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UNIT -I
INTRODUCTION TO CONTROL 
SYSTEMS



Introduction

System – An interconnection of elements and devices for a desired purpose.

Control System – An interconnection of components forming a system 
configuration that will provide a desired response.

Process – The device, plant, or system 
under control.  The input and output 
relationship represents the cause-and-
effect relationship of the process.



In this chapter we describe a general process for designing a control system. 

A control system consisting of interconnected components is designed to achieve a 

desired purpose. To understand the purpose of a control system, it is useful to 

examine examples of control systems through the course of history. These early 

systems incorporated many of the same ideas of feedback that are in use today.

Modern control engineering practice includes the use of control design strategies for 

improving manufacturing processes, the efficiency of energy use, advanced 

automobile control, including rapid transit, among others. 

We also discuss the notion of a design gap. The gap exists between the complex 

physical system under investigation and the model used in the control system 

synthesis. 

The iterative nature of design allows us to handle the design gap effectively while 

accomplishing necessary tradeoffs in complexity, performance, and cost in order to 

meet the design specifications. 

Chapter 1: Introduction to Control Systems 
Objectives



Introduction

Multivariable Control System

Open-Loop Control Systems
utilize a controller or control 
actuator to obtain the desired 
response.

Closed-Loop Control 
Systems utilizes feedback to 
compare the actual output to 
the desired output response.



History

Watt’s Flyball Governor
(18th century)

Greece (BC) – Float regulator mechanism
Holland (16th Century)– Temperature regulator



History

Water-level float regulator



History



History

18th Century James Watt’s centrifugal governor for the speed control of a steam 
engine.

1920s Minorsky worked on automatic controllers for steering ships.

1930s Nyquist developed a method for analyzing the stability of controlled 
systems

1940s Frequency response methods made it possible to design linear closed-loop 
control systems

1950s Root-locus method due to Evans was fully developed

1960s State space methods, optimal control, adaptive control and

1980s  Learning controls are begun to investigated and developed.

Present and on-going research fields. Recent application of modern control 
theory includes such non-engineering systems such as biological, biomedical, 
economic and socio-economic systems
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(a) Automobile steering 

control system.

(b) The driver uses the 

difference between the 

actual and the desired 

direction of travel

to generate a controlled 

adjustment of the 

steering wheel.

(c) Typical direction-

of-travel response.

Examples of Modern Control Systems



Examples of Modern Control Systems



Examples of Modern Control Systems



Examples of Modern Control Systems



Examples of Modern Control Systems



Examples of Modern Control Systems



Examples of Modern Control Systems



Examples of Modern Control Systems



Examples of Modern Control Systems



The Future of Control Systems



The Future of Control Systems



Control System Design





Design Example



ELECTRIC SHIP CONCEPT
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Design Example



CVN(X) FUTURE AIRCRAFT CARRIER

Design Example



Design Example



Design Example



Design Example



Design Example







Design Example



Design Example



Sequential Design Example





Sequential Design Example



UNIT -III

BLOCK DIAGRAM  REDUCTION 
OF MULTIPLE SYSTEMS



Figure 5.2

Components of a block diagram for a linear, time-invariant system



Figure 5.3

a. Cascaded subsystems;
b. equivalent transfer function



Figure 5.5

a. Parallel subsystems;
b. equivalent transfer function



Figure 5.6

a. Feedback control system;
b. simplified model;
c. equivalent transfer function



Figure 5.7: Block diagram algebra for summing junctions

equivalent forms for moving a block
a. to the left past a summing junction;
b. to the right past a summing junction



Figure 5.8: Block diagram algebra for pickoff points

equivalent forms for moving a block
a. to the left past a pickoff point;
b. to the right past a pickoff point



Block diagram reduction via familiar forms for Example5.1

Problem: Reduce the block diagram shown in figure to a single transfer 
function



Steps in solving Example 5.1:
a. collapse summing junctions;
b. form equivalent cascaded system
in the forward path
c. form equivalent parallel system in the 
feedback path;
d. form equivalent feedback system and 
multiply by cascadedG1(s)

Block diagram reduction via familiar forms for Example5.1 Cont.



Problem: Reduce the block diagram shown in figure to a single transfer 
function

Block diagram reduction by moving blocks Example 5.2



Steps in the block diagram  reduction for Example 5.2

a) Move G2(s) to the left past of 
pickoff point to create parallel 
subsystems, and reduce the 
feedback system of G3(s) and H3(s)

b) Reduce parallel pair of 1/G2(s) 
and unity, and push G1(s) to the 
right past summing junction

c) Collapse the summing 
junctions, add the 2 feedback 
elements, and combine the last 2 
cascade blocks

d) Reduce the feedback system to 
the left

e) finally, Multiple the 2 cascade 
blocks and obtain final result.



Second-order feedback control system

The closed loop transfer function is 

Note K is the amplifier gain, As K varies, the poles move 
through the three ranges of operations OD, CD, and UD
0<K<a2/4  system is over damped
K = a2/4    system is critically damped
K > a2/4 system is under damped
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Finding transient response Example 5.3

Problem: For the system shown, find peak time, percent overshot, and settling 
time.

Solution: The closed loop transfer function is

And  
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using values for  and   and equation in chapter 4 we findn 



Gain design for transient response Example 5.4

Problem: Design the value of gain K, so that the system will respond with a 10% 
overshot.
Solution: The closed loop transfer function is

For 10% OS we find

We substitute this value in previous equation to find K = 17.9 
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Signal-flow graph components:

a. system;
b. signal;
c. interconnection of systems and signals



a. cascaded system nodes

b. cascaded system signal-flow 

graph;

c. parallel system nodes 

d. parallel system signal-flow graph;

e. feedback system nodes 

f. feedback system signal-flow graph

Building signal-flow graphs



Problem: Convert the block diagram to a signal-flow graph.

Converting a block diagram to a signal-flow graph



Converting a block diagram to a signal-flow graph

Signal-flow graph development:

a. signal nodes;

b. signal-flow graph;

c. simplified signal-flow graph



Mason’s rule - Definitions

Loop gain: The product of branch gains found by traversing a path that starts at a node and ends at 
the same node, following the direction of the signal flow, without passing through any other node 
more than once. G2(s)H2(s),  G4(s)H2(s), G4(s)G5(s)H3(s),  G4(s)G6(s)H3(s)
Forward-path gain: The product of gains found by traversing a path from input node to output 
node in the direction of signal flow. G1(s)G2(s)G3(s)G4(s)G5(s)G7(s), 
G1(s)G2(s)G3(s)G4(s)G5(s)G7(s)
Nontouching loops: loops that do not have any nodes in common. G2(s)H1(s) does not touch
G4(s)H2(s), G4(s)G5(s)H3(s), and G4(s)G6(s)H3(s)
Nontouching-loop gain: The product of loop gains from nontouching loops taken 2, 3,4, or more at 
a time.
[G2(s)H1(s)][G4(s)H2(s)],  [G2(s)H1(s)][G4(s)G5(s)H3(s)], [G2(s)H1(s)][G4(s)G6(s)H3(s)]



Mason’s Rule
The Transfer function. C(s)/ R(s), of a system represented by a signal-flow 

graph is

Where
K   =  number of forward paths
Tk =  the kth forward-path gain

= 1 - loop gains + nontouching-loop gains taken 2 at a time -
nontouching-loop gains taken 3 at a time +        nontouching-loop gains taken 4 
at a time - …….

=  - loop gain terms in     that touch the kth forward path. In other 
words,         is formed by eliminating from       those loop gains that touch the kth
forward path.
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Transfer function via Mason’s rule

Problem: Find the transfer function for the signal flow graph
Solution:
forward path 
G1(s)G2(s)G3(s)G4(s)G5(s)

Loop gains 
G2(s)H1(s),  G4(s)H2(s), G7(s)H4(s),
G2(s)G3(s)G4(s)G5(s)G6(s)G7(s)G8(s)

Nontouching loops
2 at a time
G2(s)H1(s)G4(s)H2(s)
G2(s)H1(s)G7(s)H4(s)
G4(s)H2(s)G7(s)H4(s)
3 at a time G2(s)H1(s)G4(s)H2(s)G7(s)H4(s)
Now  

= 1-[G2(s)H1(s)+G4(s)H2(s)+G7(s)H4(s)+ G2(s)G3(s)G4(s)G5(s)G6(s)G7(s)G8(s)] + 

[G2(s)H1(s)G4(s)H2(s) + G2(s)H1(s)G7(s)H4(s) + G4(s)H2(s)G7(s)H4(s)] –
[G2(s)H1(s)G4(s)H2(s)G7(s)H4(s)]

= 1 - G7(s)H4(s)

[G1(s)G2(s)G3(s)G4(s)G5(s)][1-G7(s)H4(s)]
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Signal-Flow Graphs of State Equations

Problem: draw signal-flow graph for:

a. place nodes;

b. interconnect state variables and 
derivatives;
c. form dx1/dt ;
d. form dx2/dt
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(continued)
e. form dx3 /dt;
f. form output

Signal-Flow Graphs of State Equations



Alternate Representation: Cascade Form
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Alternate Representation: Cascade Form
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Alternate Representation: Parallel Form
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Alternate Representation: Parallel Form Repeated roots
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G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)
This form is obtained from the phase-variable form simply by 
ordering the phase variable in reverse  order

Alternate Representation: controller canonical form
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Alternate Representation: controller canonical formSystem matrices that contain the coefficients of the characteristic polynomial 
are called companion matrices to the characteristic polynomial.

Phase-variable form result in lower companion matrix

Controller canonical form results in upper companion matrix



Alternate Representation: observer canonical form

Observer canonical form so named for its use in the design of observers
G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)

= (1/s+7/s2 +2/s3 )/(1+9/s+26/s2 +24/s3 )
Cross multiplying
(1/s+7/s2 +2/s3 )R(s) = (1+9/s+26/s2 +24/s3 ) C(s)
And C(s) = 1/s[R(s)-9C(s)] +1/s2[7R(s)-26C(s)]+1/s3[2R(s)-24C(s)]

= 1/s{ [R(s)-9C(s)] + 1/s {[7R(s)-26C(s)]+1/s [2R(s)-24C(s)]}}



Alternate Representation: observer canonical form
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Note that the observer form has A matrix that is transpose of 
the controller canonical form, B vector is the transpose of the 
controller  C vector, and C vector is the transpose of the 
controller B vector. The 2 forms are called duals.



Feedback control system for Example 5.8

Problem Represent the feedback control 
system shown in state space. Model the 
forward transfer function in cascade form.

Solution first we model the forward transfer 
function as in (a), Second we add the feedback 
and input paths as shown in (b) complete 

system. Write state equations
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Feedback control system for Example 5.8
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State-space forms for

C(s)/R(s) =(s+ 3)/[(s+ 4)(s+ 6)].
Note: y = c(t)



UNIT-III
TIME RESPONSE 

ANALYSIS



Transient vs Steady-State
The output of any differential equation can be broken up into two parts, 
a • transient part (which decays to zero as t goes to infinity) and 
a • steady-state part (which does not decay to zero as t goes to infinity).
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Either part might be zero in any particular case.



Prototype systems
1st Order system

2nd order system

Agenda:
transfer function
response to test signals

impulse
step
ramp
parabolic
sinusoidal
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1st order system
Impulse response
Step response
Ramp response
Relationship between impulse, step and ramp
Relationship between impulse, step and ramp responses
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1st Order system
Prototype parameter: Time constant

Relate problem specific parameter to prototype parameter.

Parameters: problem specific constants. Numbers that do not change 
with time, but do change from problem to problem.

We learn that the time constant defines a problem specific time scale that is 
more convenient than the arbitrary time scale of seconds, minutes, hours, days, 
etc, or fractions thereof. 



Transient vs Steady state
Consider the impulse, step, ramp responses computed earlier. Identify the 
steady state and the transient parts.



1st order 
system

Impulse response
Step response
Ramp response
Relationship between impulse, step and ramp
Relationship between impulse, step and ramp responses
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Consider the impulse, step, ramp responses 
computed earlier. Identify the steady state and the 
transient parts.

Compare steady-state part to input function, transient part to TF.



2nd order system
Over damped
•(two real distinct roots = two 1st order systems with real poles)
Critically damped
•(a single pole of multiplicity two, highly unlikely, requires exact matching)
Underdamped
•(complex conjugate pair of poles, oscillatory behavior, most common)

step response
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2nd Order System
Prototype parameters: 

undamped natural frequency,  
damping ratio

Relating problem specific parameters to prototype parameters



Transient vs Steady state
Consider the step, responses computed earlier. Identify the steady state and 
the transient parts.



2nd order system
Over damped
(two real distinct roots = two • 1st order systems with real poles)

Critically damped
(a single pole of multiplicity two, highly unlikely, requires exact matching)•

Underdamped
(complex conjugate pair of poles, oscillatory behavior, most common)•

step response
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Use of Prototypes
Too many examples to cover them all
We cover important prototypes
We develop intuition on the prototypes
We cover how to convert specific examples to prototypes
We transfer our insight, based on the study of the prototypes to the specific 
situations.



Transient-Response Spedifications

1. Delay time, td: The time required for the response to reach half the final value 
the very first time.

2. Rise time, tr: the time required for the response to rise from 
10% to 90% (common for overdamped and 1st order systems);
5% to 95%; 
or 0% to 100% (common for underdamped systems);
of its final value

1. Peak time, tp:
2. Maximum (percent) overshoot, Mp:
3. Settling time, ts



Derived relations for 
2nd Order Systems
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See book for details. (Pg. 232)

Allowable Mp determines damping ratio.
Settling time then determines undamped natural frequency. 
Theory is used to derive relationships between design specifications and 
prototype parameters. 
Which are related to problem parameters.



Higher order system
PFEs have linear denominators. 

•each term with a real pole has a time constant

•each complex conjugate pair of poles has a damping ratio and an 
undamped natural frequency. 



Proportional control of plant w 
integrator
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Proportional Control of plant w/o 
integrator
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UNIT-IV
STABILITY ANALYSIS IN S-
DOMAIN



Routh’s Stability Criterion
How do we determine stability without finding all poles?

Actual poles provide more info than is needed. 

All we need to know if any poles are in LHP.

Routh’s stability criterion (Section 5-7).
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What values of K produce a stable system?



The issue of ensuring the stability of a closed-loop feedback system is
central to control system design. Knowing that an unstable closed-loop
system is generally of no practical value, we seek methods to help us analyze
and design stable systems. A stable system should exhibit a bounded output
if the corresponding input is bounded. This is known as bounded-input,
bounded-output stability and is one of the main topics of this chapter.

The stability of a feedback system is directly related to the location of the
roots of the characteristic equation of the system transfer function. The
Routh–Hurwitz method is introduced as a useful tool for assessing system
stability. The technique allows us to compute the number of roots of the
characteristic equation in the right half-plane without actually computing
the values of the roots. Thus we can determine stability without the added
computational burden of determining characteristic root locations. This
gives us a design method for determining values of certain system
parameters that will lead to closed-loop stability. For stable systems we will
introduce the notion of relative stability, which allows us to characterize the
degree of stability.

The Stability of Linear Feedback Systems



The Concept of Stability

A stable system is a dynamic system with a bounded 
response to a bounded input.

Absolute stability is a stable/not stable characterization 
for a closed-loop feedback system.  Given that a system is 
stable we can further characterize the degree of stability, 
or the relative stability.



The Concept of Stability

The concept of stability can 
be illustrated by a cone 
placed on a plane horizontal 
surface.

A necessary and 
sufficient condition for 
a feedback system to 
be stable is that all the 
poles of the system 
transfer function have 
negative real parts.

A system is considered marginally stable if only certain 
bounded inputs will result in a bounded output.



The Routh-Hurwitz Stability Criterion

It was discovered that all coefficients of the characteristic polynomial 
must have the same sign and non-zero if all the roots are in the left-hand 
plane.

These requirements are necessary but not sufficient.  If the above 
requirements are not met, it is known that the system is unstable.  But, 
if the requirements are met, we still must investigate the system further 
to determine the stability of the system.

The Routh-Hurwitz criterion is a necessary and sufficient criterion for 
the stability of linear systems.



The Routh-Hurwitz Stability Criterion
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Characteristic equation, 
q(s)

Routh array

The Routh-Hurwitz criterion 
states that the number of 
roots of q(s) with positive 
real parts is equal to the 
number of changes in sign of 
the first column of the Routh 
array.



The Routh-Hurwitz Stability Criterion
Case One:  No element in the first column is zero.

Example 6.1 Second-order system

The Characteristic polynomial of  a second-order sys tem is:

q s( ) a2 s
2

 a1 s a0

The Routh array is written as:

w here:

b1

a1 a0 0( ) a2

a1

a0

Therefore the requirement for a stable second-order system is 

simply that all coef f icients be positive or all the coef ficients be 

negative.

0

0

1

0

1

1

02

2

bs

as

aas



The Routh-Hurwitz Stability Criterion
Case Two:  Zeros in the first column while some elements of the row containing 
a zero in the first column are nonzero.

If  only one element in the array is zero, it may be replaced w ith a small positive 

number  that is allow ed to approach zero after completing the array.
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The Routh array is then:
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b1
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2
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d1

6 c1 10

c1

6

There are two sign changes in the first column due to the large negative number 

calculated for c1.  Thus, the system is unstable because two roots lie in the 

right half  of  the plane. 
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The Routh-Hurwitz Stability Criterion
Case Three:  Zeros in the first column, and the other elements of the row 
containing the zero are also zero.

This case occurs when the polynomial q(s) has zeros located symetrically about the 

origin of  the s-plane, such as (s+)(s -) or (s+j)(s -j).  This case is solved using 

the auxiliary polynomial, U(s), w hich is located in the row above the row  containing 

the zero entry in the Routh array.

q s( ) s
3

2 s
2

 4s K

Routh array:

For a stable system we require that 0 s 8

For the marginally stable case, K=8, the s^1 row  of the Routh array contains all zeros.  The 

auxiliary plynomial comes f rom the s^2 row. 

U s( ) 2s
2

Ks
0

 2 s
2

 8 2 s
2

4  2 s j 2( ) s j 2( )

It can be proven that U(s) is a factor of  the characteris tic polynomial:

q s( )

U s( )

s 2

2 Thus, w hen K=8, the factors of the characteristic polynomial are:

q s( ) s 2( ) s j 2( ) s j 2( )

0

0

2

41

0

2
81

2

3

Ks

s

Ks

s

K



The Routh-Hurwitz Stability Criterion
Case Four:  Repeated roots of the characteristic equation on the jw-axis.

With simple roots on the jw-axis, the system 
will have a marginally stable behavior.  This is 
not the case if the roots are repeated.  
Repeated roots on the jw-axis will cause the 
system to be unstable.  Unfortunately, the 
routh-array will fail to reveal this instability.



Example 6.4



Example 6.5 Welding control

Using block diagram reduction we find 
that:
The Routh array is then:

Kas

cs

Kabs

Ks

Kas

0

3

1

3

2

3

4

)6(6

111



For the system to be stable both b3 and c3 must be positive.

Using these equations a relationship can be determined for K and a .

where: b3

60 K

6
and c3

b3 K 6( ) 6 Ka

b3



The Relative Stability of Feedback Control Systems

It is often necessary to know 
the relative  damping of each 
root to the characteristic 
equation.  Relative system 
stability can be measured by 
observing the relative real part 
of each root.  In this diagram 
r2 is relatively more stable 
than the pair of roots labeled 
r1.

One method of determining the relative stability 
of each root is to use an axis shift in the s-domain 
and then use the Routh array as shown in 
Example 6.6 of the text.



Problem statement:  Design the turning control for a tracked vehicle.  Select 
K and a so that the system is stable.  The system is modeled below.  

Design Example: Tracked Vehicle Turning Control



The characteristic equation of this system is:

1 Gc G s( ) 0

or 

1
K s a( )

s s 1( ) s 2( ) s 5( )
 0

Thus,

s s 1( ) s 2( ) s 5( ) K s a( ) 0

or 

s
4

8s
3

 17s
2

 K 10( )s Ka 0

To determine a stable region for the system, we establish the Routh array as:

where 

b3

126 K

8
and c3

b3 K 10( ) 8Ka

b3

Kas

cs

Kabs

Ks

Kas

0

3

1

3

2

3

4

0)10(8

171



Design Example: Tracked Vehicle Turning Control



Kas

cs

Kabs

Ks

Kas

0

3

1

3

2

3

4

0)10(8

171



Design Example: Tracked Vehicle Turning Control

where 

b3

126 K

8
and c3

b3 K 10( ) 8Ka

b3

Therefore,

K 126

K a 0

K 10( ) 126 K( ) 64Ka 0



System Stability Using MATLAB



System Stability Using MATLAB



System Stability Using MATLAB



System Stability Using MATLAB



Root Locus

Motivation•
To satisfy transient performance requirements, it may be necessary to know how to 

choose certain controller parameters so that the resulting closed-loop poles are in the 

performance regions, which can be solved with Root Locus technique.   

Definition•
A graph displaying the roots of a polynomial equation when one of the parameters in 

the coefficients of the equation changes from 0 to .

Rules for Sketching Root Locus•

Examples•

Controller Design Using Root Locus•
Letting the CL characteristic equation (CLCE) be the polynomial equation, one can use 

the Root Locus technique to find how a positive controller design parameter affects the 

resulting CL poles, from which one can choose a right value for the controller 

parameter.     
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Closed-loop transfer function : 
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Root locus

automatic control by meiling CHEN 117

k G(s)

H(s)

＋

－

)(ty)(tr

)()(1

)(

)(

)(
)(

sHskG

skG

sR

sy
sT




0)()(1  sHskG poles



automatic control by meiling CHEN 118

)12()()(

1)()(

1)()(

0)()(1










nsHskG

sHskG

sHskG

sHskG Open loop transfer function 

Using open loop transfer function + system parameters to analyze the 
closed-loop system response 

 0k

Draw the s-plan root locus
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Root locus properties:
The locus segments are symmetrical about the real axis.(i)

(ii)

(iii) 

 0,
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Root locus construction 

(i) Loci Branches each locus from poles          to zeros            0k k

mn if for excess zeros or poles, locus segments extend from 
infinity.

(1) 0mn 

(2) 0mn 

 branchesmn

zerosbranchesnm 
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(ii) Real axis segments

Poles + zeros = odd

Poles + zeros = even

0180

01801)()( sHskG
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(iii) Asymptotic angles
,2,1,0,
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(iv) Centroid of the asymptotes
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(v) Breakaway and entry points
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(vi) Angle of departure and approach
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Angle of approach to the zero:
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(vii) The cross point of root locus and Im-axis

example
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The characteristic function of closed loop system: 
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MATLAB method 

n=[-3 -9]
m=[1 –1 –1 –15 0]
gh=tf(n,m)
rltool(gh)
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gh=zpk([],[0 –2 -10],[1])
rltool(gh)
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Poles and Zeros and Transfer Functions

Transfer Function: A transfer function is defined as the ratio of the Laplace
transform of the output to the input with all initial 
conditions equal to zero.  Transfer functions are defined
only for linear time invariant systems.

Considerations: Transfer functions can usually be expressed as the ratio
of two polynomials in the complex variable, s.

Factorization: A transfer function can be factored into the following form.

)(...))((

)(...))((
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The roots of the numerator polynomial are called zeros.

The roots of the denominator polynomial are called poles.
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Poles, Zeros and the S-Plane

An Example: You are given the following transfer function.  Show the
poles and zeros in the s-plane.

)10)(4(

)14)(8(
)(






sss
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S - plane

xxoxo
0-4-8-10-14

origin

 axis

j axis
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Poles, Zeros and Bode Plots

Characterization: Considering the transfer function of the 
previous slide. We note that we have 4 different
types of terms in the previous general form:
These are:

)1/(,
)1/(

1
,

1
, 


zs

pss
K

B

Expressing in dB: Given the tranfer function:

)1/)((

)1/(
)(






pjwjw

zjwK
jwG B

|1/|log20||log20|)1/(|log20log20|(|log20  pjwjwzjwKjwG
B
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Poles, Zeros and Bode Plots

Mechanics: We have 4 distinct terms to consider:

20logKB

20log|(jw/z +1)|

-20log|jw|

-20log|(jw/p + 1)|

wlg



 (rad/sec)

dB 
Mag Phase 

(deg)

1                                   1                                   1                                    1               1                                   1

wlg

This is a sheet of 5 cycle, semi-log paper.
This is the type of paper usually used for
preparing Bode plots.



Poles, Zeros and Bode Plots

Mechanics: The gain term, 20logKB, is just so many
dB and this is a straight line on Bode paper,
independent of omega (radian frequency).

The term, - 20log|jw| = - 20logw, when plotted
on semi-log paper is a straight line sloping at 
-20dB/decade.  It has a magnitude of 0 at w = 1.

0

20

-20

=1

-20db/dec
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Poles, Zeros and Bode Plots

Mechanics: The term, - 20log|(jw/p + 1), is drawn with the 
following approximation:  If w < p we use the
approximation that –20log|(jw/p + 1 )| = 0 dB,
a flat line on the Bode.  If w > p we use the 
approximation of –20log(w/p), which slopes at
-20dB/dec starting at w = p.  Illustrated below.
It is easy to show that the plot has an error of
-3dB at w = p and – 1 dB at w = p/2 and w = 2p.
One can easily make these corrections if it is 
appropriate.

0

2
0

-20

-40

 = p

-20db/dec
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Poles, Zeros and Bode Plots

0

20

-20

-40

 = z

+20db/dec

Mechanics: When we have a term of 20log|(jw/z + 1)| we
approximate it be a straight line of slop 0 dB/dec
when w < z.  We approximate it as 20log(w/z)
when w > z, which is a straight line on Bode paper
with a slope of + 20dB/dec.  Illustrated below.
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Example 1:

Given: 50,000( 10)
( )

( 1)( 500)

jw
G jw

jw jw




 

First:  Always, always, always get the poles and zeros in a form such that 
the constants are associated with the jw terms.  In the above example 
we do this by factoring out the 10 in the numerator and the 500 in the
denominator.

50,000 10( /10 1) 100( /10 1)
( )

500( 1)( / 500 1) ( 1)( / 500 1)

x jw jw
G jw

jw jw jw jw

 
 

   

Second:  When you have neither poles nor zeros at 0, start the Bode
at 20log10K = 20log10100 = 40 dB in this case.
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Example 1: (continued)

Third: Observe the order in which the poles and zeros occur.
This is the secret of being able to quickly sketch the Bode.
In this example we first have a pole occurring at 1 which
causes the Bode to break at 1 and slope – 20 dB/dec.
Next, we see a zero occurs at 10 and this causes a
slope of +20 dB/dec which cancels out the – 20 dB/dec,
resulting in a flat line ( 0 db/dec).  Finally, we have a
pole that occurs at w = 500 which causes the Bode
to slope down at – 20 dB/dec.

We are now ready to draw the Bode.  

Before we draw the Bode we should observe the range
over which the transfer function has active poles and zeros.
This determines the scale we pick for the w (rad/sec)
at the bottom of the Bode.

The dB scale depends on the magnitude of the plot and 
experience is the best teacher here. wlg
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Using Matlab For Frequency Response

Instruction: We can use Matlab to run the frequency response for
the previous example.  We place the transfer function
in the form:

]500501[

]500005000[

)500)(1(

)10(5000
2 








ss

s

ss

s

The Matlab Program

num = [5000 50000];
den = [1 501 500];
Bode (num,den)

wlg

In the following slide, the resulting magnitude and phase plots (exact)
are shown in light color (blue).  The approximate plot for the magnitude
(Bode) is shown in heavy lines (red).  We see the 3 dB errors at the
corner frequencies.
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Phase for Bode Plots

Comment: Generally, the phase for a Bode plot is not as easy to draw
or approximate as the magnitude.  In this course we will use
an analytical method for determining the phase if we want to
make a sketch of the phase.  

Illustration:Consider the transfer function of the previous example.
We express the angle as follows:

)500/(tan)1/(tan)10/(tan)( 111 wwwjwG  

We are essentially taking the angle of each pole and zero.
Each of these are expressed as the tan-1(j part/real part)

Usually, about 10 to 15 calculations are sufficient to determine
a good idea of what is happening to the phase.
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Bode Plots

Example 2: Given the transfer function.  Plot the Bode magnitude.
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Consider first only the two terms of 

jw

100

Which, when expressed in dB, are;  20log100 – 20 logw.
This is plotted below.

1

0

20

40

-20

The is

a tentative line we use 
until we encounter the 
first pole(s) or zero(s)
not at the origin.

-20db/dec
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Bode Plots

Example 2: (continued)
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The completed plot is shown below.
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Example 3:
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Bode Plots

-40 dB/dec

+ 20 dB/dec

Given:

Sort of a low
pass filter

Example 4:
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+ 40 dB/dec

Given:

Sort of a low
pass filter

Example 5
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Bode Plots

Given: problem 11.15 text

)11.0()(
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Example 6
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Bode Plots

Design Problem: Design a G(s) that has the following Bode plot.

dB mag

 rad/sec

0

20

40

0.1 1 10 100 1000
30 900

30 dB

+40 dB/dec
-40dB/dec

? ?

Example 7
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Bode Plots

Procedure: The two break frequencies need to be found.  
Recall:

#dec = log10[w2/w1]

Then we have:

(#dec)( 40dB/dec)  =  30 dB

log10[w1/30] = 0.75 w1  =  5.33 rad/sec

Also:

log10[w2/900](-40dB/dec) =  - 30dB

This gives  w2  =  5060 rad/sec

wlg



Bode Plots

Procedure:

2 2

2 2

(1 / 5.3) (1 / 5060)
( )

(1 / 30) (1 / 900)

s s
G s

s s

 


 

Clearing: 2 2

2 2

( 5.3) ( 5060)
( )

( 30) ( 900)

s s
G s

s s

 


 

Use Matlab and conv:

2 2 71 ( 10.6 28.1) 2 ( 10120 2.56 )N s s N s s xe     

N = conv(N1,N2)

N1 = [1 10.6  28.1]                  N2 = [1 10120 2.56e+7]

1      1.86e+3     2.58e+7     2.73e+8    7.222e+8

s4 s3                      s2                      s1 s0
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Bode Plots

Procedure: The final G(s) is given by;

Testing
:

We now want to test the filter.  We will check it at  = 5.3 rad/sec
And  = 164.  At  = 5.3 the filter has a gain of 6 dB or about 2.
At  = 164 the filter has a gain of 30 dB or about 31.6.

We will check this out using MATLAB and particularly, Simulink.

)29.7022.5189.91860(

)194.7716.2571.26.10130(
)(

872234

882834

esesess

esesess
sG
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Matlab (Simulink) Model:
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Filter Output at  = 5.3 rad/sec

Produced from Matlab Simulink
wlg



Filter Output at  =  70 rad/sec

Produced from Matlab Simulink
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Reverse Bode Plot

Required:

From the partial Bode diagram, determine the transfer function
(Assume a minimum phase system)

dB



20 
db/dec

20 db/dec

-20 db/dec
30

1 110 850

68

Not to scale
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Example 8



Reverse Bode Plot

Not to scale

100 dB

w (rad/sec)

50 dB

0.5

-40 dB/dec

-20 dB/dec

40

10 dB

300

-20 dB/dec

-40 dB/dec

Required:

From the partial Bode diagram, determine the transfer function
(Assume a minimum phase system)
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