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~Introduction . S sy

System - An interconnection of elements and devices for a desired purpose.

Control System - An interconnection of components forming a system
configuration that will provide a desired response.

Process — The device, plant, or system
under control. The input and output
relationship represents the cause-and-
effect relationship of the process.

— —

Process to be controlled.



_Chapter 1: Introduction to Control Systems

Objectives

In this chapter we describe a general process for designing a control system.

A control system consisting of interconnected components is designed to achieve a
desired purpose. To understand the purpose of a control system, it is useful to
examine examples of control systems through the course of history. These early
systems incorporated many of the same ideas of feedback that are in use today.

Modern control engineering practice includes the use of control design strategies for
improving manufacturing processes, the efficiency of energy use, advanced
automobile control, including rapid transit, among others.

We also discuss the notion of a design gap. The gap exists between the complex
physical system under investigation and the model used in the control system
synthesis.

The iterative nature of design allows us to handle the design gap effectively while
accomplishing necessary tradeoffs in complexity, performance, and cost in order to
meet the design specifications.



_Imtroduction @ — /

Open-Loop Control Systems
utilize a controller or control
actuator to obtain the desired
response.

Open-loop control system (without feedback).
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Closed-Loop Control
Systems utilizes feedback to ‘
compare the actual output to -

the desired output response.

Closed-loop feedback control system (with feedback).
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Multivariable Control System
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~_History =

Greece (BC) - Float regulator mechanism
Holland (16" Century)- Temperature regulator

" Engine

Output {15
shafi

Watt’s Flyball Governor
(18th century)
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~_History
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Dhfference
M Controller ——m Process
Measurement .
device

Closed-loop feedback system.
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18th Century James Watt’s centrifugal governor for the speed control of a steam
engine.

1920s Minorsky worked on automatic controllers for steering ships.

1930s Nyquist developed a method for analyzing the stability of controlled
systems

1940s Frequency response methods made it possible to design linear closed-loop
control systems

1950s Root-locus method due to Evans was fully developed
1960s State space methods, optimal control, adaptive control and
1980s Learning controls are begun to investigated and developed.

Present and on-going research fields. Recent application of modern control
theory includes such non-engineering systems such as biological, biomedical,
economic and socio-economic systems
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~ Examples of Modern Control Systems

B o mse—dlirection of e el

Cremired
chireciion

Aciaal of trmvel

direction
af tmvel

Aciunl direction of tmvel

Diemired direction of tmvel

(a) Automobile steering
control system.

(b) The driver uses the
difference between the
actual and the desired
direction of travel

to generate a controlled
adjustment of the
steering wheel.

(c) Typical direction-
of-travel response.



~ Examples of Modern Control Systems

' Fmor Control

device

i ACilalor  pe— Process

Sensor i

A negative feedback system block diagram depicting a basic closed-loop control system.
The control device is often called a “controller.”



~_Examples of Modern Con
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A manual control system for regulating the level of fluid in a tank by adjusting the
output valve. The operator views the level of fluid through a port in the side of the tank.
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~ Examples of Modern Control Systems

A three-axis control system for inspecting individual
semiconductor wafers with a highly sensitive camera.



~ Examples of Modern Control Systems
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Coordinated control system for a boiler-generator.



~ Examples of Modern Control Systems

‘ wir)
P? Comp er Acwator =  Process T

Measurement

A computer control syslem.



~_Examples of Modern Con
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The Utah/MIT Dextrous Robotic Hand: A dextrous robotic hand having 18 degrees of
freedom, developed as a research tool by the Center for Engineering Design at the
University of Utah and the Artificial Intelligence Laboratory at MIT. It is controlled by
five Motorola 68000 microprocessors and actuated by 36 high-performance
electropneumatic actuators via high-strength polymeric tendons. The hand has three
fingers and a thumb. It uses touch sensors and tendons for control.
{Photograph by Michael Milochik. Courtesy of University of Utah.)



~ Examples of Modern Control Systems
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A feedback control system model of the national income.



A laboratory robot used for sample preparation. The robot manipulates small objects,
such as test tubes, and probes in and out of tight places at relatively high speeds [41].
(© Copyright 1993 Hewlett-Packard Company. Reproduced with permission. )



uture of Control Sys

The Honda P3 humanoid robot. P3 walks, climbs stairs and tums comers.
Photo courtesy of American Honda Motor, Inc.
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Future evolution of control systems and robotics.



~ Centrol System Design

T

l. Establish control goals

2. Identify the variables o contral

A Write the specilications
fior the variahles

4. Establizh the system configuration
and identify the ac wator

5. Obtain a moxdel of the process, the

actuator, and the sens=or

&, Describe a controller and select
key pammeters o be adjustel

7. Optimize the parameters and
analyze the perfommance

If the performance does not meet the specifications,
then iterate the configuration and the actuator,

If the performance mezis the
specifications, then finalize the design,

The control system design process.
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~Design Example

Input angle, 8.(7) ' 50 volts

A
o
B 1 C
— 50 volts
®
Output

voltage, v (¢

1
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ELECTRIC SHIP CONCEPT

Vision

Electrically
Reconfigurable

All :
Integrated Ship

Power

Electric
Ship

System

:echnology Increasing Affordability and Military Capability

o + Reduced manning Insertion
+ Electric Drive : + Automation + Warfighting
+ Reduce # of Prime Capabilities

Movers + Eliminate auxiliary

- systems (steam,
* Fuel savings hydraulics, compressed
* Reduced maintenance  3jy)

Main Power
Distributio

Propulsion Motor Prime
Motor Drive Mover

Power Ship.
Conversion Service
Module Power



~ Design Example
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CVN(X) FUTURE AIRCRAFT CARRIER




~ Design Example
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=
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~ Design Example
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~ Design Example

de
ammplifier

Control device

Desired

speed
(vollage)

s

llIIIIII de motar

Actuator

Process

&)

----I1___________----4h

Actual
sped

(a) Open-loop (without feedback) control of the speed of a turntable.

(b} Block diagram model.



Design Example

Battery

' de
armpli fier

Control device Actnator Process
[Aesined i
. Frmror Actual
speed
(vallage)

Measured speed

Sensor
(voliage)

i hi

(a) Closed-loop control of the speed of a tumtable.
(b) Block diagram model.
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~ Design Example

Blood
glucose

Concentration

Insulin

Breakfast Lunch Dinner

Time —

The blood glucose and insulin levels for a healthy person.



~ Design Example

Motor,
Programmed i) pump, fit)
) - _h.
signal generator | paqiar and
voltage valve
[E2 4]
Motor, Fuman
il
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f
i I‘l ]

(a) Open-loop (without feedback) control and
(b} closed-loop control of blood glucose.



~_Sequential DesigW

~

Rolation
of arm

Spindle

Acualor
motor

Head slider

(a) ()]

(a) A disk drive ©1999 Quantum Corporation. All rights reserved.
(b) Diagram of a disk drive.
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~ Sequential Design Example

Control
device

ASctuabor motor
and read arm

Sensoar

i

Closed-loop control system for disk drive.




/X/

UNIT -1l

BLOCK DIAGRAM REDUCTION
OF MULTIPLE SYSTEMS



Components of a block diagram for a linear, time-invariant system

_Re e _ RO G |CO
Input Output
Signals System
(a) (b)

Ry(s) +Q Q C(s) = Ry(s) T Ry(s) — R3 (S)__ R(s)
Pa Rs) | Re)_
Rz“/ Ry(s) | Re)_

Summing junction Pickoff point

(¢) (d)
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a. Cascaded subsystems;

b. equivalent transfer function

R(s)

G1(s)

C(s)=
G3(s)Ga(s) G (s)R(s)

-

Xy(s) = Xi(s) =
G1(s)R(s) Ga(s)G(s)R(s)
1 Gy(s) = G3(s)
(a)
R(s) C(s)
—™ G3(s)Ga(s) Gy (s) —

(b)



~ a. Parallel subsystems;

b. equivalent transfer function

Xi(5) = R(5) Gy (s)

—{ G (s)

+
R(s) Xo(9) = R(s)Ga(s) £ Cls) = [FG1(9) £ Go(s)  G3()IRE)

—»1 G1(s)

+

X3(5) = R(5)G5(s)

—1 G3()

(a)

RO i6,6)t 6a) £ Gals) —

(b)



" a. Feedback control system;
b. simplified model;
c. equivalent transfer function

Input
transducer
R +
RO Gy fm
Input T
R(s) +
—|
Input

X/'

Controller Plant
E(s) C(s)
) Ga(s) | Gs(s) -
Actuating Output
signal
(error)
Hy(s) [« Hi(s) [
Feedback Output
transducer
(a)
Plant and
controller
E C
O ©)_
Actuating Output
signal
(error)
H(s) [
Feedback
(b)
R(s) G(s) C(s)
—_—
Input | 1+ G(s)H(s) | Output

(¢)
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w'lock diagram W

~

equivalent forms for moving a block
a. to the left past a summing junction;
b. to the right past a summing junction

R(s) + G(s) C(s) — R(s) G(s) + 8 C(s)
ﬁ T T

X(s)
G(s)
(@) )
R(s) G(s) + 8 C(s) — R(s) + G(s) C(s)
T T ¥ %
X(s) 1
G(s)
X(s)

)



Figure 5.8: Block diagram-a a for pickoff-points

~ equivalent forms for moving a block
a. to the left past a pickoff point;
b. to the right past a pickoff point

R(5) G(5) R(s) G(s)
1 G(s) - -
R(s) R(s) R 1 R(s)
- —— - G(S) | G(S) -
R(s) 1 R(s)
~ MEES .
(a)
R(s) G(5) oo R(s) G(s)
— - A B ——
R(s) R(s) G(s) R R(s) G(s)
—=! G(s) -— =~ G(s) [—™
R(s) G(s) G R(s) G(s)
L e -] A a—

(b)



Wam reduction-via-familiar forms for Exampl_ejzl//

Problem: Reduce the block diagram shown in figure to a single transfer
function

C(s)

el (75(5) -

— Gy(s)




Block diagram-reduction via familiarforms for Examples.a Cont.

/

Steps in solving Example 5.1:

a. collapse summing junctions;

b. form equivalent cascaded system

in the forward path

c. form equivalent parallel system in the
feedback path;

d. form equivalent feedback system and
multiply by cascadedG,(s)

RS 1646) N P U
Hy(s) le——
Hy(s) fe—o
Hi(s) la|
(a)
R(: C(
Lp— GI(S') —i@—» G’j(.?) Gz(x) (?)b-
L Hi(s) ~ Hy(s) + H3(s)
(b)
Rs) G+(5)G(5) G () C(s)

1+ G3(5) Go(s) [ H1(s) = Hy(s) + H;3(s)]

(c)



Block diagram reduction by moving blocks Example 5.2 e
.

,/

Problem: Reduce the block diagram shown in figure to a single transfer
function




St%psiihe block diagram—reduction for Example 5.2//

a) Move G,(s) to the left past of
pickoff point to create parallel
subsystems, and reduce the

feedback system of G,(s) and H,(s)

b) Reduce parallel pair of 1/G,(s)
and unity, and push G,(s) to the
right past summing junction

c¢) Collapse the summing
junctions, add the 2 feedback
elements, and combine the last 2
cascade blocks

d) Reduce the feedback system to
the left

e) finally, Multiple the 2 cascade
blocks and obtain final result.

Vi(s)

G1(s)

Gz (S)

Gz (S
Vi(s)

Hy(s) =

Hi(s)

(a)

|
+
i@b -

Gs(s)

1+ Gs(s)Hs(s)

C(s)

C(s)

R(s) + Vi(s) + ‘ | Vats) [ Gs(s)
X ’\?‘ G](S)GZ(-S) = Gz(j‘} ™ 1+ Gs(.i')HJ(S‘)
Hy(s) |,
G(s)
Hi(s) |
(b)
R(s Vyl: s s
L3 Gi)Ga) |2 (_1 . )( G3(s) ) e,
X 4J Gas) NI+ Gs(s)Hs(s)
Hy(s)
+ Hy(s
Gy(s) 1(s)
(c)
R(s) G1(5)Go(s) Va(s) L Gi(s) )
a8 - ]
1+ Gy(s)Hy(s) + G(5)Ga(s)H(s) (G2(~") )(1 + Ga(s)H;(s)

(d)

G1(5)Ga(9)[1 + Ga(s)]

C(s)

[1 + G(s)Ha(s) + G (s)Ga(s)H\()][1+ G3(s) Hs(s)]

(e)

C(s)



Second-order feedback contrelsystem s

R(s) + _ K C(s) _
@ s(s +a)

K

The closed loop transfer function isT (S ) —
s?+as +K

Note K is the amplifier gain, As K varies, the poles move
through the three ranges of operations OD, CD, and UD
o<K<a?/4 system is over damped

K =a?/4 system is critically damped

K >a?/4 system is under damped



F@gﬂansient response Example 5.3 P

R(s) + 8 25 C(S‘)F
s(s+3)

Problem: For the system shown, find peak time, percent overshot, and settling

time. 25
e S° +5s5 +25
Solution: The clogesl logp transfer function is
And Ay it ] 8 Vet D
using values for £ and @, and equation in chapter 4 we find
T, = i = 0.726 sec
@, J1— E°
%0S =e V1" X 100 = 16.303
% 4 =126 cae

S 56()

n



GWn for transientresponse Example 5:4 R
R(s) + K C(s)
-
s(s+5)

Problem: Design the value of gain K, so that the system will respond with a 10%
overshot. K
Solution: The closed loop transfer function ig (8)= LK

5
o, =~K and 2&w, =5 thus &=
S S T

For 10% OS we find 520591

We substitute this value in previous equation to find K = 17.9



e e
lowgraph components:

a. system;
b. signal;
c. interconnection of systems and signals

G(s)

(a) (b) (¢)



Building signal-flow graphs /

Gi(s) _ Gals) _ Gs(s)

d. cascaded system nodes

b. cascaded system signal-flow O
graph; 7,(5)
C. parallel system nodes

R(s)O O O )

d. parallel system signal-flow graph; Vis)
e. feedback system nodes —
f. feedback system signal-flow graph VC?)
3Ls
(c) (d)
1 G(s)
9O O O R(s) Ot Q——O) ()
E(s) E(s)
—H(s)



Convertin

y

/

Problem: Convert the block diagram to a signal-flow graph.

R(s) + @ Vi(s)

Ve(s)

g a block diagram to a signal-flow graph
_\\,

G1(s)

Gy(s)

G3(s)

H,(s)

Hy(s)

H;(s)

C(s) .




/ Rs) O O O O O O O )

Converting a block diagran @

Signal-flow graph development:

a. signal nodes; Rs) O—s
b. signal-flow graph;
c. simplified signal-flow graph

—H\(s)
()



wme - Definitiom\/

Ge(s)
Gi(s) __ Gy(s) G3(s)  Gy(s) m G7(s)
R(s) O——CO——0O——(O—> > —0 C(s)
Vs(s) Va(s) Viis) [ Va(s) Vi(s)

H(s)

Hi(s)

Loop gain: The product of branch gains found by traversing a path that starts at a node and ends at
the same node, following the direction of the signal flow, without passing through any other node
more than once. G,(s)H,(s), G,(s)H,(s), G,(s)G,(s)H,(s), G,(s)Gg(s)H,(s)

Forward-path gain: The product of gains found by traversing a path from input node to output
node in the direction of signal flow. G,(s)G,(s)G,(s)G,(s)G.(s)G_(s),

G,(5)G.()G,(5)G (5)G,(5)G,(5)

Nontouching loops: loops that do not have any nodes in common. G, (s)H,(s) does not touch
G,(s)H,(s), G,(s)G,(s)H,(s), and G (s)G4(s)H,(s)

Nontouching-loop gain: The product of loop gains from nontouching loops taken 2, 3,4, or more at
a time.

[G,(s)H,(s)][G,(s)H,(s)], [G,(s)H,(s)][G,(s)G;(s)H,(s)], [G,(s)H,(s)][G,(5)Ge(s)H,(s)]



— —
Mason’s Rule

The Transfer function. C(s)/ R(s), of a system represented by a signal-flow
graph is ZT A

cis) &~

R(S) A

Where

K = number of forward paths
= the kth forward- path gain

=1- loop galns + Z\é ontouching-loop gains taken 2 at a t;ne -

nontouching-loop gaifts taken 3 at a time + nontouching-loop gains taken 4
at a time - .......
A, A A A,
- loop gain ternds in  that touch the kth forward path. In other
words, is formed by eliminating from  those loop gains that touch the kth

forward path.



'Problem: Find the transfer function for the signal flow graph

?Olutiodn: . 5 O G(s) N G(s) N G(s) N Gy(s) ~ Gs(s) o
orward pat s - - o : A .
G,(5)G,(s)G,(s)G,(s)G,(s) Va(s) Va(s) w Vi(s)

Loop gains

H)(s)

G,(s)H,(s), G,(s)H,(s), G.(s)H,(s),
G,(s)G,(s)G,(5)G,(5)Gg(5) G (5) Gg(s)
Nontouching loops
2 ata time
G,(s)H,(5)G,(9)H,(5)
G.(s)H,(s)G,(s)H (s)
G,()H,(5)G,(s)H.(s)
3atatime G,(s)H,(s)G,(s)H,(s)G,(s)H,(s) Hy(s)
Now

A 1-[G2(s)Hi(s)+G (s)H,(s)+G (s)H,(s)+ G,(5)G,(s)G,(5) G,(5)G(5)G.(5) Gg(s)] +
[G.(8)H,(5)G($)H,(5) + G, (s)H,(5)G,(s)H,(5) + G, () H, (5) G, () H,(s)] -
[(‘R(S)HI(S)G4(S)H2(S)G7(S)H4(S)]

1

=1- GT(lsAll‘M(S)
G () == TI6,66.()G,(5)G ()G I1-G(s)H,(5)]

Ge()




ignal-Flow Graphs of State Equationsc © o o o © O O

s X5(5) X5(5) s X5(8) X5(8) sX,(s) X, ()

. (a)
ProbIeDm: draw signal-flow graph for: . , ,
X, =2X,; —5X, +3x,; +2r O O——O ~ O——0  O——0_ O
s X5(s) Xo(5) s X5(8) X,(s) sX(8) X(9)
R ®)
X, =—6X, —2X, +2X; +5r
[

X3 =X, —3X, —4X, +7r
y =—4x, +6X, +9X,
a. place nodes;
b. interconnect state variables and
derivatives;

c. form dx1/dt ;
d. form dx2/dt




Signal-Flow Graphs of State Equations
\
y

,/

(continued)
e. form dx, /dt;
f. form output

R(s)




Alternate-Representation: Cascade Form _

R(s) Y 1
sT2 ] X3(s)
C) 24

R(s) (s +2)(s +3)(s +4)

R(s)

s+ 3

X()

/

Cls)

s+ 4

Xi(5)

C(s)



R(s)




—
Pet(sy 2 5 W
Ris) G136+ (12 (13 (4

Alternate Representation: Parallel Form

0

X, =—2X, +12r
H

X = = 3% — 24r

]

y =c(t)=X,+X, +X,

. 2 0 0F 2
X =0 -3 0|X+|=24]r
0 0 4 DD

y=[1 1 1]X




=5 9

5

R(S) (s+12(5+2)

(s +1)°

1

_@+D

/

— .,/

1

_I_
(s +2)

Alternate Representation: Parallel Form Repeated roots

0

X

1

0

X

2

0

X
y

X

y

3

=c(t)—x —1/2X, +X,

= X, +2r

= 0 O L 6

Bl vl e 0
0 1 01X i120
b g 2 1

T 1




. . /
Alternate Representation: contreller canonical form et
LR

G(s) = C(s)/R(s) = (s> + 7s + 2)/(s3 + 9S> + 26S + 24)
This form is obtained from the phase-variable form simply by
ordering the phase variable in reverse order




/ysematathiesrhaecviahio nhemefficidets of thelhaad deristic polynomial

are called companion matrices to the characteristic polynomial.
Phase-variable form result in lower companion matrix

Controller canonical form results in upper companion matrix



We Representation:=-ebserver canonicalform //
Observer canonical form so named for its use in the design of observers
G(s) = C(s)/R(s) = (s> + 7s + 2)/(s3 + 9S> + 26s + 24)

= (1/s+7/s>+2/83 )/ (1+9/s+26/s> +24/s3)
Cross multiplying
(1/s+7/s*> +2/s3 )R(s) = (1+9/s+26/s> +24/s3 ) C(s)
And C(s) =1/s[R(s)-9C(s)] +1/s*>[7R(s)-26C(s)]+1/s3[2R(s)-24C(s)]
=1/s{ [R(s)-9C(s)] + 1/s {[7R(s5)-26C(s)]+1/s [2R(s)-24C(s)]}}

1 1 1

5 1 5 1 s 1
R(s) O Oo——0——0O0——0——0——0——0O )
X3(5) Xo(s) X1(s)




Wﬁte Representation:-observer canonicalform~

[

X, =9, X, +I
XD2 = —26X, X T
xD3=—24x1 4+ 2F
y =c(t) =x,
- (-9 1 0] 1
X =(-26 0 1|X +|7|r
=24 0 0 oz
- | g ax

Note that the observer form has A matrix that is transpose of
the controller canonical form, B vector is the transpose of the
controller C vector, and C vector is the transpose of the
controller B vector. The 2 forms are called duals.



Feedback controlsystem-for Example 5.8 e —
/ :

R() + < E(s) 100(s + 5) C(s)_

(s +2)(s + 3)

Problem Represent the feedback control
system shown in state space. Model the
forward transfer function in cascade form.

Solution first we model the forward transfer
function as in (a), Second we add the feedback
and input paths as shown in (b) complete
system. Write state equations

U

X S R(s) O
0

= - 2X, +100(r -c)

butc =5x; + (X, —3X,) =2X; +X,




Feedback control system for Example 5.8
X ==X
[]

X, =—-=200x, —102x, +100r

Y= Ccl) =2x, X

i -3 1 0
X = X + r
{—200 —102} LOO}

Y



Form Transfer Function Signal-Flow Diagram State Equations

State- ~forms for
Pha_se 1
variable ST (s+3)
C(s)/R(s) =(s+ 3)/[(s+ 4)(s+ 6)].
Note: y = c(t)
-1/2  3/2
Parallel Ty e
I (5+3)
Cascade ey (; 1 6)
Controller |
canonical T (s +3)
Observer Iy %
canonical § 3
10 24
I+ —+ =







Transient vs Steady-State

The output of any differential equation can be broken up into two parts,
-a transient part (which decays to zero as t goes to infinity) and
-a steady-state part (which does not decay to zero as t goes to infinity).

y(t) = Yir (t)+ Yss (t)
Iti_r)g Yir (t)=0

Either part might be zero in any particular case.



Prototype systems

1%t Order system

&(1) + = c(t) = kr (t)
75
2" order system C(t) + ZgwnC(t) + C()r?C(t) = kr(t)

Agenda:

transfer function

response to test signals
impulse
step
ramp
parabolic
sinusoidal



/
I*torder system () SO 3T
mpulse res
Ste[[)) respon]se R (S) S+ ]7/ T
Ramp response
Relationship between impulse, step and ramp

Relationship between impulse, step and ramp responses

rit) =5(t),R(s) =1, c,(t)= Tiet/T 1(t)

(O =1ORE) =3, Cup(®) =[L-¢" 1)

r(t) =ti(t), R(s) = iz .



15t Order system

Prototype parameter: Time constant

Relate problem specific parameter to prototype parameter.

Parameters: problem specific constants. Numbers that do not change
with time, but do change from problem to problem.

We learn that the time constant defines a problem specific time scale that is
more convenient than the arbitrary time scale of seconds, minutes, hours, days,
etc, or fractions thereof.



Transient vs Steady state

Consider the impulse, step, ramp responses computed earlier. Identify the
steady state and the transient parts.



st
1 O rd er Consider the impulse, step, ramp resp/onses/
e W‘d‘em*lier. Identify the steady state and the

sySte m transient parts.

Impulse response

Step response G(S) - C(S) = 1/T T>0

Ramp response
Relationship between impulse, step and rampR (S) S+ l/ T
Relationship between impulse, step and ramp responses

rit)=5(t),R(s) =1, c,(t) = Tlet/T 1(t)

O =UORE =<, Cupl®=[L- J10)

r(t) = ti(t), R(s) _iz Cramp (1) =| t=T +Te™¥" |1(t)

Compare steady-state part to input function, transient part to TF.



? mG(s) Ko
2" grder system St = . =

Over damped

*(two real distinct roots = two 1%t order systems with real poles)

Critically damped

*(a single pole of multiplicity two, highly unlikely, requires exact matching)

Underdamped

*(complex conjugate pair of poles, oscillatory behavior, most common)
step response

jl = sin(a)dt+tan‘1(\/1—§2 /;)) 1(t)

c,(t)=K e " sin(w,t) [1(t)

(1) =K|1

step




2"d Order System

Prototype parameters:
undamped natural frequency,
damping ratio

Relating problem specific parameters to prototype parameters



Transient vs Steady state

Consider the step, responses computed earlier. Identify the steady state and
the transient parts.



? mG(s) Ko
2" order system ©{8/= s - o, o

Over damped

*(two real distinct roots = two 1%t order systems with real poles)

Critically damped

*(a single pole of multiplicity two, highly unlikely, requires exact matching)

Underdamped

*(complex conjugate pair of poles, oscillatory behavior, most common)
step response

e —Cgapt

() =K|1

step

T

c,(t)=K L_e " sin(w,t) [1(t)

sin(a)dt+tan‘1(\/1—§2 /4]) 1(t)




/
Use of Prototypes

Too many examples to cover them all

We cover important prototypes

We develop intuition on the prototypes

We cover how to convert specific examples to prototypes

We transfer our insight, based on the study of the prototypes to the specific
situations.



/'I'ransient-Re&ae%iSpegdiﬂLa%k{s‘

1.  Delay time, t4: The time required for the response to reach half the final value
the very first time.
2. Risetime, t.: the time required for the response to rise from
10% to 90% (common for overdamped and 1%t order systems);
5% to 95%;
or 0% to 100% (common for underdamped systems);
of its final value
1. Peak time, t
2. Maximum (percent) overshoot, M_;:
3. Settling time, t,



O =60,
i T 1| @
tr:ﬂ 7 L, — [ =tan"| =%
@
x d O
(r

= See book for details. (Pg. 232)

M, =e < x100%

tS:4T:i=i . - - -

S
o o, o o,
Allowable M, determines damping ratio.
Settling time then determines undamped natural frequency.

Theory is used to derive relationships between design specifications and
prototype parameters.

Which are related to problem parameters.



Higher order system

PFEs have linear denominators.
each term with a real pole has a time constant

*each complex conjugate pair of poles has a damping ratio and an
undamped natural frequency.



mrtionaW

Integrator

1
S(Js+Db)

G (s) = Kp’ G(s) =



~Integral control of Plant w

disturbance

K 1
= 7 5(Js+b)




- Proportional Control of plant w/o
Integrator

1

GG -K o5




Integral conW

Integrator

K 1
G.(s)=—, G(s)=
C() S (3) Ts+1




UNIT-1V
STABILITY ANALYSIS IN S-
DOMAIN



/

~Routh’s Stability Criterion

How do we determine stability without finding all poles?
Actual poles provide more info than is needed.
All we need to know if any poles are in LHP.

Routh’s stability criterion (Section 5-7).

g(s) =s*+2s°+3s°4s+5
q(s) =S’ +25° +S+2
q(s) =s° + 2s* + 24s° + 48s° — 25s — 50

What values of K produce a stable system?

G(s) = - .
S(s*+s+1)(s+2) 1+ G(s)




o

/TheStability of Linear Feedbaeck Systems st

The issue of ensuring the stability of a closed-loop feedback system is
central to control system design. Knowing that an unstable closed-loop
system is generally of no practical value, we seek methods to help us analyze
and design stable systems. A stable system should exhibit a bounded output
if the corresponding input is bounded. This is known as bounded-input,
bounded-output stability and is one of the main topics of this chapter.

The stability of a feedback system is directly related to the location of the
roots of the characteristic equation of the system transfer function. The
Routh-Hurwitz method is introduced as a useful tool for assessing system
stability. The technique allows us to compute the number of roots of the
characteristic equation in the right half-plane without actually computing
the values of the roots. Thus we can determine stability without the added
computational burden of determining characteristic root locations. This
gives us a design method for determining values of certain system
parameters that will lead to closed-loop stability. For stable systems we will
introduce the notion of relative stability, which allows us to characterize the
degree of stability.



}heConcept ofStability T _—

A stable system is a dynamic system with a bounded
response to a bounded input.

Absolute stability is a stable/not stable characterization
for a closed-loop feedback system. Given that a system is
stable we can further characterize the degree of stability,
or the relative stability:.



/TheConcept of Stability ——

N

(a) Stable

N

A\
I

i

(b) Neutral (¢) Unstable

The concept of stability can
be illustrated by a cone
placed on a plane horizontal
surface.

A necessary and
sufficient condition for
a feedback system to
be stable is that all the
poles of the system
transfer function have

L! LII
[y J'Il_\'l

negative real parts.

A system is considered marginally stable if only certain
bounded inputs will result in a bounded output.



}heRouth-Hurwitz Stability Criterion s

It was discovered that all coefficients of the characteristic polynomial
must have the same sign and non-zero if all the roots are in the left-hand
plane.

These requirements are necessary but not sufficient. If the above
requirements are not met, it is known that the system is unstable. But,
if the requirements are met, we still must investigate the system further
to determine the stability of the system.

The Routh-Hurwitz criterion is a necessary and sufficient criterion for
the stability of linear systems.



)heRouth-Hurwitz Stability Criterion

Characteristic equation, [—*
q(s)

o

n n-1 n-2
as' +a,,8 +a,,S “+---+as+a,=0

Routh array

The Routh-Hurwitz critesion. «
states that the number of®” | ™

roots of q(.s) with posmvbe Bk lie)
real parts is equal to the ™ 8. e

a‘n—l
number of changes in sign of 1| & -
a,, a,_
the first column of the Routﬁ” e
Cn_ o n—l n-3
array : bn—l bn 1 bn—s




)heRouth-Hurwitz Stability Criterion

4228 Case One: No element in the first column is zero.

Example 6.1 Second-order system

The Characteristic polynomial of a second-order systemis: 2
q(s) = a2~32 + a1:S + S
The Routh array is written as: 1

w here: S

ar-ap — (0)-a,
U e A,
a

Therefore the requirement for a stable second-order system s
simply that all coefficients be positive or allthe coefficients be
negative.

o



/
}heRouth -Hurwitz Stability Criterion —

—— Case Two: Zeros in the first column while some elements of the row containing
a zero in the first column are nonzero.

f only one element in the array is zero, it may be replaced w ith a small positive
number ¢ that is allow ed to approach zero after completing the array.

qes) = s>+ 2s* + 25% + 4% + 115 + 10

The Routh array is then: CeiE e
st 2 410
s|b, 6 0
s2ic 100
e
Where 110 0 O
=22 Moo s t20, 2 d1=6'°1c‘11°8=6

There are two sign changes in the first column due to the large negative number
calculated for c1. Thus, the systemis unstable because two roots lie in the
right half of the plane.



The Routh-Hurwitz Stability Criterion

/

. — /
~___€ase Three: Zerosin the first column; and-the other elements of the row

containing the zero are

also zero.

This case occurs when the polynomial q(s) has zeros located sy metrically about the

origin of the s-plane, such as (s+c)(s-o) or (Stw)(S-f). This cas
the auxiliary poly nomial, U(s), w hich is located in the row et
the zero entry in the Routh array.

q(s)=s3+2~sz+4s+K 82
Routh array: S 1
0

For a stable systemwe requirethat 0<s <8

e is solved using

e r0\1co ntaining4
2 K
=0

ezl

For the marginally stable case, K=8, the s"1row of the Routh array contains all zeros. The

auxiliary plynomial comes fromthe s”2 row.

Us) = 26° + Ks® = 26> + 8= As?+ ) = 2s + j2)(s - j-2)

It can be proven that U(s) is a factor of the characteristic polynomial:

ﬂ_s+2

u(s) 2 Thus, w hen K=8, the factors of the characteristic polynomial are:

) = +2(s+ (s -j2)



The Routh-Hurwitz Stability Criterion —
__Case Four: Repeated roots of the characteristic equation on the] ]w axis.

S

With simple roots on the jw-axis, the system
will have a marginally stable behavior. This is
not the case if the roots are repeated.
Repeated roots on the jw-axis will cause the
system to be unstable. Unfortunately, the
routh-array will fail to reveal this instability.



/Xa(pleﬁz}

~

A completely integrated, six-legged, micro robot system. The six-legeed design provides
maximum dexterity. Legs also provide a unique sensory system for environmental
interaction. It is equipped with a sensor network that includes 150 sensors of 12 different
types. The legs are instrumented so that the robot can determine the lay of the terrain, the
surface texture, hardness, and even color. The gyro-stabilized camera and range finder can
be used for gathering data beyond the robot’s immediate reach. This high-performance
system is able to walk quickly, climb over obstacles, and perform dynamic motions.
(Courtesy of IS Robotics Corporation. )



Example 6.5 Welding control

T Kis + al I
(s + 1 sy + 25 + 3

Welding head position control.

4 3 2
Using block diagram reduction we find ~ 4ig} = & + @57 + 115"+ (K + 6)s + Ka

tl?'%té Routh array is then: g4 1 11 Ka
s® 6 (K +6)
57 b, Ka
st C.
s’ Ka
where: bg = AN and c3= Siitidee
6 b3

For the system to be stable both byand c; must be positive.

Using these equations a relationship can be determined for K and a .



}heRelative Stability of Feedback Control Systems et

—a

[t is often necessary to know

the relative damping of each
root to the characteristic A
equation. Relative system

Jw

[::- I —l..

stability can be measured by
observing the relative real part
of each root. In this diagram &
r2 is relatively more stable
than the pair of roots labeled

Il

[
R B e tn T

One method of determining the relative stability
of each root is to use an axis shift in the s-domain
and then use the Routh array as shown in
Example 6.6 of the text.



Design Example: Tracked Vehicle Turning Control e
bR e, S

/’ —

o

Problem statement: Design the turning control for a tracked vehicle. Select
K and a so that the system is stable. The system is modeled below.

Track
Lorgue
Righl HE
Throttle —————f o —— p- Direction of
Slep iy m— | ren Vehicle Iravel
< — and conirolle I E

Difference in track speed

()
Contral ler Power train and
i) vehicle & (s)
. + (5 + ) al b
AT ¥ D ™ Sis + 25 + 5) i)
Desiped _
direction

of urning
ik



Design Example: Tracked Vehicle Turning Control
\

,/'Ffmm eqguation of this system is:

1+ G-G(s) = 0

or

K(s + a) 2
s(s+ 1(s+ 2)(s+5 %

Thus,
s(s+1)(s+2(s+5 +K(s+a)=0

or

s 1 8%+ 1732+(K+ 10)s + Ka=0

To determine a stable region for the system, we establish the Routh array as:

s* 1 17 Ka
s 8 (K +10) 0
s’ b, Ka
s* C,
s? Ka
where
126 — K ba(K + 10) — 8Ka
by = and L

8 bs



Design Example: Tracked Vehicle Turning Control

(K + 10)(126 — K) — 64Ka > 0

\
/ e
=
s* 1 17 Ka
53 8 (K +10) 0
s° b, Ka
st C,
0
S Ka
where
126 — K ba(K + 10) — 8Ka
by = and C3=
8 by
Therefore,
K <126
Ka>0

o

30

Stable
region

/ Selected K and a

50

=
!

0

100

126

|
150



System Stability Using MATLAB

=

It sign change

\
5 1 2
. Gis) = l
r\'_\'3+\'2+2\+23 > R
- 5 l 24
5! —22 0
. " 2nd sign change

Closed-loop control system with F(s) = Y{sWR(s5) = (5" + 5= + 25 . y .

5§ 2

==numg=[1]; deng=[1 1 2 23]; sysg=tfiinumg.deng);

==sys=feedback(sysa.[1]);
==pole(sys)

dns =

-3.0000
1.0000 + 2.6458i
1.0000 - 2.6458i

Unstable poles




System Stability Using MATLAB

IPriag inary mxis

e e ARSI

AN LR R RN R AT AR R AN R R AR NN N ]

Inorcasing &

1
IIIIIIII:IIIIIII

+ 1
L~ I I
K 30420 Ao v
_ 57 4+ 25 4 4y
'
'
'
g S o -  mmm s immm s amam
: & 5
L]
S0 0o e 0ooon 0 CoSEEEEEEEOo0 o
L]
'
S Hieirh D ooen 0 OO0 8 ee0 6 aon o
'
'
S R
L]
'
e

[Ls]

% Thie scrpt computss the rocls o e characisrnistic
% equaticn qis) = "3+ 2 =52 +4 5 + Kfor D=l<20

-
K=[0: 0.5:20]; )
i=1:lengthik)
q=[1 24 K{i]];
pi . ii=motslq);

Loop for o= as
a function of &

plotirealip) imaaip),'="), grid
ilab=l'Real axis' ), ylakbs{"lmaginary axis')

i



o variable=expression

statemeant
Loop .
statement
=yl
=140 = Counter i
= -]
“The end statement :E?a{ﬁira'l-
must be included 1o nd A ' i is a vechor
indicate the end of SN with 10 elements.
the loop.
fris a scalar that

changes as § increments.

The for function and an illustrative example.




System Stability Using MATLAB

2.5
a0 .....,E.............é ...... : iq =06 K="7nN
1B e T M e Meareieiaie,
T 1.0/| Stable region |----- A s .............
05— e , ............ ......... ............
‘o0 10 E 80 100 120

(a)
twotrackstable.m

% The a-K stability regicon for the two track vehicle
% control protlem
a=[0.1:0.01:3.0]; K=[20:1:120];
w=0"k; w=0"K;
n=lengthik); m=lengthia);
fari=1:n
far j=1:m
a=[1. 8, 17, Kiii+1 0, Kiiaji];
p=roots(g);
if maxirealph = 0, xii=Kii); yiii=alj-1); break; end
end
end
platix,y), grid, xabel'K'), yakela')

Range of @ and &

Initialize plot vectors as zero
vectors of appropriate lengths.

Characteristic
polynomial

For a given value of £ determing
first value of g for instability.

u)]

(a) Stability region for ¢ and & for two-track vehicle tuming control.
(b) Marran script.



Root Locus

Motivation

To satisfy transient performance requirements, it may be necessary to know how to
choose certain controller parameters so that the resulting closed-loop poles are in the
performance regions, which can be solved with Root Locus technique.

Definition
A graph displaying the roots of a polynomial equation when one of the parameters in
the coefficients of the equation changes from 0 to .

‘Rules for Sketching Root Locus

Examples

-Controller Design Using Root Locus

Letting the CL characteristic equation (CLCE) be the polynomial equation, one can use
the Root Locus technique to find how a positive controller design parameter affects the
resulting CL poles, from which one can choose a right value for the controller
parameter.



/ .

~Poles and zeros

k(S_Zl)(S_ZZ)°”(S—Zm) 21’22"”Zm Z€eros
F(S) - poles
(s—p)(s—P,)---(5—P,) PPy
4+ Im-—axis

pole
=~

>
Zero
\A
: \ : Re— axis

>

automatic control by meiling CHEN



Closed-loop transfer function-: 2 —

: 0 S
i s L

2
e S2+20w.S+ m,

e St :
y(t) =1— sin(w, J1— &%t +cos™ &)
1

A

O 1 1m—axis cosf =¢
< jo J1-¢? T — /4
b 2
On @, 1_5
0( G: TS — i
~ 6o, Re— axis o,
¢
2
>< m.o.=e'"° x100%

automatic control by meiling CHEN 113



N/

\/.

N/

automatic control by meiling CHEN

— o —— =
g <0, <0,
. > = = -
o, > =T >=T,>T
. = —Bs 095 G5

a)nS = a)nz = wnl
— Tsl = TsZ = TsB

14



e = e
B
N\
tow, T
(i)Yo, T=T.

(iNw,1-¢* T=T, 1

(iildd=¢ T=o0s.1

automatic control by meiling CHEN

6, -0, >0,

=61 =6, <G5

= 0.5, > 0., = 0.S.,
=>T,=T,=T
@3> @, = O,

=1 <17 =<1

115



£ <0

Negative damped

£=0

Undamped

. U< <

] Underdamped

¢ =1

Critically damped

¢ =1

Overdamped

automatic control by meiling CHEN 116



OCUS
y(t)

10
_l_

T(s )_M KG(s)
R(s) 1+KkG(s)H(s)

1+KG(S)H(S) =0 mmmmmp poles

automatic control by meiling CHEN



F1T kG

/V

(S)H(s)=0

— KG

. Open loop transfer function
(8)H(s)=-1

—
ZK

kG(s)H (s)| =1
G(S)H(s)=(2n+1)x

Using open loop transfer function + system parameters to analyze the
closed-loop system response

k=0—>

C Draw the s-plan root locus

automatic control by meiling CHEN



Root locus properties: S —
(i) __Thelocus segments are symmetrical aboutthe real-axis. '
= f o0
~ (ii)
1

k = k=
G(s)H ()

k=0, G(s)H(s)= poles

(i) k—>o, G(S)H(Ss)=> zeros

00—

, Jo s,
,._-_==.,'.- ---------------------------------
0, 1o
><3 £LG(sy)H(sy)=6,-(0,+6,+0,)
’/’/" ,_,/", .,.,'/. H
. :
3 0, o
L.

automatic control by meiling CHEN 119



Root locus construction - "
»

(i) Loci Branches each locus from poles th zeps K — oo

if NmMm 'for.e{(cess zeros or poles, locus segments extend from
infinity.

om0
n—m branches — o
2) n-m<0

m—-n branches oo — zeros

automatic control by meiling CHEN 120



segments

automatic control by meiling CHEN 121



»

|f n:6,m:2 0272450 1

v
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(iv) Centroid of the asymptotes e

 — = T s
- > poles— )" zeros
O =
n—m
example 3
G(s)H(s) = ;
(s+2)(s” +6s+18)
Zero: o . :
Poles: -2, -3+j3, -3-j3 o = te 2433 |9 0 =S|
3-1
180
0=—=90°
3-1

automatic control by meiling CHEN 123



: s
(v) Breakaway and entry points o dk

_:O
= ds

k
s(s+1)(s+2)

example kGH =

1+kGH =0 The characteristic function of closed loop system

s°+3s°+2s+k

1+kGH = =
s(s+1)(s+2)

k=_(5° +35° + 29)
.
S

s=-0.423,-15/7

automatic control by meiling CHEN 124



(vi) Angle of departure and approach —

— -
. dp, =180° + LG(s)H (s)

d, =180° — ZG(s)H (s)

K(s+2)
(s+1+ (s+1-])

example kGH =

Angle of departure from the pole: s=—1 i

Z(s+2)—Z(s+1+ j)—Z(s+1-j)=-180°
Z(5+2)—¢, — Z(s+1- j) =-180"

. . .
¢, =180+ L(-1-j+2)-L(-1- j+1-))
g 5

automatic control by meiling CHEN



== = e
exampie S(S+l)

Angle of approach to the zero: S=

At A ) 4 Ssih- 180
Z(S+ j)+¢,— 25— Z(s+1) =-180°
Z(j+ )+ -2 - £(j+1) =-180°

6, =-180" - Z(j+ )+ 4+ 2£(j+1)

¢, =—135°

automatic control by meiling CHEN



(vii) The cross point of root locus and Im-axis e
/ k

example kGH =
s(s+3)(s* +2s+2)

The characteristic function of closed loop system:

S(s+3)(s*°+2s+2)+k=0
s* +55° +85°+65+k =0 ‘ S 1 e K
s 5 6
2043—425k 0 SZ 3% "
k =8.16 h | 204 — 25k
34
35482+k 0 SO k
s=%j1.095

automatic control by meiling CHEN 127



k

KGH (s) =
S(1+0.55)(1+0.1s)
(0 poles=0, -2, -10 S(1+0.55)(1+0.1s)+k =0
Zeros = o, 0, o0 0.05s° +0.6s° +s+k =0
a) gk 4
- 02100 — = (0.055° +0.65°+35)=0
(ii) 3.0 ds ds
0, :%:60 S = —0.945, S, = —7.05

automatic control by meiling CHEN 128



/ .

/(L05s3/r0.652+s+k=0 \\k=12

s 0.05 1 >
——> 0.6s°+12=0
s° 0.6 k :
. | 0.6-0.05k s=+j4.5
S
0.6 e
S K
/A 145k =12)
G=—4H‘360 /52—0.945
10 |_| 9 0
k-0 k=0)\ |k=0)
_ j45(k =12)

automatic control by meiling CHEN 129



=

KGR = S ose) @ 0.15)

gh=zpk([],[0 -2 -10],[1])
rltool(gh)

k(—3s-9)
S st —s® 5% 155

n=[-3 -9]
m=[1-1-1-15 0]
gh=tf(n,m)
rltool(gh)

automatic control by meiling CHEN

MATLAB metho
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Real Axis

Root Locus Design
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|Poles and Zeros and Transfer Functiom}/

y
/

Transfer Function: A transfer function is defined as the ratio of the Laplace
transform of the output to the input with all initial
conditions equal to zero. Transfer functions are defined
only for linear time invariant systems.

Considerations: Transfer functions can usually be expressed as the ratio
of two polynomials in the complex variable, s.

Factorization: A transfer function can be factored into the following form.

G(S):K(S+Zl)(3+22)---(5+2m)
(8+p)(s+p,)..(s+p,)

The roots of the numerator polynomial are called zeros.

The roots of the denominator polynomial are called poles,

wlg



Poles, Zeros and the S-Plan

An Example: You are given the following transfer function. Show the
poles and zeros in the s-plane.

G(s)= (s+8)(s+14)
s(s+4)(s+10)
1 jo axis
S - plane
origin
—1: —1: tJ8 -4 o G axis

wlg



Poles, Zeros and Bode Plots //‘
Characterization: Considering the transfer function of the
previous slide. We note that we have 4 different
types of terms in the previous general form:
These are:
A 1

K , (s/z+1)
s (s/p +1

Expressing in dB:  Given the tranfer function:

K,(jw/z+1)
(Jw)(jw/ p+1)

G(jw)=

20log | G(jw|=20logK_ +20log|(jw/z+1)|-20log| jw|—-20log| jw/ p +1|
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Poles, Zeros and Bode Plots
/ ;

Mechanics: We have 4 distinct terms to consider:

20logKj
20log|(jw/z +1)]
-20log|jw|

-20log|(jw/p +1)|
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This is a sheet of 5 cycle, semi-log paper.
This is the type of paper usually used for
preparing Bode plots.

o (rad/sec)

Phase
(deg)
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Mechanics:

Poles, Zeros and Bode Plots ==

The gain term, 20logKj is just so many
dB and this is a straight line on Bode paper,
independent of omega (radian frequency).

The term, - 20log|jw| = - 20logw, when plotted
on semi-log paper is a straight line sloping at
-20dB/decade. It has a magnitude of o atw =1.
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Poles, Zeros and Bode Plots
//

Mechanics: The term, - 20log|(jw/p + 1), is drawn with the
following approximation: If w < p we use the
approximation that —2olog|(jw/p +1)| = 0 dB,
a flat line on the Bode. If w > p we use the
approximation of —2o0log(w/p), which slopes at
-20dB/dec starting at w = p. Illustrated below.
It is easy to show that the plot has an error of
-3dBatw=pand -1dBatw=p/2and w = 2p.
One can easily make these corrections if it is
appropriate.

-20
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~ Mechanics:

Poles, Zeros and Bode Plots s

When we have a term of 20log|(jw/z + 1)| we
approximate it be a straight line of slop o dB/dec
when w < z. We approximate it as 2o0log(w/z)
when w > z, which is a straight line on Bode paper
with a slope of + 20dB/dec. Illustrated below.

20 |
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Given: . 50,000( jw+10
G(jw)=— (.J )
(jw+1)( jw+500)

First: Always, always, always get the poles and zeros in a form such that
the constants are associated with the jw terms. In the above example

we do this by factoring out the 10 in the numerator and the 500 in the
denominator.

6 (jw)— 50.000x10(jw/10+1) _ _ 100(jw/10+1)
500(jw+1)(jw/500+1)  (jw+1)(jw/500+1)

St When you have neither poles nor zeros at o, start the Bode
at 2olog, K = 20log, 100 = 40 dB in this case.

wlg



/
(continued) —

Third: Observe the order in which the poles and zeros occur.
This is the secret of being able to quickly sketch the Bode.
In this example we first have a pole occurring at 1 which
causes the Bode to break at 1 and slope - 20 dB/dec.
Next, we see a zero occurs at 10 and this causes a
slope of +20 dB/dec which cancels out the — 20 dB/dec,
resulting in a flat line ( o db/dec). Finally, we have a
pole that occurs at w = 500 which causes the Bode
to slope down at - 20 dB/dec.

We are now ready to draw the Bode.

Before we draw the Bode we should observe the range

over which the transfer function has active poles and zeros.
This determines the scale we pick for the w (rad/sec)

at the bottom of the Bode.

The dB scale depends on the magnitude of the plot and

experience is the best teacher here. i
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Using Matlab For Frequency Response

Instruction: We can use Matlab to run the frequency response for
the previous example. We place the transfer function

in the form:

5000(s+10)  [5000s+50000]
(s+1)(s+500) [s*+501s+500]

The Matlab Program

num = [5000 50000];
den = [1 501 500];
Bode (num,den)

In the following slide, the resulting magnitude and phase plots (exact)
are shown in light color (blue). The approximate plot for the magnitude
(Bode) is shown in heavy lines (red). We see the 3 dB errors at the
corner frequencies.

wlg



Bode Diagrams

nnnnnnn

From: U(1)
40 ——

30 _
20 |- —

1 10 100 500

Phase (deg); Magnitude (dB)

S i
”
. 100(L+ jw/10) |
: + jw
Bode for: G(jw)= : :
80 - ode for: - GUW) = (" "+ jw/500)
_100 r r r rrrrrf L r r rrrrel L r r rrrreref r r r rrrrerf Lr
10™ 10° 10* 10° 10° 10"

Frequency (rad/sec)
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Phase for Bode Plots =

— ,.,/

_—

Comment: Generally, the phase for a Bode plot is not as easy to draw
or approximate as the magnitude. In this course we will use
an analytical method for determining the phase if we want to
make a sketch of the phase.

[1lustration: Consider the transfer function of the previous example.
We express the angle as follows:

ZG(jw)=tan'(w/10)—tan"(w/1)—tan*(w/500)

We are essentially taking the angle of each pole and zero.
Each of these are expressed as the tan™(j part/real part)

Usually, about 10 to 15 calculations are sufficient to determine
a good idea of what is happening to the phase.
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Bode Plots e

— —_—

o Example 2: Given the transfer function. Plot the Bode magnitude.

G(s) _100(1+s/10)
s(1+ s/100)’
Consider first only the two terms of
100
jw
Which, when expressed in dB, are; 20logioo - 20 logw.
This is plotted below.
- , The is
40 L[ -20db/dec a tentative line we use
20 i until we encounter the

dB

first pole(s) or zero(s)
not at the origin.

-20
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- Example 2: (continued) The completed plot is shown below.
G(s) _100(1+s/10)
s(1+s/100)°
60 1 1 1 1 1 1
N
" <odb/dec
40
ST
h
dB Mag o \ -40 db/dec Phase (deg)
\
\\\
\ G (S)_100(1+ s/10)
-40 s(1+s/100)°
-60
0.1 1 10 100 1000 w]g

o (rad/sec)



Example 3:

Given:

G(s)

—

— IR

. 80(L+ jw)’
(jw)’(1+ jw/20)°

20log8o =38 dB

60

dB Mag 4°

-40 dB/dec

20

-20

0.1 1 10 100 wlg

o (rad/sec)



dB Mag

Example 4: iy
. 10(1— jw/2)
iven: G(|w)=
Given: (W) = 70.025w)(L+ jw/500)
60
40

20

-20

_40

-60

0.1 1 10 100 1000

o (rad/sec)

Phase (deg)

Sort of a low
pass filter
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~— Given: : :
Gijuy o W0 WiT00)
Example 5 1+ jw/2)*(1+ jw/1700)
60
40
9B blee 0 Phase (deg)
\ |2
* Ve / ' Sort of a low
/ pass filter

- // + 40 dB/dec
-60

0.1 1 10 100 1000 e

o (rad/sec)
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Given: problem 11.15 text
E le 6 .
e 1wy 8400W + (O.0Ljw+1) _64(jw +D(0.01jw +1
(Jw)*(jw+10) (Jw)*(0.1jw +1)
v\ T T TTTm
\.; | -40dB/dec
* -20db/dec
20 \\\~
\\ 4o0dB/dec
dB ma 0 \
° N
= \ -20dB/dec
\\
-40 TR

0.01 0.1 1 10 100 1000
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Design Problem: I Desi

Example 7

dB mag

40

20

Bode Plots

/
gn a G(s) that has the following Bode ploi.
30 dB
//

+40 dB/ dey N ~4odB/dec

| \\

| '

? ?
| j
0.1 0 100 1000 wlg
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Bode Plots

A Procedureq The two break frequencies need to be found.
: Recall:

#dec = log, [w,/w,]

Then we have:

(#dec)( 40dB/dec) = 30dB

log [w,/30] =o0.75 » w, = 5.33rad/sec

log, [w,/900](-40dB/dec) = - 30dB

This gives w, = 5060 rad/sec
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/I Procedure:ﬁl

6(s) (L3159 1+ 5/5060)
(1+5s/30)°(1+s/900)°
Clearing: . 5.3)% (s + 5060)’
(s +30)°(s + 900)*

Use Matlab and conv:

N1=(s* +10.6s + 28.1) N2=(s* +10120s + 2.56xe")
N1 =[110.6 28.1] N2 = [110120 2.56e+7]
N = conv(N1,N2)
1 1.86e+3 2.58e+7 2.73e+8 7.222048

s4 s3 s> st s°©
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Bode Plots e

/I Procedurez-l The final G(s) is given by;

. (s* +10130.6s° + 2.571e’s” + 2.716e"s + 7.194¢")

G(s
( (s* +1860s° +9.189¢e°s” +5.022e's + 7.29¢")

We now want to test the filter. We will check it at ® = 5.3 rad/sec
And o =164. At o = 5.3 the filter has a gain of 6 dB or about 2.
At ® =164 the filter has a gain of 30 dB or about 31.6.

Testing

We will check this out using MATLAB and particularly, Simulink.
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- Matlab (Simulink) Model:
o ]
Scopel Scope
s4+10103 65342 571e+752+2.716e85+7.194e8
s4+1860534+9.189e552+5.022e7s+7.29¢8
Sine Wave

Transfer Fcn

— in ®_> ! - aut

Clock
ToYWorkspace? ToWorkspace]

To Workspace
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/I Filter Output at ® = 5.3 rad/sec I\/

Frequency response of a band pass filter

L mi
3] | R ARpRpu e R S et

_____

R RN

0.5 ]’ -
|

Input and Output

o5l sl
1
1

} I AR A
S TR R VA JP}* .

Produced from Matlab Simulink
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/I Filter Output at ® = 70 rad/sec I\/

Filter Response for and Input of 70 radisec
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Produced from Matlab Simulink
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Reverse Bode Plot | ’

Required:
From the partial Bode diagram, determine the transfer function
Example 8 (Assume a minimum phase system)
Not to scal#
68
20 db/dec
-20 db/dec
30
20
db/dec
dB
1 110 850



Reverse Bode Plot , '

~— Required:
From the partial Bode diagram, determine the transfer function
Example 9 (Assume a minimum phase system)

100 dB ............................... '

-40 dB/dec

Not to scale

50 dB

-20 dB/dec
-20 dB/dec

10 dB

-40 dB/dec

0.5 40 300
wlg

w (rad/sec)
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