G, and add some users to the
group.

• For a particular file (say game) or subdirectory, define an appropriate access.

owner group public

Attach a group to a file

chmod 761 game

chgrp G game

Windows XP Access-control List Management

File System Implementation

File-System Structure

• File structure

– Logical storage unit

– Collection of related information

• File system resides on secondary storage (disks)

• File system organized into layers

• File control block – storage structure consisting of
information about a file

Layered File System

Layered File System

• I/O control: device drivers & interrupt handlers

• Basic file system: issues generic commands to appropriate device
driver

• File-organization module: knows about files and their logical
blocks & physical blocks. (includes free-space manager)

• Logical file system: manages metadata information (all of file
system structure except the actual data) (FCB)

• File control block: information about file, including

– ownership,

– permissions, and

– location of file contents.

A Typical File Control Block

File system implementation

• On disk:

1. Boot control block: contains inf. Needed by the system
to boot OS

1. UFS: boot block; NTFS: partition boot sector

2. Volume control block: contains volume details (no. of

blocks, size of blocks, free block count etc.)

1. UFS: superblock; NTFS: master file table

3. Directory structure: to organize files

File system implementation

• In-memory:

1. In-memory mount table: information about each
mounted volume

2. In-memory directory structure cache: information of
recently accessed directories

3. System-wide open-file table: copy of FCB of each open
file

4. Per-process open-file table: pointer to appropriate
entry in system-wide open-file table

In-Memory File System Structures

• Fig. illustrates the necessary file system structures provided
by the OS

• Figure (a) refers to opening a file.

• Figure (b) refers to reading a file.

In-Memory File System Structures

Partitions and mounting

• Disk– can be sliced into multiple partitions

• Raw disk – containing no file system

• Boot information: sequential series of blocks, loaded
as an image into memory

• Systems can be dual-booted.

• Root partition: contains OS kernel & other system
files is mounted at boot time

Virtual File Systems (VFS)

• VFS provide an object-oriented way of implementing file
systems.

• VFS allows the same system call interface (the API) to be used

for different types of file systems.

• The API is to the VFS interface, rather than any specific type of

file system.

VFS architecture in Linux

4 main object types defined by Linux VFS :

1. inode object: represents an individual file

2. file object: represents an open file

3. superblock object: represents an entire file system

4. dentry object: represents an individual directory
entry

Directory Implementation

1. Linear list of file names with pointers to the data blocks.

– simple to program

– time-consuming to execute

– finding a file requires linear search

2. Hash Table – linear list with hash data structure.

– takes a value from file name & returns a pointer to the file
name in the linear list

– decreases directory search time

– collisions – situations where two file names hash to the
same location

– fixed size

Allocation Methods

An allocation method refers to how disk blocks are allocated for
files:

1. Contiguous allocation

2. Linked allocation

3. Indexed allocation

1. Contiguous Allocation
• Each file occupies a set of contiguous blocks on the disk

• Simple – disk address

&

length

• Random access

• Wasteful of space (dynamic storage-allocation problem)

• External fragmentation

• Files cannot grow

Space
Contiguous Allocation of Disk

Extent-Based Systems

• Modified contiguous allocation scheme

• Extent-based file systems allocate disk blocks in extents

• Veritas file system uses extents

• An extent is a contiguous block of disks

– Extents are allocated for file allocation

– A file consists of one or more extents.

Linked Allocation
• Solves all problems of contiguous allocation

• Each file is a linked list of disk blocks,

• blocks may be scattered anywhere on the disk.

Linked Allocation (Cont.)
• Simple – need only starting address

• Free-space management system – no waste of space

• No random access

• Mapping

Disadvantages:

• Can be used only for sequential access files

• Space required for the pointers (sol: clusters – multiple
blocks)

• Reliability (if a pointer were lost, sol: doubly linked list)

Linked Allocation

File allocation table

• Variation on linked allocation

– Simple, but efficient

– Section of disk beginning – set aside for table

– One entry for each disk block

File-Allocation Table

Indexed Allocation
• Brings all pointers together into the index block.

• Logical view.

index table

Example of Indexed Allocation

Indexed Allocation (Cont.)

• Need index table

• Random access

• Dynamic access without external fragmentation, but
have overhead of index block.

Indexed Allocation (Cont.)

1. Linked scheme: normally one disk block

Large files: link together several index blocks

2. Multilevel index:
• E.g. Two Level Index - first level index block points to a

set of second level index blocks, which in turn point to
file blocks.

• Increase number of levels based on maximum file size
desired.

• Maximum size of file is bounded.

Indexed File - Linked Scheme

link

link

Index block file block

link

link

Indexed Allocation - Multilevel
index

2nd level Index

Index block

Indexed Allocation (Cont.)

3. Combined scheme:
� An inode (index node) is a control structure that contains key

information needed by the OS to access a particular file. Several
file names may be associated with a single inode, but each file is
controlled by exactly ONE inode.

� On the disk, there is an inode table that contains the inodes of
all the files in the filesystem. When a file is opened, its inode is
brought into main memory and stored in a memory-resident
inode table.

Information in the inode

Combined Scheme: UNIX (4K bytes per block)

Contiguous
alAloclaltoiocnation m

Linked allocation

ethods - Pe
Indexed allocation

rformance
direct access files sequential access

files
complex

Supports sequential
access files also

Cannot be used for
direct access files

Performance
depends upon index
structure, size of the
file, position of the
block desired

Efficient for small
files

----- For large files

Free-Space Management

Free-space list: keeps track of free disk space

1. Bit vector

2. Linked list

3. Grouping

4. Counting

Free-Space Management

1. Bit vector or bit vector (n blocks)
0 1 2 n-1

…

bit[i] =

1  block[i] free

0  block[i] occupied

Block number calculation:

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

Bit map requires extra space
Easy to get contiguous files







Free-Space Management (Cont.)

2. Linked list (free list)

– Link all free disk blocks – keep pointer to first free block &
cache it in memory

– Cannot get contiguous space easily

– No waste of space

Linked Free Space List on Disk

Free-Space Management (Cont.)

3. Grouping:

• Stores addresses of n free blocks in first free block

• Last block - addresses of another n free blocks

4. Counting:

• Keeps address of first free block & number n of free
contiguous blocks that follow first block

• Each entry – disk address & count

Efficiency and Performance

• Efficiency depends on:

– disk allocation and directory algorithms

– types of data kept in file’s directory entry

• last write date or last access date

Efficiency and Performance

• Performance:

– disk cache – separate section of main memory for
frequently used blocks

– Buffer cache – separate section of main memory for
blocks that will be used again shortly

– Page cache – caches file data as pages

– Unified virtual memory – caches both pages & file
data

– Unified buffer cache – uses the same page cache for
both memory-mapped pages and files

I/O Without a Unified Buffer Cache

Efficiency and Performance

• Block replacement mechanisms:
– LRU
– Free-behind - removes block from buffer as

soon as next block is requested.
– Read-ahead - request block and several

subsequent blocks are read and cached.

End of Unit - 6

	Ms. A Swapna
	Assistant Professor
	Ms. A Lakshmi
	Assistant Professor
	Mr.Ch.Srikanth
	 Assistant Professor
	 Mr.P.Sunil Kumar
	 Assistant Professor
	UNIT-1
	Memory Organization
	MEMORY HIERARCHY
	CACHE MEMORY
	Mapping using Memory table
	Organization of memory Mapping
	DMA controller working
	CPU-IOP Communication
	Intel 8089 IOP
	What operating systems do
	Four Components of a Computer
	Operating systems functions
	Overview of computer operating
	Storage Structure
	I/O Structure
	Operating-System Operations
	Distributed Systems
	Operating systems structures
	System Calls
	Standard C Library Example
	System Call Parameter Passing
	Parameter Passing via Table
	Types of System Calls
	MS-DOS execution
	FreeBSD Running Multiple Programs
	System Programs
	System Programs
	Memory Management
	Base and Limit Registers
	• Solutions to external fragmentation:
	Address Translation Scheme
	Paging Hardware
	paging
	Free Frames
	Hardware support
	Associative Memory
	Paging Hardware With TLB
	Protection
	Valid (v) or Invalid (i) Bit In A Page
	Two-Level Page-Table Scheme
	User’s View of a Program
	Segmentation Architecture
	Segmentation Architecture (Cont.)
	Need For Page Replacement
	FIFO Page Replacement
	Optimal Page Replacement
	LRU Approximation Algorithms
	Thrashing (Cont.)
	Working Sets and Page Fault Rates
	Unit - 5
	The Deadlock Problem
	Bridge Crossing Example
	System Model
	Resource-Allocation Graph (Cont.)
	Example of a Resource Allocation
	Resource-Allocation Graph
	Deadlock Detection
	Detection-Algorithm Usage
	Disk Structure
	Two-Level Directory
	Acyclic-Graph Directories
	Acyclic-Graph Directories (Cont.)
	General Graph Directory
	File System Mounting
	File Sharing – Remote File Systems
	File Sharing – Failure Modes
	Example of Indexed Allocation
	Indexed Allocation - Multilevel
	Indexed Allocation (Cont.)
	I/O Without a Unified Buffer Cache

