

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER

B. Tech IV Semester Regular Examinations, April/May 2020 Regulations: R18

CONTROL SYSTEMS

(Common to EEE & ECE)

Time: 3 hours

Max. Marks: 70

Answer ONE Question from each Module

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

MODULE – I

l.	a)	Explain open loop and closed loop control systems with suitable examples.	[7M]
	b)	Explain the classification of control systems.	[7M]

- 2. a) Determine the transfer function of RLC series circuit if the voltage across the capacitor is a output variable and input is voltage source v(s). [7M]
 - b) Find the transfer function $\frac{\theta(s)}{T(s)}$ for the system shown in figure. [7M]

MODULE – II

- 3. a) Derive the transfer function of an armature controlled DC servomotor and develop [7M] its block diagram
 - b) Discuss Mason's gain formula. Obtain the overall transfer function C/R from the [7M] signal flow graph shown.

- 4. a) Explain the effect of P, PI, PD and PID control on the performance of control [7M] system?
 - b) For a system $G(s)H(s) = \frac{K}{s^2(s+2)(s+6)}$ Find the value of K to limit steady [7M]

state error to 10 when input to system is $1 + 10t + \frac{40}{2}t^2$

MODULE – III

5.	a)	State and explain the advantages and limitations of Routh Hurwitz criteria.		
	b)	The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K(s+13)}{S(s+3)(s+7)}$ find the restriction on k so that the closed loop system is stable.	[7M]	
6.	a)	state the effect of addition of poles and zeros on root locus and the stability of the system.	[7M]	
	b)	The open loop transfer function of a control system is given by G(s) H(s) = $\frac{K}{S(S+6)(S^2+4S+13)}$ sketch complete root locus.	[7M]	
		MODULE – IV		
7.	a)	Write short notes on various frequency domain specifications.	[7M]	
	b)	Sketch the bode plot for a system with unity feedback having the transfer function, and assess its closed-loop stability.	[7M]	
		$G(s) = \frac{100(1+0.1S)}{2(1+0.2)(1+0.25)}$		
8	a)	S(1 + 0.2s)(1 + 0.5s)	[7M]	
0.	<i>a)</i>	A unity feedback control system has $G(s) = \frac{1}{s(s+1)(1+\frac{s}{10})}$. find the value of K so that		

GM=12db and PM=30deg. Obtain the range of values of K for which the following open loop transfer function [7M] is stable. Use nyquist stability criterion $.G(S)H(S)=K/s(s^2+2s+2)$. b)

MODULE – V

9.	a)	Derive the expression for the calculation of the transfer function from the state variables for the analysis of system?	[7M]
	b)	Obtain the state space model of a series RLC circuit	[7M]
10.	a)	Consider the differential equation system given by $2\ddot{y}+3\ddot{y}+5\dot{y}+2y = u$ y(0)=0.1,y(0)=0.05. Obtain the response y(t),subjected to the given initial condition	[7M]
	b)	Design a lead compensator using root locus for the system with , $G(S) = \frac{4}{S(S+2)}$ to meet the specifications as	[7M]

Damping ratio = 0.5 b. setting time = 2 sec.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES:

The course should enable the students to:

The course should enable the students to:			
Ι	Organize modeling and analysis of electrical and mechanical systems.		
II	Analyze control systems by block diagrams and signal flow graph technique.		
III	Demonstrate the analytical and graphical techniques to study the stability.		
IV	Illustrate the frequency domain and state space analysis.		

COURSE OUTCOMES (COs):

CO 1	Classify the types and configurations of control systems and describe the mathematical models of
	dynamic systems.
CO 2	Apply various techniques to obtain transfer functions and examine the time response of control systems using standard test signals.
CO 3	Analyze the system response and stability in time domain
CO 4	Examine the characteristics and stability of control systems in frequency domain.
CO 5	Obtain the models of control systems in state space form and design compensators to meet the desired specifications.

COURSE LEARNING OUTCOMES (CLOs):

AEEB16.01	Differentiate between open loop, closed loop system and their importance in real
	time applications.
AEEB16.02	Predict the transfer function of translational and rotational mechanical, electrical
	system using differential equation method.
AEEB16.03	Analyze the analogy between electrical, translation and rotational mechanical
	systems.
AEEB16.04	Apply the block diagram and signal flow graph technique to determine transfer
	function of an control systems.
AEEB16.05	Demonstrate the response of first order and second order systems with various
	standard test signals.
AEEB16.06	Estimate the steady state error and its effect on the performance of control systems
	and gives the importance of PID controllers.
AEEB16.07	Summarize the procedure of Routh – Hurwirtz criteria to study the stability of
	physical systems
AEEB16.08	List the steps required to draw the root – locus of any control system and predict
	the stability.

AEEB16.09	Explain the effect on stability by adding zeros and poles to the transfer function of			
	control system.			
AEEB16.10	Discuss the method of Bode plot and Polar plot to calculate gain margin and phase			
	margin of control system.			
AEEB16.11	Describe the characteristics of control system and its stability by plotting Nyquist			
	plot.			
AEEB16.12	Compare the behavior of control system in terms of time domain and frequency			
	domain response.			
AEEB16.13	3 Define the state model of control system using its block diagram and give the rol			
	of diagonalization in state space analysis.			
AEEB16.14	Formulate the state transmission matrix and explain the concept of controllability			
	and observability.			
AEEB16.15	Design of lag, lead, lag – lead compensator to improve stability of control system.			
AEEB16.16	Apply the concept of different stability criterions and time, frequency response			
	solution to solve real time world applications.			
AEEB16.17	Explore the knowledge and skills of employability to succeed in national and			
	international level competitive examinations.			

MAPPING OF SEMESTER END EXAMINATION - COURSE OUTCOMES

SEE Question No			Course Learning Outcomes	Course Outcomes	Blooms Taxonomy Level
1	a	AEEB16.01	Differentiate between open loop, closed loop system and their importance in real time applications.	CO 1	Analyze
	b	AEEB16.01	Differentiate between open loop, closed loop system and their importance in real time applications.	CO 1	Analyze
2	а	AEEB16.02	Predict the transfer function of translational and rotational mechanical, electrical system using differential equation method.	CO 1	Apply
	b	AEEB16.03	Analyze the analogy between electrical, translation and rotational mechanical systems.	CO 1	Analyze
3	a	AEEB16.04	Apply the block diagram and signal flow graph technique to determine transfer function of an control systems.	CO 2	Apply
	b	AEEB16.04	Apply the block diagram and signal flow graph technique to determine transfer function of an control systems.	CO 2	Apply
4	а	AEEB16.06	Estimate the steady state error and its effect on the performance of control systems and gives the importance of PID controllers.	CO 2	Apply
	b	AEEB16.05	Demonstrate the response of first order and second order systems with various standard test signals.	CO 2	Apply
5	a	AEEB16.07	Summarize the procedure of Routh – Hurwirtz criteria to study the stability of physical systems	CO 3	Understand

	b	AEEB16.07	Summarize the procedure of Routh – Hurwirtz	CO 3	Understand
			Eveloin the effect on stability by adding range		
		AEEB10.09	Explain the effect on stability by adding zeros	<u> </u>	TT 1 . 1
	а		and poles to the transfer function of control	CO 3	Understand
6			system.		
	h	AEEB16.08	List the steps required to draw the root – locus of	CO 3	Analyze
	_		any control system and predict the stability.		
		AEEB16.10	Discuss the method of Bode plot and Polar plot		
	а		to calculate gain margin and phase margin of	CO 4	Understand
7			control system.		
/		AEEB16.10	Discuss the method of Bode plot and Polar plot		
	b		to calculate gain margin and phase margin of	CO 4	Understand
			control system.		
		AEEB16.10	Discuss the method of Bode plot and Polar plot		
	а		to calculate gain margin and phase margin of	CO 4	Understand
8			control system.		
	b	AEEB16.11	Describe the characteristics of control system		
			and its stability by plotting Nyquist plot.	CO 4	Understand
		AEEB16.13	Define the state model of control system using		
	а		its block diagram and give the role of	CO 5	Remember
			diagonalization in state space analysis.		
9		AEEB16.13	Define the state model of control system using		
	b		its block diagram and give the role of	CO 5	Remember
			diagonalization in state space analysis.		
		AEEB16.14	Formulate the state transmission matrix and		
10	а		explain the concept of controllability and	CO 5	Apply
			observability.	200	rr-J
	b	AEEB16.15	Design of lag, lead, lag – lead compensator to		
			improve stability of control system.	CO 5	Create

Signature of Course Coordinator

HOD, EEE