
UNIT-1 

 

PART-A 

Overview of Compilation 



COMPILER 

     A compiler is a program that reads a program in one language,  

     the source language and 

 

      Translates into an equivalent program in another language,  

      the target language. 

 

      The translation process should also report the presence of  

       errors in the source program 



Source       

Pƌogƌaŵ → Coŵpileƌ → Taƌget 

Program 

 

↓ 

 

Error 

Messages 

COMPILER 



There are two parts of compilation. 

. 
    The analysis part breaks up the source program into       

constant piece and creates an 

     intermediate representation of the source program. 

     The synthesis part constructs the desired target program 

from the intermediate representation. 

 



Phases of Compiler 

 

 



. 



Lexical analyzer 

• Lexical Analyzer reads the source program character by 

character and returns the 

• tokens of the source program. 

• • A token describes a pattern of characters having same 

meaning in the source 

• program. (such as identifiers, operators, keywords, numbers, 

delimeters and so 

• on) 

• Ex: newval := oldval + 12 => tokens: newval identifier 

•                                                               := assignment operator 

•                                                                       oldval identifier 



Lexical analyzer 

                                                   +  

                                                    add operator 

                                                     12 a number 

 

• Puts information about identifiers into the symbol table. 

• • ‘egulaƌ eǆpƌessioŶs aƌe used to desĐƌiďe tokeŶs ;leǆiĐal 
constructs). 



Syntax analyzer 



Syntax analyzer. 

    The syntax of a language is specified by a context free 

grammar (CFG). 

    • The ƌules iŶ a CFG aƌe ŵostlǇ ƌeĐuƌsiǀe. 
    • A sǇŶtaǆ aŶalǇzeƌ ĐheĐks ǁhetheƌ a giǀeŶ pƌogƌaŵ satisfies 

the rules implied by a CFG or not. 

     If it satisfies, the syntax analyzer creates a parse tree for the 

given program. 



Syntax analyzer 

     Ex:  

     We use BNF (Backus Naur Form) to specify a CFG 

     assgstmt -> identifier := expression 

     expression -> identifier 

     expression -> number 

     expression -> expression + expression 



Semantic analyzer 

• A semantic analyzer checks the source program for semantic 

errors and collects 

• the type information for the code generation. 

• Type-checking is an important part of semantic analyzer. 

•  Normally semantic information cannot be represented by a 

context-free language 

• used in syntax analyzers. 

•  Context-free grammars used in the syntax analysis are 

integrated with attributes 

• (semantic rules) 

•  the result is a syntax-directed translation, 

•  Attribute grammars 



Semantic analyzer 

      Ex: 

       newval := oldval + 12 

      The type of the identifier newval must match with type of  

         the expression (oldval+12) 



Intermediate code generation 

     A compiler may produce an explicit intermediate codes 

representing the source  program. 

     These intermediate codes are generally machine 

(architecture independent). But the level of intermediate 

codes is close to the level of machine codes. 



Intermediate code generation 

     Ex: 

     newval := oldval * fact + 1 

     id1 := id2 * id3 + 1 

     MULT id2,id3,temp1 Intermediates Codes (Quadraples) 

     ADD temp1,#1,temp2 

      MOV temp2,,id1 



Code optimizer 

     The code optimizer optimizes the code produced by the 

intermediate code generator in the terms of time and space. 

      Ex: 

      MULT id2,id3,temp1 

      ADD temp1,#1,id1 



Code generator 

    Produces the target language in a specific        architecture. 

    The target program is normally is a relocatable object file 

containing the machine codes. 

     Ex: 

     ( assume that we have an architecture with instructions 

whose at least one of its operands is a machine register) 



Code generator 

      MOVEid2,R1 

      MULT id3,R1 

      ADD #1,R1 

     MOVER1,id1 



Compiler construction tools 

• A number of tools have been developed variously called 

compiler –compiler , compiler generator or translator 

writing system 

• The input for these systems may contain 

•                 1. a description of source language. 

•                 2. a description of what output to be 

•  generated. 

•                 3. a description of the target machine. 



Compiler construction tools 

   The principal aids provided by compiler-compiler are 

    1. Scanner Generator 

    2. Parser generator 

    3. Facilities for code generation 



Lexical Analyzer 

• The Role of the Lexical Analyzer 

 

     1st phase of compiler 

   

     Reads i/p character & produce o/p sequence of tokens that 

the Parser  uses for syntax analysis 

      

     It can either work as a separate module or as sub module 



Tokens , Patterns and Lexemes 

• Lexeme: Sequence of character in the source pm that is 

matched against the pattern for a token 

 

•  Pattern: The rule associated with each set of strings is called 

pattern. 

 

• Lexeme is matched against pattern to generate token 

 

• Token: Token is word, which describes the lexeme in source 

pgm. It is generated when lexeme is matched against pattern 



 
3 Methods of constructing Lexical Analyzer 

. 
• 1. Using Lexical Code Generator 

• Such compilers/ tools are available that takes in Regular 

Expressions 

• As i/p and generate code for that R.E.These tools can be 

used to  generate Lexical Analyzer code from R.Es 

• - Example of such Tool is LEX for Unix  . 



3 Methods of constructing Lexical Analyzer 

            R.E                                                          LEX.YY.C 

 

 

      LEX.YY.C                                                                a.out(lexical) 

 

 

    

  source                                                                   tokens 

    program                                        

Lex  generator 

compiler 

a.out 



Compiler and Translator 

• Compiler is a form of translator that translate a program 

ǁƌitteŶ iŶ oŶe laŶguage ͞ 

• The “ouƌĐe LaŶguage͟ to aŶ eƋuiǀaleŶt pƌogƌaŵ iŶ a seĐoŶd 
laŶguage ͞ The Taƌget 

• laŶguage ͟ oƌ ͞ The OďjeĐt LaŶguage ͞ 

 



Compiler and Translator 

Prog in source                                              prog in target  

Language                                                       language  

 

                       Errors & Diagnostics 

 

Assemblers, Compilers and Interpreters are all specific 

translators 

 

compiler 



Assemblers 

 

   Assembly                                                        M/C code 

• Language 

• (opcodes or mnemonics) 

• Interpreters 

• - Interpret the statements of the High level Language pgm as 

they  are encountered . 

• Produce o/p of statement as they are interpreted  . 

assembler 



Languages involved in Compiler 

      3 languages are involved in a compiler 

 

• 1. Source language: Read by compiler 

 

• 2. Target or Object language : translated by compiler 

/translator to  another language 

 

• 4. Host Language: Language in which compiler is written 



Advantages of Compiler 

• Conciseness which improves programmer productivity, 

• semantic restriction 

• Translate and analyze H.L.L.(source pgm) only once and then 

• run the equivalent m/c code produce by compiler 



Disadvantage of Compiler 

•  Slower speed 

•  Size of compiler and compiled code 

•  Debugging involves all source code 

 
       Interpreter versus Compiler 

        

      Compiler translates to machine code 



Interpreter 



 

 
Variant: Interpretation of intermediate code 

 
Compiler generates code for a "virtual machine" (VM) 

VM is simulated by software 

 



Single-Pass Compilers 
Phases work in an interleaved way 



Static Structure of a (Single-Pass) Compiler 



Multi-Pass Compilers 

 
Phases are separate "Programs", which run sequentially 



Why multi-pass? 

       If memory is scarce (irrelevant today) 

       If the language is complex 

       If portability is important 



 Often Two-Pass Compilers 



Loader/Linker Editor: 

 Performs 2 functions 

• i. Loading : relocatable code is converted to absolute code 

         i.e. placed at their specified position 

      ii. Link-Editor :  

           Make single pgm from several files of     relocatable 

            m/c code. 

           The file may be o/p of different compilation . 

           May be Library files or routine provided by system . 

           Result is executable file 

 



Preprocessor 

    Produce i/p to compiler. They may perform 

       

      i. Macro processing: shorthand for longer construct . 

 

     ii. File inclusion: separate module can be used by including 

          their file e.g #include <iostream> . 

     iii. Rational preprocessors: give support for additional 

           facilities which are not included in compiler itself . 

 

     iv. Language Extension: may include extra capabilities . 



Major Types of Compiler 

• 1. Self-resident Compiler: generates Target code for the 

same m/c   or   host  . 

• 2. Cross Compilers: generates target code for m/c other then 

host  . 



Phases and passes 

• In logical terms a compiler is thought of as consisting of 

stages and phases 

• Physically it is made up of passes 

• The compiler has one pass for each time the source code, or 

a representation of 

• it, is read 

• Many compilers have just a single pass so that the complete 

compilation 

• process is performed while the code is read once 



Phases and passes 

• The various phases described will therefore be executed in 

parallel 

• Earlier compilers had a large number of passes, typically due 

to the limited 

• memory space available 

• Modern compilers are single pass since memory space is not 

usually a problem 

 



Use of tools 

• The 2 main types of tools used in compiler production 
are: 

• 1. a lexical analyzer generator 

• Takes as input the lexical structure of a language, which 
defines how its 

• tokens are made up from characters 

• Produces as output a lexical analyzer (a program in C 
for example) for the 

• language 

• Unix lexical analyzer Lex 

• 2. a symbol analyzer generator 



Use of tools 

• Takes as input the syntactical definition of a language 

• Produces as output a syntax analyzer (a program in C for 

example) for the 

• language 

• The most widely know is the Unix-based YACC (Yet 

Another 

• Compiler-Compiler), used in conjunction with Lex. 

• Bison: public domain version 

 



Applications of compiler techniques 

• Compiler technology is useful for a more general class of 
applications 

• Many programs share the basic properties of compilers: they 
read textual input, 

• organize it into a hierarchical structure and then process the 
structure 

• An understanding how programming language compilers are 
designed and 

• organized can make it easier to implement these compiler 
like applications as 

• well 

• More importantly, tools designed for compiler writing such 
as lexical analyzer 



Applications of compiler techniqu 

• generators and parser generators can make it vastly easier to 
implement such 

• applications 

• Thus, compiler techniques - An important knowledge for 
computer science 

• engineers 

 

• Examples: 

• Document processing: Latex, HTML, XML 

• User interfaces: interactive applications, file systems, databases 

• Natural language treatment 

• Automata Theory, La 



Interpreters 

• Interpreters: Instead of producing a target program as a 

translation, an interpreter 

• performs the operations implied by the source program 



Differences between compiler and Interpreter 

no COMPILER INTERPRETER 

1 It takes entire program as input It takes single instruction as 

input 

2 Intermediate object code is generated No intermediate object code 

is generated 

 

3 Conditional control statements are 

executes faster 

Conditional control 

statements are executes 

slower 

4 Memory requirement is more Memory  requirement is less 

5 Program need not be compiled every 

time 

Every time higher level 

program is converted into 

lower level program 

6 Errors are displayed after entire 

program is checked 

Errors are displayed for every 

instruction interpreted (if 

any) 

7 Ex: C Compiler Ex : Basic 



Types of compilers 

1.Incremental compiler : 

It is a compiler it performs the recompilation of only modified 

source rather than compiling the whole source program. 

Features: 

1.It tracks the dependencies between output and source 

program. 

2.It produces the same result as full recompilation. 

3.It performs less task than recompilation. 

4.The process of incremental compilation  is effective for 

maintenance. 



Types of compilers 

2.Cross compiler: 

     Basically there exists 3 languages 

        1.source language i.e application program. 

        2.Target language in which machine code is return. 

        3.Implementation language in which a compiler is 

return. 

                    All these 3 languages are different. In other words 

there may be a compiler which run on one machine and 

produces the target code for another  machine. Such a 

compiler is called cross compiler. 



Types of compilers 

To represent cross compiler T diagram is drawn as follows. 

I               

                   S          T 

                          I 

 

• CROSS COMPILER:For source language L the target language 
N get generated which runs on machine M. 

 

•                   L          N       L           N     

 

•                         S     S       M   M    

•      

•                                     M        

  



Bootstrapping Compilers and T-diagrams 

• The rules for T-diagrams are very simple. A compiler written 

iŶ soŵe laŶguage ͞C͟ ;Đould ďe aŶǇthiŶg fƌoŵ ŵaĐhiŶe Đode 
on up) that translates programs in language A to language B 

looks like this (these diagrams are from 

 



Bootstrapping Compilers and T-diagrams 

• Now suppose you have a machine that can directly run HP 

machine code, and a compiler from ML to HP machine code, 

and you want to get a ML compiler running on different 

machine code P. You can start by writing an ML-to-P 

compiler in ML, and compile that to get an ML-to-P compiler 

in HP: 

 

 



Bootstrapping Compilers and T-diagrams 

From there, feed the new ML-to-P compiler to itself, running on 

the HP machine, and you end up with an ML-to-P compiler 

that runs on a P machine! 

 



Lexical Analysis 

• lexical analyser or scanner  is a program that groups 

sequences of characters into lexemes, and outputs (to 

the syntax analyser) a sequence of tokens. Here: 

• (a) Tokens are symbolic names for the entities that 

make up the text of the program; 

• e.g. 

• If for the keyword if , and id 

• for any identifier. These make up the output of 

• the lexical analyser 

 



The role of lexical analyzer 

Lexical Analyzer Parser 
Source 

program 

token 

getNextToken 

Symbol 

table 

To semantic 

analysis 



Tokens, Patterns and Lexemes 

• A token is a pair a token name and an optional token value 

• A pattern is a description of the form that the lexemes of a 

token may take 

• A lexeme is a sequence of characters in the source program 

that matches the pattern for a token 



Example 

Token Informal description Sample lexemes 

if 

else 

comparison 

id 

 

number 
Literal 

 

 

Characters i, f 

Characters e, l, s, e 

< or > or <= or >= or == or != 

Letter followed by letter and digits 

 

Any numeric constant 
 

Anything ďut ͞ soƌƌouŶded ďǇ ͞ 

if 

else 

<=, != 

pi, score, D2 

3.14159, 0, 6.02e23 

͞Đoƌe duŵped͟ 

pƌiŶtf;͞total = %d\Ŷ ,͟ sĐoƌeͿ; 



Attributes for tokens 

• E = M * C ** 2 

– <id, pointer to symbol table entry for E> 

– <assign-op> 

– <id, pointer to symbol table entry for M> 

– <mult-op> 

– <id, pointer to symbol table entry for C> 

– <exp-op> 

– <number, integer value 2> 

 



Lexical errors 

• Some errors are out of power of lexical analyzer to 

recognize: 

– fi ;a == f;ǆͿͿ … 

• However it may be able to recognize errors like: 

– d = 2r 

• Such errors are recognized when no pattern for tokens 

matches a character sequence 

 



Specification of tokens 

• In theory of compilation regular expressions are used to 

formalize the specification of tokens 

• Regular expressions are means for specifying regular 

languages 

• Example: 

• Letter_(letter_ | digit)* 

• Each regular expression is a pattern specifying the form of 

strings 



Regular expressions 

• Ɛ is a regular expression, L(Ɛ) = {Ɛ} 

• If a is a symbol in ∑then a is a regular expression, L(a) = {a} 

• (r) | (s) is a regular expression denoting the language L(r) ∪ 
L(s) 

•  (r)(s) is a regular expression denoting the language L(r)L(s) 

• (r)* is a regular expression denoting (L9r))* 

• (r) is a regular expression denting L(r) 



Regular definitions 

d1 -> r1 

d2 -> r2 

… 

dn -> rn 

 

• Example: 

letter_ -> A | B | … | Z | a | b | … | Z | _ 

digit     -> 0 | 1 | … | 9 

id          -> letter_ (letter_ | digit)* 



Extensions 

• One or more instances: (r)+ 

• Zero of one instances: r? 

• Character classes: [abc] 

 

• Example: 

– letter_  -> [A-Za-z_] 

– digit     -> [0-9] 

– id          -> letter_(letter|digit)* 



Recognition of tokens 

• Starting point is the language grammar to understand the 

tokens: 

stmt -> if expr then stmt 

           |  if expr then stmt else stmt 

           | Ɛ 

expr -> term relop term 

           |  term 

term -> id 

           |  number 



Recognition of tokens (cont.) 

• The next step is to formalize the patterns: 

digit     -> [0-9] 

Digits   -> digit+ 

number -> digit(.digits)? (E[+-]? Digit)? 

letter  -> [A-Za-z_] 

id          -> letter (letter|digit)* 

If           -> if 

Then     -> then 

Else       -> else 

Relop    -> < | > | <= | >= | = | <> 

• We also need to handle whitespaces: 

ws -> (blank | tab | newline)+ 

 

 



Transition diagrams 

• Transition diagram for relop 



Transition diagrams (cont.) 

• Transition diagram for reserved words and identifiers 



Transition diagrams (cont.) 

• Transition diagram for unsigned numbers 



Transition diagrams (cont.) 

• Transition diagram for whitespace 



Lexical Analyzer Generator - Lex 

Lexical 

Compiler 

Lex Source 

program 

lex.l 

lex.yy.c 

C 

compiler 
lex.yy.c a.out 

a.out Input 

stream 

Sequenc

e of 

tokens 



LEX Example 

%{ 

 /* definitions of manifest constants 

 LT, LE, EQ, NE, GT, GE, 

 IF, THEN, ELSE, ID, NUMBER, RELOP */ 

%} 

 

/* regular definitions 

delim [ \t\n] 

ws  {delim}+ 

letter [A-Za-z] 

digit [0-9] 

id  {letter}({letter}|{digit})* 

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)? 

 



LEX Example 

 
%% 

{ws} {/* no action and no return */} 

if  {return(IF);} 

then {return(THEN);} 

else {return(ELSE);} {id} {yylval = (int) installID(); 

return(ID); } 

{number} {yylval = (int) installNum(); return(NUMBER);} 

… 

 



LEX Example 

Int installID() {/* funtion to install the lexeme, whose 
first character is pointed to by yytext, and whose 
length is yyleng, into the symbol table and return a 
pointer thereto */ 

} 

 

Int installNum() { /* similar to installID, but puts 
numerical constants into a separate table */ 

} 

 



Finite Automata 

• Regular expressions = specification 

• Finite automata = implementation 

 

• A finite automaton consists of 

– An input alphabet  

– A set of states S 

– A start state n 

– A set of accepting states F  S 

– A set of transitions  state input state 

75 



Finite Automata 

• Transition 

s1 a s2 

• Is read 

In state s1 oŶ iŶput ͞a͟ go to state  s2 

 

• If end of input 

– If in accepting state => accept, othewise => reject 

• If no transition possible => reject 

76 



Finite Automata State Graphs 

• A state 

77 

• The start state 

• An accepting state 

• A transition 
a 



 Example 

• Alphabet {0,1} 

• What language does this recognize? 

78 

0 

1 

0 

1 

0 

1 



And Another Example 

• Alphabet still { 0, 1 } 

 

 

 

 

 

• The operation of the automaton is not completely defined 

by the input 

– OŶ iŶput ͞ϭϭ͟ the autoŵatoŶ Đould ďe iŶ eitheƌ state  

79 

1 

1 



Epsilon Moves 

• Another kind of transition: -moves 

80 

 

• Machine can move from state A to state B without 
reading input 

A B 



Deterministic and Nondeterministic Automata 

• Deterministic Finite Automata (DFA) 

– One transition per input per state  

– No -moves 

• Nondeterministic Finite Automata (NFA) 

– Can have multiple transitions for one input in a given 

state 

– Can have -moves 

• Finite automata have finite memory 

– Need only to encode the current state 

81 



Execution of Finite Automata 

• A DFA can take only one path through the state graph 

– Completely determined by input 

 

• NFAs can choose 

– Whether to make -moves 

– Which of multiple transitions for a single input to take . 

82 



Acceptance of NFAs 

• An NFA can get into multiple states 

83 

• Input: 

0 

1 

1 

0 

1 0 1 

• Rule: NFA accepts if it can get in a final state 



NFA vs. DFA (1) 

• NFAs and DFAs recognize the same set of languages (regular 

languages) 

 

 

• DFAs are easier to implement 

– There are no choices to consider 

84 



NFA vs. DFA (2) 

• For a given language the NFA can be simpler than the DFA 

85 

0 
1 

0 

0 

0 
1 

0 

1 

0 

1 

NFA 

DFA 

• DFA can be exponentially larger than NFA 



Regular Expressions to Finite Automata 

• High-level sketch 

86 

Regular 
expressions 

NFA 

DFA 

Lexical 
Specification 

Table-driven  
Implementation of DFA 



Regular Expressions to NFA (1) 

• For each kind of rexp, define an NFA 

– Notation: NFA for rexp A         

87 

A 

• For  
 

• For input a 
a 



Regular Expressions to NFA (2) 

• For AB 

88 

A B  

• For A | B 

A 

B 

 
 

 

 



Regular Expressions to NFA (3) 

• For A* 

89 

A 

 

 

 



Example of RegExp -> NFA conversion 

• Consider the regular expression 

(1 | 0)*1 

• The NFA is 

90 

 

1 C E 

0 D F 

 

 
B 

 

 
G 

 

 

 

A H 1 I J 



Next 

91 

Regular 
expressions 

NFA 

DFA 

Lexical 
Specification 

Table-driven  
Implementation of DFA 



NFA to DFA. The Trick 

• Simulate the NFA 

• Each state of resulting DFA  

= a non-empty subset of states of the NFA 

• Start state  

= the set of NFA states reachable through -moves from NFA 

start state 

• Add a transition S a “͛ to DFA iff 
– “͛ is the set of NFA states ƌeaĐhaďle fƌoŵ the states iŶ “ 

after seeing the input a 

• considering -moves as well 

92 



NFA -> DFA Example 

93 

1 

0 
1   

 

 

 

 

 

 

A B 

C 

D 

E 

F 
G H I J 

ABCDHI 

FGABCDHI 

EJGABCDHI 

0 

1 

0 

1 
0 1 



NFA to DFA. Remark 

• An NFA may be in many states at any time 

 

• How many different states ? 

 

• If there are N states, the NFA must be in some subset of 

those N states 

 

• How many non-empty subsets are there? 

– 2N - 1 = finitely many, but exponentially many 

94 



Implementation 

• A DFA can be implemented by a 2D table T 

– OŶe diŵeŶsioŶ is ͞states͟ 

– Otheƌ diŵeŶsioŶ is ͞iŶput sǇŵďols͟ 

– For every transition Si a Sk define T[i,a] = k 

• DFA ͞eǆeĐutioŶ͟ 

– If in state Si and input a, read T[i,a] = k and skip to state Sk 

– Very efficient 

95 



Table Implementation of a DFA 

96 

S 

T 

U 

0 

1 

0 

1 
0 1 

0 1 

S T U 

T T U 

U T U 



Implementation (Cont.) 

• NFA -> DFA conversion is at the heart of tools such as flex or 

jflex 

 

• But, DFAs can be huge 

 

• In practice, flex-like tools trade off speed for space in the 

choice of NFA and DFA representations 

97 



UNIT-1 

 

PATR-B 

 
  

Top Down Parsing 



Top-Down Parsing 

• The parse tree is created top to bottom. 

• Top-down parser 
– Recursive-Descent Parsing 

• Backtracking is needed (If a choice of a production rule 

does not work, we backtrack to try other alternatives.) 

• It is a general parsing technique, but not widely used. 

• Not efficient 

 



Top-Down Parsing 

– Predictive Parsing 

• no backtracking  

• efficient 

• needs a special form of grammars (LL(1) grammars). 

• Recursive Predictive Parsing  is a special form of 

Recursive Descent parsing without backtracking. 

• Non-Recursive (Table Driven) Predictive Parser is also 

known as LL(1) parser.  

 



Recursive-Descent Parsing (uses Backtracking) 

• Backtracking is needed. 

• It tries to find the left-most derivation. 

 

S  aBc 

B  bc  |  b 

     S    S 

input: abc  

    a B c  a B
 c 

  

          b           c    b 

fails, backtrack 



Predictive Parser 

a grammar                a grammar suitable 
for predictive 

            eliminate   left         parsing (a LL(1) 
grammar) 

            left recursion factor        no %100 guarantee. 
 
• When re-writing a non-terminal in a derivation step, a 

predictive parser can uniquely choose a production rule 
by just looking the current symbol in the input string. 
 

 A  1 | ... | n   input:  ... a ....... 
 
          current token 
    



Predictive Parser (example) 

 

stmt  if ......   | 

  while ......  | 

  begin ...... | 

  for ..... 

 

• When we are trying to write the non-terminal stmt, if the current 
token is if we have to choose first production rule.  

• When we are trying to write the non-terminal stmt, we can 
uniquely choose the production rule by just looking the current 
token. 

• We eliminate the left recursion in the grammar, and left factor it. 
But it may not be suitable for predictive parsing (not LL(1) 
grammar).   



Recursive Predictive Parsing 

• Each non-terminal corresponds to a procedure. 

 

Ex:   A  aBb (This is only the production rule for A) 

 

  proc A { 

       - match the current token with a, and move to the 
next token; 

       - Đall ͚B͛; 
       - match the current token with b, and move to the 

next token; 

  } 

  



Recursive Predictive Parsing (cont.) 
A  aBb  |  bAB 
 
proc A { 
 case of the current token { 
  ͚a͛:   - match the current token with a, and move to 

the next token; 
          - Đall ͚B͛; 
          - match the current token with b, and move to 

the next token; 
  ͚ď͛:  - match the current token with b, and move to 

the next token; 
          - Đall ͚A͛; 
                - Đall ͚B͛; 
 } 
} 
 
 



Recursive Predictive Parsing (cont.) 

• When to apply -productions. 

 

 A  aA | bB |  

 

• If all other productions fail, we should apply an -
production. For example, if the current token is not a 
or b, we may apply the                  -production. 

• Most correct choice: We should apply an -production 
for a non-terminal A when the current token is in the 
follow set of A (which terminals can follow A in the 
sentential forms). 



Non-Recursive Predictive Parsing -- LL(1) Parser 

• Non-Recursive predictive parsing is a table-driven parser. 

• It is a top-down parser. 

• It is also known as LL(1) Parser. 

 

 

    input buffer 

 

 stack  Non-recursive   
 output 

    Predictive Parser 

 

    Parsing Table 



LL(1) Parser 
input buffer  

– our string to be parsed. We will assume that its end is marked with 
a special symbol $. 

output  
– a production rule representing a step of the derivation sequence 

(left-most derivation) of the string in the input buffer. 

stack 
– contains the grammar symbols  
– at the bottom of the stack, there is a special end marker symbol $. 
– initially the stack contains only the symbol $ and the starting symbol 

S.          $S    initial stack 
– when the stack is emptied (ie. only $ left in the stack), the parsing is 

completed. 

 
 

  
  



LL(1) Parser 

parsing table 
– a two-dimensional array M[A,a]   

– each row is a non-terminal symbol 

– each column is a terminal symbol or the special symbol $ 

– each entry holds a production rule. 



LL(1) Parser – Parser Actions 

• The symbol at the top of the stack (say X) and 
the current symbol in the input string (say a) 
determine the parser action.  

• There are four possible parser actions. 
 

1. If X and a are $   parser halts (successful 
completion) 
 

2. If X and a are the same terminal symbol 
(different from $)   

  parser pops X from the stack, and moves the 
next symbol in the input buffer. 

 
 
 



LL(1) Parser – Parser Actions 

3. If X is a non-terminal   
  parser looks at the parsing table entry 

M[X,a].  If M[X,a] holds a production rule   
XY1Y2...Yk, it pops X from the stack and 
pushes Yk,Yk-1,...,Y1 into the stack. The parser 
also outputs the production rule XY1Y2...Yk to 
represent a step of the derivation. 

 
4. none of the above    error  

– all empty entries in the parsing table are errors.  
– If X is a terminal symbol different from a, this is also an error 

case. 

  



LL(1) Parser – Example1 

S  aBa        LL(1) 
Parsing 

B  bB  |       
 Table 

 

 

a b $ 

S S  aBa 

B B   B  bB 



LL(1) Parser – Example 

stack  input  output 
$S   abba$   S  aBa 
$aBa  abba$ 
$aB  bba$   B  bB  
$aBb  bba$ 
$aB  ba$   B  bB  
$aBb  ba$ 
$aB  a$   B   
$a   a$ 
$   $  accept, successful 

completion 

 



LL(1) Parser – Example1 (cont.) 

Outputs: S  aBa      B  bB      B  bB     B     

Derivation(left-most):   SaBaabBaabbBaabba 

S 

B a a 

B 

B b 

b 

 

parse tree 



LL(1) Parser – Example2 

E  TE’ 

E’  +TE’  
 |    

T  FT’ 

T’  *FT’  
 |    

F  (E)   |   id 

id + * ( ) $ 

E E  

TE’ 
E  TE’ 

E’ E’  +TE’ E’   E’   
T T  

FT’ 
T  FT’ 

T’ T’   T’  *FT’ T’   T’   
F F  id F  (E) 



LL(1) Parser – Example2 
stack  input  output 

$E   id+id$  E  TE͛ 

$E͛T  id+id$  T  FT͛ 

$E͛ T͛F  id+id$  F  id 

$ E͛ T͛id  id+id$ 

$ E͛ T͛  +id$  T͛   

$ E͛   +id$  E͛  +TE͛ 

$ E͛ T+  +id$ 

$ E͛ T  id$  T  FT͛ 

$ E͛ T͛ F  id$  F  id 

$ E͛ T͛id  id$ 

$ E͛ T͛  $  T͛   

$ E͛  $  E͛   

$   $  accept 
 

 

 

 



Constructing LL(1) Parsing Tables 

• Two functions are used in the construction of LL(1) parsing tables: 
– FIRST FOLLOW 

 
• FIRST()  is a set of the terminal symbols which occur as first 

symbols in strings derived from  where  is any string of 
grammar symbols. 

• if  derives to , then  is also in FIRST() . 
 

• FOLLOW(A) is the set of the terminals which occur immediately 
after (follow)  the non-terminal A  in the strings derived from the 
starting symbol. 
– a terminal a is in FOLLOW(A)   if   S  Aa 
– $ is in FOLLOW(A)    if   S  A 

  
* 

* 



Compute FIRST for Any String X 

• If X is a terminal symbol    FIRST(X)={X} 
• If X is a non-terminal symbol  and  X   is a production rule                

     is in FIRST(X). 
• If X is a non-terminal symbol  and  X  Y1Y2..Yn  is a production 

rule   if a terminal a in FIRST(Yi) and  is in all FIRST(Yj) for 
j=1,...,i-1                      then a is in FIRST(X).                                                           
 if  is in all FIRST(Yj) for j=1,...,n                             
 then  is in FIRST(X).  

• If X is      FIRST(X)={} 
• If X is Y1Y2..Yn        

           if a terminal a in FIRST(Yi) and  is in all FIRST(Yj) for 
j=1,...,i-1                      then a is in FIRST(X).                                                           
 if  is in all FIRST(Yj) for j=1,...,n                             
 then  is in FIRST(X).  
 



FIRST Example 

E  TE͛ 

E͛  +TE͛  
 |    

T  FT͛ 

T͛  *FT͛  
 |    

F  (E)   |   id 
 
FIRST(F) =   {(,id}   FIRST(TE’) = {(,id} 
FIRST(T’) = {*, }   FIRST(+TE’ ) = {+} 
FIRST(T) =  {(,id}   FIRST() = {} 
FIRST(E’) = {+, }   FIRST(FT’) = {(,id} 
FIRST(E) =  {(,id}   FIRST(*FT’) = {*} 
      FIRST() = {} 
      FIRST((E)) = {(} 
      FIRST(id) = {id} 



Compute FOLLOW (for non-terminals) 

• If S is the start symbol     $ is in FOLLOW(S) 

 

• if  A  B  is a production rule                                                   
 everything in FIRST() is FOLLOW(B) except  

 

• If  ( A  B is a production rule )   or                                             
( A  B is a production rule and  is in FIRST() )                    
 everything in FOLLOW(A) is in FOLLOW(B).  

 

We apply these rules until nothing more can be added 
to any follow set.                                  



FOLLOW Example 

E  TE͛ 

E͛  +TE͛  
 |    

T  FT͛ 

T͛  *FT͛  
 |    

F  (E)   |   id 

 

FOLLOW(E) =  { $, ) } 

FOLLOW(E͛) = { $, ) } 

FOLLOW(T) =  { +, ), $ } 

FOLLOW(T͛) = { +, ), $ } 

FOLLOW(F)  =  {+, *, ), $ } 



Constructing LL(1) Parsing Table -- Algorithm 

• for each production rule A    of a grammar G 
– for each terminal a in FIRST()                                                          

add A    to M[A,a] 

– If  in FIRST()                                                                                  

for each terminal a in FOLLOW(A)  add A    to M[A,a] 

– If  in FIRST() and $ in FOLLOW(A)                                             

add A    to M[A,$] 

 

• All other undefined entries of the parsing table 

are error entries. 



Constructing LL(1) Parsing Table -- Example 
E  TE’  FIRST(TE’)={(,id}  E  TE’  into M[E,(] and M[E,id]  
 

E’  +TE’  
  FIRST(+TE’ )={+}  E’  +TE’  into M[E’,+] 

  
E’    FIRST()={}   none 
   but since  in FIRST()  
   and FOLLOW(E’)={$,)}   E’     into M[E’,$]  and M[E’,)]    
 
T  FT’  FIRST(FT’)={(,id}  T  FT’  into M[T,(] and M[T,id]   
 

T’  *FT’   FIRST(*FT’ )={*}  T’  *FT’ into M[T’,*] 

   
T’     FIRST()={}   none 
   but since  in FIRST()  
   and FOLLOW(T’)={$,),+}  T’    into M[T’,$], M[T’,)] and 

M[T’,+]  
 
F  (E)   FIRST((E) )={(}   F  (E) into M[F,(] 
 
F  id  FIRST(id)={id}   F  id  into M[F,id] 

 



LL(1) Grammars 

• A grammar whose parsing table has no multiply-
defined entries is said to be LL(1) grammar.  

 

  one input symbol used as a look-head symbol do 
determine parser action 

 LL(1) left most derivation 

 input scanned from left to right 

 

• The parsing table of a grammar may contain more 
than one production rule. In this case, we say that it is 
not a LL(1) grammar. 



A Grammar which is not LL(1) 

S  i C t S E   |    a  FOLLOW(S) = { $,e } 
E  e S    |      FOLLOW(E) = { $,e } 
C  b    FOLLOW(C) = { t } 
 
FIRST(iCtSE) = {i} 
FIRST(a) = {a} 
FIRST(eS) = {e} 
FIRST() = {} 
FIRST(b) = {b} 
                
                two production rules for M[E,e] 
 
Problem   ambiguity  

a b e i t $ 

S S  a S  

iCtSE 

E E  e S 

E   
E  

 
 

C C  b 



A Grammar which is not LL(1) (cont.) 

• What do we have to do it if the resulting 

parsing table contains multiply defined 

entries? 
– If  we didŶ’t eliŵiŶate left reĐursioŶ, eliŵiŶate the left 

recursion in the grammar. 

– If the grammar is not left factored, we have to left factor 

the grammar. 

– If its ;Ŷew graŵŵar’sͿ parsiŶg taďle still ĐoŶtaiŶs ŵultiply 
defined entries, that grammar is ambiguous or it is 

inherently not a LL(1) grammar. 

 



A Grammar which is not LL(1) (cont.) 

• A left recursive grammar cannot be a LL(1) grammar. 
– A  A |      

 any terminal that appears in FIRST()  also appears FIRST(A) 
because  A  .   

 If  is , any terminal that appears in FIRST() also appears in 
FIRST(A) and FOLLOW(A). 

• A grammar is not left factored, it cannot be a LL(1) 
grammar 
• A  1 | 2 

any terminal that appears in FIRST(1) also appears in 
FIRST(2).  

• An ambiguous grammar cannot be a LL(1) grammar. 

 



Properties of LL(1) Grammars 

• A grammar G is LL(1) if and only if  the following 
conditions hold for two distinctive production 
rules   A     and   A   

  
1. Both  and  cannot derive strings starting with same 

terminals. 

 

2. At most one of  and  can derive to . 

 

3. If  can derive to , then  cannot derive to any string starting    
with a terminal in FOLLOW(A).  



Error Recovery in Predictive Parsing 

• An error may occur in the predictive parsing 

(LL(1) parsing) 
– if the terminal symbol on the top of stack does not match with       

the current input symbol. 

– if the top of stack is a non-terminal A, the current input symbol 

is a, and the parsing table entry M[A,a] is empty. 

• What should the parser do in an error case? 
– The parser should be able to give an error message (as much 

as possible meaningful error message). 

– It should be recover from that error case, and it should be able         

to continue the parsing with the rest of the input. 



Error Recovery Techniques 

• Panic-Mode Error Recovery 
– Skipping the input symbols until a synchronizing token is 

found. 

• Phrase-Level Error Recovery 
– Each empty entry in the parsing table is filled with a pointer to 

a specific error routine to take care that error case.  

• Error-Productions 
– If we have a good idea of the common errors that might be 

encountered, we can augment the grammar with productions 
that generate erroneous constructs.  

– When an error production is used by the parser, we can 
generate appropriate error diagnostics. 

– Since it is almost impossible to know all the errors that can be 
made by the programmers, this  method is not practical. 



Error Recovery Techniques 

• Global-Correction 
– Ideally, we would like a compiler to make as few change as 

possible in processing incorrect inputs.  

– We have to globally analyze the input to find the error. 

– This is an expensive method, and it is not in practice. 

 



Panic-Mode Error Recovery in LL(1) Parsing 
• In panic-mode error recovery, we skip all the input 

symbols until a synchronizing token is found. 

• What is the synchronizing token? 
– All the terminal-symbols in the follow set of a non-terminal can be 

used as a synchronizing token set for that non-terminal. 

•  So, a simple panic-mode error recovery for the 
LL(1) parsing: 
– All the empty entries are marked as synch to indicate that the 

parser will skip all the input symbols until a symbol in the follow 
set of the non-terminal A which on the top of the stack. Then the 
parser will pop that non-terminal A from the stack. The parsing 
continues from that state. 

– To handle unmatched terminal symbols, the parser pops that 
unmatched terminal symbol from the stack and it issues an error 
message saying that that unmatched terminal is inserted. 



Panic-Mode Error Recovery - Example 

S  AbS  |  e  |  

A  a  |  cAd 
 

FOLLOW(S)={$} 

FOLLOW(A)={b,d} 
 

stack input output   stack input output 

$S  aab$ S  AbS   $S ceadb$  S  AbS 

$SbA aab$ A  a    $SbA ceadb$  A  cAd  

$Sba aab$    $SbdAc ceadb$  

$Sb ab$ Error: missing b, inserted $SbdA eadb$ Error:unexpected e (illegal A) 

$S  ab$ S  AbS   (Remove all input tokens until first b or d, 
pop A)  

$SbA ab$ A  a    $Sbd db$ 

$Sba ab$    $Sb b$ 

$Sb b$    $S $  S    

$S  $ S      $ $ accept 

$  $ accept  

a b c d e $ 

S S  

AbS 

syn

c 

S  AbS syn

c 

S  

e 

S   

A A  a syn

c 

A  cAd syn

c 

sync sync 



Phrase-Level Error Recovery 

• Each empty entry in the parsing table is  filled 
with a pointer to a special error routine which 
will take care that error case. 

• These error routines may: 
– change, insert, or delete input symbols. 

– issue appropriate error messages 

– pop items from the stack. 

• We should be careful when we design these 
error routines, because we may put the parser 
into an infinite loop. 

 



Syntax Analyzer 

• Syntax Analyzer creates the syntactic structure of the 
given source program. 

• This syntactic structure is mostly a parse tree. 

• Syntax Analyzer is also known as parser. 

• The syntax of a programming is described by a context-
free grammar (CFG). We will use BNF (Backus-Naur Form) 
notation in the description of CFGs. 

• The syntax analyzer (parser) checks whether a given 
source program satisfies the rules implied by a context-
free grammar or not. 
– If it satisfies, the parser creates the parse tree of that program. 

– Otherwise the parser gives the error messages. 
 



Syntax Analyzer 

• A context-free grammar 
– gives a precise syntactic specification of a programming 

language. 

– the design of the grammar is an initial phase of the 

design of a compiler. 

– a grammar can be directly  converted into a parser by 

some tools. 

 



Parser 

Lexical  

Analyze

r 

 

Parser 

 

source  

program 

  token 

get next token 

parse tree 

•  Parser  works on a stream of tokens. 

 

•  The smallest item is a token. 



Parsers (cont.) 

• We categorize the parsers into two groups: 
 

1. Top-Down Parser 
– the parse tree is created top to bottom, starting from the root. 

2. Bottom-Up Parser 
– the parse is created bottom to top; starting from the leaves 

 

• Both top-down and bottom-up parsers scan the input from left to 
right (one symbol at a time).  

• Efficient top-down and bottom-up parsers can be implemented 
only for sub-classes of context-free grammars. 
– LL for top-down parsing 

– LR for bottom-up parsing 



Context-Free Grammars 

• Inherently recursive structures of a 
programming language are defined by a context-
free grammar. 
 

• In a context-free grammar, we have: 
– A finite set of terminals (in our case, this will be the set of 

tokens) 
– A finite set of non-terminals (syntactic-variables) 
– A finite set of productions rules in the following form 

• A           where A is a non-terminal and  
     is a string of terminals and non-terminals 

(including the empty string) 
– A start symbol (one of the non-terminal symbol) 

 



Context-Free Grammars 

• Example: 
E   E + E   |   E – E   |   E * E   |  E / E   |   - E 

E   ( E ) 

E  id 

 



Derivations 

E  E+E 

 

• E+E derives from E 
– we can replace  E by E+E 

– to able to do this, we have to have a production rule  EE+E in 
our grammar. 

 

E  E+E  id+E  id+id 

 

• A sequence of replacements of non-terminal 
symbols is called a derivation of id+id from E. 

 

 

* 

+ 



Derivations 

 

• In general a derivation step is 
A    if there is a production rule A in our grammar    

                        where  and  are arbitrary strings of terminal and 
non-terminal symbols 

 

1  2  ...  n  (n  derives from 1   or   1 
derives n ) 

 

   : derives in one step 

  : derives in zero or more steps 

  : derives in one or more steps 



CFG - Terminology 

• L(G) is the language of G (the language generated by G) 
which is a set of sentences. 

• A sentence of L(G)  is a string of terminal symbols of G. 

• If  S is the start symbol of G then 
 is  a sentence of L(G) iff  S      where  is a string of terminals of G. 

 If G is a context-free grammar, L(G) is a context-free 
language. 

• Two grammars are equivalent if they produce the same 
language. 

• S   - If  contains non-terminals, it is called as a 
sentential form of G. 

   - If  does not contain non-terminals, it is 
called as a sentence of G.  

+ 

* 



Derivation Example 

E  -E  -(E)  -(E+E)  -(id+E)  -(id+id) 

   OR 

E  -E  -(E)  -(E+E)  -(E+id)  -(id+id) 

 

• At each derivation step, we can choose any of the non-terminal in 
the sentential form of G for the replacement. 

 

• If we always choose the left-most non-terminal in each derivation 
step, this derivation is called as left-most derivation. 

 

• If we always choose the right-most non-terminal in each 
derivation step, this derivation is called as right-most derivation. 
 

 

 

 

 



Left-Most and Right-Most Derivations 

Left-Most Derivation 

 

 E  -E  -(E)  -(E+E)  -(id+E)  -(id+id) 

 Right-Most Derivation  

  

 E  -E  -(E)  -(E+E)  -(E+id)  -(id+id) 

 

• We will see that the top-down parsers try to find the left-most 
derivation of the given source program. 

 

• We will see that the bottom-up parsers try to find the right-most 
derivation of the given source program in the reverse order. 

 

lm lm lm lm lm 

rm rm rm rm rm 



Parse Tree 
•  Inner nodes of a parse tree are non-terminal symbols. 

•  The leaves of a parse tree are terminal symbols. 

 

•  A parse tree can be seen as a graphical representation of a derivation. 

E  -E  E 

E - 

E 

E 

E E 

E 

+ 

- 

( ) 

E 

E 

E - 

( ) 

E 

E 

id 

E 

E 

E + 

- 

( ) 

id 

E 

E 

E 

E E + 

- 

( ) 

id 

 -(E)  -(E+E) 

 -

(id+E) 
 -(id+id) 



Ambiguity 

•  A grammar produces more than one parse tree for a sentence is  

   called as an ambiguous grammar. 

E  E+E  id+E  id+E*E  

     id+id*E  id+id*id 

E  E*E  E+E*E  id+E*E  

     id+id*E  id+id*id 

E 

id 

E + 

id 

id 

E 

E 

* E 

E 

E + 

id E 

E 

* E 

id id 



Ambiguity (cont.) 

• For the most parsers, the grammar must be unambiguous. 

 

• unambiguous grammar  

    unique selection of the parse tree for a sentence 

 

• We should eliminate the ambiguity in the grammar during 
the design phase of the compiler. 

• An unambiguous grammar should be written to eliminate 
the ambiguity. 

• We have to prefer one of the parse trees of a sentence 
(generated by an ambiguous grammar) to disambiguate 
that grammar to restrict to this choice. 



Ambiguity (cont.) 

stmt   if  expr  then  stmt   | 

              if  expr  then  stmt  else  stmt    |   otherstmts 

if  E1  then  if  E2  then  S1  else  S2 

 stmt 

 

if   expr  then     stmt      else       stmt 

 

         E1    if  expr   then    stmt        S2 

 

              E2             S1 

 stmt 

 

if   expr  then   stmt 

 

         E1     if  expr   then   stmt  else  stmt

 

            E2            S1                    S2 

 

 1 2 



Ambiguity  

•  We prefer the second parse tree (else matches with closest if). 

•  So, we have to disambiguate our grammar to reflect this choice. 

 

•  The unambiguous grammar will be: 

 

stmt   matchedstmt  |  unmatchedstmt 

 

matchedstmt   if  expr  then  matchedstmt  else  matchedstmt    

                                                                      |   otherstmts 

 

unmatchedstmt  if  expr  then  stmt    | 

                              if  expr  then  matchedstmt  else  unmatchedstmt 



Ambiguity – Operator Precedence 

• Ambiguous grammars (because of ambiguous operators) can be 
disambiguated according to the precedence and associativity 
rules. 

 

 E  E+E  |  E*E  |  E^E  |  id  |  (E) 

      disambiguate the grammar  

   precedence:   ^   (right to left) 

     *   (left to right) 

     +   (left to right) 

 E  E+T  |  T 

 T  T*F  |  F 

 F  G^F  |  G 

 G  id  |  (E) 

 



Left Recursion 

• A grammar is  left recursive  if it has a non-terminal A such 
that there is  a derivation. 

  

  A  A for some string   

 

• Top-down parsing techniques cannot handle left-recursive 
grammars. 

• So, we have to convert our left-recursive grammar into an 
equivalent grammar which is not left-recursive. 

• The left-recursion may appear in a single step of the 
derivation (immediate left-recursion), or may appear in 
more than one step of     the derivation. 

+ 



Immediate Left-Recursion 

A  A  |        where  does not start with A 

  eliminate immediate left recursion 

A   A͛ 

A͛   A͛  |    an equivalent grammar 

A  A 1 | ... | A m | 1 | ... | n  where 1 ... n do not start with A 

  eliminate immediate left recursion 

A  1 A͛  | ... | n A͛ 

A͛  1 A͛  | ... | m A͛  |    an equivalent grammar 

In general, 



Immediate Left-Recursion -- Example 

E  E+T  |  T 

T  T*F  |  F 

F  id  |  (E) 

 

E  T E͛
 

E͛  +T E͛ |  

T  F T͛ 

T͛  *F T͛  |  

F  id  |  (E) 

 

  eliminate immediate left recursion 



Left-Recursion -- Problem 

•  A grammar cannot be immediately left-recursive, but it still can be  

   left-recursive. 

•  By just eliminating the immediate left-recursion, we may not get  

   a grammar which is not left-recursive. 

 S  Aa | b 

 A  Sc | d This grammar is not immediately left-recursive, 

   but it is still left-recursive. 

 

 S  Aa  Sca     or 

 A  Sc  Aac  causes to a left-recursion 

 

•  So, we have to eliminate all left-recursions from our grammar 



Eliminate Left-Recursion -- Algorithm 

- Arrange non-terminals in some order:  A1 ... An 

- for  i  from  1  to  n  do  { 

  - for  j from 1 to i-1 do  { 

  replace each production  

   Ai  Aj  
        by 

    Ai  1  | ... | k  
   where Aj  1 | ... | k  

   } 

 - eliminate immediate left-recursions among Ai 
productions 

} 
 



Eliminate Left-Recursion -- Example 
S  Aa | b 
A  Ac | Sd | f 
 
- Order of non-terminals: S, A 
 
for S: 
 - we do not enter the inner loop. 
 - there is no immediate left recursion in S. 
 
for A: 
 - Replace A  Sd   with   A  Aad | bd 
   So, we will have   A  Ac | Aad | bd | f 
 - Eliminate the immediate left-recursion in A  
   A  bdA͛ | fA͛ 
   A͛  cA͛  |  adA͛  |  
 



Eliminate Left-Recursion -- Example 

So, the resulting equivalent grammar which is 
not left-recursive is: 

 S  Aa | b 
 A  bdA͛ | fA͛ 

 A͛  cA͛  |  adA͛  |  

 



Eliminate Left-Recursion – Example2 

S  Aa | b 
A  Ac | Sd | f 
 
- Order of non-terminals: A, S 
 
for A: 
 - we do not enter the inner loop. 
 - Eliminate the immediate left-recursion in A 
   A  SdA͛ | fA͛ 

   A͛  cA͛  |   
 
 

 

 



Eliminate Left-Recursion – Example2 

for S: 
 - Replace   S  Aa   with   S  SdA͛a  |  fA͛a   
   So, we will have  S  SdA͛a  |  fA͛a  | b  
 - Eliminate the immediate left-recursion in S  
   S  fA͛a“͛  | ď“͛ 
   S͛  dA͛a“͛  |   
 
So, the resulting equivalent grammar which is not 

left-recursive is: 
 S  fA͛a“͛  | ď“͛ 
 S͛  dA͛a“͛  |   
 A  SdA͛ | fA͛ 
 A͛  cA͛  |   

 



Left-Factoring 

• A predictive parser (a top-down parser without 
backtracking) insists  that the grammar must be left-
factored. 

 

 grammar  a new equivalent grammar suitable for 
predictive parsing 

 

stmt  if  expr  then  stmt  else  stmt    | 

   if  expr  then  stmt  

 

• when we see  if, we cannot now which production rule 
to choose to  re-write stmt in the derivation. 



Left-Factoring (cont.) 

• In general, 
 

 A   1  |   2   where  is non-empty and the first 
symbols  

     of 1 and 2 (if they have one)are 
different. 

 

• when processing  we cannot know whether expand  

  A to 1    or      

  A to 2  

 

• But, if we re-write the grammar as follows 

   A   A͛ 

   A͛  1  |   2  so, we can immediately expand A to A͛ 



Left-Factoring -- Algorithm  

• For each non-terminal A with two or more 
alternatives (production rules) with a common 
non-empty prefix, let say 

 

   A   1 | ... | n  |  1 | ... | m  

 

 convert it into 

 

  A   A͛ |  1 | ... | m  

  A͛  1 | ... | n  

 

 



Left-Factoring – Example1 

A  abB | aB | cdg | cdeB | cdfB 

  

A  aA͛ | cdg | cdeB | cdfB 

A͛  bB | B 

  

A  aA͛ | cdA͛͛ 

A͛  bB | B 

A͛͛  g | eB | fB 

 

 



Left-Factoring – Example2 

A  ad | a | ab | abc | b    

    

A  aA͛ | ď      

A͛  d |   | b | bc      

    

A  aA͛ | ď      

A͛  d |   | ďA͛͛     

A͛͛    | c      

 

 



Non-Recursive Predictive Parsing -- LL(1) Parser 

• Non-Recursive predictive parsing is a table-driven parser. 

• It is a top-down parser. 

• It is also known as LL(1) Parser. 

 

 

    input buffer 

 

 stack  Non-recursive   
 output 

    Predictive Parser 

 

    Parsing Table 



LL(1) Parser 

input buffer  
– our string to be parsed. We will assume that its end is marked with a 

special symbol $. 

 
output  

– a production rule representing a step of the derivation sequence 
(left-most derivation) of the string in the input buffer. 

 
stack 

– contains the grammar symbols  
– at the bottom of the stack, there is a special end marker symbol $. 
– initially the stack contains only the symbol $ and the starting symbol 

S.          $S    initial stack 

  
  



LL(1) Parser 

– when the stack is emptied (ie. only $ left in the stack), the 
parsing is completed. 

 

parsing table 
– a two-dimensional array M[A,a]   

– each row is a non-terminal symbol 

– each column is a terminal symbol or the special symbol $ 

– each entry holds a production rule. 

 



LL(1) Parser – Parser Actions 

• The symbol at the top of the stack (say X) and the 
current symbol in the input string (say a) determine 
the parser action.  

• There are four possible parser actions. 
 

1. If X and a are $   parser halts (successful 
completion) 
 

2. If X and a are the same terminal symbol (different 
from $)   

  parser pops X from the stack, and moves the next 
symbol in the input buffer. 

 

  
 



LL(1) Parser – Parser Actions 

3. If X is a non-terminal   
  parser looks at the parsing table entry 

M[X,a].  If M[X,a] holds a production rule   
XY1Y2...Yk, it pops X from the stack and 
pushes Yk,Yk-1,...,Y1 into the stack. The parser 
also outputs the production rule XY1Y2...Yk to 
represent a step of the derivation. 

 
4. none of the above    error  

– all empty entries in the parsing table are errors.  
– If X is a terminal symbol different from a, this is also an error 

case. 

 



LL(1) Parser – Example1 

S  aBa        LL(1) 
Parsing 

B  bB  |        Table 
 
 
stack  input  output 
$S   abba$   S  aBa 
$aBa  abba$ 
$aB  bba$   B  bB  
$aBb  bba$ 
$aB  ba$   B  bB  
$aBb  ba$ 

a b $ 

S S  aBa 

B B   B  bB 



LL(1) Parser – Example1 

$aB  a$   B   

$a   a$ 

$   $  accept, successful 
completion 

 



LL(1) Parser – Example1 (cont.) 

Outputs: S  aBa      B  bB      B  bB     B     

Derivation(left-most):   SaBaabBaabbBaabba 

S 

B a a 

B 

B b 

b 

 

parse tree 



LL(1) Parser – Example2 

E  TE͛ 

E͛  +TE͛  
 |    

T  FT͛ 

T͛  *FT͛  
 |    

F  (E)   |   id 

id + * ( ) $ 

E E  
TE’ 

E  TE’ 

E’ E’  +TE’ E’   E’   
T T  

FT’ 
T  FT’ 

T’ T’   T’  

*FT’ 
T’   T’   

F F  id F  (E) 



LL(1) Parser – Example2 

stack  input  output 

$E  id+id$ E  TE’ 

$E’T  id+id$ T  FT’ 

$E’ T’F id+id$ F  id 

$ E’ T’id id+id$ 

$ E’ T’  +id$  T’   

$ E’   +id$  E’  +TE’ 

$ E’ T+ +id$ 

$ E’ T  id$  T  FT’ 
 

 

 

 

 



LL(1) Parser – Example2 

$ E͛ T͛ F  id$  F  id 

$ E͛ T͛id  id$ 

$ E͛ T͛   $  T͛   

$ E͛   $  E͛   

$    $  accept 

 



Constructing LL(1) Parsing Tables 

• Two functions are used in the construction of LL(1) parsing tables: 
– FIRST FOLLOW 

 
• FIRST()  is a set of the terminal symbols which occur as first 

symbols in strings derived from  where  is any string of 
grammar symbols. 

• if  derives to , then  is also in FIRST() . 
 

• FOLLOW(A) is the set of the terminals which occur immediately 
after (follow)  the non-terminal A  in the strings derived from the 
starting symbol. 
– a terminal a is in FOLLOW(A)   if   S  Aa 
– $ is in FOLLOW(A)    if   S  A 

  
* 

* 



Compute FIRST for Any String X 

• If X is a terminal symbol    FIRST(X)={X} 
• If X is a non-terminal symbol  and  X   is a production rule                

     is in FIRST(X). 
• If X is a non-terminal symbol  and  X  Y1Y2..Yn  is a production 

rule   if a terminal a in FIRST(Yi) and  is in all FIRST(Yj) for 
j=1,...,i-1                      then a is in FIRST(X).                                                           
 if  is in all FIRST(Yj) for j=1,...,n                             
 then  is in FIRST(X).  

• If X is      FIRST(X)={} 
• If X is Y1Y2..Yn        

           if a terminal a in FIRST(Yi) and  is in all FIRST(Yj) for 
j=1,...,i-1                      then a is in FIRST(X).                                                           
 if  is in all FIRST(Yj) for j=1,...,n                             
 then  is in FIRST(X).  
 



FIRST Example 

E  TE͛ 

E͛  +TE͛  
 |    

T  FT͛ 

T͛  *FT͛  
 |    

F  (E)   |   id 
 
FIRST(F) =   {(,id}   FIRST(TE’) = {(,id} 
FIRST(T’) = {*, }   FIRST(+TE’ ) = {+} 
FIRST(T) =  {(,id}   FIRST() = {} 
FIRST(E’) = {+, }   FIRST(FT’) = {(,id} 
FIRST(E) =  {(,id}   FIRST(*FT’) = {*} 
      FIRST() = {} 
      FIRST((E)) = {(} 
      FIRST(id) = {id} 



Compute FOLLOW (for non-terminals) 

• If S is the start symbol     $ is in FOLLOW(S) 

 

• if  A  B  is a production rule                                                   
 everything in FIRST() is FOLLOW(B) except  

 

• If  ( A  B is a production rule )   or                                             
( A  B is a production rule and  is in FIRST() )                    
 everything in FOLLOW(A) is in FOLLOW(B).  

 

We apply these rules until nothing more can be added 
to any follow set.                                  



FOLLOW Example 

E  TE͛ 

E͛  +TE͛  
 |    

T  FT͛ 

T͛  *FT͛  
 |    

F  (E)   |   id 

 

FOLLOW(E) =  { $, ) } 

FOLLOW(E͛) = { $, ) } 

FOLLOW(T) =  { +, ), $ } 

FOLLOW(T͛) = { +, ), $ } 

FOLLOW(F)  =  {+, *, ), $ } 



Constructing LL(1) Parsing Table -- Algorithm 

• for each production rule A    of a grammar G 
– for each terminal a in FIRST()                                                        

  add A    to M[A,a] 

– If  in FIRST()                                                                                  

for each terminal a in FOLLOW(A)  add A    to M[A,a] 

– If  in FIRST() and $ in FOLLOW(A)                                             

add A    to M[A,$] 

 

• All other undefined entries of the parsing table 

are error entries. 



Constructing LL(1) Parsing Table -- Example 

E  TE͛  FIRST(TE͛)={(,id}  E  TE͛  into 
M[E,(] and M[E,id]  

 

E͛  +TE͛  
  FIRST(+TE͛ )={+}  E͛  +TE͛  into M[E ,͛+] 

  
E͛    FIRST()={}   none 
   but since  in FIRST()  
   and FOLLOW(E͛)={$,)}   E͛     into 

M[E ,͛$]  and M[E ,͛)]    
 
T  FT͛  FIRST(FT͛)={(,id}  T  FT͛  into 

M[T,(] and M[T,id]   
 

T͛  *FT͛   FIRST(*FT͛ )={*}  T͛  *FT͛ into M[T ,͛*] 

 



Constructing LL(1) Parsing Table -- Example 

  
T͛     FIRST()={}   none 
   but since  in FIRST()  
   and FOLLOW(T͛)={$,),+}  T͛    

into M[T ,͛$], M[T ,͛)] and M[T ,͛+]  
 
F  (E)   FIRST((E) )={(}   F  

(E) into M[F,(] 
 
F  id  FIRST(id)={id}   F  id  

into M[F,id] 



LL(1) Grammars 

• A grammar whose parsing table has no multiply-
defined entries is said to be LL(1) grammar.  

 

  one input symbol used as a look-head symbol do 
determine parser action 

 LL(1) left most derivation 

 input scanned from left to right 

 

• The parsing table of a grammar may contain more 
than one production rule. In this case, we say that it is 
not a LL(1) grammar. 



A Grammar which is not LL(1) 

S  i C t S E   |    a  FOLLOW(S) = { $,e } 
E  e S    |      FOLLOW(E) = { $,e } 
C  b    FOLLOW(C) = { t } 
 
FIRST(iCtSE) = {i} 
FIRST(a) = {a} 
FIRST(eS) = {e} 
FIRST() = {} 
FIRST(b) = {b} 
                
               two production rules for 
 
 
M[E,e]    
Problem   ambiguity                            
 
  

a b e i t $ 

S S  a S  

iCtSE 

E E  e S 

E   
E  

 
 

C C  b 



A Grammar which is not LL(1) (cont.) 

• What do we have to do it if the resulting 

parsing table contains multiply defined 

entries? 
– If  ǁe didŶ͛t eliŵiŶate left ƌeĐuƌsioŶ, eliŵiŶate the left 

recursion in the grammar. 

– If the grammar is not left factored, we have to left factor 

the grammar. 

– If its ;Ŷeǁ gƌaŵŵaƌ͛sͿ paƌsiŶg taďle still ĐoŶtaiŶs ŵultiplǇ 
defined entries, that grammar is ambiguous or it is 

inherently not a LL(1) grammar. 

 



A Grammar which is not LL(1) (cont.) 

• A left recursive grammar cannot be a LL(1) grammar. 
– A  A |      

 any terminal that appears in FIRST()  also appears FIRST(A) 
because  A  .   

 If  is , any terminal that appears in FIRST() also appears in 
FIRST(A) and FOLLOW(A). 

• A grammar is not left factored, it cannot be a LL(1) 
grammar 
• A  1 | 2 

any terminal that appears in FIRST(1) also appears in 
FIRST(2).  

• An ambiguous grammar cannot be a LL(1) grammar. 

 



Properties of LL(1) Grammars 

• A grammar G is LL(1) if and only if  the following 
conditions hold for two distinctive production 
rules   A     and   A   

  
1. Both  and  cannot derive strings starting with same 

terminals. 

 

2. At most one of  and  can derive to . 

 

3. If  can derive to , then  cannot derive to any string starting    
with a terminal in FOLLOW(A).  



Error Recovery in Predictive Parsing 

• An error may occur in the predictive parsing 

(LL(1) parsing) 
– if the terminal symbol on the top of stack does not match with       

the current input symbol. 

– if the top of stack is a non-terminal A, the current input symbol 

is a, and the parsing table entry M[A,a] is empty. 

• What should the parser do in an error case? 
– The parser should be able to give an error message (as much 

as possible meaningful error message). 

– It should be recover from that error case, and it should be able         

to continue the parsing with the rest of the input. 



Error Recovery Techniques 

• Panic-Mode Error Recovery 
– Skipping the input symbols until a synchronizing token is 

found. 

• Phrase-Level Error Recovery 
– Each empty entry in the parsing table is filled with a pointer to 

a specific error routine to take care that error case.  

• Error-Productions 
– If we have a good idea of the common errors that might be 

encountered, we can augment the grammar with productions 
that generate erroneous constructs.  

– When an error production is used by the parser, we can 
generate appropriate error diagnostics. 

– Since it is almost impossible to know all the errors that can be 
made by the programmers, this  method is not practical. 



Error Recovery Techniques 

• Global-Correction 
– Ideally, we would like a compiler to make as few change 

as possible in processing incorrect inputs.  

– We have to globally analyze the input to find the error. 

– This is an expensive method, and it is not in practice. 

 



Panic-Mode Error Recovery in LL(1) Parsing 

• In panic-mode error recovery, we skip all the input 
symbols until a synchronizing token is found. 

• What is the synchronizing token? 
– All the terminal-symbols in the follow set of a non-terminal can be 

used as a synchronizing token set for that non-terminal. 

•  So, a simple panic-mode error recovery for the 
LL(1) parsing: 
– All the empty entries are marked as synch to indicate that the 

parser will skip all the input symbols until a symbol in the follow 
set of the non-terminal A which on the top of the stack. Then the 
parser will pop that non-terminal A from the stack. The parsing 
continues from that state. 

– To handle unmatched terminal symbols, the parser pops that 
unmatched terminal symbol from the stack and it issues an error 
message saying that that unmatched terminal is inserted. 



Panic-Mode Error Recovery - Example 

S  AbS  |  e  |  
A  a  |  cAd 
 

FOLLOW(S)={$} 
FOLLOW(A)={b,d} 

 
stack input output   stack input

 output 
$S  aab$ S  AbS   $S ceadb$

  S  AbS 
$SbA aab$ A  a    $SbA ceadb$

  A  cAd  
$Sba aab$    $SbdAc ceadb$

  
$Sb ab$        $SbdA eadb$  

a b c d e $ 

S S  

AbS 

syn

c 

S  AbS syn

c 

S  

e 

S   

A A  a syn

c 

A  cAd syn

c 

sync sync 



Panic-Mode Error Recovery - Example 

$S         ab$    S  AbS(Remove all input tokens until first b or d, pop A)
  

$SbA    ab$    A  a     
$Sbd    db$ 
$Sba    ab$  
$Sb    b$ 
$Sb    b$  
$S             $    S    
$       $    accept  
 
Error : unexpected e (illegal A) 

 



Phrase-Level Error Recovery 

• Each empty entry in the parsing table is  filled 
with a pointer to a special error routine which 
will take care that error case. 

• These error routines may: 
– change, insert, or delete input symbols. 

– issue appropriate error messages 

– pop items from the stack. 

• We should be careful when we design these 
error routines, because we may put the parser 
into an infinite loop. 

 



Unit-2 

Bottom - Up Parsing 



Bottom-Up Parsing 

• A bottom-up parser creates the parse tree of the 
given input starting from leaves towards the root. 

• A bottom-up parser tries to find the right-most 
derivation of the given input in the reverse order. 
 S  ...     (the right-most derivation of ) 

             (the bottom-up parser finds the right-most derivation in 
the reverse order) 

• Bottom-up parsing is also known as shift-reduce 
parsing because its two main actions are shift and 
reduce. 
– At each shift action, the current symbol in the input string is pushed 

to a stack. 

 

 



Bottom-Up Parsing 

– At each reduction step, the symbols at the top of the 

stack (this symbol sequence is the right side of a 

production) will replaced by the non-terminal at the left 

side of that production. 

– There are also two more actions: accept and error. 



Shift-Reduce Parsing 

• A shift-reduce parser tries to reduce the given input string 
into the starting symbol. 

a string          the starting symbol 

        reduced to 

• At each reduction step, a substring of the input matching to 
the right side of a production rule is replaced by the non-
terminal at the left side of that production rule. 

• If the substring is chosen correctly, the right most derivation 
of that string is created in the reverse order. 

 

  Rightmost Derivation:    S   

 

  Shift-Reduce Parser finds:     ...  S 

   
  

* 
rm 

rm rm 



Shift-Reduce Parsing -- Example 

S  aABb    input string: aaabb 

A  aA  |  a     aaAbb 

B  bB  | b     aAbb     
reduction 

       aABb 
       S 
 
S  aABb  aAbb  aaAbb  aaabb  

 

   Right Sentential Forms 

 

• How do we know which substring to be replaced at each 
reduction step? 

rm rm rm rm 



Handle 

• Informally, a handle of a string is a substring that 
matches the right side of a production rule. 
– But not every substring matches the right side of a production rule is 

handle 

 
• A handle of a right sentential form  ( )  is 
    a production rule A   and a position of  
  where the string  may be found and replaced by A 

to produce  
  the previous right-sentential form in  a rightmost 

derivation of . 
    
   S  A   
• If the grammar is unambiguous, then every right-

sentential form of the grammar has exactly one handle. 
• We will see that  is a string of terminals. 

rm rm 
* 



Handle Pruning 

• A right-most derivation in reverse can be obtained by 
handle-pruning. 

 

 S=0  1  2  ...  n-1  n=  

       input string 

 

• Start from n, find a handle Ann in n,                                       
and replace n in by An to get n-1.  

• Then find a handle An-1n-1 in n-1,                                              
and replace n-1 in by An-1 to get n-2.  

• Repeat this, until we reach S. 

rm rm rm rm rm 



A Shift-Reduce Parser 

E  E+T  | T        Right-Most Derivation of   id+id*id 
T  T*F  | F  E  E+T  E+T*F  E+T*id  E+F*id 
F  (E)  |  id       E+id*id  T+id*id  F+id*id  id+id*id 
 
Right-Most Sentential Form Reducing Production 
id+id*id   F  id 
F+id*id   T  F 
T+id*id   E  T 
E+id*id   F  id 
E+F*id   T  F 
E+T*id   F  id 
E+T*F    T  T*F  
E+T    E  E+T  
E 
   Handles are red and underlined in the right-sentential 

forms. 



A Stack Implementation of A Shift-Reduce Parser 

• There are four possible actions of a shift-parser action: 

 
1. Shift :  The next input symbol is shifted onto the top of the stack. 

2. Reduce: Replace the handle on the top of the stack by the non-
terminal. 

3. Accept: Successful completion of parsing. 

4. Error: Parser discovers a syntax error, and calls an error recovery 
routine. 

 

• Initial stack just contains only the end-marker $. 

• The end of the input string is marked by the end-
marker $. 



A Stack Implementation of A Shift-Reduce Parser  

Stack  Input  Action 

$   id+id*id$ shift 

$id   +id*id$  reduce by F  id               Parse Tree  

$F   +id*id$  reduce by T  F 

$T   +id*id$  reduce by E  T      E  8 

$E   +id*id$  shift 

$E+  id*id$  shift      E  3    +    T  7 

$E+id  *id$  reduce by F  id 

$E+F  *id$  reduce by T  F     T  2    T  5    *
    F 6 

$E+T  *id$  shift 

$E+T*  id$  shift      F  1    F  4 
    id 

$E+T*id  $  reduce by F  id 

$E+T*F  $  reduce by T  T*F     id    id  

$E+T  $  reduce by E  E+T 

$E   $  accept 



Conflicts During Shift-Reduce Parsing 

• There are context-free grammars for which shift-reduce 
parsers cannot be used. 

• Stack contents and the next input symbol may not 
decide action: 
– shift/reduce conflict: Whether make a shift operation or a reduction. 

– reduce/reduce conflict: The parser cannot decide which of several 
reductions to make. 

• If a shift-reduce parser cannot be used for a grammar, 
that grammar is called as non-LR(k) grammar. 

 
  left to right  right-most k lookhead 
  scanning  derivation 

 

• An ambiguous grammar can never be a LR grammar. 



Shift-Reduce Parsers 
• There are two main categories of shift-reduce 

parsers 

1. Operator-Precedence Parser 
–  simple, but only a small class of grammars. 

 

 

 

 

2. LR-Parsers 
– covers wide range of grammars. 

• SLR – simple LR parser  

• LR – most general LR parser 

• LALR – intermediate LR parser (lookhead LR parser) 

SLR 

CFG 

LR 

LALR 



Operator-Precedence Parser 
• Operator grammar  

– small, but an important class of grammars 

– we may have an efficient operator precedence parser (a shift-
reduce parser) for an operator grammar. 

• In an operator grammar, no production rule can 
have: 
–  at the right side 

– two adjacent non-terminals at the right side. 

 

• Ex: 
 EAB    EEOE     EE+E | 

 Aa     Eid            E*E | 

 Bb     O+|*|/            
E/E  |  id  

not operator grammar  not operator grammar  operator 
grammar 

 



Precedence Relations 

• In operator-precedence parsing, we define three disjoint 
precedence relations between certain pairs of terminals. 

 

 a <. b b has higher precedence than a 

 a =· b b has same precedence as a 

 a .> b b has lower precedence than a 

 

• The determination of correct precedence relations 
between terminals  are based on the traditional notions of 
associativity and precedence of operators. (Unary minus 
causes a problem). 



Using Operator-Precedence Relations 

• The intention of the precedence relations is to 
find the handle of            a right-sentential form,  

  <.  with marking the left end,  

  =· appearing in the interior of the handle, and 

  .> marking the right hand. 

 

• In our input string  $a1a2...an$, we insert the 
precedence relation between the pairs of 
terminals (the precedence relation holds 
between the terminals in that pair). 

 



Using Operator -Precedence Relations 

E  E+E  |  E-E  |  E*E  |  E/E  |  E^E  |  (E)  |  -E  |  id  

 

 The partial operator-precedence 

 table for this grammar 

 

 

 

• Then the input string id+id*id with the precedence 
relations inserted will be: 

 

  $ <. id .> + <. id .> * <. id .> $ 

 

 

id * $ 

id .> .> .> 

+ <. .> <. .> 

* <. .> .> .> 

$ <. <. <. 



To Find The Handles 

1. Scan the string from left end until the first .> is 
encountered.  

2. Then scan backwards (to the left) over any =· until a 
<.  is encountered.  

3. The handle contains everything to left of the first .> 
and to the right of the <.  is encountered.  

 
$ <. id .> + <. id .> * <. id .> $ E  id   $ id + id  *  id $ 

$ <. + <. id .> * <. id .> $   E  id   $  E + id  *  id  $  

$ <. + <. * <. id .> $   E  id   $ E + E *  id  $  

$ <. + <. * .> $   E  E*E  $ E +  E * .E $ 

$ <. + .> $   E  E+E  $ E + E $ 

$ $        $ E $ 

 

 



Operator-Precedence Parsing Algorithm 

• The input string  is w$, the initial stack is $ and a table 
holds precedence relations  between certain terminals 
 

Algorithm: 
 set p to point to the first symbol of w$ ; 
 repeat forever 
     if  ( $ is on top of the stack and p points to $ ) then  

return 
     else {  
         let a be the topmost terminal symbol on the stack and 

let b be the symbol pointed to by p; 
         if  ( a <. b  or  a =· b  ) then {    /* SHIFT */ 
  
 

 



Operator-Precedence Parsing 

Algorithm 

push b onto the stack; 

             advance p to the next input symbol; 

        } 

        else if  ( a .> b )  then  /* REDUCE */ 

             repeat  pop stack 

             until  ( the top of stack terminal is related 
by <. to the terminal most recently popped ); 

         else  error(); 

     } 
  



Operator-Precedence Parsing Algorithm -- Example 

stack                        input  action 

$      id+id*id$ $ <. id  shift 

$id   +id*id$ id .> + reduce E  id 

$    +id*id$ shift 

$+   id*id$  shift 

$+id   *id$   id .> * reduce E  id 

$+   *id$  shift 

$+*     id$  shift 

$+*id        $  id .> $ reduce E  id  

$+*         $  * .> $ reduce E  E*E  

$+        $  + .> $ reduce E  E+E  

$         $  accept 



How to Create Operator-Precedence Relations 

• We use associativity and precedence relations among operators. 
1. If operator O1 has higher precedence than operator O2,                                

 O1 
.> O2   and   O2 <. O1 

2. If operator O1 and operator O2 have equal precedence,                                
they are left-associative      O1 

.> O2   and   O2 .> O1                                                     
they are right-associative    O1 <

. O2   and   O2 <. O1 

 

3. For all operators O,                                                                                                
O <. id,    id .> O,    O <. (,    (<. O,    O .> ),    ) .> O,    O .> $,  and   $ <. 
O 

4. Also, let 
 (=·)  $ <. (  id .> )  ) .> $ 
 ( <. ( $ <. id  id .> $  ) .> ) 
 ( <. id 

 



Operator-Precedence Relations 

+ - * / ^ id ( ) $ 

+ .> .> <. <. <. <. <. .> .> 

- .> .> <. <. <. <. <. .> .> 

* .> .> .> .> <. <. <. .> .> 

/ .> .> .> .> <. <. <. .> .> 

^ .> .> .> .> <. <. <. .> .> 

id .> .> .> .> .> .> .> 

( <. <. <. <. <. <. <. =· 

) .> .> .> .> .> .> .> 

$ <. <. <. <. <. <. <. 



Handling Unary Minus 

• Operator-Precedence parsing cannot handle the unary 
minus when we have also the binary minus in our 
grammar. 

• The best approach to solve this problem, let the lexical 
analyzer handle this problem. 
– The lexical analyzer will return two different operators for the unary 

minus and the binary minus. 

– The lexical analyzer will need a lookhead to distinguish the binary minus 
from the unary minus. 

• Then, we make 

  O <. unary-minus           for any operator 

  unary-minus .> O            if unary-minus has higher 
precedence than O 

  unary-minus <. O            if unary-minus has lower 
(or equal) precedence than O 

 



Precedence Functions 

• Compilers using operator precedence parsers do 
not need to store the table of precedence 
relations. 

• The table can be encoded by two precedence 
functions f and g that map terminal symbols to 
integers. 

• For symbols a and b. 

  f(a) < g(b)  whenever  a <. b 

  f(a) = g(b)  whenever  a =· b 

  f(a) > g(b) whenever  a  .> b 



Disadvantages of Operator Precedence Parsing 

• Disadvantages: 
– It cannot handle the unary minus (the lexical analyzer should 

handle   the unary minus). 

– Small class of grammars. 

– Difficult to decide which language is recognized by the 

grammar. 

 

• Advantages: 
– simple 

– powerful enough for expressions in programming languages 



Error Recovery in Operator-Precedence Parsing 

Error Cases: 
1. No relation holds between the terminal on the top of 

stack and the next input symbol.  

2. A handle is found (reduction step), but there is no 
production with this handle as a right side 

 

Error Recovery: 
1. Each empty entry is filled with a pointer to an error 

routine. 

2. DeĐides the popped haŶdle ͞looks like͟ ǁhiĐh ƌight haŶd 
side. And tries to recover from that situation. 

 



LR Parsers 

 
• The most powerful shift-reduce parsing (yet 

efficient) is: 
 

    LR(k) parsing. 
 

 
   
           left to right     right-most           k 

lookhead 
  scanning   derivation (k is omitted  

it is 1) 
 
 



LR Parsers 

• LR parsing is attractive because: 
– LR parsing is most general non-backtracking shift-reduce 

parsing, yet it is still efficient. 

– The class of grammars that can be parsed using LR 

methods is a proper superset of the class of grammars 

that can be parsed with predictive parsers.                                       

   LL(1)-Grammars   LR(1)-Grammars 

– An LR-parser can detect a syntactic error as soon as it is 

possible to do so a left-to-right scan of the input. 



LR Parsers 

• LR-Parsers 
– covers wide range of grammars. 

– SLR – simple LR parser  

– CLR – most general LR parser 

– LALR – intermediate LR parser (look-head LR parser) 

– SLR, LR and LALR work same (they used the same 

algorithm), only their parsing tables are different. 

 

 



LR Parsing Algorithm 

Sm 

Xm 

Sm-1 

Xm-

1 

   . 

   . 

S1 

X1 

S0 

a1  ... ai  ... an $ 

Action Table 

      terminals and $ 
s 
t         four different  
a         actions 
t 
e 
s 

Goto Table 

       non-terminal 
s 
t            each item is 
a           a state number 
t 
e 
s 

 

LR Parsing Algorithm 

stack 

input 

output 



A Configuration of LR Parsing Algorithm 

• A configuration of a LR parsing is: 

 

  ( So X1 S1 ... Xm Sm,  ai ai+1 ... an $ ) 

 

  Stack   Rest of Input 

 

• Sm and ai  decides the parser action by consulting the 
parsing action table.  (Initial Stack  contains just So ) 

 

• A configuration of a LR parsing represents the right 
sentential form: 

  X1 ... Xm ai ai+1 ... an $ 

 



Actions of A LR-Parser 

1. shift s  -- shifts the next input symbol and the state s onto 
the stack 

 ( So X1 S1 ... Xm Sm, ai ai+1 ... an $ )   ( So X1 S1 ... Xm Sm ai s, ai+1 ... an $ ) 

 
2. reduce A   (or rn where n is a production number) 

– pop 2||  (=r) items from the stack;  
– then push A and s  where  s=goto[sm-r,A] 

  

 ( So X1 S1 ... Xm Sm, ai ai+1 ... an $ )   ( So X1 S1 ... Xm-r Sm-r A s, ai ... an $ ) 
 

– Output is the reducing production reduce A  

 
3. Accept – Parsing successfully completed 

 
4. Error  -- Parser detected an error (an empty entry in the 

action table) 



Reduce Action 

• pop 2||  (=r) items from the stack;  let us assume 
that  = Y1Y2...Yr 

• then push A and s  where  s=goto[sm-r,A] 

  

 ( So X1 S1 ... Xm-r Sm-r Y1 Sm-r ...Yr Sm, ai ai+1 ... an $ )   

    ( So X1 S1 ... Xm-r Sm-r A s, ai ... an $ ) 

 

• In fact, Y1Y2...Yr  is a handle. 

 

 X1 ... Xm-r A ai ... an $  X1 ... Xm Y1...Yr ai ai+1 ... an $ 

 

 



(SLR) Parsing Tables for Expression Grammar 

state id + * ( ) $ E T  F 

0 s5 s4 1 2 3 

1 s6 acc 

2 r2 s7 r2 r2 

3 r4 r4 r4 r4 

4 s5 s4 8 2 3 

5 r6 r6 r6 r6 

6 s5 s4 9 3 

7 s5 s4 10 

8 s6 s11 

9 r1 s7 r1 r1 

10 r3 r3 r3 r3 

11 r5 r5 r5 r5 

Action Table Goto Table 

1)   E  E+T 

2)   E  T 

3)   T  T*F 

4)   T  F 

5)   F  (E) 

6)   F  id 



Actions of A (S)LR-Parser -- Example 

stack            input  action          output 

0            id*id+id$  shift 5 

0id5          *id+id$  reduce by Fid   Fid
   

0F3          *id+id$  reduce by TF   TF
   

0T2          *id+id$  shift 7 

0T2*7           id+id$  shift 5 

0T2*7id5                     +id$  reduce by Fid   Fid 

0T2*7F10          +id$   reduce by TT*F          
TT*F 

0T2            +id$  reduce by ET   ET 
 



Actions of A (S)LR-Parser -- Example 

0E1            +id$  shift 6 

0E1+6  id$  shift 5 

0E1+6id5               $  reduce by Fid  
  

0E1+6F3               $  reduce by TF  
  

0E1+6T9               $  reduce by EE+T
  

0E1                $   accept 

 



Constructing SLR Parsing Tables – LR(0) Item 

• An LR(0) item of a grammar G is a production of G a dot at the 
some position of the right side. 

• Ex: A  aBb    Possible LR(0) Items: A  .aBb 

       (four different possibility)   A  
a.Bb 

         A  aB.b 

         A  aBb. 

• Sets of LR(0) items will be the states of action and goto table of 
the SLR parser. 

• A collection of sets of LR(0) items (the canonical LR(0) collection) 
is the basis  for constructing SLR parsers. 

• Augmented Grammar: 

 G͛ is G ǁith a Ŷeǁ pƌoduĐtioŶ ƌule “͛“ ǁheƌe “͛ is the Ŷeǁ 
starting symbol. 



The Closure Operation 

• If  I  is a set of LR(0) items for a grammar G, 
then  closure(I)  is the set of LR(0) items 
constructed from I by the two rules: 

 
1. Initially, every LR(0) item in I is added to closure(I). 

2. If A  .B  is in closure(I)  and B is a production rule 

of G;       then B.  will be in the closure(I).                                       

We will apply this rule until no more new LR(0) items can 

be added to closure(I). 

  



The Closure Operation  -- Example 

E͛  E   Đlosuƌe;{E͛  .E}) =  
E  E+T           {  E͛  .E 

 kernel items 
E  T     E  .E+T 
T  T*F    E  .T 
T  F     T  .T*F 
F  (E)    T  .F  
F  id     F  .(E) 
      F  .id   } 

 



Goto Operation 

• If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is 
defined as follows: 

– If  A  .X  in I                                                                           then every item in closure({A  X.}) will be in goto(I,X).  

 

Example: 

 I ={  E͛  .E,   E  .E+T,   E  .T,  

   T  .T*F,  T  .F,  

   F  .(E),   F  .id  } 

 goto;I,EͿ = { E͛  E., E  E.+T } 

 goto(I,T) = { E  T., T  T.*F } 

 goto(I,F) = {T  F. } 

 goto(I,() = { F  (.E), E  .E+T, E  .T, T  .T*F, T  .F,  

   F  .(E), F  .id  } 

 goto(I,id) = { F  id. } 
 



Construction of The Canonical LR(0) Collection 

• To create the SLR parsing tables for a grammar G, we will 
Đƌeate the ĐaŶoŶiĐal L‘;ϬͿ ĐolleĐtioŶ of the gƌaŵŵaƌ G .͛ 
 

• Algorithm: 

C is { Đlosuƌe;{“͛.S}) } 

repeat the followings until no more set of LR(0) items can be added to C. 

for each I in C and each grammar symbol X 

if goto(I,X) is not empty and not in C  

add goto(I,X) to C 

 

• goto function is a DFA on the sets in C. 



The Canonical LR(0) Collection -- 

Example 



Transition Diagram (DFA) of Goto Function 

I0 I1 

 

 

 

I2 

 

I3 

 

I4 

 

I5 

I6 

 

 

 

I7 

 

 

 

I8 

to I2 

to I3 

to I4 

I9 

to I3 

to I4 

to I5 

 

I10 

to I4 

to I5 

 

I11 

to I6 

 

to I7 

id 

( 

F 

* 

E 

E 

+ 
T 

T 

T 

) 

F 

F 
F 

( 

id id 

( 

* 

( 

id 

+ 



Constructing SLR Parsing Table  
;of aŶ auguŵeŶted graŵŵar G’Ϳ 

1. Construct the canonical collection of sets of 
L‘;ϬͿ iteŵs  foƌ G .͛     C{I0,...,In} 

 

2. Create the parsing action table as follows 
• If  a is a terminal, A.a in Ii  and goto(Ii,a)=Ij  then 

action[i,a] is  shift j. 

• If  A.  is in Ii , then action[i,a] is  reduce A  for all a 
in FOLLOW(A)   where A“ .͛ 

• If  “͛S.  is in Ii , then action[i,$] is  accept. 

• If any conflicting actions generated by these rules, the 
grammar is not SLR(1). 

 



Constructing SLR Parsing Table 

3. Create the parsing goto table 
• for all non-terminals A,  if goto(Ii,A)=Ij  then goto[i,A]=j 

 

4. All entries not defined by (2) and (3) are 
errors. 

 

5. IŶitial state of the paƌseƌ ĐoŶtaiŶs  “͛.S 

 



Parsing Tables of Expression Grammar 

state id + * ( ) $ E T  F 

0 s5 s4 1 2 3 

1 s6 acc 

2 r2 s7 r2 r2 

3 r4 r4 r4 r4 

4 s5 s4 8 2 3 

5 r6 r6 r6 r6 

6 s5 s4 9 3 

7 s5 s4 10 

8 s6 s11 

9 r1 s7 r1 r1 

10 r3 r3 r3 r3 

11 r5 r5 r5 r5 

Action Table Goto Table 



SLR(1) Grammar 

• An LR parser using SLR(1) parsing tables for a 
grammar G is called as the SLR(1) parser for 
G. 

• If a grammar G has an SLR(1) parsing table, it 
is called SLR(1) grammar (or SLR grammar in 
short). 

• Every SLR grammar is unambiguous, but 
every unambiguous grammar is not a SLR 
grammar. 



shift/reduce and reduce/reduce conflicts 

• If a state does not know whether it will make a shift 
operation or reduction for a terminal, we say that 
there is a shift/reduce conflict. 

 

• If a state does not know whether it will make a 
reduction operation using the production rule i or j 
for a terminal, we say that there is a reduce/reduce 
conflict. 

 

• If the SLR parsing table of a grammar G has a conflict, 
we say that that grammar is not SLR grammar. 

 



Conflict Example 

S  L=R            I0:  “’  .S             I1: “’  S.              I6: S  L=.R           I9:  S  
L=R. 

S  R   S  .L=R   R  .L 

L *R   S  .R             I2: S  L.=R L .*R 

L  id   L  .*R  R  L.  L  .id 

R  L   L  .id 

    R  .L             I3: S  R. 

 

                I4: L  *.R              I7: L  *R. 

        Problem  R  .L 

 FOLLOW(R)={=,$}  L .*R             I8: R  L. 

 =   shift 6   L  .id 

  reduce by R  L 

 shift/reduce conflict             I5: L  id. 

 

 



Conflict Example2 

S  AaAb            I0: “’  .S   

S  BbBa S  .AaAb  

A     S  .BbBa 

B      A  . 

    B  . 

 

 

  Problem 

 FOLLOW(A)={a,b} 

 FOLLOW(B)={a,b} 

 a reduce by A     b reduce by A   

  reduce by B     reduce by B   

 reduce/reduce conflict  reduce/reduce conflict 



Constructing Canonical LR(1) Parsing Tables 

• In SLR method, the state i makes a reduction by A 
when the current token is a: 

– if the  A.  in the Ii  and  a  is FOLLOW(A) 
 

• In some situations, A  cannot be followed by the 
terminal a in              a right-sentential form when  
and the state i are on the top stack.       This means 
that making reduction in this case is not correct.  

 

S  AaAb  SAaAbAabab   SBbBaBbaba  

S  BbBa   

A      Aab   ab    Bba   ba 

B      AaAb   Aa  b    BbBa  Bb  a 



LR(1) Item 

• To avoid some of invalid reductions, the states need 
to carry more information. 

• Extra information is put into a state by including a 
terminal symbol as a second component in an item. 

 

• A LR(1) item is: 

  A  .,a  where a is the look-head of 
the LR(1) item 

     (a is a terminal or end-
marker.) 

  



LR(1) Item  (cont.) 

• When   ( in the LR(1) item A  .,a ) is not 
empty, the  look-head does not have any affect. 

• When   is empty  (A  .,a ), we do the 
reduction by A only if the next input symbol 
is a (not for any terminal in FOLLOW(A)). 

  

• A state will contain    A  .,a1  where 
{a1,...,an}  FOLLOW(A) 

     ... 

       A  .,an  



Canonical Collection of Sets of LR(1) Items 

• The construction of the canonical collection of 
the sets of LR(1) items are similar to the 
construction of the canonical collection of the 
sets of LR(0) items, except that closure and goto 
operations work a little bit different. 

 

closure(I)  is:   ( where I is a set of LR(1) items) 
– every LR(1) item in I is in closure(I) 

– if  A.B,a  in closure(I) and B is a production rule of G;       

then  B.,b  will be in the closure(I) for each terminal b in 

FIRST(a) .                                                          



goto operation 

• If I is a set of LR(1) items and X is a grammar 

symbol (terminal or non-terminal), then 

goto(I,X) is defined as follows: 
– If  A  .X,a  in I                                                                           

then every item in closure({A  X.,a}) will be in 

goto(I,X).  

 



Construction of The Canonical LR(1) Collection 

• Algorithm: 
C is { Đlosuƌe;{“͛.S,$}) } 

repeat the followings until no more set of LR(1) items can be added to 

C. 

for each I in C and each grammar symbol X 

if goto(I,X) is not empty and not in C  

add goto(I,X) to C 

 

• goto function is a DFA on the sets in C. 

 



A Short Notation for The Sets of LR(1) Items 

• A set of LR(1) items containing the following 
items  

  A  .,a1 

           ...          

  A  .,an 

 

can be written as 
 

   A  .,a1/a2/.../an 



Canonical LR(1) Collection -- Example 

S  AaAb            I0: “’  .S ,$   I1: “’  S. ,$   

S  BbBa S  .AaAb ,$  

A     S  .BbBa ,$   I2: S  A.aAb ,$  

B     A  . ,a 

    B  . ,b    I3: S  B.bBa ,$  

 

I4: S  Aa.Ab ,$   I6: S  AaA.b ,$   I8: S  AaAb. ,$ 

     A  . ,b 

 

I5: S  Bb.Ba ,$   I7: S  BbB.a ,$   I9: S  BbBa. ,$ 

     B  . ,a   

   

S 

A 

B 

a 

b 

A 

B 

a 

b 

to I4 

to I5 



Canonical LR(1) Collection – Example2 

“’  S  

1) S  L=R  

2) S  R  

3) L *R  

4) L  id  

5) R  L  

I0:“’  .S,$ 

    S  .L=R,$ 

    S  .R,$ 

    L  .*R,$/= 

    L  .id,$/= 

    R  .L,$ 

I1:“’  S.,$  

I2:S  L.=R,$ 

    R  L.,$ 

I3:S  R.,$ 

I4:L  *.R,$/= 

    R  .L,$/= 

    L .*R,$/=  

    L  .id,$/= 

I5:L  id.,$/= 

I6:S  L=.R,$ 

    R  .L,$ 

    L  .*R,$ 

    L  .id,$ 

I7:L  *R.,$/= 

I8:  R  L.,$/= 

I9:S  L=R.,$ 

 

I10:R  L.,$ 

     

I11:L  *.R,$ 

    R  .L,$ 

    L .*R,$ 

    L  .id,$ 

 

I12:L  id.,$ 

     

I13:L  *R.,$ 

to I6 

to I7 

to I8 

to I4 

to I5 

to I10 

to I11 

to I12 

to I9 

to I10 

to I11 

to I12 

to I13 

id 

S 

L 

L 

L 

R 

R 

R 

id 

id 

i

d 

R 

L 

* 

* 

* 

* 

I4  and I11 

 

I5  and I12 

 

I7  and I13 

 

I8  and  I10 



Construction of LR(1) Parsing Tables 

1. Construct the canonical collection of sets of 
L‘;ϭͿ iteŵs  foƌ G .͛     C{I0,...,In} 

 

2. Create the parsing action table as follows 
• If  a is a terminal, A.a,b in Ii  and goto(Ii,a)=Ij  then 

action[i,a] is  shift j. 
• If  A.,a  is in Ii , then action[i,a] is  reduce A  where 

A“ .͛ 
• If  “͛S.,$  is in Ii , then action[i,$] is  accept. 
• If any conflicting actions generated by these rules, the 

grammar is not LR(1). 

 



Construction of LR(1) Parsing Tables 

3. Create the parsing goto table 
• for all non-terminals A,  if goto(Ii,A)=Ij  then goto[i,A]=j 

 

4. All entries not defined by (2) and (3) are 

errors. 

 

5. IŶitial state of the paƌseƌ ĐoŶtaiŶs  “͛.S,$ 

 

 



LR(1) Parsing Tables – (for Example2) 
id * = $ S L R 

0 s5 s4 1 2 3 

1 acc 

2 s6 r5 

3 r2 

4 s5 s4 8 7 

5 r4 r4 

6 s12 s11 10 9 

7 r3 r3 

8 r5 r5 

9 r1 

10 r5 

11 s12 s11 10 13 

12 r4 

13 r3 

no shift/reduce or  

no reduce/reduce conflict 

  
so, it is a LR(1) grammar 



LALR Parsing Tables 

• LALR  stands for LookAhead LR. 

 

• LALR parsers are often used in practice because LALR 
parsing tables are smaller than LR(1) parsing tables. 

• The number of states in SLR and LALR parsing tables for 
a grammar G are equal.  

• But LALR parsers recognize more grammars than SLR 
parsers. 

• yacc creates a LALR parser for the given grammar.  

• A state of LALR parser will be again a set of LR(1) items. 



Creating LALR Parsing Tables 

 

Canonical LR(1) Parser              
 LALR Parser 

        shrink # of states 

 

• This shrink process may introduce a 
reduce/reduce conflict in the resulting LALR 
parser (so the grammar is NOT LALR) 

• But, this shrink process does not produce a 
shift/reduce conflict. 

 

 



The Core of A Set of LR(1) Items 

• The core of  a set of LR(1) items is the set of its first component. 
 

Ex: S  L.=R,$   S  L.=R  Core 

  R  L.,$   R  L. 
 
• We will find the states (sets of LR(1) items) in a canonical LR(1) 

parser with same cores. Then we will merge them as a single 
state. 
 

 I1:L  id.,=     A new state:   I12: L  id.,=  

                             L  id.,$ 

 I2:L  id.,$  have same core, merge them 
 

 



The Core of A Set of LR(1) Items 

• We will do this for all states of a canonical 
LR(1) parser to get the states of the LALR 
parser. 

• In fact, the number of the states of the LALR 
parser for a grammar will be equal to the 
number of states of the SLR parser for that 
grammar. 

 



Creation of LALR Parsing Tables 

• Create the canonical LR(1) collection of the sets of LR(1) 
items for    the given grammar. 

• Find each core; find all sets having that same core; replace 
those sets having same cores with a single set which is 
their union. 

  C={I0,...,In}    C͛={J1,...,Jm} where m  n 
• Create the parsing tables (action and goto tables) same as 

the construction of the parsing tables of LR(1) parser. 
– Note that:  If  J=I1  ...  Ik  since I1,...,Ik have same cores 
    cores of goto(I1,X),...,goto(I2,X) must be same.  
– So, goto(J,X)=K  where K is the union of all sets of items having same 

cores as goto(I1,X). 

• If no conflict is introduced, the grammar is LALR(1) 
grammar.          (We may only introduce reduce/reduce 
conflicts; we cannot introduce     a shift/reduce conflict) 



Shift/Reduce Conflict 

• We say that we cannot introduce a shift/reduce conflict during the shrink 
process for the creation of the states of a LALR parser. 

• Assume that we can introduce a shift/reduce conflict. In this case, a state 
of LALR parser must have: 

   A  .,a and B  .a,b 

• This means that a state of the canonical LR(1) parser must have: 

  A  .,a and B  .a,c  

 But, this state has also a shift/reduce conflict. i.e. The original canonical 

LR(1) parser has a conflict.  

 (Reason for this, the shift operation does not depend on lookaheads) 

 

   



Reduce/Reduce Conflict 

• But, we may introduce a reduce/reduce conflict during the shrink 
process for the creation of the states of a LALR parser. 

 

   I1 : A  .,a    I2: A  .,b 

         B  .,b         B  .,c 

       

      I12: A  .,a/b  reduce/reduce 

conflict 

            B  .,b/c 

     



Canonical LALR(1) Collection – Example2 

“’  S  

1) S  L=R  

2) S  R  

3) L *R  

4) L  id  

5) R  L  

I0:“’  .S,$ 

    S  .L=R,$ 

    S  .R,$ 

    L  .*R,$/= 

    L  .id,$/= 

    R  .L,$ 

I1:“’  S.,$

  

I2:S  L.=R,$ 

    R  L.,$ 

I3:S  

R.,$ 

I411:L  *.R,$/= 

      R  .L,$/= 

      L .*R,$/=  

      L  .id,$/= 

I512:L  

id.,$/= 

I6:S  L=.R,$ 

    R  .L,$ 

    L  .*R,$ 

    L  .id,$ 

I713:L  

*R.,$/= 
I810:  R  

L.,$/= 

I9:S  L=R.,$ 

 

     

to I6 

to I713 

to I810 

to I411 

to I512 

to I810 

to I411 

to I512 

to I9 

S 

L 

L 

L 

R 

R 

id 

id 

i

d 

R 

* 

* 

* 

Same Cores 

   I4  and I11 

 

   I5  and I12 

 

   I7  and I13 

 

   I8  and  I10 



LALR(1) Parsing Tables – (for Example2) 
id * = $ S L R 

0 s5 s4 1 2 3 

1 acc 

2 s6 r5 

3 r2 

4 s5 s4 8 7 

5 r4 r4 

6 s12 s11 10 9 

7 r3 r3 

8 r5 r5 

9 r1 

no shift/reduce or  

no reduce/reduce conflict 

  
so, it is a LALR(1) grammar 



Using Ambiguous Grammars 

• All grammars used in the construction of LR-parsing tables must be   un-
ambiguous. 

• Can we create LR-parsing tables for ambiguous grammars ? 

– Yes, but they will have conflicts. 

– We can resolve these conflicts in favor of one of them to disambiguate 
the grammar. 

– At the end, we will have again an unambiguous grammar. 

• Why we want to use an ambiguous grammar? 

– Some of the ambiguous grammars are much natural, and a 
corresponding unambiguous grammar can be very complex. 

– Usage of an ambiguous grammar may eliminate unnecessary reductions. 

• Ex. 

       E  E+T  |  T 

E  E+E  |  E*E  |  (E)  |  id         T  T*F  |  F 

       F   (E)  |  id 

 



Sets of LR(0) Items for Ambiguous Grammar 

I0: E’  .E 

     E  .E+E   

     E  .E*E 

     E  .(E) 

     E  .id 

I1: E’  E. 
     E  E .+E   

     E  E .*E 

I2: E  (.E) 

     E  .E+E 

     E  .E*E 

     E  .(E) 

     E  .id 

I3: E  id. 

I4: E  E +.E 

     E  .E+E   

     E  .E*E 

     E  .(E) 

     E  .id   

I5: E  E *.E 

     E  .E+E   

     E  .E*E 

     E  .(E) 

     E  .id   

I6: E  (E.) 

     E  E.+E 

     E  E.*E 

I7: E  E+E. 
     E  E.+E   

     E  E.*E 

I8: E  E*E. 
     E  E.+E   

     E  E.*E 

I9: E  (E). 

I5 

) 

E 

E 

E 

E 

* 

+ 

+ 

+ 

+ 

* 

* 

* 

( 

( 

( 
( 

id 

id 

id 
id 

I4 

I2 

I2 

I3 

I3 

I4 

I4 

I5 

I5 



SLR-Parsing Tables for Ambiguous Grammar 
FOLLOW(E) = { $,+,*,) } 

State I7 has shift/reduce conflicts for symbols + and *. 

I0 I1 I7 I4 
E + E 

when current token is + 

     shift      + is right-associative 

     reduce   + is left-associative 

when current token is * 

     shift     * has higher precedence than + 

     reduce  + has higher precedence than * 



SLR-Parsing Tables for Ambiguous Grammar 
FOLLOW(E) = { $,+,*,) } 

State I8 has shift/reduce conflicts for symbols + and *. 

I0 I1 I7 I5 
E * E 

when current token is * 

     shift      * is right-associative 

     reduce   * is left-associative 

when current token is + 

     shift     + has higher precedence than * 

     reduce  * has higher precedence than + 



SLR-Parsing Tables for Ambiguous Grammar 

id + * ( ) $ E 

0 s3 s2 1 

1 s4 s5 acc 

2 s3 s2 6 

3 r4 r4 r4 r4 

4 s3 s2 7 

5 s3 s2 8 

6 s4 s5 s9 

7 r1 s5 r1 r1 

8 r2 r2 r2 r2 

9 r3 r3 r3 r3 

Action Goto 



Error Recovery in LR Parsing 

• An LR parser will detect an error when it consults the 
parsing action table and finds an error entry. All empty 
entries in the action table are error entries. 

• Errors are never detected by consulting the goto table. 

• An LR parser will announce error as soon as there is no 
valid continuation for the scanned portion of the input. 

• A canonical LR parser (LR(1) parser) will never make 
even a single reduction before announcing an error.  

• The SLR and LALR parsers may make several reductions 
before announcing an error. 

• But, all LR parsers (LR(1), LALR and SLR parsers) will 
never shift an erroneous input symbol onto the stack. 



Panic Mode Error Recovery in LR Parsing 

• Scan down the stack until a state s with a goto on a 
particular nonterminal A is found. (Get rid of 
everything from the stack before this state s). 

• Discard zero or more input symbols until a symbol a is 
found that can legitimately follow A. 
– The symbol a is simply in FOLLOW(A), but this may not work for all 

situations. 

• The parser stacks the nonterminal A and  the state 
goto[s,A], and it resumes the normal parsing. 

• This nonterminal A is normally is a basic programming 
block (there can be more than one choice for A). 
– stmt, expr, block, ... 

 

 



Phrase-Level Error Recovery in LR Parsing 

• Each empty entry in the action table is marked 
with a specific error routine. 

• An error routine  reflects the error that the user 
most likely will make in that case. 

• An error routine inserts the symbols into the 
stack or the input (or it deletes the symbols 
from the stack and the input, or it can do both 
insertion and deletion). 
– missing operand 

– unbalanced right parenthesis 

 



UNIT-3 

 

PART-A 

Semantic analysis  

276 



277 

Syntax Analysis Example 

   a := b + c* 100 

 The seven tokens are grouped into a parse tree 

   
Assignment stmt 

identifier 

a 

:= expression 

expression expression 
+ 

identifier 

b 

c*100 



Example of Parse Tree 

278 

Given the grammar: 
list  list + digit    (2.2) 

list  list - digit    (2.3) 

list  digit     (2.4) 

digit  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  (2.5) 

What is the parse 

tree for 9-5+2? 
list 

digit 

list digit 

list digit 

9 - 5 + 2 



Abstract Syntax Tree (AST) 

279 

 The AST is a condensed/simplified/abstract form of 

the parse tree in which: 

1. Operators are directly associated with interior nodes 

(non-terminals)  

2. Chains of single productions are collapsed. 

3. Terminals that have no attributes are ignored, i.e., 

the corresponding leaf nodes are discarded. 



Abstract and Concrete Trees 

280 

list 

digit 

list digit 

list digit 

9 - 5 + 2 

Parse or concrete tree 

+ 

- 2 

9 5 

Abstract syntax tree 



Advantages of the AST Representation 

281 

• Convenient representation for semantic analysis and 

intermediate-language (IL) generation 

• Useful for building other programming language tools e.t., a 

syntax-directed editor 



282 

Syntax Directed Translation (SDT) 

Syntax-directed translation is a method of translating a string into a 

sequence of actions by attaching on such action to each rule of a grammar.  

A syntax-directed translation is defined by augmenting the CFG: a translation 

rule is defined for each production. A translation rule defines the translation 

of the left-hand side non terminal. 



283 

Syntax-Directed Definitions and Translation 

Schemes 

A. Syntax-Directed Definitions: 

• give high-level specifications for translations 

• hide many implementation details such as order of evaluation of semantic 
actions. 

• We associate a production rule with a set of semantic actions, and we do 
not say when they will be evaluated.  

 

B. Translation Schemes: 

• Indicate the order of evaluation of semantic actions associated with a 
production rule. 

• In other words, translation schemes give a little bit information about 
implementation details. 



Example Syntax-Directed Definition 

term ::= ID 

{ teƌŵ.plaĐe := ID.plaĐe ; teƌŵ.Đode = ͟͞ } 
 
term1 ::= term2 * ID 

      {term1.place := newtemp( ); 

        term1.code := term2.code || ID.code || 

   gen(term1.plaĐe ͚:=͚ teƌŵ2.plaĐe ͚*͛ ID.plaĐe} 
 
expr ::= term 

      { expr.place := term.place ; expr.code := term.code } 
 
expr1 ::= expr2 + term 

      { expr1.place := newtemp( ) 

  expr1.code := expr2.code || term.code || 

   gen(expr1.plaĐe ͚:=͚ eǆpƌ2.plaĐe ͚+͛ teƌŵ.plaĐe } 

284 



285 

YACC – Yet Another Compiler-Compiler 

 A bottom-up parser generator 

 It provides semantic stack manipulation and supports 
specification of semantic routines. 

 Developed by Steve Johnson and others at AT&T Bell Lab. 

 Can use scanner generated by Lex or hand-coded scanner in C 

 Used by many compilers and tools, including production 
compilers. 



Syntax-Directed Translation 

• Grammar symbols are associated with attributes to associate 
information with the programming language constructs that 
they represent. 

• Values of these attributes are evaluated by the semantic rules 
associated with the production rules. 

• Evaluation of these semantic rules: 

– may generate intermediate codes 

– may put information into the symbol table 

– may perform type checking 

– may issue error messages 

– may perform some other activities 

– in fact, they may perform almost any activities. 

• An attribute may hold almost any thing. 

– a string, a number, a memory location, a complex record.  

286 



Syntax-Directed Definitions and Translation Schemes 

287 

• When we associate semantic rules with productions, we use 

two notations: 

– Syntax-Directed Definitions 

– Translation Schemes 

• Syntax-Directed Definitions: 

– give high-level specifications for translations 

– hide many implementation details such as order of 

evaluation of semantic actions. 

– We associate a production rule with a set of semantic 

actions, and we do not say when they will be evaluated.  



Syntax-Directed Definitions and Translation 
Schemes 

• Translation Schemes: 

– indicate the order of evaluation of semantic actions 

associated with a production rule. 

– In other words, translation schemes give a little bit 

information about implementation details. 

 

288 



Syntax-Directed Definitions 

• A syntax-directed definition is a generalization of a context-

free grammar in which: 

– Each grammar symbol is associated with a set of attributes.  

– This set of attributes for a grammar symbol  is partitioned 

into two subsets called synthesized and inherited attributes 

of that grammar symbol. 

– Each production rule is associated with a set of semantic 

rules. 

• Semantic rules set up dependencies between attributes which 

can be represented by a dependency graph.  

• This dependency graph determines the evaluation order of 

these semantic rules. 

• Evaluation of a semantic rule defines the value of an attribute. 

But a semantic rule may also have some side effects such as 

printing a value.  

289 



Annotated Parse Tree 

• A parse tree showing the values of attributes at each node 

is called       an annotated parse tree. 

• The process of computing the attributes values at the nodes 

is called annotating (or decorating) of the parse tree. 

• Of course, the order of these computations depends on the    

dependency graph induced by the semantic rules. 

 

290 



Syntax-Directed Definition 

• In a syntax-directed definition, each production  Aĺα  is 
associated with a set of semantic rules of  the form: 

  b=f(c1,c2,…,cn) where f  is a function,  

 and b can be one of the followings: 

   b is a synthesized attribute of A and c1,c2,…,cn are 
attributes of the  grammar symbols in the production ( 
Aĺα ). 

 OR 

  b is an inherited attribute one of the grammar symbols 
in α (on the 

  right side of the production), and c1,c2,…,cn are 
attributes of the  grammar symbols in the production ( 
Aĺα ). 

 

 291 



Attribute Grammar 

• So, a semantic rule b=f(c1,c2,…,cn)  indicates that the 

attribute b depends on  attributes c1,c2,…,cn. 

• In a syntax-directed definition, a semantic rule may just 

evaluate           a value of an attribute or it may have some 

side effects such as    printing values. 

 

• An attribute grammar is a syntax-directed definition in 

which the functions in the semantic rules cannot have side 

effects  (they can     only evaluate values of attributes). 

292 



Syntax-Directed Definition -- Example 

 Production   Semantic Rules 
 L ĺ E return  print(E.val) 
 E ĺ E1 + T   E.val = E1.val + T.val 
 E ĺ T   E.val = T.val 
 T ĺ T1 * F   T.val = T1.val * F.val 
 T ĺ F   T.val = F.val 
 F ĺ ( E )   F.val = E.val 
 F ĺ digit   F.val = digit.lexval 
 
• Symbols E, T, and F are associated with a synthesized 

attribute val. 
• The token digit has a synthesized attribute lexval (it is 

assumed that it is evaluated by the lexical analyzer). 
 
 293 



Annotated Parse Tree -- Example  

294 

Input:  5+3*4 

L 

E.val=17            return 

E.val=5                  +                    T.val=12 

T.val=5                          T.val=3     *      F.val=4 

F.val=5                          F.val=3            digit.lexval=4 

digit.lexval=5                digit.lexval=3 



Dependency Graph 

295 

Input:  5+3*4 

L 

E.val=17 

E.val=5                                      T.val=12 

T.val=5                          T.val=3            F.val=4 

F.val=5                          F.val=3            digit.lexval=4 

digit.lexval=5                digit.lexval=3 



Syntax-Directed Definition – Example2 

Production                    Semantic Rules 
E ĺ E1 + T                       E.loc=newtemp(),  E.code = E1.code || 

T.code   
                                                               || add E1.loc,T.loc,E.loc 
 
E ĺ T                        E.loc = T.loc,  E.code=T.code 
 
T ĺ T1 * F                       T.loc=newtemp(),  T.code = T1.code || 

F.code  
                                                                 || mult T1.loc,F.loc,T.loc 
 
T ĺ F                          T.loc = F.loc,  T.code=F.code 
F ĺ ( E )                          F.loc = E.loc,  F.code=E.code 
F ĺ id                            F.loc = id.name,  F.code=“” 

 
 

 
296 



Syntax-Directed Definition – Example2 

• Symbols E, T, and F are associated with synthesized 
attributes  loc and code. 

• The token id has a synthesized attribute name (it is 
assumed that it is evaluated by the lexical analyzer). 

• It is assumed that  ||  is the string concatenation operator. 

297 



Syntax-Directed Definition – Inherited Attributes 

 Production  Semantic Rules 

 D ĺ T L  L.in = T.type 

 T ĺ int  T.type = integer 

 T ĺ real  T.type = real 

 L ĺ L1 id  L1.in = L.in,   addtype(id.entry,L.in) 

 L ĺ id  addtype(id.entry,L.in) 

 

• Symbol T is associated with a synthesized attribute 
type. 

• Symbol L is associated with an inherited attribute in. 

 
298 



A Dependency Graph – Inherited Attributes 

Input:  real p q  

 

    D        L.in=real 

 

 T      L  T.type=real  L1.in=real        
addtype(q,real) 

 

real      L       id    addtype(p,real) id.entry=q 

 

        id     id.entry=p 

 

parse tree    dependency graph 

299 



S-Attributed Definitions 

• Syntax-directed definitions are used to specify syntax-directed 
translations. 

• To create a translator for an arbitrary syntax-directed definition 
can be difficult.  

• We would like to evaluate the semantic rules during parsing (i.e. 
in a single pass, we will parse and we will also evaluate semantic 
rules during the parsing). 

• We will look at two sub-classes of the syntax-directed 
definitions: 

– S-Attributed Definitions: only synthesized attributes used in 
the syntax-directed definitions. 

– L-Attributed Definitions: in addition to synthesized 
attributes, we may also use inherited attributes in a 
restricted fashion. 

300 



S-Attributed Definitions 

• To implement S-Attributed Definitions and L-Attributed 

Definitions are easy (we can evaluate semantic rules in a 

single pass during the parsing).  

• Implementations of S-attributed Definitions are a little bit 

easier than implementations of L-Attributed Definitions 

 

301 



Bottom-Up Evaluation of S-Attributed Definitions 

• We put the values of the synthesized attributes of the 

grammar symbols into a parallel stack. 

– When an entry of the parser stack holds a grammar 

symbol  X (terminal or non-terminal), the 

corresponding entry in the parallel stack will hold the 

synthesized attribute(s) of the symbol X. 

 

• We evaluate the values of the attributes during reductions. 

 

302 



Bottom-Up Evaluation of S-Attributed Definitions 
 

 

A  XYZ       A.a=f(X.x,Y.y,Z.z) where all attributes are 

synthesized. 

        stack  parallel-stack 

   

 

top  

 

                  top   

   

303 

Z 

Y 

X 

.  

Z.z 

Y.y 

X.x 

  .  

A 

.  

A.a 

  .  



Bottom-Up Eval. of S-Attributed Definitions (cont.) 

 Production   Semantic Rules 
 L ĺ E return  print(val[top-1]) 
 E ĺ E1 + T   val[ntop] = val[top-2] + val[top] 
 E ĺ T    
 T ĺ T1 * F   val[ntop] = val[top-2] * val[top] 
 T ĺ F    
 F ĺ ( E )   val[ntop] = val[top-1] 
 F ĺ digit  
 
• At each shift of digit, we also push digit.lexval into val-stack. 
• At all other shifts, we do not put anything into val-stack because     

other terminals do not have attributes (but we increment the             
stack pointer for val-stack).   

 

304 



Canonical LR(0) Collection for The Grammar 

305 

L͛ →.L 
L →.Er 
E →.E+T 
E →.T 
T →.T*F 
T →.F 
F →.(E) 
F →.d 

L͛ →L. 
 
L →E.r 
E →E.+T 
 
E →T. 
T →T.*F 
 
T →F. 
 
F → (.E) 
E →.E+T 
E →.T 
T →.T*F 
T →.F 
F →.(E) 
F →.d 
 
F →d. 

L →Er. 
 
E →E+.T 
T →.T*F 
T →.F 
F →.(E) 
F →.d 
 
 
T →T*.F 
F →.(E) 
F →.d 
 
 
F →;E.) 
E →E.+T 
 

E →E+T. 
T →T.*F 
 
 
 
 
 
 
 
T →T*F. 
 
 
 
 
F →;EͿ. 

I0: I1: 

I2: 

I4: 

I3: 

I5: 

I6: 

I7: 

I12: 

I11: 

I10: 

I9: 

I13: 

I8: 

r 

L 

E 

E 
T 

T 

T 

F 

F 

F 

F 

( 

( 

( 
( 

d 

d 

d 
d 

) 

* 

+ 

+ 

* 

6 

3 

5 

4 

6 

6 

5 

5 

8 

9 

4 



Bottom-Up Evaluation -- Example 

0E2+8F4  5-3  *4r TĺF T.val=F.val – do nothing 

 

0E2+8T11 5-3  *4r s9 push empty slot into 
        val-
stack 

 

0E2+8T11*9 5-3-  4r s6 d.lexval(4) into val-stack 

 

0E2+8T11*9d6 5-3-4  r Fĺd  F.val=d.lexval – do 
nothing   

 

0E2+8T11*9F12 5-3-4  r TĺT*F 
 T.val=T1.val*F.val  

 

0E2+8T11 5-12  r EĺE+T 
 E.val=E1.val*T.val  

 

0E2  17  r s7  push empty slot 
        into 
val-stack 

 

LĺEr

306 



Top-Down Evaluation (of S-Attributed Definitions) 

Productions Semantic Rules 

A ĺ B  print(B.n0),  print(B.n1) 

B ĺ 0 B1 B.n0=B1.n0+1,  B.n1=B1.n1 

B ĺ 1 B1 B.n0=B1.n0,  B.n1=B1.n1+1 

B ĺ   B.n0=0,  B.n1=0 

 

where B has two synthesized attributes (n0 and n1). 

 

 

307 



Top-Down Evaluation (of S-Attributed Definitions) 

• Remember that: In a recursive predicate parser, each non-
terminal corresponds to a procedure. 
 

procedure A() {  
 call B();        A ĺ 

B  
} 
procedure B() { 
 if (currtoken=0)  { consume 0; call B(); }    B ĺ 

0 B 
 else if (currtoken=1) { consume 1; call B(); }   B ĺ 

1 B 
 else if (currtoken=$)  {}    // $ is end-marker   B ĺ  
 else error(“unexpected token”); 
} 

 

308 



Top-Down Evaluation (of S-Attributed Definitions) 

procedure A() { 

 int n0,n1;   Synthesized attributes of non-terminal B  

 call B(&n0,&n1);  are the output parameters of procedure B. 

 print(n0);   print(n1);  

}      All the semantic rules can be 
evaluated 

procedure B(int *n0, int *n1) {  at the end of parsing of production 
rules 

 if (currtoken=0)   

  {int a,b; consume 0; call B(&a,&b); *n0=a+1; *n1=b;} 

 else if (currtoken=1)  

  { int a,b; consume 1; call B(&a,&b); *n0=a; *n1=b+1; } 

 else if (currtoken=$) {*n0=0; *n1=0; }    // $ is end-marker 

 else error(“unexpected token”); 
} 

309 



L-Attributed Definitions 

• S-Attributed Definitions can be efficiently implemented. 

• We are looking for a larger (larger than S-Attributed 

Definitions) subset of syntax-directed definitions which can 

be efficiently evaluated.   

  L-Attributed Definitions   

 

• L-Attributed Definitions can always be evaluated by the 

depth first visit of the parse tree.  

• This means that they can also be evaluated during the 

parsing. 

310 



L-Attributed Definitions 

• A syntax-directed definition is L-attributed if each 

inherited attribute of Xj, where 1jn, on the right side of  
A ĺ X1X2...Xn  depends only on: 

1. The attributes of the symbols X1,...,Xj-1  to the left of Xj 

in the production and 

2. the inherited attribute of A 

 

• Every S-attributed definition is L-attributed, the 

restrictions only apply to the inherited attributes (not to 

synthesized attributes). 

311 



A Definition which is NOT L-Attributed 

Productions  Semantic Rules 

A ĺ L M  L.in=l(A.i), M.in=m(L.s), A.s=f(M.s) 

A ĺ Q R   R.in=r(A.in), Q.in=q(R.s), A.s=f(Q.s) 

• This syntax-directed definition is not L-attributed because 

the semantic rule  Q.in=q(R.s)  violates the restrictions of 

L-attributed definitions. 

• When Q.in must be evaluated before we enter to Q because 

it is an inherited attribute.  

• But the value of Q.in depends on R.s which will be 

available after we return from R. So, we are not be able to 

evaluate the value of Q.in before we enter to Q. 

312 



Translation Schemes 

• In a syntax-directed definition, we do not say anything 

about the evaluation times of the semantic rules (when the 

semantic rules associated with a production should be 

evaluated?). 

 

• A translation scheme is a context-free grammar in which:  

– attributes are associated with the grammar symbols and  

– semantic actions enclosed between braces {} are 

inserted within    the right sides of productions. 

 

• Ex:  A ĺ { ... } X { ... } Y { ... } 

     Semantic Actions 
313 



Translation Schemes 

• When designing a translation scheme, some restrictions 

should be observed to ensure that an attribute value is 

available when a semantic action refers to that attribute. 

• These restrictions (motivated by L-attributed definitions) 

ensure that     a semantic action does not refer to an 

attribute that has not yet computed. 

• In translation schemes, we use  semantic action  

terminology instead of semantic rule  terminology used in 

syntax-directed definitions. 

• The position of the semantic action on the right side 

indicates when that semantic action will be evaluated. 

314 



Translation Schemes for S-attributed Definitions 

• If  our syntax-directed definition is S-attributed, the 

construction of    the corresponding translation scheme will be 

simple. 

• Each associated semantic rule in a S-attributed syntax-

directed definition will be inserted as a semantic action into 

the end of the     right side of the associated production. 

 

Production Semantic Rule 

E ĺ E1 + T E.val = E1.val + T.val    a production of  

       a syntax directed 

definition 

    

E ĺ E1 + T { E.val = E1.val + T.val }  the production of 

the                
315 



A Translation Scheme Example 

• A simple translation scheme that converts infix expressions 
to the corresponding postfix expressions. 

 

 E ĺ T R 

 R ĺ + T { print(“+”) } R1 

 R ĺ  
 T ĺ id { print(id.name) } 

 

  a+b+c        ab+c+ 

 

infix expression  postfix expression 

316 



A Translation Scheme Example (cont.) 

   E 

 

 T    R 

 

id {print(“a”)}  +  T    {print(“+”)}   R 

 

    id  {print(“b”)} +   T  {print(“+”)}    
R  

 

       id   {print(“c”)}   
 

The depth first traversal of the parse tree (executing the 
semantic actions in that order) will produce the postfix 
representation of the infix expression. 

317 



Inherited Attributes in Translation Schemes 

• If a translation scheme has to contain both synthesized and 
inherited attributes, we have to observe the following rules: 

1. An inherited attribute of a symbol on the right side of a 
production must be computed in a semantic action before 
that symbol. 

2. A semantic action must not refer to a synthesized attribute 
of a symbol to the right of that semantic action. 

3. A synthesized attribute for the non-terminal on the left can 
only be computed after all attributes it references have 
been computed (we normally put this semantic action at 
the end of the right side of the production). 

• With a L-attributed syntax-directed definition, it is always 
possible     to construct a corresponding translation scheme 
which satisfies      these three conditions (This may not be 
possible for a general     syntax-directed translation). 

318 



Top-Down Translation 

• We will look at the implementation of L-attributed 

definitions during predictive parsing. 

• Instead of the syntax-directed translations,  we will work 

with translation schemes. 

• We will see how to evaluate inherited attributes (in L-

attributed definitions) during recursive predictive parsing. 

• We will also look at what happens to attributes during the 

left-recursion elimination in the left-recursive grammars. 

319 



A Translation Scheme with Inherited Attributes 

 D ĺ T  id { addtype(id.entry,T.type), L.in = T.type } L
   

 T ĺ int  { T.type = integer } 

 T ĺ real  { T.type = real } 

 L ĺ id  { addtype(id.entry,L.in), L1.in = L.in }  L1 

 L ĺ  
 

• This is a translation scheme for an L-attributed definitions. 

 

320 



Predictive Parsing (of Inherited Attributes) 

procedure D() { 

 int Ttype,Lin,identry; 

 call T(&Ttype);  consume(id,&identry); 

 addtype(identry,Ttype);  Lin=Ttype; 

 call L(Lin);    a synthesized attribute 
(an output parameter) 

}  

procedure T(int *Ttype) { 

 if (currtoken is int) { consume(int); *Ttype=TYPEINT; } 

 else if (currtoken is real) { consume(real); 
*Ttype=TYPEREAL; } 

 else { error(“unexpected type”); } an inherited attribute 
(an input parameter) 

}  

321 



Predictive Parsing (of Inherited Attributes) 

procedure L(int Lin) { 

 if (currtoken is id) { int L1in,identry; 
consume(id,&identry);  

            addtype(identry,Lin); L1in=Lin; call 
L(L1in); } 

 else if (currtoken is endmarker)  { } 

 else { error(“unexpected token”); } 

} 

 

322 



Translation Scheme - Intermediate Code Generation  

E ĺ T { A.in=T.loc } A { E.loc=A.loc } 

A ĺ  + T { A1.in=newtemp(); emit(add,A.in,T.loc,A1.in)  
}  

       A1  { A.loc = A1.loc} 

A ĺ   { A.loc = A.in } 
T ĺ F { B.in=F.loc } B { T.loc=B.loc } 

B ĺ * F { B1.in=newtemp(); emit(mult,B.in,F.loc,B1.in)  }  

     B1 { B.loc = B1.loc} 

B ĺ    { B.loc = B.in } 
F ĺ ( E ) { F.loc = E.loc } 

F ĺ id { F.loc = id.name } 

 
323 



Predictive Parsing – Intermediate Code Generation 

procedure E(char **Eloc) { 

 char *Ain, *Tloc, *Aloc; 

 call T(&Tloc);  Ain=Tloc;  

 call A(Ain,&Aloc); *Eloc=Aloc; 

} 

procedure A(char *Ain, char **Aloc) { 

 if (currtok is +) { 

     char *A1in, *Tloc, *A1loc; 

    consume(+);  call T(&Tloc);  A1in=newtemp(); 
emit(“add”,Ain,Tloc,A1in);  

    call A(A1in,&A1loc);  *Aloc=A1loc; 

 } 

 else { *Aloc = Ain } 

} 

 
324 



Predictive Parsing (cont.) 

procedure T(char **Tloc) { 

 char *Bin, *Floc, *Bloc; 

 call F(&Floc);  Bin=Floc;  

 call B(Bin,&Bloc); *Tloc=Bloc; 

} 

procedure B(char *Bin, char **Bloc) { 

 if (currtok is *) { 

     char *B1in, *Floc, *B1loc; 

    consume(+);  call F(&Floc);  B1in=newtemp(); 
eŵit;͞ŵult ,͟BiŶ,FloĐ,BϭiŶͿ;  

    call B(B1in,&B1loc);  Bloc=B1loc; 

 } 

  

325 



Predictive Parsing (cont.) 

else { *Bloc = Bin } 

} 

procedure F(char **Floc) {  

 if ;Đuƌƌtok is ͞;͞Ϳ { Đhaƌ *EloĐ; ĐoŶsuŵe;͞;͞Ϳ; 
Đall E;&EloĐͿ; ĐoŶsuŵe;͞Ϳ͟Ϳ;  *FloĐ=EloĐ } 

 else { char *idname; consume(id,&idname); 

*Floc=idname } 

} 

 
326 



Bottom-Up Evaluation of Inherited Attributes 

• Using a top-down translation scheme, we can 
implement any                 L-attributed definition based 
on a LL(1) grammar. 

• Using a bottom-up translation scheme, we can also 
implement any          L-attributed definition based on a 
LL(1) grammar (each LL(1) grammar is also an LR(1) 
grammar). 

• In addition to the L-attributed definitions based on 
LL(1) grammars,   we can implement some of L-
attributed definitions based on LR(1) grammars (not 
all of them) using the bottom-up translation scheme. 

 

 327 



Removing Embedding Semantic Actions 

• In bottom-up evaluation scheme, the 
semantic actions are evaluated during the 
reductions.  

• During the bottom-up evaluation of S-
attributed definitions, we have a parallel 
stack to hold synthesized attributes. 

• Problem: where are we going to hold 
inherited attributes? 

• A Solution:  

328 



Removing Embedding Semantic Actions 

– We will convert our grammar to an equivalent 
grammar to guarantee to the followings. 

– All embedding semantic actions in our translation 
scheme will be moved into the end of the production 
rules. 

– All inherited attributes will be copied into the 
synthesized attributes (most of the time synthesized 
attributes of new non-terminals). 

– Thus we will be evaluate all semantic actions during 
reductions, and we find a place to store an inherited 
attribute. 

 

329 



Removing Embedding Semantic Actions 

• To transform our translation scheme into an equivalent 

translation scheme: 

1. Remove an embedding semantic action Si, put new a non-

terminal Mi instead of that semantic action. 

2. Put that semantic action Si into the end of a new 

production rule Mi for that non-terminal Mi. 

3. That semantic action Si will be evaluated when this new 

production rule is reduced. 

4. The evaluation order of the semantic rules are not 

changed by this transformation. 

330 



Removing Embedding Semantic Actions 

A {S1} X1 {S2} X2 ... {Sn} Xn  

 

  remove embedding semantic actions 

 

A M1 X1 M2 X2 ... Mn Xn 

M1 {S1}  

M2 {S2}  

 . 

 . 

Mn {Sn}  

 
331 



Removing Embedding Semantic Actions 

E ĺ T R 

R ĺ + T { print(“+”) } R1 

R ĺ  
T ĺ id { print(id.name) } 

 

 remove embedding semantic actions 

 

E ĺ T R 

R ĺ + T M R1 

R ĺ  
T ĺ id { print(id.name) } 

M ĺ  { print(“+”) }  
332 



Translation with Inherited Attributes 

• Let us assume that every non-terminal A has an inherited 
attribute A.i,    and every symbol X has a synthesized 
attribute X.s in our grammar. 

• For every production rule A X1 X2 ... Xn ,   
– introduce new marker non-terminals M1,M2,...,Mn and  
– replace this production rule with A M1 X1 M2 X2 ... 

Mn Xn  

– the synthesized attribute of Xi will be not changed. 
– the inherited attribute of Xi will be copied into the 

synthesized attribute of Mi by the new semantic action 
added at the end of  the new production rule Mi. 

– Now, the inherited attribute of Xi can be found in the 
synthesized attribute of Mi (which is immediately 
available in the stack. 

 

333 



Translation with Inherited Attributes 

S  {A.i=1} A {S.s=k(A.i,A.s)} 

A  {B.i=f(A.i)} B {C.i=g(A.i,B.i,B.s)} C {A.s= 
h(A.i,B.i,B.s,C.i,C.s)} 

B  b {B.s=m(B.i,b.s)} 

C  c {C.s=n(C.i,c.s)} 

S  {M1.i=1} M1 {A.i=M1.s} A {S.s=k(M1.s,A.s)} 

A  {M2.i=f(A.i)} M2 {B.i=M2.s} B  
   {M3.i=g(A.i,M2.s,B.s)} M3 {C.i=M3.s} C {A.s= h(A.i, 

M2.s,B.s, M3.s,C.s)} 

B  b {B.s=m(B.i,b.s)} 

C  c {C.s=n(C.i,c.s)} 

M1 {M1.s=M1.i} 

M2 {M2.s=M2.i} 

M3 {M3.s=M3.i} 

 334 



Actual Translation Scheme 

S  {M1.i=1} M1 {A.i=M1.s} A {S.s=k(M1.s,A.s)} 

A  {M2.i=f(A.i)} M2 {B.i=M2.s} B {M3.i=g(A.i,M2.s,B.s)} M3 
{C.i=M3.s}   C {A.s= h(A.i, M2.s,B.s, M3.s,C.s)} 

B  b {B.s=m(B.i,b.s)} 

C  c {C.s=n(C.i,c.s)} 

M1 {M1.s= M1.i} 

M2 {M2.s=M2.i} 

M3 {M3.s=M3.i} 

 

 

 

 

335 



Actual Translation Scheme 

 

S  M1 A   { s[ntop]=k(s[top-1],s[top]) } 

 

M1    { s[ntop]=1 } 

 

A  M2 B M3 C { s[ntop]=h(s[top-4],s[top-3],s[top-2], 

     s[top-1],s[top]) } 

 

M2    { s[ntop]=f(s[top]) } 

M3    { s[ntop]=g(s[top-2],s[top-1],s[top])} 

 

B  b    { s[ntop]=m(s[top-1],s[top]) } 

C  c    { s[ntop]=n(s[top-1],s[top]) } 

 
336 



Evaluation of Attributes 

    S 

       S.s=k(1,h(..)) 

      A.i=1 

    A 

          A.s=h(1,f(1),m(..),g(..),n(..)) 

 

 B.i=f(1)        C.i=g(1,f(1),m(..)) 

  B    C 

     B.s=m(f(1),b.s)      C.s=n(g(..),c.s) 

 

  b    c 

 

337 



Evaluation of Attributes 

stack    input  s-attribute stack 

     bc$ 

M1    bc$ 1 

M1 M2     bc$ 1  f(1) 

M1 M2 b   c$ 1  f(1)  b.s 

M1 M2 B   c$ 1  f(1)  m(f(1),b.s) 

M1 M2 B M3    c$ 1  f(1)  m(f(1),b.s)  g(1,f(1),m(f(1),b.s)) 

M1 M2 B M3 c    $ 1  f(1)  m(f(1),b.s)  g(1,f(1),m(f(1),b.s))  c.s 

M1 M2 B M3 C    $ 1  f(1)  m(f(1),b.s)  g(1,f(1),m(f(1),b.s))  
n(g(..),c.s) 

M1 A      $ 1  h(f(1),m(..),g(..),n(..)) 

S     $ k(1,h(..)) 

338 



Problems 

• All L-attributed definitions based on LR grammars cannot be evaluated 
during bottom-up parsing. 

 

S  { L.i=0 }  L    this translations scheme cannot be implemented  

L  { L1.i=L.i+1 } L1 1       during the bottom-up parsing 

L   { print(L.i) }  

 

S  M1 L 

L  M2 L1 1   But since L    will be reduced first by the 
bottom-up  

L      { print(s[top]) }      parser, the translator cannot know the number of 
1s. 

M1    { s[ntop]=0 } 

M2   { s[ntop]=s[top]+1 } 
     

339 



Problems 

• The modified grammar cannot be LR grammar anymore. 

 

L  L b   L  M L b 

L  a   L  a  NOT LR-grammar 

    M   
 

 
S’  .L, $ 
L  . M L b, $  
L  . a, $ 
M  .,a  shift/reduce conflict 

 
340 



Intermediate Code Generation 

• Intermediate codes are machine independent codes, but 
they are close  to machine instructions. 

 

• The given program in a source language is converted to an      
equivalent program in an intermediate language by the 
intermediate code generator.  

 

• Intermediate language can be many different languages, 
and the designer of the compiler decides this intermediate 
language. 

– syntax trees can be used as an intermediate language. 

341 



Intermediate Code Generation 

– postfix notation can be used as an intermediate language. 

– three-address code (Quadraples) can be used as an 
intermediate language 

• we will use quadraples to discuss intermediate code 
generation 

• quadraples are close to machine instructions, but they are 
not actual machine instructions. 

– some programming languages have well defined intermediate 
languages. 

• java – java virtual machine 

• prolog – warren abstract machine 

• In fact, there are byte-code emulators to execute 
instructions in these intermediate languages. 

 

 
342 



Three-Address Code (Quadraples) 

• A quadraple is: 

  x := y op z 
 where x, y and z are names, constants or compiler-generated 

temporaries;  op is any operator. 

 

• But we may also the following notation for quadraples (much 
better notation because it looks like a machine code instruction) 

  op  y,z,x 
 apply operator op to y and z, and store the result in x. 

• We use the teƌŵ ͞thƌee-addƌess Đode͟ ďeĐause eaĐh stateŵeŶt 
usually contains three addresses (two for operands, one for the 
result). 

343 



Three-Address Statements 

Binary Operator:  op y,z,result   or   result := y op z 
 where op is a binary arithmetic or logical operator. This binary 

operator is applied to y and z, and the result of the operation is 
stored in result. 

 Ex:  add  a,b,c   
   gt   a,b,c   
   addr a,b,c 
   addi a,b,c 
 
Unary Operator:  op y,,result   or   result := op y 
 where op is a unary arithmetic or logical operator. This unary 

operator is applied to y, and the result of the operation is stored in 
result. 

 Ex:  uminus      a,,c 
   not         a,,c 
   int to real a,,c   
 

344 



Three-Address Statements (cont.) 

Move Operator:  mov y,,result   or   result := y 
 where the content of y is copied into result. 

 Ex:  mov   a,,c 
   movi  a,,c 
   movr  a,,c 
 
Unconditional Jumps:  jmp ,,L   or   goto L 
 We will jump to the three-address code with the label L, 

and the execution continues from that statement. 

 Ex:  jmp  ,,L1 // jump to L1 

   jmp  ,,7  // jump to the statement 7  
 

345 



Three-Address Statements (cont.) 

Conditional Jumps:  jmprelop y,z,L   or   if y 
relop z goto L 

 We will jump to the three-address code with the label L if  the result of y 
relop z  is true, and the execution continues from that statement. If the 

result is false, the execution continues from the statement following this 

conditional jump statement. 

  

Ex:  jmpgt   y,z,L1 // jump to L1 if y>z 

   jmpgte  y,z,L1 // jump to L1 if y>=z 

   jmpe    y,z,L1 // jump to L1 if y==z 

   jmpne   y,z,L1 // jump to L1 if y!=z 
 

  

346 



Three-Address Statements (cont.) 

Our relational operator can also be a unary operator. 

    jmpnz   y,,L1 // jump to L1 if y is not zero 

    jmpz    y,,L1 // jump to L1 if y is zero 

    jmpt    y,,L1 // jump to L1 if y is true 

    jmpf    y,,L1 // jump to L1 if y is false 

 

347 



Three-Address Statements (cont.) 

Procedure Parameters:  param x,,   or   param x 

Procedure Calls:   call p,n,   or   call p,n 

 where x is an actual parameter, we invoke the procedure p 

with n parameters.  

 Ex:  param x1,, 

   param x2,, 

      p(x1,...,xn) 

   param xn,, 

   call  p,n, 

 f(x+1,y)  add   x,1,t1 

    param t1,, 

    param y,, 

    call  f,2, 
348 



Three-Address Statements (cont.) 

Indexed Assignments:      

  move y[i],,x  or  x := y[i] 

  move x,,y[i]  or  y[i] := x 

 

 

Address and Pointer Assignments: 

  moveaddr y,,x  or  x := &y 

  movecont y,,x  or  x := *y 

 

349 



Syntax-Directed Translation into Three-Address Code 

S  id := E “.Đode = E.Đode || geŶ;͚ŵoǀ͛ E.plaĐe ,͚,͛  id.plaĐeͿ 
 

E  E1 + E2 E.place = newtemp(); 

   E.code = E1.code || E2.Đode || geŶ;͚add͛ E1.plaĐe ,͚͛  E2.plaĐe ,͚͛  
E.place) 

 

E  E1 * E2 E.place = newtemp(); 

   E.code = E1.code || E2.Đode || geŶ;͚ŵult͛ E1.plaĐe ,͚͛  E2.plaĐe ,͚͛  
E.place) 

E  - E1  E.place = newtemp(); 

   E.code = E1.Đode || geŶ;͚uŵiŶus͛ E1.plaĐe ,͚,͛  E.plaĐeͿ 
E  ( E1 ) E.place = E1.place; 

   E.code = E1.code 

E  id  E.place = id.place; 

   E.code = null 

 

 

 

350 



Syntax-Directed Translation (cont.) 

S  while E do S1 S.begin = newlabel(); 

    S.after = newlabel(); 

    “.Đode = geŶ;“.ďegiŶ ͞:͟Ϳ  ||  E.Đode  || 

      geŶ;͚jŵpf͛ E.plaĐe ,͚,͛  “.afteƌͿ  || “1.code || 

      geŶ;͚jŵp͛ ,͚,͛  “.ďegiŶͿ  ||   
      geŶ;“.afteƌ ͚:͟Ϳ 
S  if E then S1 else S2   S.else = newlabel(); 

    S.after = newlabel(); 

    S.code = E.code  || 

      geŶ;͚jŵpf͛ E.plaĐe ,͚,͛  “.elseͿ  || “1.code || 

      geŶ;͚jŵp͛ ,͚,͛  “.afteƌͿ  || 

      geŶ;“.else ͚:͟Ϳ || “2.code ||  

      geŶ;“.afteƌ ͚:͟Ϳ 
 

 

351 



Translation Scheme to Produce Three-Address Code 

S  id := E { p= lookup(id.name); 

      if ;p is Ŷot ŶilͿ theŶ  eŵit;͚ŵoǀ͛ E.plaĐe ,͚,͛  pͿ 
      else eƌƌoƌ;͞uŶdefiŶed-ǀaƌiaďle͟Ϳ  } 

E  E1 + E2 { E.place = newtemp(); 

      eŵit;͚add͛ E1.plaĐe ,͚͛  E2.plaĐe ,͚͛  E.plaĐeͿ } 

E  E1 * E2 { E.place = newtemp(); 

      eŵit;͚ŵult͛ E1.plaĐe ,͚͛  E2.plaĐe ,͚͛  E.plaĐeͿ  } 

E  - E1  { E.place = newtemp(); 

      eŵit;͚uŵiŶus͛ E1.plaĐe ,͚,͛  E.plaĐeͿ  } 

E  ( E1 ) { E.place = E1.place; }    

E  id  { p= lookup(id.name); 

      if (p is not nil) then E.place = id.place 

      else eƌƌoƌ;͞uŶdefiŶed-ǀaƌiaďle͟Ϳ  } 

 

352 



Translation Scheme with Locations 

S  id := { E.inloc = S.inloc } E   
  { p = lookup(id.name); 
    if ;p is Ŷot ŶilͿ theŶ  { eŵit;E.outloĐ ͚ŵoǀ͛ E.plaĐe ,͚,͛  pͿ;  

 S.outloc=E.outloc+1 } 
     else { eƌƌoƌ;͞uŶdefiŶed-ǀaƌiaďle͟Ϳ; “.outloĐ=E.outloĐ 

} } 
 
E  { E1.inloc = E.inloc } E1 + { E2.inloc = E1.outloc } E2  
         { E.place = newtemp();  emit(E2.outloĐ ͚add͛ E1.plaĐe ,͚͛  

E2.plaĐe ,͚͛   E.place); E.outloc=E2.outloc+1 } 
 
E  { E1.inloc = E.inloc } E1 + { E2.inloc = E1.outloc } E2  
         { E.place = newtemp();  emit(E2.outloĐ ͚ŵult͛ E1.plaĐe ,͚͛  

E2.plaĐe ,͚͛   E.place); E.outloc=E2.outloc+1 } 
 
 

353 



Translation Scheme with Locations 

E  - { E1.inloc = E.inloc } E1   

         { E.place = newtemp(); emit(E1.outloĐ ͚uŵiŶus͛ 
E1.plaĐe ,͚,͛                             E.place); 
E.outloc=E1.outloc+1 } 

 

E  ( E1 ){ E.place = E1.place; E.outloc=E1.outloc+1 } 

    

E  id { E.outloc = E.inloc; p= lookup(id.name);           

          if (p is not nil) then E.place = id.place 

          else eƌƌoƌ;͞uŶdefiŶed-ǀaƌiaďle͟Ϳ  } 

 

354 



Boolean Expressions 

E  { E1.inloc = E.inloc } E1 and { E2.inloc = E1.outloc } E2  

         { E.place = newtemp();  emit(E2.outloĐ ͚aŶd͛ E1.plaĐe ,͚͛  
E2.plaĐe ,͚͛  E.plaĐeͿ;  E.outloĐ=E2.outloc+1 } 

E  { E1.inloc = E.inloc } E1 or { E2.inloc = E1.outloc } E2  

         { E.place = newtemp();  emit(E2.outloĐ ͚aŶd͛ E1.plaĐe ,͚͛  
E2.plaĐe ,͚͛  E.plaĐeͿ;  E.outloĐ=E2.outloc+1 } 

E  not { E1.inloc = E.inloc } E1   

   { E.place = newtemp(); emit(E1.outloĐ ͚Ŷot͛ E1.plaĐe ,͚,͛  
E.place); E.outloc=E1.outloc+1 } 

E  { E1.inloc = E.inloc } E1 relop { E2.inloc = E1.outloc } E2  

         { E.place = newtemp();   

      emit(E2.outloc relop.code E1.plaĐe ,͚͛  E2.plaĐe ,͚͛  
E.place);  E.outloc=E2.outloc+1 } 

 

 

 

 

355 



Translation Scheme(cont.) 

S  while { E.inloc = S.inloc } E do  

  { emit(E.outloc ‘jmpf’ E.place ‘,,’ ‘NOTKNO→N’);  
     S1.inloc=E.outloc+1;  }  S1  

  { emit(S1.outloc ‘jmp’ ‘,,’ S.inloc); 
     S.outloc=S1.outloc+1; 

     backpatch(E.outloc,S.outloc); } 

 

  

 

356 



Translation Scheme(cont.) 

S  if { E.inloc = S.inloc } E then 

  { emit(E.outloc ‘jmpf’ E.place ‘,,’ ‘NOTKNO→N’);  
     S1.inloc=E.outloc+1;  } S1 else  

  { emit(S1.outloc ‘jmp’ ‘,,’ ‘NOTKNO→N’);  
     S2.inloc=S1.outloc+1;  

     backpatch(E.outloc,S2.inloc); }  S2   

  { S.outloc=S2.outloc;  

     backpatch(S1.outloc,S.outloc); } 

357 



Three Address Codes - Example 

x:=1;      01: mov   1,,x   

y:=x+10;    02: add   x,10,t1 

while (x<y) {    03: mov   t1,,y 

 x:=x+1;    04: lt    x,y,t2 

 if (x%2==1) then y:=y+1;  05: jmpf  t2,,17 

 else y:=y-2;   06: add   x,1,t3 

}      07: mov   t3,,x 

       

358 



Three Address Codes - Example 

      08: mod   x,2,t4 

      09: eq    t4,1,t5 

      10: jmpf  t5,,14 

      11: add   y,1,t6 

      12: mov   t6,,y 

      13: jmp   ,,16 

      14: sub   y,2,t7 

      15: mov   t7,,y 

      16: jmp   ,,4 

      17: 

359 



Arrays 

• Elements of arrays can be accessed quickly if the elements 

are stored in a block of consecutive locations. 

A one-dimensional array A: 

 

 

 

baseA   low  i       width 

baseA is the address of the first location of the array A,  

width is the width of each array element. 

low is the index of the first array element 

 

location of A[i]    baseA+(i-low)*width 

     …      … 

360 



Arrays (cont.) 

baseA+(i-low)*width    

can be re-written as   i*width + (baseA-low*width) 

should be computed at run-time can be computed at 

compile-time 

• So, the location of A[i] can be computed at the run-time by 

evaluating the formula i*width+c  where c is (baseA-

low*width) which is evaluated at compile-time. 

 

• Intermediate code generator should produce the code to 

evaluate this formula i*width+c  (one multiplication and 

one addition operation). 

361 



Two-Dimensional Arrays 

• A two-dimensional array can be stored in  

– either row-major (row-by-row) or  

– column-major (column-by-column). 

• Most of the programming languages use row-major 
method. 

 

• Row-major representation of a two-dimensional array: 

 

 

 

  row1     row2        rown 

 
362 



Two-Dimensional Arrays (cont.) 

• The location of  A[i1,i2]  is 

  baseA+ ((i1-low1)*n2+i2-low2)*width 

 baseA  is the location of  the array A. 

 low1  is the index of the first row 

 low2  is the index of the first column 

 n2  is the number of elements in each row 

 width  is the width of each array element 

• Again, this formula can be re-written as 

 

  ((i1*n2)+i2)*width  +  (baseA-((low1*n1)+low2)*width) 

 

should be computed at run-time can be computed at 
compile-time 

363 



Multi-Dimensional Arrays 

• In general, the location of  A[i1,i2,...,ik]  is 

 (( ... ((i1*n2)+i2) ...)*nk+ik)*width  +  (baseA-

((...((low1*n1)+low2)...)*nk+lowk)*width) 

 

• So, the intermediate code generator should produce the codes 

to evaluate the following formula (to find the location of 

A[i1,i2,...,ik]) : 

  (( ... ((i1*n2)+i2) ...)*nk+ik)*width  + c 

• To evaluate the (( ... ((i1*n2)+i2) ...)*nk+ik  portion of this 

formula, we can use the recurrence equation: 

 e1 = i1 

 em = em-1 * nm + im 

364 



Translation Scheme for Arrays 

• If we use the following grammar to calculate addresses of 
array elements, we need inherited attributes. 

  

  L  id   |   id [ Elist ] 

  Elist  Elist , E   |   E 

 

• Instead of this grammar, we will use the following 
grammar to calculate addresses of array elements so that 
we do not need inherited attributes (we will use only 
synthesized attributes). 

 

  L  id   |   Elist ] 

  Elist  Elist , E   | id [ E 
 

365 



Translation Scheme for Arrays (cont.) 

S  L := E { if (L.offset is null)  emit(‘mov’ E.place ‘,,’ L.place) 
      else emit(‘mov’ E.place ‘,,’ L.place ‘[‘ L.offset ‘]’) } 

 

E  E1 + E2 { E.place = newtemp(); 
      emit(‘add’ E1.place ‘,’ E2.place ‘,’ E.place) } 

 

E  ( E1 ) { E.place = E1.place; } 
  

E  L  { if (L.offset is null)  E.place = L.place) 

      else { E.place = newtemp(); 

     emit(‘mov’ L.place ‘[‘ L.offset ‘]’ ‘,,’ E.place) 
} } 

 

 

366 



Translation Scheme for Arrays (cont.) 

L  id   { L.place = id.place;  L.offset = null; } 

L  Elist ]  
 { L.place = newtemp();  L.offset = newtemp(); 

    emit(‘mov’ c(Elist.array) ‘,,’ L.place);  
    emit(‘mult’ Elist.place ‘,’ width(Elist.array) ‘,’ L.offset) 

} 

Elist  Elist1 , E   
 { Elist.array = Elist1.array ;  Elist.place = newtemp();  

Elist.ndim = Elist1.ndim + 1; 

    emit(‘mult’ Elist1.place ‘,’ limit(Elist.array,Elist.ndim) 
‘,’ Elist.place); 

    emit(‘add’ Elist.place ‘,’ E.place ‘,’ Elist.place); }  
Elist  id [ E  
 {Elist.array = id.place ;  Elist.place = E.place;  Elist.ndim 

= 1; } 
 367 



Translation Scheme for Arrays – Example1 

• A one-dimensional double array A :  5..100  

   n1=95   width=8 (double)   low1=5 

 

• Intermediate codes corresponding to    x := A[y] 

 

 mov    c,,t1  // where c=baseA-(5)*8 

 mult  y,8,t2 

 mov   t1[t2],,t3 

 mov   t3,,x 

 
368 



Translation Scheme for Arrays – Example2 

• A two-dimensional int array A :  1..10x1..20 

   n1=10   n2=20   width=4 (integers)   low1=1   low2=1 

 

• Intermediate codes corresponding to    x := A[y,z] 
 

 mult  y,20,t1 
 add   t1,z,t1 
 mov    c,,t2  // where c=baseA-

(1*20+1)*4 

 mult  t1,4,t3 
 mov   t2[t3],,t4 
 mov   t4,,x 

369 



Translation Scheme for Arrays – Example3 

• A three-dimensional int array A :  0..9x0..19x0..29 
   n1=10   n2=20  n3=30  width=4 (integers)   low1=0   low2=0  

low3=0 
 
• Intermediate codes corresponding to    x := A[w,y,z] 
 mult  w,20,t1 
 add   t1,y,t1 
 mult  t1,30,t2 
 add   t2,z,t2 
 mov    c,,t3  // where c=baseA-((0*20+0)*30+0)*4 
 mult  t2,4,t4 
 mov   t3[t4],,t5 
 mov   t5,,x 

 

370 



Declarations 

P  M D 

M  €  { offset=0 } 

D  D ; D 

D   id : T { enter(id.name,T.type,offset);  
offset=offset+T.width } 

T  int { T.type=int; T.width=4 } 

T  real { T.type=real; T.width=8 } 

T  array[num] of T1  { T.type=array(num.val,T1.type);  

        T.width=num.val*T1.width }  

T  ↑ T1  { T.type=pointer(T1.type); T.width=4 } 

 

where enter crates a symbol table entry with given values. 

371 



Nested Procedure Declarations 

• For each procedure we should create a symbol table. 

 

mktable(previous) – create a new symbol table where 
previous is the parent symbol  table of this new symbol 
table 

 

enter(symtable,name,type,offset) – create a new entry for a 
variable in the given  symbol table. 

 

enterproc(symtable,name,newsymbtable) – create a new 
entry for the procedure in    the symbol table of its parent. 

 

372 



Nested Procedure Declarations 

addwidth(symtable,width) – puts the total width of all entries 
in the symbol table       into the header of that table. 

 

• We will have two stacks: 

– tblptr – to hold the pointers to the symbol tables 

– offset – to hold the current offsets in the symbol tables 
in tblptr stack. 

  

 

373 



Nested Procedure Declarations 

P  M D    { addwidth(top(tblptr),top(offset)); pop(tblptr); 
pop(offset) } 

 

M  €         { t=mktable(nil); push(t,tblptr); push(0,offset) } 

D  D ; D 

D   proc id N D ; S  

         { t=top(tblptr); addwidth(t,top(offset)); 

            pop(tblptr); pop(offset); 

            enterproc(top(tblptr),id.name,t) } 

D   id : T { enter(top(tblptr),id.name,T.type,top(offset)); 

             top(offset)=top(offset)+T.width } 

 

N   €        { t=mktable(top(tblptr)); push(t,tblptr); 
push(0,offset) } 

374 



Intermediate Code Generation 

375 



Intermediate Code Generation 

• Translating source program into an “intermediate 
language.” 

– Simple 

– CPU Independent, 

– …yet, close in spirit to machine language. 
• Or, depending on the application other intermediate 

languages may be used, but in general, we opt for simple, 

well structured intermediate forms. 

• (and this completes the “Front-End” of Compilation). 
Benefits 

1. Retargeting is facilitated 

2. Machine independent Code Optimization can be 

applied. 

 
376 



Intermediate Code Generation (II) 

377 

 Intermediate codes are machine independent codes, but they are close  to 
machine instructions. 

 The given program in a source language is converted to an equivalent program 
in an intermediate language by the intermediate code generator.  

 Intermediate language can be many different languages, and the designer of 
the compiler decides this intermediate language. 
 
 syntax trees can be used as an intermediate language. 
 postfix notation can be used as an intermediate language. 
 three-address code (Quadraples) can be used as an intermediate language 

 we will use quadraples to discuss intermediate code generation 

 quadraples are close to machine instructions, but they are not actual 
machine instructions. 

 



Types of Intermediate Languages 

• Graphical Representations. 

– Consider the assignment a:=b*-c+b*-c: 

 

378 

assign 

a + 

* * 

uminus uminus b 

c c 

b 

assign 

a 
+ 

* 

uminus 

b c 



Syntax Dir. Definition for Assignment Statements 

PRODUCTION Semantic Rule 

S  id := E { S.nptr = mknode (‘assign’, mkleaf(id, id.entry), 
E.nptr) } 

     

E  E1 + E2  {E.nptr = mknode(‘+’, E1.nptr,E2.nptr) } 

E  E1 * E2  {E.nptr = mknode(‘*’, E1.nptr,E2.nptr) } 

E  - E1  {E.nptr = mknode(‘uminus’,E1.nptr) } 

E  ( E1 )  {E.nptr = E1.nptr } 

E  id   {E.nptr = mkleaf(id, id.entry) } 

379 



Three Address Code 

• Statements of general form x:=y op z 

 

• No built-up arithmetic expressions are allowed. 

 

• As a result, x:=y + z * w 

should be represented as 

t1:=z * w 

t2:=y + t1 

x:=t2 

 

380 



Three Address Code 

• Observe that given the syntax-tree or the dag of the 

graphical representation we can easily derive a three 

address code for assignments as above. 

 

• In fact three-address code is a linearization of the tree. 

 

• Three-address code is useful: related to machine-language/ 

simple/ optimizable. 

 

381 



Example of 3-address code 

t1:=- c 

t2:=   b * 
t1 

t5:=   t2 + 
t2 

a:=     t5 

382 

t1:= - c 
t2:=   b * t1 

t3:= - c 
t4:=   b * t3 
t5:=  2  + t4 
a:=    t5 



Types of Three-Address Statements. 

Assignment Statement:  x:=y op z 
Assignment Statement:  x:=op z 
Copy Statement:   x:=z 
Unconditional Jump:  goto L 
Conditional Jump:  if x relop y goto L 
Stack Operations:  Push/pop  
 

  More Advanced: 
Procedure: 
 param x1 

param x2 
… 
param xn 
call p,n 

 
 

383 



Types of Three-Address Statements. 

Index Assignments: 
  x:=y[i] 

  x[i]:=y 
 

Address and Pointer Assignments: 
  x:=&y 

  x:=*y 

  *x:=y 

384 



Syntax-Directed Translation into 3-address code. 

• First deal with assignments. 

• Use attributes  

– E.place: the name that will hold the value of E 

• Identifier will be assumed to already have the place 

attribute defined. 

– E.code:hold the three address code statements that 

evaluate E (this  is the `tƌaŶslatioŶ͛ attƌiďuteͿ. 
• Use function newtemp that returns a new temporary 

variable that we can use. 

• Use function gen to generate a single three address 

statement given the necessary information (variable names 

and operations).  

385 



Syntax-Dir. Definition for 3-address code 

PRODUCTION Semantic Rule 

S  id := E  { S.code = E.code||gen(id.place ‘=’ E.place ‘;’) } 

E  E1 + E2  {E.place= newtemp ; 

    E.code = E1.code || E2.code ||  

    || gen(E.place‘:=’E1.place‘+’E2.place) } 

E  E1 * E2  {E.place= newtemp ; 

    E.code = E1.code || E2.code ||  

    || gen(E.place‘=’E1.place‘*’E2.place) } 

E  - E1   {E.place= newtemp ; 

    E.code = E1.code || 

    || gen(E.place ‘=’ ‘uminus’ E1.place) } 

E  ( E1 )  {E.place= E1.place ; E.code = E1.code} 

E  id   {E.place = id.entry ; E.code = ‘’ } 

 

e.g. a := b * - (c+d) 386 



What about things that are not assignments? 

• E.g. while stateŵeŶts of the forŵ ͞while E do “͟ 

(intepreted as while the value of E is not 0 do S) 

Extension to the previous syntax-dir. Def. 

PRODUCTION 

S  while E do S1 

Semantic Rule 

S.begin = newlabel; 

S.after = newlabel ; 

 

387 



What about things that are not assignments?(cont) 

S.code= gen(S.begin ‘:’)  
  || E.code  

  || gen(‘if’ E.place ‘=’ ‘0’ ‘goto’ S.after)  

  || S1.code  

  || gen(‘goto’ S.begin)  

  || gen(S.after ‘:’) 

388 



Implementations of 3-address statements 

• Quadruples 

t1:=- c 

t2:=b * t1 

t3:=- c 

t4:=b * t3 

t5:=t2 + t4 

a:=t5 
 

389 

op arg1 arg2 result 

(0) uminu
s 

c t1 

(1) * b t1 t2 

(2) uminu
s 

c 

(3) * b t3 t4 

(4) + t2 t4 t5 

(5) := t5 a 

Temporary names must be entered into the symbol table as they are created. 



Implementations of 3-address statements, II 

• Triples 

t1:=- c 

t2:=b * t1 

t3:=- c 

t4:=b * t3 

t5:=t2 + t4 

a:=t5 

 

390 

op arg1 arg2 

(0) uminu
s 

c 

(1) * b (0) 

(2) uminu
s 

c 

(3) * b (2) 

(4) + (1) (3) 

(5) assign a (4) 

Temporary names are not entered into the symbol table. 



Other types of 3-address statements 

• e.g. ternary operations like  

x[i]:=y   x:=y[i]  

• require two or more entries. e.g. 

 

391 

op arg1 arg2 

(0) [ ] = x i 

(1) assign (0) y 

op arg1 arg2 

(0) [ ] = y i 

(1) assign x (0) 



Implementations of 3-address statements, III 

• Indirect Triples 

 

392 

op arg1 arg2 

(14) uminus c 

(15) * b (14) 

(16) uminus c 

(17) * b (16) 

(18) + (15) (17) 

(19) assign a (18) 

op 

(0) (14) 

(1) (15) 

(2) (16) 

(3) (17) 

(4) (18) 

(5) (19) 



Dealing with Procedures 

P  procedure id ‘;’ block ‘;’ 

Semantic Rule 

begin = newlabel; 

Enter into symbol-table in the entry of the procedure name 

the begin label. 

P.code = gen(begin ‘:’) || block.code || 

 gen(‘pop’ return_address) || gen(“goto return_address”) 
S  call id 

Semantic Rule 

Look up symbol table to find procedure name. Find its begin 

label called proc_begin 

return = newlabel; 

S.code = gen(‘push’return); gen(goto proc_begin) || 

gen(return “:”) 
393 



Declarations 

Using a global variable offset 

 

PRODUCTION Semantic Rule 

P  M D   { } 

M     {offset:=0 } 

D  id : T  { addtype(id.entry, T.type, offset) 
      offset:=offset + T.width } 

T  char  {T.type = char; T.width = 4; } 

T  integer   {T.type = integer ;  T.width = 4; } 

T  array [ num ] of T1 
    {T.type=array(1..num.val,T1.type) 

     T.width = num.val * T1.width} 

T  ^T1    {T.type = pointer(T1.type); 
        T1.width = 4} 

394 



Nested Procedure Declarations 

• For each procedure we should create a symbol table. 

mktable(previous) – create a new symbol table where 

previous is the parent symbol  table of this new symbol 

table 

enter(symtable,name,type,offset) – create a new entry for a 

variable in the given  symbol table. 

enterproc(symtable,name,newsymbtable) – create a new 

entry for the procedure in    the symbol table of its parent. 

addwidth(symtable,width) – puts the total width of all entries 

in the symbol table       into the header of that table. 

• We will have two stacks: 

– tblptr – to hold the pointers to the symbol tables 

– offset – to hold the current offsets in the symbol tables 

in tblptr stack. 

  

395 



Keeping Track of Scope Information 

Consider the grammar fraction: 

 

P  D 

D  D ; D | id : T | proc id ; D ; S 

 

Each procedure should be allowed to use independent names. 

Nested procedures are allowed. 

396 



Keeping Track of Scope Information 

(a translation scheme) 

P  M D  { addwidth(top(tblptr), top(offset));  
    pop(tblptr); pop(offset) } 

M    { t:=mktable(null);  push(t, tblptr); 

push(0,        

 offset)} 

D  D1 ; D2  ... 

D  proc id ; N D ; S { t:=top(tblpr); 

addwidth(t,top(offset)); 

     pop(tblptr); pop(offset); 

     enterproc(top(tblptr), id.name, t)}

  

N    {t:=mktable(top(tblptr)); push(t,tblptr); 

push(0,offset);} 

397 



Keeping Track of Scope Information 

D  id : T {enter(top(tblptr), id.name, T.type, top(offset); 

   top(offset):=top(offset) + T.width  

 

Example: proc func1; D; proc func2 D; S; S 

398 



 

 

 

 

 

Type Checking 

 

 

. 399 



Static Checking 

• Static (Semantic) Checks 

– Type checks: operator applied to incompatible operands? 

– Flow of control checks: break (outside while?) 

– Uniqueness checks: labels in case statements 

– Name related checks: same name? 

400 

Token 
Strea

m 

Parser Static 

Checke

r 

Intermediate 

Code 

Generator 

Abstract 

Syntax 

Tree 

Decorated 

Abstract 

Syntax Tree 

Intermedi

ate Code 



Type Checking 

• Problem: Verify that a type of a construct matches that 
expected by its context. 

 
• Examples: 

– mod requires integer operands (PASCAL) 

– * (dereferencing) – applied to a pointer 

– a[i] – indexing applied to an array 

– f(a1, aβ, …, an) – function applied to correct arguments. 

• Information gathered by a type checker: 

– Needed during code generation. 

401 



Type Systems 

• A collection of rules for assigning type expressions to the 
various parts of a program. 

 

• Based on: Syntactic constructs, notion of a type. 

 

• Example: If both operators of “+”, “-”, “*” are of type 
integer then so is the result. 

 

• Type Checker: An implementation of a type system. 

– Syntax Directed. 

 

• Sound Type System: eliminates the need for checking type 
errors during run time. 

402 



Type Expressions 

• Implicit Assumptions: 

– Each program has a type 

– Types have a structure 

Boolean Character 

Real Integer 

Enumera

tions 

Sub-ranges 

Void  Error 

Variables Names 
403 

Basic Types  
Type Constructors 

Arrays 

Records 

Sets 

Pointers 

Functions  

Expressions 

Statements 



Representation of Type Expressions 

404 

-> 

x pointr 

char char 

(char x char)-> pointer (integer) 

integr 

-> 

x pointr 

integr char 

Tree DAG 
struct cell { 

 int info; 

 struct cell * next; 

}; 

cell = record 

x 

x x 

info int next ptr 



Type Expressions Grammar 

Type ->  int | float | char | … 

   | void 

   | error 

   | name  

   | variable 

   | array( size, Type) 

   | record( (name, Type)*) 

   | pointer( Type) 

   | tuple((Type)*) 

   | arrow(Type, Type) 

405 

Basic Types 

Structured 
Types 



A Simple Typed Language 

Program -> Declaration; Statement 

Declaration -> Declaration; Declaration 

    | id: Type 

Statement -> Statement; Statement 

    | id := Expression 

    | if Expression then Statement 

    | while Expression do Statement 

Expression -> literal | num | id 

   | Expression mod Expression 

   | E[E] | E ↑ | E (E) 

406 



Type Checking Expressions 

E -> int_const  { E.type = int } 

E -> float_const         { E.type = float } 

E -> id   { E.type = sym_lookup(id.entry, type) } 

E -> E1 + E2  {E.type = if  E1.type {int, float} | E2.type  

{int, float}  

    then error 

    else if E1.type == E2.type == int 

    then int 

    else float } 

407 



Type Checking Expressions 

E -> E1 [E2]  {E.type = if E1.type = array(S, T) &  

         E2.type = int then T else error} 

E -> *E1 {E.type  = if E1.type = pointer(T) then T else error} 

E -> &E1 {E.type = pointer(E1.tye)} 

E -> E1 (E2)  {E.type = if (E1.type = arrow(S, T) &  

               E2.type = S, then T else err} 

E -> (E1, E2)  {E.type = tuple(E1.type, E2.type)} 

408 



Type Checking Statements 

S -> id := E {S.type := if id.type = E.type then void else error} 

 

S -> if E then S1 {S.type := if E.type = boolean  then S1.type 

else error} 

 

S -> while E do S1 {S.type := if E.type = boolean  then 

S1.type} 

 

S -> S1; S2 {S.type := if S1.type = void  ∧  S2.type = void then 

void else      error} 

409 



Equivalence of Type Expressions 

Problem: When in E1.type = E2.type? 

– We need a precise definition for type equivalence 

– Interaction between type equivalence and type 
representation 

 

Example:  type vector = array [1..10] of real 

   type weight = array [1..10] of real 

   var x, y: vector; z: weight 

 

Name Equivalence: When they have the same name. 

– x, y have the same type; z has a different type. 
 

Structural Equivalence: When they have the same structure. 

– x, y, z have the same type. 

410 



Structural Equivalence 

• Definition: by Induction 
– Same basic type(basis) 
– Same constructor applied to SE Type(induction step) 
– Same DAG Representation 

 
• In Practice: modifications are needed 

– Do not include array bounds – when they are passed as 
parameters 

– Other applied representations (More compact) 
 

• Can be applied to: Tree/ DAG 
– Does not check for cycles 
– Later improve it. 

411 



Algorithm Testing Structural Equivalence 

function stequiv(s, t): boolean  

{ 

 if (s & t are of the same basic type) return true; 

  if (s = array(s1, s2) & t = array(t1, t2)) 

  return equal(s1, t1) & stequiv(s2, t2); 

  if (s = tuple(s1, s2) & t = tuple(t1, t2)) 

  return stequiv(s1, t1) & stequiv(s2, t2); 

 if (s = arrow(s1, s2) & t = arrow(t1, t2)) 

  return stequiv(s1, t1) & stequiv(s2, t2); 

 if (s = pointer(s1) & t = pointer(t1)) 

  return stequiv(s1, t1); 

} 

412 



Recursive Types 

Where: Linked Lists, Trees, etc. 

How: records containing pointers to similar records 

Example:  type link = Ĺ cell; 
   cell = record info: int; next = link end 

Representation: 

413 

cell = record 

x 

x x 

info int next ptr 

cell = record 

x 

x x 

info int next ptr 

cell DAG with Names Substituting names out (cycles) 



Recursive Types in C 

• C Policy: avoid cycles in type graphs by: 
– Using structural equivalence for all types 
– Except for records -> name equivalence 

 
• Example: 
– struct cell {int info; struct cell * next;} 

 
• Name use: name cell becomes part of the type of the 

record. 
– Use the acyclic representation 
– Names declared before use – except for pointers to 

records. 
– Cycles – potential due to pointers in records 
– Testing for structural equivalence stops when a 

record constructor is reached ~ same named record 
type? 

414 



Overloading Functions & Operators 

• Overloaded Symbol: one that has different meanings 
depending on its context 

 

• Example: Addition operator + 

 

• Resolving (operator identification): overloading is resolved 
when a unique meaning is determined. 

 

• Context: it is not always possible to resolve overloading by 
looking only the arguments of a function 

– Set of possible types 

– Context (inherited attribute) necessary 

415 



Overloading Example 

function “*” (i, j: integer) return complex; 
function “*” (x, y: complex) return complex; 
* Has the following types: 

 arrow(tuple(integer, integer), integer) 

 arrow(tuple(integer, integer), complex) 

 arrow(tuple(complex, complex), complex) 

int i, j; 

k = i * j; 

416 



Narrowing Down Types 

E’ -> E   {E’.types = E. types 

    E.unique = if E’.types = {t} then t else 
 error} 

E -> id  {E.types = lookup(id.entry)} 

E -> E1(E2) {E.types = {s’ |  s  E2.types and S->s’  
 E1.types} 

    t = E.unique 

    S = {s | s  E2.types and S->t E1.types} 

    E2.unique  = if S ={s} the  S else error 

    E1.unique = if S = {s} the S->t else error 

417 



Polymorphic Functions 

• Defn: a piece of code (functions, operators) that can be 
executed with arguments of different types. 

 

• Examples: Built in Operator indexing arrays, pointer 
manipulation 

 

• Why use them: facilitate manipulation of data structures 
regardless of types. 

 

• Example HL: 

 fun length(lptr) = if null (lptr) then 0  

          else length(+l(lptr)) + 1 

418 



A Language for Polymorphic Functions 

P -> D ; E 

D -> D ; D | id : Q 

Q ->  α. Q | T 

T -> arrow (T, T) | tuple (T, T) 

  | unary (T) | (T) 

  | basic 

  | α 

E -> E (E) | E, E | id 

419 



Type Variables 

• Why: variables representing type expressions allow us to 
talk about unknown types. 

– Use Greek alphabets α, ȕ, Ȗ … 

• Application: check consistent usage of identifiers in a 
language that does not require identifiers to be declared 
before usage. 

– A type variable represents the type of an undeclared 
identifier. 

• Type Inference Problem: Determine the type of a language 
constant from the way it is used. 

– We have to deal with expressions containing variables. 

420 



Examples of Type Inference 

Type link Ĺ cell; 
Procedure mlist (lptr: link; procedure p); 

{ while lptr <> null { p(lptr); lptr := lptr Ĺ .next} } 

Hence: p: link -> void 

Function deref (p){ return p Ĺ; } 

P: ȕ, ȕ = pointer(α) 

Hence deref:  α. pointer(α) -> α 

 

421 



Program in Polymorphic Language 

deref:  α. pointer(α) -> α 

q: pointer (pointer (integer)) 

deref (deref( (q)) 

 

Notation: 

-> arrow 

x tuple 

422 

apply: α0  

deref0: pointer (α0 ) -> α0  apply: αi  

deref0: pointer (αi ) -> αi  

q: pointer (pointer (integer)) 

Subsripts i and o distinguish between the inner and outer occurrences of 

deref, respectively. 



Type Checking Polymorphic Functions 

• Distinct occurrences of a p.f. in the same expression need 
not have arguments of the same type. 
– deref ( deref (q)) 
– Replace α with fresh variable and remove  (αi, αo) 
 

• The notion of type equivalence changes in the presence of 
variables. 
– Use unification: check if s and t can be made 

structurally equivalent by replacing type vars by the 
type expression. 
 

• We need a mechanism for recording the effect of unifying 
two expressions. 
– A type variable may occur in several type expressions. 

423 



Substitutions and Unification 

• Substitution: a mapping from type variables to type expressions. 

Function subst (t: type Expr): type Expr { S 

 if (t is a basic type) return t; 

 if (t is a basic variable) return S(t); --identify if t  S 

 if (t is t1 -> t2) return subst(t1) -> subst (t2); } 

 

• Instance: S(t) is an instance of t written S(t) < t. 

– Examples: pointer (integer) < pointer (α) , int -> real ≠ α-> α 

 

• Unify: t1 ≈ tβ if  S. S (t1) = S (t2) 

 

• Most General Unifier S: A substitution S: 

– S (t1) = S (t2) 

– S’. S’ (t1) = S’ (tβ)  t. S’(t) < S(t). 

424 



Polymorphic Type checking Translation Scheme 

E -> E1 (E2)  { p := mkleaf(newtypevar); unify   
                      (E1.type, mknode(‘-
>’, Eβ.type,p);  

                          E.type = p} 

E -> E1, E2  {E.type := mknode(‘x’, E1.type, Eβ.type); } 

E -> id   { E.type := fresh (id.type) } 

 

fresh (t): replaces bound vars in t by fresh vars. Returns pointer 
to a node representing result.type. 

fresh( α.pointer(α) -> α) = pointer(α1) -> α1. 

 

unify (m, n): unifies expressions represented by m and n. 

– Side-effect: keep track of substitution 

– Fail-to-unify: abort type checking. 

425 



PType Checking Example 

Given: derefo (derefi (q)) q = pointer (pointer (int)) 

426 

Bottom Up: fresh (α. Pointer(α) -> α) 

-> : 3 

pointer : 

2 
α : 1 

-> : 3 

pointer : 

2 
αo : 1 

derefo 

-> : 6 

pointer : 

5 
αi : 4 

derefi q 

pointer : 

9 
pointer : 

8 
integer : 7 

-> : 3 

pointer : 

2 
αo : 1 

m-> : 6 

pointer : 

5 
αi : 4 

pointer : 

5 
pointer : 

8 
integer : 7 

n-> : 6 

ȕ : 8 



UNIT-3 

 
PART-B 

 

SYMBOL TABLE 



Symbol tables 

Def  : Symbol table is a data structure used by compiler to keep 

track of semantics of variable .  

L-value and r – value : the l and r prefixes come from left and right 

side assignment . 

Ex:    

          a  :=  I  +  1 

                

     l-value     r-value  



Symbol table entries 

• Variable names 

• Constants 

• Procedure names 

• Function names 

• Literal constants and strings 

• Compiler generated temporaries 

• Labels in source languages 

Compiler uses following types of information from symbol table 

 1.Data type 

2.Name 

3.Declaring procedures 

4.Offset in storage 



Symbol table entries 

5.If structure are record then pointer to structure variable . 

6.For parameters, whether parameter passing is 

    by value or reference . 

 7.Number and type of arguments passed to the function . 

8.Base address . 

 

 

 



How to store names in symbol table 

• There are two types of name representation .  

• Fixed length names : 

• A fixed space for each name is allocated in symbol table . 

 
                                       name attribute 

C A L C U L A T E 

S U m 

a 

b 



Variable length name 

• Variable length 

 

                    name   

attribute Starting  

index 

length 

0 10 

10 4 

14 2 

16 2 



Symbol table management 

• Data structure for symbol table : 

1 . Linear list 

2 . Arrays 

The pointer variable is maintained at the end of all stored records . 

 

 

Name 1 Info 1 

Name2 Info 2 

Name 3 Info 3 

. 

. 

. 

. 

. 

. 

Name n Info n Available 

(start of empty 

slot 



Symbol table management 

• Self organization list : 

• This symbol table implementation is using linked list . 

• We search the records in the order pointed by the link of link 

field . 

 
Name  1 Info 1 

Name  2 Info 2 

Name 3 Info 3 

Name 4 Info 4 

first 

A pointer first is maintained to point to first record of symbol table 

The reference to these names can be name 3,name 1,name 4,name2 . 



Symbol table management 

• Self organization list : 

• When the name is referenced or created it is moved to the front of 

the list . 

• The most frequently referred names will tend to be front of the list . 

Hence access time to most frequently referred names will be the  

     least . 

 



Symbol table management 

• Binary trees       
     

 

 

• Ex: 

• Int m,n,p; 

• Int compute(int a,int b,intc) 

• { 

• T=a+b*c; 

• Return(t); 

• } 

• Main() 

• { 

• Int k; 

• K=compute(10,20,30) 

• } 

 

Left node Symbols Information Right child 



Symbol table management 

• Binary tree structure organization 

 
k int 

m int a int 

b int 
n int 

c int p int 

compute int t int 



Symbol table management 

• Binary tree structure organization 

• Advantages : 

• Insertion of any symbol is efficient. 

• Any symbol can be searched efficiently using binary searching 

method. 

• Disadvantages : 

• This structure consumes lot of space in storing left pointer,right 

pointer and null pointers. 

 



Symbol table management 

• Hash tables : 

• It is used to search the records of symbol table . 

• In hashing two tables are maintained a hash table and symbol 
table . 

• Hash table contains of  k  entries from 0,1 to k-1 . These entries 
are basically pointers to symbol table pointing to the names of 
symbol table . 

• To determine where the name is in symbol table ,we use a hash 
function ‘h’ such that h(name) will result any integer between 0 
to k-1 . We can search any name by  

                      position = h(name) 

Using this position we can obtain the exact locations of name in 
symbol table . 



Symbol table management 

• Hash tables : 

 The hash function should result in uniform distribution of names 

in symbol table . 

 

The hash function should be such that there will be minimum 

number of collision . Collision is such a situation where hash 

function results in same location for storing the names . 

   Various collision resolution techniques are open addressing, 

chaining , rehashing . 

 

 

 



Symbol table management 

• Hash tables :  

 

sum 

i 

j 

avg 

. 

. 

Hash table 

sum 

i 

j 

avg 

. 

. 

name info Hash link 



Symbol table management 

• Hash tables :  

• The advantages of hash table is quick search is possible . 

• The disadvantage is that hashing is complicated to implement . 

Some extra space is required . Obtaining scope of variables is 

very difficult . 



Symbol table management 

• HEAP ALLOCATION: 

 

•   The stack allocation strategy cannot be used if either 
of the following is possible: 

•  1. The values of local names must be retained when 
activation ends. 

•  2. A called activation outlives the caller. 

•   

•   In each of the above cases, the deallocation of 
activation records need not occur in a last- in first-out fashion, so 
storage cannot be organized as a stack. 

•   Heap allocation parcels out pieces contiguous 
storage, as needed for activation records or other objects. Pieces 
may be deallocated in any order, so over time the heap will consist of 
alternate areas that are free and in use. 

 



Storage allocation stratagies 

• 1.code area  

• 2.Static data area 

• 3.Stack area 

• 4.heap area 

• There are 3 different storage allocation strategies based on this 

division of run time storage .the strategies are 

• 1.Static allocation :At compile time 

• 2.Stack allocation : A stack is used to manage the run time 

manage . 

• 3 . Heap allocation : heap is used to manage the dynamic 

memory allocation .  

 



Static Allocation 

• Done at compile time 

 

– Literals (and constants) bound to values 

– Variables bound to addresses 

 

• Compiler notes undefined symbols 

– Library functions 

– Global Variables and System Constants 

 

• Linker (and loader if DLLs used) resolve undefined 

references. 



Stack Based Allocation 

• Stack Layout determined at compile time 

 

– Variables bound to offsets from top of stack. 

• Layout called stack frame or activation record 

– Compilers use registers 

 

• Function parameters and results need consistent treatment across 

modules 

– C/C++ use prototypes 

– Eiffel/Java/Oberon use single definition 



Heap Allocation 

• Heap provides dynamic memory management. 

– Not to be confused with binary heap or binomial 

heap data structures. 

– Under the hood, may periodically need to request 

additional memory from the O/S. 

• Requested large regions (requests are 

expensive). 

– Done using a library (e.g. C) 

– Or as part of the language (C++, Java, Lisp). 



Activation Record 

 
model of Activation Record 

Return value 

Actual parameters 

Control link(dynamic link) 

Access link (static link) 

Saved machine status 

Local variables 

Temporaries 



Activation Record 
 • Temporary values : These values are needed during the evaluation of 

expressions . 

• Local variables : the local data is a data that is local to the execution of 

procedure is stored in this field of activation record . 

• Saved machine registers : the status of machine just before the 

procedure is called .this field contains the machine registers and 

program counter . 

• Control link : this field is optional .it points the activation record of the 

calling procedure . This link is also called dynamic link . 

• Access link : this field is optional . It refers the non local data in other 

activation record . This field is also called static link field . 

• Actual parameters : this contains the information about the actual 

parameters .  

• Return values : this field is used to store the result of a function call . 

 



Storage variable length data 

Control link 

Pointer to x 

Pointer to y 

 

 

Array x 

Array y 

 

 

Control link 

Act record for A 

. 

Array of A 

Act record for B 

Place variable length of B 

Top_sp 

top 



Block structer and non block structure storage allocation 

• The storage allocation can be done for 2 types of  data variables 

• 1. Local data 

• 2. Non local data . 

• Local data can be accessed with the help of activation record . 

• Non local data can be accessed using scope information . 

• The block structured storage allocation can be done using static 

scope or lexical scope . 

• The non block structured can be done by dynamic scope . 



Local data 

• Reference to any variable x in procedure = Base pointer pointing    

      to start of procedure 

      + Offset of variable x 

      from base pointer . 

• Ex: consider following program 

•      procedure A 

•      int a; 

•      procedure B 

•      int b; 

•       body of  B; 

•        body of  A ; 

 

 



Local data 

• The contents of stack along with base pointer and offset are as 

shown below . 

 

Return value 

Dynamic link 

Saved registers 

parameters 

Locals : a 

 

 

 

Act rec for proc. 

A 

Base_ptr 

offset 

Access to local data 

top 



Local data 

 

 

 

Return value 

Dynamic link 

Saved registers 

parameters 

Local : b 

 

 

 

Base_ptr 

Act rec for 

proc.A 

Act rec for 

proc.B 
Offset 

Access to local data 

top 



Access to non local names 

access 

Used by block 

structured 

languages 

Handling non local data Used by non block 

stuctured languages 

Static scope or 

lexical scope Dynamic scope 

Access link 

display 

Deep access 

Shallow accesss 



Scope rules 

Static scope rule : Is also called as lexical scope . 

• In this type the scope is determined by examining the program 

test . PASCAL,C and ADA are the languages that use the static 

scope . 

Dynamic scope : for non block structured languages this dynamic 

scope allocation rules are used . 

• Ex: LISP and SNOBOL  



Static scope or lexical scope 

Access link 

• By using pointers to each record. 

• These pointers are called access links. 
 

 
test 

access link 

a: 

B(1) 

Access link 

i,b: 

test 

Access link 

a: 

B(1) 

Access link 

i,b: 

B(0) 

Access link 

i,b: 

test 

Access link 

a: 

B(1) 

Access link 

i,b: 

B(0) 

Access link 

i,b: 

      c 

Access link 

K: 



Static scope or lexical scope 

access link       

test 

access link  

a: 

        B(1) 

access link 

i,b: 

       B(0) 

access link 

i,b: 

        C 

access link 

k: 

         A 

access link 

d: 



Static scope or lexical scope 

• Displays : 

• It is expensive to traverse down access link every time when a 

particular local variable is accessed . To speed up the access to 

non local can be achieved by maintaining an array of pointers 

called display. 

• In display 

• An array of pointers to activation record is maintained. 

• Array is indexing by nesting level. 

• The pointers points to only accessible  activation record. 

• The display changes when a new activation occurs and it must 
be reset when control returns from the new activation. 



Storage allocation for non block structured languages 

• Dynamic scope : 

•   1. deep access : the idea is keep a stack of active variables, use 
control links instead of access links and when you want to find a 
variable then search the stack from top to bottom looking for 
most recent activation record that contains the space for desired 
variables . This method of accessing non local variables is called 
Deep access . 

• In this method a symbol table is needed to be used at run time . 

• Shallow access : the idea is to keep a central storage with one 
slot for every variable name . If the names are not created at run 
time then that storage layout can be fixed at compile time 
otherwise when new activation of procedure occures,then that 
procedure changes the storage entries for its locals at entry and 
exit . 



Comparison of Deep and Shallow access 

• Deep access takes longer time to access the non locals 

while Shallow access allows fast access . 

• Shallow access has a overhead of handling procedure 

entry and exit . 

• Deep access needs a symbol table at run time . 



UNIT-4 

 

PART-A 

Code Optimization 



Introduction 

• Concerns with machine-independent code optimization 

 

 90-10 rule: execution spends 90% time in 10% of the 
code. 

 It is moderately easy to achieve 90% optimization. The 
rest 10% is very difficult. 

 Identification of the 10% of the code is not possible 
for a compiler – it is the job of a profiler.  

 

• In general, loops are the hot-spots 



Introduction 

• Criterion of code optimization 

 

– Must preserve the semantic equivalence of the programs 

– The algorithm should not be modified 

– Transformation, on average should speed up the 

execution of the program 

– Worth the effort: Intellectual and compilation effort 

spend on insignificant improvement. 

Transformations are simple enough to have a good 

effect 



Introduction 

• Optimization can be done in almost all phases of 

compilation. 

Front 

end 

Code 

generator 

Source 

code 
Inter. 

code 

target 

code 

Profile 

and 

optimize 

(user) 

Loop, proc 

calls, addr 

calculation 

improvem

ent 

(compiler) 

Reg usage, 

instruction 

choice, 

peephole opt 

(compiler) 



Introduction 

• Organization of an optimizing compiler 

Control 

flow 

analysis 

Data flow 

analysis 
Transformation 

Code optimizer 



Classifications of Optimization techniques 

 Peephole optimization 

 

 Local Optimization 

 

 Global Optimization 

 Inter-procedural 

 Intra-procedural 

 

 Loop Optimization 



Factors influencing Optimization 

• The target machine: machine dependent factors can be 
parameterized to compiler for fine tuning 

 

• Architecture of Target CPU: 

– Number of CPU registers 

– RISC vs CISC 

– Pipeline Architecture 

– Number of functional units 

 

• Machine Architecture 

– Cache Size and type 

– Cache/Memory transfer rate 



Themes behind Optimization Techniques 

• Avoid redundancy: something already computed need 
not be computed again 

• Smaller code: less work for CPU, cache, and memory! 

• Less jumps: jumps interfere with code pre-fetch 

• Code locality: codes executed close together in time is 
generated close together in memory – increase locality of 
reference 

• Extract more information about code: More info – 
better code generation 



Redundancy elimination 

• Redundancy elimination = determining that two computations 

are equivalent and eliminating one. 

 

• There are several types of redundancy elimination: 

 

– Value numbering  

• Associates symbolic values to computations and 

identifies expressions that have the same value 

 

– Common subexpression elimination 

• Identifies expressions that have operands with the same 

name  



Redundancy elimination 

– Constant/Copy propagation 

• Identifies variables that have constant/copy values 

and uses the constants/copies in place of the 

variables. 

 

– Partial redundancy elimination 

• Inserts computations in paths to convert partial 

redundancy to full redundancy. 

 



Optimizing Transformations 

• Common sub expression elimination  

• Code motion 

• Strength reduction 

• Dead code elimination 

• Copy propagation 

• Loop optimization 

• Compile time evalution 

• Induction variables and strength reduction 

 



Compile-Time Evaluation 

• Expressions whose values can be pre-computed at the 

compilation time 

 

• Two ways: 

– Constant folding 

– Constant propagation 



Compile-Time Evaluation 

• Constant folding: Evaluation of an expression with constant 

operands to replace the expression with single value 

 

• Example: 

 area := (22.0/7.0) * r ** 2 

 

 area := 3.14286 * r ** 2 



Compile-Time Evaluation 

• Constant Propagation: Replace a variable with constant 

which has been assigned to it earlier. 

 

• Example: 

pi := 3.14286 

area = pi * r ** 2 

      area = 3.14286 * r ** 2 



Constant Propagation 

• What does it mean? 

– Given an assignment x = c, where c is a constant, replace 
later uses of x with uses of c, provided there are no 
intervening assignments to x. 

• Similar to copy propagation 

• Extra feature: It can analyze constant-value 
conditionals to determine whether a branch should 
be executed or not. 

• When is it performed? 

– Early in the optimization process.  

• What is the result?  

– Smaller code 

– Fewer registers 



Common Sub-expression Evaluation 

• Identify common sub-expression present in different 
expression, compute once, and use the result in all the 
places. 

– The definition of the variables involved should not 
change 

 

Example: 

 a := b * c  temp := b * c 

 …    a := temp 

 …    … 
 x := b * c + 5 x := temp + 5 

 



Common Subexpression Elimination 

 

• Local common subexpression elimination 

– Performed within basic blocks 

– Algorithm sketch: 

• Traverse BB from top to bottom 

• Maintain table of expressions evaluated so far 

– if any operand of the expression is redefined, 

remove it from the table 

 



Common Subexpression Elimination 

• Modify applicable instructions as you go 

– generate temporary variable, store the expression 

in it and use the variable next time the expression 

is encountered. 

 

 

 

X=a+b 

…… 

…… 

Y=a+b 

T=a+b 

X=t 

….. 
Y=t 



Common Subexpression Elimination 

c = a + b 
d = m * n 
e = b + d 
f = a + b 
g = - b 
h = b + a 
a = j + a 
k = m * n 
j = b + d 
a = - b 
if m * n go to L  

t1 = a + b 
c = t1 
t2 = m * n 
d = t2 
t3 = b + d 
e = t3 
f = t1 
g = -b 
h = t1 /* commutative */ 
a = j + a 
k = t2 
j = t3 
a = -b 
if t2 go to L  

the table contains quintuples: 
(pos, opd1, opr, opd2, tmp) 



Common Subexpression Elimination 

• Global common subexpression elimination 

– Performed on flow graph 

– Requires available expression information 

• In addition to finding what expressions are available 

at the endpoints of basic blocks, we need to know 

where each of those expressions was most recently 

evaluated (which block and which position within 

that block). 



Common Sub-expression Evaluation 

z : = a + b + 10 

a : =  b 

1 

2 3 

4 

 ͞a + ď͟ is Ŷot a 
common sub-

expression in 1 

and 4 

None of the variable involved should be 

modified in any path 

x : = a + b 



Code Motion 

• Moving code from one part of the program to other without 

modifying the algorithm 

 

– Reduce size of the program 

– Reduce execution frequency of the code subjected to 

movement 



Code Motion 

1. Code Space reduction: Similar to common sub-expression 
elimination but with the objective to reduce code size. 

  

 Example: Code hoisting 

      temp : = x ** 2 

 if (a< b) then   if (a< b) then 

  z := x ** 2      z := temp 

 else    else 

  y := x ** 2 + 10     y := temp + 10 

͞ǆ ** Ϯ͞ is Đoŵputed oŶĐe iŶ ďoth Đases, ďut the Đode 
size in the second case reduces. 



Code Motion 

2 Execution  
3 frequency reduction: reduce execution frequency of 

partially available expressions (expressions available 
atleast in one path) 

 
Example: 

if (a<b) then  if (a<b) then 
 z = x * 2     temp = x * 2 
       z = temp 
else    else  
y = 10       y = 10 
       temp = x * 2 
g = x * 2    g = temp; 



Code Motion 

• Move expression out of a loop if the evaluation 

does not change inside the loop. 

Example: 

   while ( i < (max-2) ) …  
Equivalent to: 

   t :=  max - 2 

   while ( i < t ) … 



Code Motion 

• Safety of Code movement 

 Movement of an expression e from a basic block bi to 
another block bj, is safe if it does not introduce any new 
occurrence of e along any path. 

 

Example: Unsafe code movement 

    temp = x * 2 

if (a<b) then  if (a<b) then 

 z = x * 2      z = temp 

else   else  

   y = 10       y = 10 



Strength Reduction 

• Replacement of an operator with a less costly one. 

 

Example: 

     temp = 5; 

   for i=1 to 10 do  for i=1 to 10 do 

 …      … 

 x = i * 5         x = temp 

 …      … 

        temp = temp + 5 

 end   end 

• Typical cases of strength reduction occurs in address 
calculation of array references. 

• Applies to integer expressions involving induction variables 
(loop optimization) 
 



Dead Code Elimination 

• Dead Code are portion of the program which will not be 
executed in any path of the program. 

– Can be removed 

• Examples: 

– No control flows into a basic block 

– A variable is dead at a point -> its value is not used 
anywhere in the program 

– An assignment is dead -> assignment assigns a value to a 
dead variable 



Dead Code Elimination 

• Examples: 

•i=j; 

•… 

•X=i+10 

•The optimization can be performed by 

•Eliminating the assignment statement 

•i=j 

. 

This assignment statement is called dead 

assignment . 

 
  

 



Copy Propagation 

• What does it mean? 

–  Given an assignment x = y, replace later uses of x with 

uses of y, provided there are no intervening assignments 

to x or y. 

 

• When is it performed? 

– At any level, but usually early in the optimization 

process.  

 

• What is the result?  

– Smaller code 



Copy Propagation 

• f := g are called copy statements or copies 

• Use of g for f, whenever possible after copy statement 

 

Example: 

 x[i] = a;   x[i] = a; 

    sum = x[i] + a;  sum = a + a; 

 

• May not appear to be code improvement, but opens up 
scope for other optimizations. 



Local Copy Propagation 

• Local copy propagation 

– Performed within basic blocks 

– Algorithm sketch: 

• traverse BB from top to bottom 

• maintain table of copies encountered so far 

• modify applicable instructions as you go 



Loop Optimization 

• Decrease the number if instruction in the inner loop 

• Even if we increase no of instructions in the outer loop 

• Techniques: 

– Code motion 

– Induction variable elimination 

– Strength reduction 



Peephole Optimization 

• Pass over generated code to examine  a few instructions, 

typically 2 to 4 

– Redundant instruction Elimination: Use algebraic 

identities 

– Flow of control optimization: removal of redundant 

jumps 

– Use of machine idioms 



Redundant instruction elimination 

• Redundant load/store: see if an obvious replacement is 
possible 

 MOV  R0, a 
MOV a, R0 

 Can eliminate the second instruction without needing 
any global knowledge of a 

• Unreachable code: identify code which will never be 
executed: 

#define DEBUG 0 

if( DEBUG) {   if (0 != 1) goto L2 

 print debugging info  print debugging info 

} 

                    L2: 



Algebraic identities 

• Worth recognizing single instructions with a constant 
operand: 

A * 1 = A 

A * 0 = 0 

A / 1 = A 

  A * 2 = A + A 

More delicate with floating-point 

• Strength reduction: 

 A ^ 2 = A * A 



Objective 

• Why would anyone write X * 1? 

• Why bother to correct such obvious junk code? 

• In fact one might write 

 #define MAX_TASKS  1 
... 
a = b * MAX_TASKS; 

 

• Also, seemingly redundant code can be produced by other 
optimizations. This is an important effect. 



The right shift problem 

• Arithmetic Right shift:  

– shift right  and use sign bit to fill most significant bits 

 -5                     111111...1111111011 

 SAR                 111111...1111111101 

  which is -3, not -2 

–  in most languages -5/2 = -2 

 



Addition chains for multiplication 

• If multiply is very slow (or on a machine with no multiply 

instruction like the original SPARC), decomposing a constant 

operand into sum of powers of two can be effective: 

  X * 125   =    x * 128 - x*4 + x 

– two shifts, one subtract and one add, which may be 

faster than one multiply 

– Note similarity with efficient exponentiation method 

 



Folding Jumps to Jumps 

• A jump to an unconditional jump can copy the target address 

   JNE lab1 
      ... 
lab1: JMP lab2 

Can be replaced by: 

          JNE lab2 

As a result, lab1 may become dead (unreferenced) 



Jump to Return 

• A jump to a return can be replaced by a return 

     JMP lab1 
         ... 
 lab1: RET 

– Can be replaced by 
           RET 

lab1 may become dead code 



Usage of Machine idioms 

• Use machine specific hardware instruction which may be 

less costly. 

 

    i := i + 1 

  ADD i, #1    INC i 



Local Optimization 



Optimization of Basic Blocks 

• Many structure preserving transformations can be 

implemented by construction of DAGs of basic blocks 



DAG representation 

 of Basic Block (BB) 

• Leaves are labeled with unique identifier (var name or const) 

• Interior nodes are labeled by an operator symbol 

• Nodes optionally have a list of labels (identifiers) 

• Edges relates operands to the operator (interior nodes are 

operator) 

• Interior node represents computed value 

– Identifier in the label are deemed to hold the value 



Example: DAG for BB 

t1 := 4 * i 
t1 

* 

i 4 

t1 := 4 * i 
t3 := 4 * i 
t2 := t1 + t3 

* 

i 4 

+ 

t1, t3 

t2 

if (i <= 20)goto L1 

<= 

i 20 

(L1) 



Construction of DAGs for BB 

• I/p: Basic block, B 

• O/p: A DAG for B containing the following information: 

1) A label for each node 

2) For leaves the labels are ids or consts 

3) For interior nodes the labels are operators 

4) For each node a list of attached ids (possible empty list, 
no consts) 



Construction of DAGs for BB 

• Data structure and functions: 

– Node: 

1) Label: label of the node 

2) Left: pointer to the left child node 

3) Right: pointer to the right child node 

4) List: list of additional labels (empty for leaves) 

– Node (id): returns the most recent node created for id. 
Else return undef 

– Create(id,l,r): create a node with label id with l as left 
child and r as right child. l and r are optional params. 



Construction of DAGs for BB 

• Method: 

For each 3AC, A in B 

A if of the following forms: 

1. x := y op z 

2. x := op y 

3. x := y 

1. if ((ny = node(y)) == undef) 

 ny = Create (y); 

 if (A == type 1)  

   and ((nz = node(z)) == undef) 

    nz = Create(z); 
 

 



Construction of DAGs for BB 

2. If (A == type 1) 

 FiŶd a Ŷode laďelled ͚op͛ ǁith left aŶd ƌight as Ŷy and nz 
respectively [determination of common sub-
expression] 

If (not found) n = Create (op, ny, nz); 

If (A == type 2) 

 FiŶd a Ŷode laďelled ͚op͛ ǁith a siŶgle Đhild as Ŷy  

 If (not found) n = Create (op, ny); 

If (A == type 3)  n = Node (y); 

3. Remove x from Node(x).list 

  Add x in n.list 

  Node(x) = n; 



Example: DAG construction from BB 

t1 := 4 * i 

* 

i 4 

t1 



Example: DAG construction from BB 

t1 := 4 * i 

t2 := a [ t1 ] 

* 

i 4 

t1 

[] 

a 

t2 



Example: DAG construction from BB 

t1 := 4 * i 

t2 := a [ t1] 

t3 := 4 * i 

* 

i 4 

t1, t3 

[] 

a 

t2 



Example: DAG construction from BB 

t1 := 4 * i 

t2 := a [ t1 ] 

t3 := 4 * i 

t4 := b [ t3 ] 

* 

i 4 

t1, t3 

[] 

a 

t2 
[] 

b 

t4 



Example: DAG construction from BB 

t1 := 4 * i 

t2 := a [ t1 ] 

t3 := 4 * i 

t4 := b [ t3 ] 

t5 := t2 + t4 

* 

i 4 

t1, t3 

[] 

a 

t2 
[] 

b 

t4 

t5 + 



Example: DAG construction from BB 

t1 := 4 * i 

t2 := a [ t1 ] 

t3 := 4 * i 

t4 := b [ t3 ] 

t5 := t2 + t4 
i := t5 

* 

i 4 

t1, t3 

[] 

a 

t2 
[] 

b 

t4 

t5,i + 



DAG of a Basic Block 

• Observations: 

– A leaf node for the initial value of an id 

– A node n for each statement s 

– The children of node n are the last definition (prior to s) 

of the operands of n 



Optimization of Basic Blocks 

• Common sub-expression elimination: by construction of DAG 

– Note: for common sub-expression elimination, we are 

actually targeting for expressions that compute the same 

value. 

a := b +c 

b := b –d 
c := c +d 

e := b +c 

Common expressions 

But do not generate the 

same result 



Optimization of Basic Blocks 

• DAG representation identifies expressions that yield 
the same result 

a := b + c 

b := b – d 
c := c + d 

e := b + c 

b0 c0 d0 

+ 

+ + - a b c 

e 



Optimization of Basic Blocks 

• Dead code elimination: Code generation from DAG 

eliminates dead code. 

a := b + c 

b := a – d 
d := a – d 
c := d + c 

 
b is not live 

c 

a := b + c 

d := a - d 

c := d + c 

b0 c0 

d0 
+ 

- 

+ 

a 

b,d × 



Loop Optimization 



Loop Optimizations 

• Most important set of optimizations 

– Programs are likely to spend more time in loops 

• Presumption: Loop has been identified 

• Optimizations: 

– Loop invariant code removal 

– Induction variable strength reduction 

– Induction variable reduction 



Loops in Flow Graph 

• Dominators: 

   A node d of a flow graph G dominates a node n, if every 
path in G from the initial node to n goes through d. 

 

 Represented as: d dom n 

 

Corollaries: 

 Every node dominates itself. 

 The initial node dominates all nodes in G. 

 The entry node of a loop dominates all nodes in the loop. 



Loops in Flow Graph 

• Each node n has a unique immediate dominator m, which is 
the last dominator of n on any path in G from the initial 
node to n. 

(d ≠ n) && (d dom n) → d dom m 

• Dominator tree (T): 

 A representation of dominator information of flow graph 
G. 

• The root node of T is the initial node of G 

• A node d in T dominates all node in its sub-tree 



Example: Loops in Flow Graph 

1 

2 3 

4 

5 6 7 

8 9 

Flow Graph Dominator Tree 

1 

2 3 

4 

5 6 

7 

8 9 



Loops in Flow Graph 

• Natural loops: 

1. A loop has a siŶgle eŶtƌǇ poiŶt, Đalled the ͞headeƌ .͟ 
Header dominates all node in the loop 

2. There is at least one path back to the header from the 

loop nodes (i.e. there is at least one way to iterate the 

loop) 

  

• Natural loops can be detected by back edges. 

• Back edges: edges where the sink node (head) 

dominates the source node (tail) in G 

 



Loop Optimization 

• Loop interchange: exchange inner loops with outer loops 

 

• Loop splitting: attempts to simplify a loop or eliminate 
dependencies by breaking it into multiple loops which have 
the same bodies but iterate over different contiguous 
portions of the index range.  

 

– A useful special case is loop peeling - simplify a loop with 
a problematic first iteration by performing that iteration 
separately before entering the loop.  



Loop Optimization 

• Loop fusion: two adjacent loops would iterate the same 
number of times, their bodies can be combined as long as 
they make no reference to each other's data 

 

• Loop fission: break a loop into multiple loops over the same 
index range but each taking only a part of the loop's body. 

 

• Loop unrolling: duplicates the body of the loop multiple 
times 

 



Loop Optimization 

• Pre-Header: 

– Targeted to hold statements that 

are moved out of the loop 

– A basic block which has only the 

header as successor 

– Control flow that used to enter 

the loop from outside the loop, 

through the header, enters the 

loop from the pre-header 

Header 

loop L 

Header 

loop L 

Pre-header 



Loop Invariant Code Removal 

• Move out to pre-header the statements whose source 

operands do not change within the loop. 

 

– Be careful with the memory operations 

– Be careful with statements which are executed in some of 

the iterations 



Loop Invariant Code Removal 

• Rules: A statement S: x:=y op z is loop invariant: 

 

– y and z not modified in loop body 

– S is the only statement to modify x 

– For all uses of x, x is in the available def set. 

– For all exit edge from the loop, S is in the available def set 

of the edges. 

– If S is a load or store (mem ops), then there is no writes 

to address(x) in the loop. 



Loop Invariant Code Removal 

Rules that need change: 

• For all use of x is in the 
available definition set 

• For all exit edges, if x is live 
on the exit edges,  is in the 
available definition set on 
the exit edges 

• Approx of First rule: 

– d dominates all uses of x 

• Approx of Second rule 

– d dominates all exit 
basic blocks where x is 
live 

   

  Loop invariant code removal can be done without 

    available definition information. 

 



Loop Induction Variable 

• Induction variables are variables such that every time they 
change value, they are incremented or decremented. 

– Basic induction variable: induction variable whose only 
assignments within a loop are of the form: 

  i = i +/- C, where C is a constant. 

 

– Primary induction variable: basic induction variable that 
controls the loop execution 

    (for i=0; i<100; i++) 

  i (register holding i) is the primary induction variable. 

 

– Derived induction variable: variable that is a linear 
function of a basic induction variable. 



Loop Induction Variable 

• Basic: r4, r7, r1 

• Primary: r1 

• Derived: r2 

 

r2 = r1 * 4 

r4 = r7 + 3 

r7 = r7 + 1 

r10 = *r2 

r3 = *r4 

r9 = r1 * r3 

r10 = r9 >> 4 

*r2 = r10 

r1 = r1 + 4 

If(r1 < 100) goto Loop 

Loop: 

r1 = 0 

r7 = &A 



Induction Variable Strength Reduction 

• Create basic induction variables from derived induction 
variables. 

• Rules:    (S: x := y op z) 

– op is *, <<, +, or – 

– y is a induction variable 

– z is invariant 

– No other statement modifies x 

– x is not y or z 

– x is a register 



Induction Variable Strength Reduction 

• Transformation: 

 Insert the following into the bottom of pre-header: 

 new_reg = expression of target statement S 

 if (opcode(S)) is not add/sub, insert to the bottom of the 
preheader 

   new_inc = inc(y,op,z) 

 else 

   new_inc = inc(x) 

 Insert the following at each update of y 

   new_reg = new_reg + new_inc 

 Change S: x = new_reg 

Function: inc() 

 

Calculate the amount of inc 

for 1st param. 



Example: Induction Variable Strength Reduction  

                   

 r5 = r4 - 3   

 r4 = r4 + 1 

                    r7 = r4 *r9  

 r6  = r4 << 2  

                   

new_reg = r4 * r9 

new_inc = r9 

 r5 = r4 - 3   

 r4 = r4 + 1 

                   
new_reg += new_inc  

r7 = new_reg 

 r6  = r4 << 2  

                   



Induction Variable Elimination 

• Remove unnecessary basic induction variables from the loop 
by substituting uses with another basic induction variable. 

 

• Rules: 

– Find two basic induction variables, x and y 

– x and y in the same family 

• Incremented at the same place 

– Increments are equal 

– Initial values are equal 

– x is not live at exit of loop 

– For each BB where x is defined, there is no use of x 
between the first and the last definition of y 



Example: Induction Variable Elimination 

r1 = 0 

r2 = 0 

r1 = r1 - 1 

r2 = r2 -1 

r9 = r2 + r4 r7 = r1 * r9 

r4 = *(r1) 

*r2 = r7 

r2 = 0 

r2 = r2 - 1 

r9 = r2 + r4 r7 = r2 * r9 

r4 = *(r2) 

*r7 = r2 



Induction Variable Elimination 

• Variants: 

1. Trivial: induction variable that are never used except to 
increment themselves and not live at the exit of loop 

2. Same increment, same initial value (discussed) 

3. Same increment, initial values are a known constant 
offset from one another 

4. Same increment, nothing known about the relation of 
initial value 

5. Different increments, nothing known about the relation 
of initial value 

 

– 1,2 are basically free 

– 3-5 require complex pre-header operations 

C
o

m
p

le
xity

 o
f e

lim
in

a
tio

n
 



Example: Induction Variable Elimination 

• Case 4: Same increment, unknown initial value 

 For the induction variable that we are eliminating, look at 

each non-incremental use, generate the same sequence of 

values as before. If that can be done without adding any 

extra statements in the loop body, then the transformation 

can be done. 

    

r4 := r2 + 8 

r3 := r1 + 4 

. 

. 

r1 := r1 + 4 

r2 := r2 + 4 

   rx := r2 –r1 + 8 

r4 := r1 + rx 

r3 := r1 = 4 

. 

. 

r1 := r1 + 4 



Loop Unrolling 

• Replicate the body of a loop (N-1) times, resulting in total N 

copies. 

– Enable overlap of operations from different iterations 

– Increase potential of instruction level parallelism (ILP) 

• Variants: 

– Unroll multiple of known trip counts 

– Unroll with remainder loop 

– While loop unroll 



Optimization 

Constant Folding 

• Evaluate constant expressions at compile time 

• Only possible when side-effect freeness guaranteed 

c:= 1 + 3 c:= 4 

true not false 

Caveat: Floats — implementation could be different 

between machines!   



Unit-4 

 

PART-B 

DATA FLOW ANALYSIS 

553 



Global Data Flow Analysis 

• Collect information about the whole program. 

• Distribute the information to each block in the flow graph. 

 

• Data flow information: Information collected by data flow 
analysis. 

• Data flow equations: A set of equations solved by data flow 
analysis to gather data flow information. 

554 



Data flow analysis 

• IMPORTANT! 

– Data flow analysis should never tell us that a 

transformation is safe when in fact it is not. 

– When doing data flow analysis we must be   

• Conservative  

– Do not consider information that may not 

preserve the behavior of the program 

• Aggressive 

– Try to collect information that is as exact as 

possible, so we can get the greatest benefit from 

our optimizations. 

555 



Global Iterative Data Flow Analysis 

• Global:  

– Performed on the flow graph 

– Goal = to collect information at the beginning and end 

of each basic block 

• Iterative: 

– Construct data flow equations that describe how 

information flows through each basic block and solve 

them by iteratively converging on a solution. 

556 



Global Iterative Data Flow Analysis 

• Components of data flow equations 

– Sets containing collected information 

• in set: information coming into the BB from outside 

(following flow of data) 

• gen set: information generated/collected within the 

BB 

• kill set: information that, due to action within the BB, 

will affect what has been collected outside the BB 

• out set: information leaving the BB 

– Functions (operations on these sets) 

• Transfer functions describe how information changes 

as it flows through a basic block 

• Meet functions describe how information from 

multiple paths is combined. 557 



Global Iterative Data Flow Analysis 

• Algorithm sketch 

– Typically, a bit vector is used to store the information. 

• For example, in reaching definitions, each bit 
position corresponds to one definition.  

– We use an iterative fixed-point algorithm. 

– Depending on the nature of the problem we are solving, 
we may need to traverse each basic block in a forward 
(top-down) or backward direction. 

• The order in which we "visit" each BB is not 
important in terms of algorithm correctness, but is 
important in terms of efficiency. 

– In & Out sets should be initialized in a conservative and 
aggressive way. 

558 



Typical problems 

• Reaching definitions 

– For each use of a variable, find all definitions that reach 

it. 

• Upward exposed uses 

– For each definition of a variable, find all uses that it 

reaches. 

• Live variables 

– For a point p and a variable v, determine whether v is 

live at p. 

• Available expressions 

– Find all expressions whose value is available at some 

point p. 

 
559 



Global Data Flow Analysis 

• A typical data flow equation: 

  

        S: statement 

    

 

in[S]: Information goes into S 

   kill[S]: Information get killed by S 

   gen[S]: New information generated by S 

   out[S]: Information goes out from S 

560 

[ ] [ ] ( [ ] [ ])out S gen S in S kill S 



Global Data Flow Analysis 

• The notion of gen and kill depends on the desired 

information. 

• In some cases, in may be defined in terms of out - equation 

is solved as analysis traverses in the backward direction.  

• Data flow analysis follows control flow graph. 

– Equations are set at the level of basic blocks, or even for 

a statement 

 

561 



Points and Paths 

• Point within a basic block: 

–  A location between two consecutive statements. 

– A location before the first statement of the basic block. 

– A location after the last statement of the basic block. 

• Path: A path from a point p1 to pn is a sequence of points  p1, 
p2, … pn such that for each i : 1 ≤ i ≤ n, 

– pi is a point immediately preceding a statement and pi+1 is 
the point immediately following that statement in the 
same block,   or 

– pi is the last point of some block and pi+1 is first point in 
the successor block. 

562 



Example: Paths and Points 

563 

d1: i := m – 1 
d2: j := n 

d3: a := u1 

d4: i := i + 1 

d5: j := j - 1 

               

B1 

B2 

B3 

B4 

           d6: a := u2 B5 
B6 

pn 

p3 

p1 

p2 

p4 

p5 

p6 

Path: 

  p1, p2, p3, p4, 

  p5, p6 … pn 



Reaching Definition 

• Definition of a variable x is a statement that assigns or may 
assign a value to x. 

– Unambiguous Definition: The statements that certainly 
assigns a value to x 

• Assignments to x 

• Read a value from I/O device to x 

– Ambiguous Definition: Statements that may assign a 
value to x 

• Call to a procedure with x as parameter (call by ref) 

• Call to a procedure which can access x (x being in the 
scope of the procedure) 

• x is an alias for some other variable (aliasing) 

• Assignment through a pointer that could refer x 
564 



Reaching Definition 

• A definition d reaches a point p 

–  if there is a path from the point immediately following d 
to p   and 

–  d is not killed along the path (i.e. there is not redefinition 
of the same variable in the path) 

• A definition of a variable is killed between two points when 
there is another definition of that variable along the path. 

 

 

565 



Example: Reaching Definition 

566 

d1: i := m – 1 
d2: j := n 
d3: a := u1 

d4: i := i + 1 

d5: j := j - 1 

               

B1 

B2 

B3 

B4 

           d6: a := u2 B5 
B6 

p1 

p2 

Definition of i (d1) 

reaches p1 

 

Killed as d4, does not 

reach p2. 
 

Definition of i (d1) 

does not reach B3, B4, 

B5 and B6. 



Reaching Definition 

• Non-Conservative view: A definition might reach a point 
even if it might not. 

– Only unambiguous definition kills a earlier definition 

– All edges of flow graph are assumed to be traversed. 

 

 if (a == b) then a = 2 

  else if (a == b) then a = 4 

The defiŶitioŶ ͞a=4͟ is Ŷot ƌeaĐhaďle. 
 

  Whether each path in a flow graph is taken is an 
undecidable problem 

567 



Data Flow analysis of a Structured Program 

• Structured programs have well defined loop constructs – the 

resultant flow graph is always reducible. 

– Without loss of generality we only consider while-do and 

if-then-else control constructs 

S → id := E│“ ; “ 

   │ if E theŶ “ else “ │ do “ ǁhile E 

E → id + id  │ id 

The non-terminals represent regions. 

568 



Data Flow analysis of a Structured Program 

• Region: A graph G’= ;N’,E’Ϳ which is portion of the control 

flow graph G.  

– The set of nodes N’ is in G’ such that 

•  N’ includes a header h 

• h dominates all node in N’ 
– The set of edges E’ is in G’ such that 

• All edges a → b such that a,b are in N’ 

569 



Data Flow analysis of a Structured Program 

• Region consisting of a statement S: 

– Control can flow to only one block outside the region 

• Loop is a special case of a region that is strongly connected 

and includes all its back edges. 

• Dummy blocks with no statements are used as technical 

convenience (indicated as open circles) 

570 



Data Flow analysis of a Structured Program: 

Composition of Regions 

S → “1 ; S2 

571 

S1 

S2 



Data Flow analysis of a Structured Program: 

Composition of Regions 

“ → if E then S1 else S2  

572 

S1 S2 

if E goto S1 



Data Flow analysis of a Structured Program: 

Composition of Regions 

“ → do S1 while E 

573 

S1 

if E goto S1 



Data Flow Equations 

• Each region (or NT) has four attributes: 

– gen[S]: Set of definitions generated by the block S. 

  If a definition d is in gen[S], then d reaches the end 

of block S. 

– kill[S]: Set of definitions killed by block S. 

If d is in kill[S], d never reaches the end of block S. 

Every path from the beginning of S to the end S 

must have a definition for a (where a is defined 

by d). 

574 



Data Flow Equations 

– in[S]: The set of definition those are live at the entry 
point of block S. 

– out[S]: The set of definition those are live at the exit 
point of block S. 

• The data flow equations are inductive or syntax 
directed. 

– gen and kill are synthesized attributes. 

– in is an inherited attribute. 

 

 

575 



Data Flow Equations 

• gen[S] concerns with a single basic block. It is the set of 

definitions in S that reaches the end of S. 

• In contrast out[S] is the set of definitions (possibly defined 

in some other block) live at the end of S considering all 

paths through S. 

576 



Data Flow Equations Single statement 

577 

d:     a := b + c 

[ ] [ ] ( [ ] [ ])out S gen S in S kill S 

Da: The set of definitions in the program for variable a 

S 

[ ] { }

[ ] { }a

gen S d

kill S D d


 



Data Flow Equations Composition 

578 

S 

S1 

S2 

2 1 2

2 1 2

[ ] [ ] ( [ ] [ ])

[ ] [ ] ( [ ] [ ])

gen S gen S gen S kill S

kill S kill S kill S gen S

 

 

1

2 1

2

[ ] [ ]

[ ] [ ]

[ ] [ ]

in S in S

in S out S

out S out S







Data Flow Equations if-then-else 

579 

S1 S2 
S 

1 2

1 2

[ ] [ ] [ ]

[ ] [ ] [ ]

gen S gen S gen S

kill S kill S kill S





1

2

1 2

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

in S in S

in S in S

out S out S out S








Data Flow Equations Loop 

580 

S S1 

1

1

[ ] [ ]

[ ] [ ]

gen S gen S

kill S kill S




1 1

1

[ ] [ ] [ ]

[ ] [ ]

in S in S gen S

out S out S







Data Flow Analysis 

• The attributes are computed for each region. The equations 

can be solved in two phases: 

– gen and kill can be computed in a single pass of a basic 

block. 

– in and out are computed iteratively. 

• Initial condition for in for the whole program is  

• In can be computed top- down 

• Finally out is computed 

581 





Dealing with loop 

• Due to back edge, in[S] cannot be used as 

   in [S1] 

• in[S1] and out[S1] are interdependent. 

• The equation is solved iteratively. 

• The general equations for in and out: 

582 

[ ] ( [ ] : Y is a predecessor of  S)

[ ] [ ] ( [ ] [ ])

in S out Y

out S gen S in S kill S



 



Reaching definitions 

• What is safe? 

– To assume that a definition reaches a point even if it 

turns out not to. 

– The computed set of definitions reaching a point p 

will be a superset of the actual set of definitions 

reaching p 

– Goal : make the set of reaching definitions as small 

as possible (i.e. as close to the actual set as possible) 

583 



Reaching definitions 

• How are the gen and kill sets defined? 

– gen[B] = {definitions that appear in B and reach the 

end of B} 

– kill[B] = {all definitions that never reach the end of B} 

• What is the direction of the analysis? 

– forward 

– out[B] = gen[B]  (in[B] - kill[B]) 

584 



Reaching definitions 

• What is the confluence operator? 

– union 

– in[B] =  out[P], over the predecessors P of B 

• How do we initialize? 

– start small 

• Why? Because we want the resulting set to be as 

small as possible 

– for each block B initialize out[B] = gen[B] 

585 



Computation of gen and kill sets 

586 

for each basic block BB do 

    gen(BB) =      ;    kill(BB) =      ; 

    for each statement (d: x := y op z) in sequential order in BB, do 

        kill(BB) = kill(BB) U G[x]; 

        G[x] = d; 

   endfor 

   gen(BB) = U G[x]: for all id x 

endfor 

 



Computation of in and out sets 



587 

for all basic blocks BB      in(BB) =   

for all basic blocks BB    out(BB) = gen(BB)  

change = true 

while (change) do 

    change = false 

    for each basic block BB, do 

        old_out = out(BB) 

        in(BB) = U(out(Y)) for all predecessors Y 

of BB 

        out(BB) = gen(BB) + (in(BB) – kill(BB)) 

        if (old_out != out(BB)) then change = true 

    endfor 

endfor 



Live Variable (Liveness) Analysis 

• Liveness: For each point p in a program and each variable 
y, determine whether y can be used before being redefined, 
starting at p. 

 

• Attributes 

– use = set of variable used in the BB prior to its 
definition 

– def = set of variables defined in BB prior to any use of 
the variable 

– in = set of variables that are live at the entry point of a 
BB 

– out = set of variables that are live at the exit point of a 
BB 

588 



Live Variable (Liveness) Analysis 

• Data flow equations: 
 
 
 

 
 

– 1st Equation: a var is live, coming in the block, if either 
• it is used before redefinition in B 
or 
• it is live coming out of B and is not redefined in B  

– 2nd Equation: a var is live coming out of B, iff it is live 
coming in to one of its successors. 

589 

( )

[ ] [ ] ( [ ] [ ])

[ ] [ ]
S succ B

in B use B out B def B

out B in S


 





Example: Liveness 

590 

r1 = r2 + r3 

r6 = r4 – r5 

r4 = 4 

r6 = 8 

r6 = r2 + r3 

r7 = r4 – r5 

r2, r3, r4, r5 are all live as they 

are consumed later, r6 is dead 

as it is redefined later 

r4 is dead, as it is redefined. 

So is r6.  r2, r3, r5 are live 

What does this mean? 

 r6 = r4 – r5 is useless, 

 it produces a dead 

value !! 

Get rid of it! 



Computation of use and def sets 

 

591 

for each basic block BB do 

    def(BB) =     ;    use(BB) =     ; 

    for each statement (x := y op z) in sequential order, do 

        for each operand y, do 

             if (y not in def(BB)) 

                 use(BB) = use(BB) U {y}; 

        endfor 

       def(BB) = def(BB) U {x}; 

endfor 

def is the union of all the LHS’s 

use is all the ids used before defined 



Computation of in and out sets 



592 

for all basic blocks BB 

     in(BB) =     ; 

 

change = true; 

while (change) do 

    change = false 

    for each basic block BB do 

        old_in = in(BB); 

        out(BB) = U{in(Y): for all successors Y of BB} 

        in(X) = use(X) U (out(X) – def(X)) 

        if (old_in != in(X)) then change = true 

    endfor 

endfor 



DU/UD Chains 

• Convenient way to access/use reaching definition 

information. 

• Def-Use chains (DU chains) 

– Given a def, what are all the possible consumers of the 

definition produced 

• Use-Def chains (UD chains) 

– Given a use, what are all the possible producers of the 

definition consumed 

 

593 



Example: DU/UD Chains 

594 

1: r1 = MEM[r2+0] 

2: r2 = r2 + 1 

3: r3 = r1 * r4 

4: r1 = r1 + 5 

5: r3 = r5 – r1 

6: r7 = r3 * 2 

7: r7 = r6 

8: r2 = 0 

9: r7 = r7 + 1 

10: r8 = r7 + 5 

11: r1 = r3 – r8 

12: r3 = r1 * 2 

DU Chain of r1: 

   (1) -> 3,4 

   (4) ->5 

    

DU Chain of r3: 

   (3) -> 11 

   (5) -> 11 

   (12) -> 

UD Chain of r1: 

   (12) -> 11 

    

UD Chain of r7: 

   (10) -> 6,9 



Some-things to Think About 

• Liveness and Reaching definitions are basically the same 
thing! 

– All dataflow is basically the same with a few parameters 

• Meaning of gen/kill (use/def) 

• Backward / Forward 

• All paths / some paths (must/may) 

– So far, we have looked at may analysis algorithms 

– How do you adjust to do must algorithms? 

• Dataflow can be slow 

– How to implement it efficiently? 

– How to represent the info? 

 

595 



Generalizing Dataflow Analysis 

• Transfer function 

– How information is changed by BB 

out[BB] = gen[BB] + (in[BB] – kill[BB])   forward 
analysis 

in[BB] = gen[BB] + (out[BB] – kill[BB])   backward 
analysis 

• Meet/Confluence function 

– How information from multiple paths is combined 

in[BB] = U out[P] : P is pred of BB    forward analysis  

out[BB] = U in[P] : P is succ of BB     backward 
analysis 

 

596 



Generalized Dataflow Algorithm 

change = true; 

while (change) 

change = false; 

for each BB 

apply meet function 

apply transfer function 

if any changes  change = true; 

 

597 



Example: Liveness by upward exposed uses 

598 

for each basic block BB, do 

 

     

     

    for each operation (x := y op z) in reverse order in BB, do 
 

              

              

             

        for each source operand of op, y, do 
 

                   

                  

        endfor 

    endfor 

endfor 

[ ]

[ ]

gen BB

kill BB




[ ] [ ] { }

[ ] [ ] { }

gen BB gen BB x

kill BB kill BB x

 



[ ] [ ] { }

[ ] [ ] { }

gen BB gen BB y

kill BB kill BB y



 



Beyond Upward Exposed Uses 

• Upward exposed defs 

– in = gen + (out – kill) 

– out = U(in(succ)) 

– Walk ops reverse order 

• gen += {dest}   kill 
+= {dest} 

 

• Downward exposed uses 

– in = U(out(pred)) 

– out = gen + (in - kill) 

– Walk in forward order 

• gen += {src}; kill -= 
{src}; 

• gen -= {dest};  kill 
+= {dest}; 

 

 

• Downward exposed defs 

– in = U(out(pred)) 

– out = gen + (in - kill) 

– Walk in forward order 

• gen += {dest}; kill 
+= {dest}; 

 

 

599 



All Path Problem 

• Up to this point 

– Any path problems (maybe relations) 

• Definition reaches along some path 

• Some sequence of branches in which def reaches 

• Lots of defs of the same variable may reach a 
point 

– Use of Union operator in meet function 

• All-path: Definition guaranteed to reach 

– Regardless of sequence of branches taken, def 
reaches 

– Can always count on this 

– Only 1 def can be guaranteed to reach 

– Availability (as opposed to reaching) 

• Available definitions 

• Available expressions (could also have reaching 
expressions, but not that useful) 

600 



Reaching vs Available Definitions 

601 

1:  r1 = r2 + r3 

2:  r6 = r4 – r5 

3:  r4 = 4 

4:  r6 = 8 

 

5:  r6 = r2 + r3 

6:  r7 = r4 – r5 1,2,3,4 reach 

1 available 

1,2 reach 

1,2 available 

1,3,4 reach 

1,3,4 available 

1,2 reach 

1,2 available 



Available Definition Analysis (Adefs) 

• A definition d is available at a point p if along all paths 
from d to p, d is not killed 

• Remember, a definition of a variable is killed between 2 
points when there is another definition of that variable 
along the path 

– r1 = r2 + r3 kills previous definitions of r1 

• Algorithm: 

– Forward dataflow analysis as propagation occurs from 
defs downwards 

– Use the Intersect function as the meet operator to 
guarantee the all-path requirement 

– gen/kill/in/out similar to reaching defs 

• Initialization of in/out is the tricky part 

602 



Compute Adef gen/kill Sets 

603 

Exactly the same as Reaching defs !! 

for each basic block BB do 

    gen(BB) =      ;    kill(BB) =      ; 

    for each statement (d: x := y op z) in sequential order in BB, do 

        kill(BB) = kill(BB) U G[x]; 

        G[x] = d; 

   endfor 

   gen(BB) = U G[x]: for all id x 

endfor 

 



Compute Adef in/out Sets 

604 

U = universal set of all definitions in the prog 

in(0) = 0;   out(0) = gen(0) 

for each basic block BB, (BB != 0), do 

    in(BB) = 0;     out(BB) = U – kill(BB) 

 

change = true 

while (change) do 

    change = false 

    for each basic block BB, do 

        old_out = out(BB) 

        in(BB) =       out(Y) : for all predecessors Y of BB 

        out(BB) = GEN(X) + (IN(X) – KILL(X)) 

        if (old_out != out(X))  then   change = true 

    endfor 

endfor 



Available Expression Analysis (Aexprs) 

• An expression is a RHS of an operation 

– Ex: in “rβ = rγ + r4”  “rγ + r4” is an expression 

• An expression e is available at a point p if along all paths 
from e to p, e is not killed. 

• An expression is killed between two points when one of its 
source operands are redefined 

– Ex: “r1 = rβ + rγ” kills all expressions involving r1 

• Algorithm: 

– Forward dataflow analysis 

– Use the Intersect function as the meet operator to 
guarantee the all-path requirement 

– Looks exactly like adefs, except gen/kill/in/out are the 
RHS’s of operations rather than the LHS’s 

 
605 



Available Expression 

• Input: A flow graph with e_kill[B] and e_gen[B] 

• Output: in[B] and out[B] 

• Method: 

  foreach basic block B 

   in[B1] :=    ;     out[B1] := e_gen[B1]; 

   out[B] = U - e_kill[B]; 

  change=true 

  while(change) 

   change=false; 

   for each basic block B, 

    in[B] :=      out[P]: P is pred of B 

    old_out := out[B]; 

    out[B] := e_gen[B]   (in[B] – e_kill[B]) 

    if (out[B]  ≠ old_out[B])   change :=true; 



606 



Efficient Calculation of Dataflow 

• Order in which the basic blocks are visited is important 
(faster convergence) 

• Forward analysis – DFS order 

– Visit a node only when all its predecessors have been 
visited 

• Backward analysis – Post DFS order 

– Visit a node only when all of its successors have been 
visited 

607 



Representing Dataflow Information 

• Requirements – Efficiency! 

– Large amount of information to store 

– Fast access/manipulation 

• Bitvectors 

– General strategy used by most compilers 

– Bit positions represent defs (rdefs) 

– Efficient set operations: union/intersect/isone 

– Used for gen, kill, in, out for each BB 

 

608 



Optimization using Dataflow 

• Classes of optimization 

1. Classical (machine independent) 

• Reducing operation count (redundancy 
elimination) 

• Simplifying operations 

2. Machine specific 

• Peephole optimizations 

• Take advantage of specialized hardware features 

3. Instruction Level Parallelism (ILP) enhancing 

• Increasing parallelism 

• Possibly increase instructions 

 
609 



Types of Classical Optimizations 

• Operation-level – One operation in isolation 

– Constant folding, strength reduction 

– Dead code elimination (global, but 1 op at a time) 

• Local – Pairs of operations in same BB 

– May or may not use dataflow analysis 

• Global – Again pairs of operations 

– Pairs of operations in different BBs 

• Loop – Body of a loop 

610 



Constant Folding 

• Simplify operation based on values of target operand 

– Constant propagation creates opportunities for this 

• All constant operands 

– Evaluate the op, replace with a move 

• r1 = 3 * 4  r1 = 12 

• r1 = 3 / 0  ???  Don’t evaluate excepting ops !, 
what about FP? 

– Evaluate conditional branch, replace with BRU or noop 

• if (1 < 2) goto BB2  goto BB2 

• if (1 > 2) goto BB2  convert to a noop       Dead 
code 

• Algebraic identities 

– r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0  r1 = 
r2 

– r1 = 0 * r2, 0 / r2, 0 & r2  r1 = 0 

– r1 = r2 * 1, r2 / 1  r1 = r2 611 



Strength Reduction 

• Replace expensive ops with cheaper ones 

– Constant propagation creates opportunities for this 

• Power of 2 constants 

– Mult by power of 2:  r1 = r2 * 8             r1 = r2 << 3 

– Div by power of 2:    r1 = r2 / 4             r1 = r2 >> 2 

– Rem by power of 2:  r1 = r2 % 16        r1 = r2 & 15 

• More exotic 

– Replace multiply by constant by sequence of shift and 
adds/subs 

• r1 = r2 * 6 

– r100 = r2 << 2; r101 = r2 << 1; r1 = r100 + r101 

• r1 = r2 * 7 

– r100 = r2 << 3; r1 = r100 – r2 
612 



Dead Code Elimination 

• Remove statement d: x := y op z whose result is never 

consumed. 

• Rules: 

– DU chain for d is empty 

– y and z are not live at d 

613 



Constant Propagation 

• Forward propagation of moves/assignment of the form 

  d: rx := L  where L is literal 

 

– Replacement of “rx” with “L” wherever possible. 
– d must be available at point of replacement.  

614 



Forward Copy Propagation 

• Foƌǁaƌd pƌopagatioŶ of ‘H“ of assigŶŵeŶt oƌ ŵoǀ͛s. 
 

 

 

 

 

 

 

– Reduce chain of dependency 

– Possibly create dead code 

615 

r1 := r2 
   . 
   . 
   . 
r4 := r1 + 1 

r1 := r2 
   . 
   . 
   . 
r4 := r2 + 1 



Forward Copy Propagation 

• Rules: 

  Statement dS is source of copy propagation 

  Statement dT is target of copy propagation 

– dS is a mov statement 

– src(dS) is a register 

– dT uses dest(dS) 

– dS is available definition at dT 

– src(dS) is a available expression at dT 

616 



Backward Copy Propagation 

• Backward propagation of LHS of an assignment. 

 dT: r1 := r2 + r3      r4 := r2 + r3 

         r5 := r1 + r6      r5 := r4 + r6 

 dS: r4 := r1             Dead Code 

• Rules: 

– dT and dS are in the same basic block 

– dest(dT) is register 

– dest(dT) is not live in out[B] 

– dest(dS) is a register 

– dS uses dest(dT) 

– dest(dS) not used between dT and dS 

– dest(dS) not defined between d1 and dS 

– There is no use of dest(dT) after the first definition of 
dest(dS) 

617 



Local Common Sub-Expression Elimination 

• Benefits: 

– Reduced computation 

– Generates mov statements, 
which can get copy 
propagated 

• Rules: 

– dS and dT has the same 
expression 

– src(dS) == src(dT) for all 
sources 

– For all sources x, x is not 
redefined between dS and dT 

dS:  r1 := r2 + r3 

 

dT:  r4 := r2 + r3 

618 

dS:  r1 := r2 + r3 

       r100 := r1 

 

dT:  r4 := r100 



Global Common Sub-Expression Elimination 

• Rules: 

– dS and dT has the same expression 

– src(dS) == src(dT) for all sources of dS and dT 

– Expression of dS is available at dT 

619 



Unreachable Code Elimination 

620 

Mark initial BB visited 

to_visit = initial BB 

while (to_visit not empty) 

     current = to_visit.pop() 

     for each successor block of current 

 Mark successor as visited; 

 to_visit += successor 

     endfor 

endwhile 

Eliminate all unvisited blocks 

entry 

bb1 bb2 

bb3 bb4 

bb5 

Which BB(s) can be deleted? 



Unit-5 

 

 OBJECT CODE GENERATION 

 



 CODE GENERATION 

 

•  The final phase in our compiler model is the code generator. 

It takes as input an intermediate representation of the 

source program and produces as output an equivalent target 

program. 

•  The requirements traditionally imposed on a code generator 

are severe. The output code must be correct and of high 

quality, meaning that it should make effective use of the 

resources of the target machine. Moreover, the code 

generator itself should run efficiently. 



 ISSUES IN THE DESIGN OF A CODE GENERATOR 

 While the details are dependent on the target language and  

 the operating system, issues such as memory management,   

  instruction selection, register allocation, and evaluation order  

   are inherent in almost all code generation problems . 



INPUT TO THE CODE GENERATOR 

 •  The input to the code generator consists of the 

intermediate representation of the source program 

produced by the front end, together with information in the 

symbol table that is used to determine the run time 

addresses of the data objects denoted by the names in the 

intermediate representation. 

•                      There are several choices for the intermediate 

language, including: linear representations such as postfix 

notation, three address representations such as quadruples, 

virtual machine representations such as syntax trees and 

dags. 



INPUT TO THE CODE GENERATOR 

•  We assume that prior to code generation the front end has 
scanned, parsed, and translated the source program into a 
reasonably detailed intermediate representation, so the 
values of names appearing in the intermediate language can 
be represented by quantities that the target machine can 
directly manipulate (bits, integers, reals, pointers, etc.). We 
also assume that the necessary type checking has take place, 
so type conversion operators have been inserted wherever 
necessary and obvious semantic errors (e.g., attempting to 
index an array by a floating point number) have already 
been detected. The code generation phase can therefore 
proceed on the assumption that its input is free of errors. In 
some compilers, this kind of semantic checking is done 
together with code generation . 



TARGET PROGRAMS 

  

 

• The output of the code generator is the target program. The 

output may take on a variety of forms: absolute machine 

language, relocatable machine language, or assembly 

language. 

•                      Producing an absolute machine language 

program as output has the advantage that it can be placed in 

a location in memory and immediately executed. A small 

program can be compiled and executed quickly. A number of  

͞studeŶt-joď͟ Đoŵpileƌs, suĐh as WATFIV aŶd PL/C, pƌoduĐe 
absolute code. 

                      



TARGET PROGRAMS 

• Producing a relocatable machine language program as 
output allows subprograms to be compiled 
separately. A set of relocatable object modules can be 
linked together and loaded for execution by a linking 
loader. Although we must pay the added expense of 
linking and loading if we produce relocatable object 
modules, we gain a great deal of flexibility in being 
able to compile subroutines separately and to call 
other previously compiled programs from an object 
module. If the target machine does not handle 
relocation automatically, the compiler must provide 
explicit relocation information to the loader to link 
the separately compiled program segments 



TARGET PROGRAMS 

• Producing an assembly language program as output makes 

the process of code generation somewhat easier .We can 

generate symbolic instructions and use the macro facilities 

of the assembler to help generate code .The price paid is the 

assembly step after code generation. 

• Because producing assembly code does not duplicate the 

entire task of the assembler, this choice is another 

reasonable alternative, especially for a machine with a small 

memory, where a compiler must uses several passes. 



 MEMORY MANAGEMENT 

   Mapping names in the source program to addresses of data  

    objects in run time memory is done cooperatively by the  

    front end and the code generator. We assume that a name in  

    a three-address statement refers to a symbol table entry for  

     the name. 

 



 MEMORY MANAGEMENT 
     If machine code is being generated, labels in three address 

statements have to be converted to addresses of 
iŶstƌuĐtioŶs. This pƌoĐess is aŶalogous to the ͞ďaĐk 
patĐhiŶg .͟ “uppose that laďels ƌefeƌ to Ƌuadƌuple Ŷuŵďeƌs 
in a quadruple array. As we scan each quadruple in turn we 
can deduce the location of the first machine instruction 
generated for that quadruple, simply by maintaining a count 
of the number of words used for the instructions generated 
so far. This count can be kept in the quadruple array (in an 
extra field), so if a reference such as j: goto i is encountered, 
and i is less than j, the current quadruple number, we may 
simply generate a jump instruction with the target address 
equal to the machine location of the first instruction in the 
code for quadruple i. If, however, the jump is forward, so i 
exceeds j, we must store on a list for quadruple i the location 
of the first machine instruction generated for quadruple j. 
Then we process quadruple i, we fill in the proper machine 
location for all instructions that are forward jumps to i.    
 



INSTRUCTION SELECTION  

 •  The nature of the instruction set of the target machine 

determines the difficulty of instruction selection. The 

uniformity and completeness of the instruction set are 

important factors. If the target machine does not support 

each data type in a uniform manner, then each exception to 

the general rule requires special handling. 

•  Instruction speeds and machine idioms are other important 

factors. If we do not care about the efficiency of the target 

program, instruction selection is straightforward. For each 

type of three- address statement we can design a code 

skeleton that outlines the target code to be generated for 

that construct. 



INSTRUCTION SELECTION 

• For example, every three address statement of the form x := 

y + z, where x, y, and z are statically allocated, can be 

translated into the code sequence 

•          

•         MOV y, R0   /* load y into register R0  */ 

•         ADD z, R0    /* add z to R0 */ 

•         MOV R0, x   /* store R0 into x */ 

 



INSTRUCTION SELECTION 

• Unfortunately, this kind of statement – by - statement code 

generation often produces poor code. For example, the 

sequence of statements 

•   a := b + c 

•   d := a + e 

• would be translated into 

•   MOV   b, R0 

•   ADD    c, R0 

•   MOV   R0, a 

•   MOV   a, R0 

•   ADD    e, R0 

•   MOV   R0, d  



INSTRUCTION SELECTION 

• Here the fourth statement is redundant, and so is the third if 

͚a͛ is Ŷot suďseƋueŶtlǇ used. 
•                      The quality of the generated code is determined 

by its speed and size. 

• A target machine with a rich instruction set may provide 

several ways of implementing a given operation. Since the 

cost differences between different implementations may be 

significant, a naive translation of the intermediate code may 

lead to correct, but unacceptably inefficient target code.  



INSTRUCTION SELECTION 

• Foƌ eǆaŵple if the taƌget ŵaĐhiŶe has aŶ  ͞iŶĐƌeŵeŶt͟ 
instruction (INC), then the three address statement a := a+1 

may be implemented more efficiently by the single 

instruction INC a, rather than by a more obvious sequence 

that loads a into a register, add one to the register, and then 

stores the result back into a. 

•     MOV   a, R0 

•     ADD    #1,R0  

•     MOV   R0, a 

 



INSTRUCTION SELECTION 

  Instruction speeds are needed to design good code   

   sequence but unfortunately, accurate timing information is  

   often difficult to obtain. Deciding which machine code  

   sequence is best for a given three address construct may  

   also require knowledge about the context in which that  

   construct appears. 



REGISTER ALLOCATION 

     Instructions involving register operands are usually shorter  

     and faster than those involving operands in memory.  

     Therefore, efficient utilization of register is particularly  

     important in generating good code. The use of registers is  

     often subdivided into two subproblems: 



REGISTER ALLOCATION 

   1.  During register allocation, we select the set of variables  

           that will reside in registers at a point in the program. 

   2.     During a subsequent register assignment  phase,  we pick   

            the specific register that a variable will reside in. 

 



REGISTER ALLOCATION 

•  Finding an optimal assignment of registers to variables is 

difficult, even with single register values. Mathematically, 

the problem is NP-complete. The problem is further 

complicated because the hardware and/or the operating 

system of the target machine may require that certain 

register usage conventions be observed. 

•                      Certain machines require register pairs (an even 

and next odd numbered register) for some operands and 

results. For example, in the IBM System/370 machines 

integer multiplication and integer division involve register 

pairs.  



REGISTER ALLOCATION 

• The multiplication instruction is of the form  

•        M    x, y 

• where x, is the multiplicand, is the even register of an 

even/odd register pair. 

•   The multiplicand value is taken from the odd register 

pair. The multiplier y is a single register. The product 

occupies the entire even/odd register pair. 

•    The division instruction is of the form  

•         D     x, y 

 



REGISTER ALLOCATION 

• where the 64-bit dividend occupies an even/odd 
register pair whose even register is x; y represents the 
divisor. After division, the even register holds the 
remainder and the odd register the quotient. 

•    Now consider the two three address code sequences 
(a) and (b) in which the only difference is the operator 
in the second statement. The shortest assembly 
sequence for (a) and (b) are given in(c). 

•   Ri stands for register i. L, ST and A stand for load, store 
and add respectively. The optimal choice for the register 
iŶto ǁhiĐh ͚a͛ is to ďe loaded depeŶds oŶ ǁhat ǁill 
ultimately happen to e. 

 



REGISTER ALLOCATION 

•  t  :=  a + b                                 t := a + b 

•    t  :=  t * c                                 t  :=  t + c 

•    t  :=  t / d                                 t  := t / d     

       

              (a)                                               (b) 

                                                             

•  Two three address code sequences 



REGISTER ALLOCATION 

•  L     R1, a                                        L            R0, a                                             

•  A      R1, b                                       A            R0, b 

•  M     R0, c                                        A            R0, c  

•  D      R0, d                                       SRDA     R0, 32 

• ST     R1, t                                        D             R0, d 

•                                                           ST           R1, t 

•      (a)                                                       (b) 

•      

                     Optimal machine code sequence 



CHOICE OF EVALUATION ORDER    

 

•  The order in which computations are performed can affect 

the efficiency of the target code. Some computation orders 

require fewer registers to hold intermediate results than 

others. Picking a best order is another difficult, NP-complete 

problem. Initially, we shall avoid the problem by generating 

code for the three -address statements in the order in which 

they have been produced by the intermediate code 

generator. 



APPROCHES TO CODE GENERATION 

 

• The most important criterion for a code generator is 

that it produce correct code.  Correctness takes on 

special significance because of the number of 

special cases that code generator must face. Given 

the premium on correctness, designing a code 

generator so it can be easily implemented, tested, 

and maintained is an important design goal. 

 


