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UNIT-I
Control Systems-Modeling-

Feedback Control



Dynamical systems are mathematical objects used to model physical
phenomena whose state (or instantaneous description) changes
over time.

The models are widely used in control systems.
The system state at time t is an instantaneous description of the

system which is sufficient to predict the future states of the system
without recourse to states prior to t.

Physical model accurately describes the behavior of the physical
process in so far as we are concerned.

The basic components of a control system are:
a) Input or Objective of control
b) Plant or control system components
c) Outputs or Results.
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System – An interconnection of elements and devices for a desired
purpose.
Control System – An interconnection of components forming a system
configuration that will provide a desired response.
Process – The device, plant, or system under control. The input and
output relationship represents the cause-and-effect relationship of the
process.
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Block Diagram Representation
 A control system may consist of a number of components.

 To show the function performed by each component, in control
engineering, we commonly use a diagram called the block diagram.

 In block diagram all system variables are linked to each other
through functional blocks.

 The functional block is a symbol for the mathematical operation on
the input signal to the block that produces the output.

 The transfer function of the components is usually entered in the
corresponding blocks, which are connected by arrows to indicate
the direction of the flow of signals.



Block Diagram Representation 
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Noise
A noise is a signal that tends to adversely affect the value of output

of a system.
 It is undesired signal.
 Source of noise can be internal or external to the control system.
 Example - All electrical components generate electrical noise at

various frequencies.

Function of Control as Regulation
• A control system can be used to keep the output constant

irrespective of the variation in input.
• Example - Voltage regulator

Cyclo converter

Function of Control as Tracking
oA control system can be used for tracking the input.
oExample - Guided air to air missile,

Command guidance system of surface to air missile
7



Sensitivity

Robustness

a) It is very sensitive to input command.

b) It is insensitive to system parameter variations due to aging,

temperature variations and other environmental conditions.

c) It is insensitive to noise.

d) It is insensitive to external disturbance.

e) It has good tracking capability.

f) It has small errors.
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Need for stable, effective (responsive), Robust
Control:
 To be useful a control system should be stable.
 A stable system may be defined as one that will have a bounded

response for all possible bounded input.
 A linear system will be stable if and only if all the poles of its transfer

function are located on the left side of imaginary ( jω) axis.
 An unstable system is of no use as output keeps increasing with time

even when input is constant or zero.
 Response is characterized in terms of its rise time, settling time.
 It is an indication of how fast the system responds to input.
 For example in aircraft control when pilot pulls the control stick he

expects aircraft nose to go quickly up.
 Robust control system properties have already been explained

above.
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Modeling of Dynamical system by Differential 
Equation- system parameters, order of the   system

A dynamical system can be modeled using the differential equations.
The differential is derived by finding the relation between input and
output using mathematical equations governing the system.

Mass, spring, damper system
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BLOCK DIAGRAM SISO CLOSED LOOP SYSTEM
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Linear and Non Linear System:
 A system is called linear if the principle of superposition applies.
 The principle of superposition states that the response produced by

the simultaneous application of the different forcing functions is the
sum of two individual responses.

 Hence for the linear system, the response to several inputs can be
calculated by treating one input at a time and adding the results.

 It is this principle that allows one to build up complicated solutions
to the linear differential equations from simple solutions.

 In an experimental investigation of a dynamical system, if cause and
effect are proportional, thus implying that the principle
superposition holds, then the system can be considered linear.
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Open Loop Control Systems:  

Sensitive to changing in parameters and disturbance.

ControllerInput Output Plant
u

Actuator
v

Reference Output
Plant

u
Controller Actuator Sensor

Error

+

Disturbance

++

-

Control 
(Actuation) 

Signal
Sensing 
signal

Closed Loop Control Systems: (Feedback Systems)  

Error signal= Reference – Sensing signal
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Application of feedback in Stability Augmentation System,
Control Augmentation, Automatic control-Examples:

The FCS of an aircraft generally consists of three important parts.
•Stability Augmentation system (SAS)
•Control Augmentation system (CAS)
•Automatic Control System
•Lead Compensator/High Frequency Filter
•Lag Compensator/High Frequency Filter
•Lead Lag filter
•Washout Filter
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Closed-Loop Transfer Functions

The block diagrams considered so far have been specifically
developed for the stirred-tank blending system. The more general
block diagram in Fig. 11.8 contains the standard notation:

Y = controlled variable

U = manipulated variable

D = disturbance variable (also referred to as load 
variable)

P = controller output

E = error signal

Ym = measured value of Y

Ysp = set point

internal set point (used by the controller)
sp

Y 
15



Standard block diagram of a feedback control system
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Yu = change in Y due to U

Yd = change in Y due to D

Gc = controller transfer function

Gv = transfer function for final control element (including 
KIP, if required)

Gp = process transfer function

Gd = disturbance transfer function

Gm = transfer function for measuring element and 
transmitter

Km = steady-state gain for Gm
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Block Diagram Reduction

In deriving closed-loop transfer functions, it is often convenient to
combine several blocks into a single block. For example, consider the
three blocks in series in Fig. 11.10. The block diagram indicates the
following relations:

1 1

2 2 1

3 3 2

(1 1 -1 1 )

X G U

X G X

X G X







By successive substitution,

3 3 2 1
(1 1 -1 2 )X G G G U

or

3
(1 1 -1 3 )X G U
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Figure 11.10 Three blocks in series. 

Figure 11.11 Equivalent block diagram. 



where:

Z =is the output variable or any internal variable within the 

control loop

Zi =is an input variable (e.g., Ysp or D)

=product of the transfer functions in the forward path from 

Zi to Z

=product of every transfer function in the feedback loop

f


e


General Expression for Feedback Control Systems

Closed-loop transfer functions for more complicated block 

diagrams can be written in the general form:

(1 1 -3 1 )
1

f

i e

Z

Z




 
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The Concept of Stability
A stable system is a dynamic system with a bounded response to a 
bounded input
In terms of linear systems, stability requirement may be defined in terms 
of the location of the poles of the closed-loop transfer function.
The closed-loop transfer function is written as
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The Routh-Hurwitz Stability Criterion
This a necessary and sufficient criterion for the stability of linear systems
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The Routh-Hurwitz criterion is based on ordering the coefficients of the
characteristic equation. It states that the number of roots of q(s) with
positive real parts is equal to the number of changes in sign of the first
column of the Routh array.
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The Relative Stability of Feedback Control Systems

• If the system satisfies the Routh-Hurwitz criterion and is absolutely
stable, it is desirable to determine the relative stability that is, it is
necessary to investigate the relative damping of each root of the
characteristic equation.

• The relative stability of a system may be defined as the property that is
measured by the relative real part of each root or pair of roots.


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The Stability of State Variable Systems

• The stability of a system modeled by a state variable flow graph model
may be readily ascertained.

• The stability of a system with an input-output transfer function T(s)
may be determined by examining the denominator polynomial of T(s)
= p(s) / q(s).

• The polynomial q(s), when set equal to zero, is called the characteristic
equation.

• The stability of the system may be evaluated with the characteristic
equation associated with the system matrix A
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Stability

• Most industrial processes are stable without feedback control.
Thus, they are said to be open-loop stable or self-regulating.

• An open-loop stable process will return to the original steady
state after a transient disturbance (one that is not sustained)
occurs.

• By contrast there are a few processes, such as exothermic
chemical reactors, that can be open-loop unstable.

Definition of Stability. An unconstrained linear system is said to
be stable if the output response is bounded for all bounded

inputs. Otherwise it is said to be unstable.
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Root Locus Diagrams

Example 11.13

Consider a feedback control system that has the open-loop 
transfer function,

 
     

4
(1 1 -1 0 8 )

1 2 3

c

O L

K
G s

s s s


  

Plot the root locus diagram for 0 2 0 .
c

K 

Solution

The characteristic equation is 1 + GOL = 0 or

     1 2 3 4 0 (1 1 -1 0 9 )
c

s s s K    
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• The root locus diagram in Fig. 11.27 shows how the three
roots of this characteristic equation vary with Kc.

• When Kc = 0, the roots are merely the poles of the open-loop
transfer function, -1, -2, and -3.
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UNIT- II
PERFORMANCE-TIME, FREQUENCY 

AND S-DOMAIN DESCRIPTION
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Transfer Function

• Transfer Function is the ratio of Laplace transform of the output to the
Laplace transform of the input. Consider all initial conditions to zero.

Where is the Laplace operator.

Plant
y(t)u(t)
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Transfer Function
• The transfer function G(S) of the plant is given as

G(S) Y(S)U(S)

)(

)(
)(
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SY
SG 
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Why Laplace Transform?
• Using Laplace transform, we can convert many common functions into

algebraic function of complex variable s.

• For example

• Where s is a complex variable (complex frequency) and is given as
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Laplace Transform of Derivatives
• Not only common function can be converted into simple algebraic

expressions but calculus operations can also be converted into algebraic
expressions.

• For example
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Laplace Transform of Derivatives
In general

Where is the initial condition of the system.
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Transfer Function

• Transfer function can be used to check

– The stability of the system

– Time domain and frequency domain characteristics of the system

– Response of the system for any given input
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Stability of Control System

• There are several meanings of stability, in general there are two
kinds of stability definitions in control system study.

– Absolute Stability

– Relative Stability

36



Stability of Control System

• Roots of denominator polynomial of a transfer function are called
‘poles’.

• The roots of numerator polynomials of a transfer function are called
‘zeros’.
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Stability of Control System

• Poles of the system are represented by ‘x’ and zeros of the system
are represented by ‘o’.

• System order is always equal to number of poles of the transfer
function.

• Following transfer function represents nth order plant (i.e., any
physical object).
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Stability of Control System

• Poles is also defined as “it is the frequency at which
system becomes infinite”. Hence the name pole
where field is infinite.

• Zero is the frequency at which system becomes 0.
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Examples
• Consider the following transfer functions.

 Determine whether the transfer function is proper or improper

 Calculate the Poles and zeros of the system

 Determine the order of the system

 Draw the pole-zero map

 Determine the Stability of the system
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UNIT - III

SPECIFICATION OF CONTROL SYSTEM 

PERFORMANCE REQUIREMENTS , 

SYSTEM SYNTHESIS, CONTROLLERS, 

COMPENSATION TECHNIQUE
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Control system specifications and design involves the following
steps.
• Determine what the system should do and how to do it

(Performance and design specification).
• Determine the controller or compensator configuration

relative to how it is connected to the controlled process.
• Determine the parameter values of the controller to achieve

the design.
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Zeros and poles of a transfer function

• Let G(s)=N(s)/D(s), then

– Zeros of G(s) are the roots of N(s)=0

– Poles of G(s) are the roots of D(s)=0

Re(s)

Im(s)
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Theorems

• Initial Value Theorem

• Final Value Theorem
– If all poles of X(s) are in the left half plane (LHP), then
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First order system
• If the initial condition was not zero, then

Physical meaning of the impulse response
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First order system response
System transfer function : 

Impulse response : 

Step response : 
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First order system response

Unstable

Re(s)

Im(s)

faster response                 slower response

constant
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First order system – Time 
specifications.

Time specs:

Steady state value : 

Time constant : 

Rise time : 

Settling time : 

Time to go from                to
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Second order system (mass-spring-damper system)

k b

y(t)

F(t)=ku(t)

m
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Underdamped second order system
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Unit step response of undamped 
system 
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Second order system response.

Unstable

Re(s)

Im(s)

U
n

d
am

p
e

d

Overdamped or Critically damped

Underdamped

Underdamped
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Overdamped system response
System transfer function : 

Impulse response : 

Step response : 
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Overdamped and critically damped system response.

Overdamped
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Overdamped and critically damped system response.

Critically damped
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Second order impulse response – Underdamped and Undamped

Impulse response : 
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Second order impulse response – Underdamped and Undamped

Impulse Response
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Second order impulse response – Underdamped and Undamped

Impulse Response

Time (sec)
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p
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Second order impulse response – Underdamped and Undamped

Unstable

Faster response Slower response

Higher frequency oscillations

Lower frequency oscillations
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Second order impulse response – Underdamped and Undamped

Unstable

Less damping

More damping
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Second order step response – Time specifications.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4
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0.8

1
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1.4
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Second order step response – Time specifications.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

…  Steady state value.

…  Time to reach first peak (undamped or underdamped only).

…  % of excess of        .

…  Time to reach and stay within 2% of       .
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Tips for Designing a PID Controller

1. Obtain an open-loop response and determine what needs to be improved 

2. Add a proportional control to improve the rise time 

3. Add a derivative control to improve the overshoot 

4. Add an integral control to eliminate the steady-state error 

5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall 

response.  
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Lag or Phase-Lag Compensator Using Root Locus

A first-order lag compensator can be designed using the root
locus. A lag compensator in root locus form is given by

where the magnitude of z is greater than the magnitude of p. A
phase-lag compensator tends to shift the root locus to the right,
which is undesirable. For this reason, the pole and zero of a lag
compensator must be placed close together (usually near the
origin) so they do not appreciably change the transient response
or stability characteristics of the system.

G
c

s( )
s z( )

s p( )
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Lag or Phase-Lag Compensator using Frequency
Response

A first-order phase-lag compensator can be designed using the
frequency response. A lag compensator in frequency response form is
given by

The phase-lag compensator looks similar to a phase-lead compensator,
except that a is now less than 1. The main difference is that the lag
compensator adds negative phase to the system over the specified
frequency range, while a lead compensator adds positive phase over
the specified frequency. A bode plot of a phase-lag compensator looks
like the following

G
c

s( )
1   s 

 1  s 
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Lead-lag Compensator using either Root Locus or
Frequency Response

A lead-lag compensator combines the effects of a lead compensator
with those of a lag compensator. The result is a system with improved
transient response, stability and steady-state error. To implement a
lead-lag compensator, first design the lead compensator to achieve the
desired transient response and stability, and then add on a lag
compensator to improve the steady-state response
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Gain and Phase Margin 

-180
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s i j  i i  end 10
i r

range variable:
i 0 N range for plot:

r log

 start

 end











1

N
step size:

 end 100highest frequency (in Hz):

N 50number of points: start .01lowest frequenc y (in Hz):

Next, choose a  frequency range  for the plots  (use powers of 10 for c onvenient plotting):

G s( )
K

s 1 s( ) 1
s

3












K 2

Assume 

ps G  
180



arg G j    360 if arg G j    0 1 0  

Phase shift:

db G   20 log G j   

Magnitude:

Gain and Phase Margin 
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gm 6.021gm db G  gm 

Calculate the gain margin :

 gm 1.732

 gm root ps G  gm  180  gm 

Solve for   at the phase shift point of 180 degrees: 

 gm 1.8

Now using the phase angle plot, estimate the frequency at which the phase shift crosses 180 degrees :

Gain Margin

degreespm 18.265pm ps G  c  180

Calculate the phase margin :

 c 1.193 c root db G  c   c 

Solve for the gain crossover frequenc y:

 c 1Guess for c rossover fre quency :

Gain and Phase Margin 
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The Nyquist Stability Criterion

 The Nyquist plot allows us also to predict the stability and
performance of a closed-loop system by observing its open-loop
behavior.

 The Nyquist criterion can be used for design purposes regardless of
open-loop stability (Bode design methods assume that the system is
stable in open loop).

 Therefore, we use this criterion to determine closed-loop stability
when the Bode plots display confusing information.



 The Nyquist diagram is basically a plot of G(j* w) where G(s) is the
open-loop transfer function and w is a vector of frequencies which
encloses the entire right-half plane.

 In drawing the Nyquist diagram, both positive and negative
frequencies (from zero to infinity) are taken into account.
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In the illustration below we represent positive frequencies in red
and negative frequencies in green.
The frequency vector used in plotting the Nyquist diagram usually
looks like this (if you can imagine the plot stretching out to
infinity)



And that the Nyquist diagram can be viewed by typing: 
nyquist (50, [1 9 30 40 ])

The Nyquist Stability Criterion
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w 100 99.9 100 j 1 s w( ) j w f w( ) 1

G w( )
50 4.6

s w( )
3

9 s w( )
2

 30 s w( ) 40



2 1 0 1 2 3 4 5 6
5

0

5

Im G w( )( )

0

Re G w( )( )

The Nyquist Stability Criterion
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Consider the Negative Feedback System

Remember from the Cauchy criterion that the number N of times that 
the plot of G(s)H(s) encircles -1 is equal to the number Z of zeros of 1 + 
G(s)H(s) enclosed by the frequency contour minus the number P of poles 
of 1 + G(s)H(s) enclosed by the frequency contour (N = Z - P). 

Keeping careful track of open- and closed-loop transfer functions, as well
as numerators and denominators, you should convince yourself that:

The zeros of 1 + G(s)H(s) are the poles of the closed-loop transfer
function

The poles of 1 + G(s)H(s) are the poles of the open-loop transfer function.
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The Nyquist criterion then states that: 

P = the number of open-loop (unstable) poles of G(s)H(s) 

N = the number of times the Nyquist diagram encircles -1 

clockwise encirclements of -1 count as positive encirclements 

counter-clockwise (or anti-clockwise) encirclements of -1 count as 
negative encirclements 

Z = the number of right half-plane (positive, real) poles of the closed-
loop system 

The important equation which relates these three quantities is: 

Z = P + N



Knowing the number of right-half plane (unstable) poles in open loop
(P), and the number of encirclements of -1 made by the Nyquist
diagram (N), we can determine the closed-loop stability of the
system.

If Z = P + N is a positive, nonzero number, the closed-loop system is
unstable.

We can also use the Nyquist diagram to find the range of gains for a
closed-loop unity feedback system to be stable. The system we will
test looks like this:

The Nyquist Stability Criterion - Application
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Time-Domain Performance Criteria Specified
In The Frequency Domain

Open and c losed-loop frequenc y responses are related by:
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Time-Domain Performance Criteria Specified
In The Frequency Domain
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Robustness Analysis

• In order for a control system to function properly, it should not be 
unduly sensitive to small changes in the process or to inaccuracies 
in the process model, if a model is used to design the control 
system. 

• A control system that satisfies this requirement is said to be robust 
or insensitive.

• It is very important to consider robustness as well as performance 
in control system design. 

• First, we explain why the S and T transfer functions in        Eq. 14-
15 are referred to as “sensitivity functions”.
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UNIT-IV
Aircraft Response to Controls-Flying 

Qualities-Stability and Control 
Augmentation- Autopilots
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Approximation to aircraft transfer functions: The longitudinal and
lateral equations of motion are described by a set of linear
differential equations. The transfer function gives the relationship
between the output and input to a system. The transfer function is
defined as the Laplace transform of output to the Laplace
transform of input, with all initial conditions set to zero. Following
assumptions are made in approximation to aircraft transfer
functions.
a. We assume that aircraft motion consists of small deviations

from its equilibrium flight conditions.
b. We assume that the motion of the aircraft can be analyzed by

separating the equation into Longitudinal and Lateral motion
(later consists of yawing motion and roll motion).
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Assume angle-of-attack and pitch-rate have stabilized when the aircraft 
is excited in long-period mode. 

That is set :              
in the linearized level flight equations of motion:
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Second-order approximation for the long-period

Characteristic equation for eigenvalues: 

Or: 
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Notice that the change in axial force due to axial velocity is small, 
which means

BUT: In general the Phugoid approximation is not nearly as
accurate as the short-period approximation. This is because of the
restrictive assumption of no changes in angle-of-attack.
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Short-Period Approximation: An approximation to the
short period mode of motion can be obtained by
assuming ∆u = 0 and dropping the X-force equation

Phugoid and Short Period Oscillations
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LATERAL APPROXIMATION OF AIRCRAFT TRANSFER 
FUNCTION

The characteristic equation of aircraft lateral motion is characterized
by the following equation.
Aλ4 + B λ3 +Cλ2 + D λ +E = 0
Where A, B, C, D & E are the functions of stability derivative, mass and
inertia characteristic of the airplane.
In general we find that the roots of the characteristic equation to be
composed of two real roots and fair of complex roots.
The roots will be such that the airplane response can be characterized
by the following motions.
a.A slowly convergent or divergent motion, called the spiral mode.
b.A highly convergent motion, called the rolling mode.
c.A lightly dumped oscillating motion having a low frequency, called the
Dutch roll.
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Standard Forms for System Models

• State Space Model Representation

– Basic concepts

– Example

– General form

• Input/Output Model Representation

– General Form

– Example

• Comments on the Difference between State Space and 
Input/Output Model Representations
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Basic Concepts related to State Space

• State 
The smallest set of variables {q1, q2, …, qn} such that the knowledge of 
these variables at time t = t0 , together with the knowledge of the 
input for t ³ t0 completely determines the behavior (the values of the 
state variables) of the system for time t ³ t0 .

State Variables

• State Vector
All the state variables {q1, q2, …, qn} can be looked on as components 
of state vector. 

• State Space
A space whose coordinates consist of state variables is called a 
state space. Any state can be represented by a point in state space. 
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One Example

Example:

EOM:

 Mx Bx Kx f t   

x
K

M

B

f(t)

Q: What information about the mass do we need to know to be able to solve for 

x(t) for t t0  ?

  0
,f t t tInput: 

Initial Conditions (ICs):  0
x t

 0
x t

 1
q x t

 2
q x t 

Rule of Thumb

Number of state variables = Sum of orders of EOMs



State Space Representation

Two parts:
 A set of first order ODEs that represents the derivative of each state 

variable qi as an algebraic function of the set of state variables {qi} and 
the inputs {ui}.

 A set of equations that represents the output variables as algebraic 
functions of the set of state variables {qi} and the inputs {ui}.
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State Space Model Representation

• Example

EOM

State Variables:

Outputs:

State Space Representation:

1

2
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• Obtaining State Space Representation
– Identify State Variables

• Rule of Thumb:

Nth order ODE requires N state variables.

Position and velocity of inertia elements are natural state 
variables for translational mechanical systems.

– Eliminate all algebraic equations written in the modeling process.

– Express the resulting differential equations in terms of state 
variables and inputs in coupled first order ODEs.

– Express the output variables as algebraic functions of the state 
variables and inputs.

– For linear systems, put the equations in matrix form.

State Space Model Representation
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Input/Output Models vs State-Space Models

• State Space Models:

– consider the internal behavior of a system
– can easily incorporate complicated output variables
– have significant computation advantage for computer

simulation
– can represent multi-input multi-output (MIMO) systems and

nonlinear systems

• Input/Output Models:
– are conceptually simple
– are easily converted to frequency domain transfer functions that

are more intuitive to practicing engineers
– are difficult to solve in the time domain (solution: Laplace

transformation)
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a. Spiral Approximation
b. Roll Approximation
c. Dutch Roll approximation

Control surface Actuators: 
 An example of a controller for an aircraft system is a hydraulic

actuator used to move to the control surface.
 A control valve on the actuator is positioned by either a

mechanical or electrical input, the control valve ports hydraulic
fluid under pressure to the actuator, and the actuator piston
moves until the control valve shuts off the hydraulic fluid.

Lateral Approximation of aircraft transfer
function
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Response of aircraft to pilot’s control inputs, to 
atmosphere. 

Response of aircraft to Pilot’s control input:

 Response of an aircraft to control input or atmosphere can be done by
considering step input and sinusoidal input.

 The step and sinusoidal input functions are important for two reasons.
 First, the input to many physical systems takes the form of either a step

change or sinusoidal signal.
 Second, an arbitrary function can be represented by a series of step

changes or a periodic function can be decomposed by means of Fourier
analysis into a series of sinusoidal waves.

 If we know the response of a linear system to either a step or sinusoidal
input, then we can construct the system’s response to an arbitrary input
by the principle of superposition.
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Aircraft Response to Atmosphere:  

The atmosphere is in a continuous state of motion.
The winds and gusts created by the movement of the atmospheric

air masses can degrade the performance and flying qualities of an
airplane.

 In addition, the atmospheric gusts impose structural loads that
must be accounted for in the structural design of an airplane.

The velocity field within the atmosphere varies in both space and
time in a random manner.

This random velocity field is called atmospheric turbulence.
The velocity field can be decomposed into a mean part and a

fluctuating part.
Because atmospheric turbulence is a random phenomenon it can

be described only in a statistical term.
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The control task of the pilot:

 The control task of the pilot is to fly the aircraft safely in the
assigned mission of the aircraft.

 For a passenger aircraft mission profile will consist of take-off,
cruise and landing at the designated airport.

 Similarly a military aircraft being a weapon delivery platform
should be able to strike the designated target accurately.

 To accomplish these missions pilot should be able to control and
fly the aircraft accurately and maintain the designated route
without fatigue.

 The aircraft should be controllable even when it is disturbed from
its equilibrium position either by pilot’s action or by atmospheric
turbulence.

 An airplane must have sufficient stability such that the pilot does
not become fatigued by constantly having to control the airplane
owing to external disturbance
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FLYING QUALITIES OF AIRCRAFT-RELATION TO 
AIRFRAME TRANSFER FUNCTION

Flying Qualities of an Aircraft:

 The flying qualities of an airplane are related to the stability and
control characteristics and can be defined as those stability and
control characteristics important in forming the pilot’s
impression of the aircraft.

 The pilot forms a subjective opinion about the ease or difficulty
of controlling the airplane in steady and maneuvering flight.

 In addition to the longitudinal dynamics, the pilot’s impression of
the airplane is influenced by the feel of the airplane, which is
provided by the stick force and stick force gradients.
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Classification of airplanes:

Airplane can be placed in one of the following classes:
Class I: Small, light airplanes
Class II: Medium weight, low-to-medium maneuverability airplane
Class III: Large, heavy, low-to-medium maneuverability airplanes.
Class IV: High maneuverability airplanes

Flight Phase Category:

Flight Phases descriptions of most military airplane mission are:

Category A

Category B

Category C

99



Level of flying qualities:
The Levels are:
Level 1: Flying qualities clearly adequate for the mission Flight Phase
Level 2: Flying qualities adequate to accomplish the mission Flight
Phase, but some increase in pilot work load or degradation in mission
effectiveness, or both, exists.
Level 3: Flying qualities such that the airplane can be controlled safely,
but pilot work load is excessive or mission effectiveness is inadequate,
or both.

Longitudinal flying qualities- relation to airframe
transfer function
a. Phugoid stability
b. Short period damping ratio limits
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Reversible and irreversible flight control systems

Reversible flight Control System: In a reversible flight control system

(FCS), the cockpit controls are directly connected to the aircraft flight

control surfaces through mechanical linkages such as cables, push

rods and bell cranks. There is no hydraulic actuator in this path and

the muscle to move the control surface is provided directly by the

pilot. With no hydraulic power on the aircraft, a reversible FCS will

have the following characteristics

(a) Movement of the stick and rudder will move the respective

control surface, and hand movement of each control surface will

result in movement of the respective cockpit control, hence the

name “reversible”.
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(b)Reversible flight controls are used on light general aviation aircraft

such as Cessna, Piper. They have the advantage of being relatively

simple and “pilot feel” is provided directly by the air loads on each

control surface being transferred to the stick or rudder pedals. They

have the disadvantage of increasing stick and rudder forces as the

speed of the aircraft increases. As a result, the control forces present

may exceed the pilot’s muscular capabilities if the aircraft is designed

to fly at high speed.

(c)Two types of static stability must be considered with reversible FCS.

Stick fixed stability implies that the control surfaces are held in a

fixed position by the pilot during a perturbation. Stick free stability

implies that the stick & rudder pedals are not held in fixed position

by the pilot but rather left to seek their own position during a flight

perturbation. The stick free stability is lower in magnitude than stick

fixed stability.
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REVERSIBLE FLIGHT CONTROL SYSTEM
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Irreversible Flight control System
In an irreversible FCS, the cockpit controls are either directly or
indirectly connected to a controller that transforms the pilot’s input
into a commanded position for a hydraulic or electromechanical
actuator.
The most common form of an irreversible FCS connects the pilot’s
displacement or force command from the stick or rudder pedals to a
control valve on a hydraulic actuator.
The control valve positions the hydraulic actuator that, in turn, moves
the flight control surface.

104



Following are the characteristics of irreversible FCS.

a) Such a system is called irreversible because manual movement of a
control surface will not be transferred to movement of the stick or
rudder pedals.

b) Irreversible control systems behave essentially a stick fixed system

when the aircraft undergoes a perturbation because the hydraulic

actuator holds the control surface in the commanded position even

if the pilot let go off the stick.

c) Irreversible FCS is also ideal for incorporation of AFCS functions such

as inner loop stability & outer loop auto pilot m modes.

d) A disadvantage of irreversible FCS is that artificial pilot feel must be

designed into the stick and rudder pedals because the air loads on

the control surface are not transmitted back. Artificial feel may be

provided using spring system on the stick.
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PILOT’S OPINION RATING:

 Flying qualities of an airplane is assessed by test pilot’s comment
obtained from simulations and test flying of the aircraft.

 A structured rating scale for aircraft handling qualities was
developed by NASA in the late 1960s called the Cooper-Harper
rating scale.

 This rating applies to specific pilot-in-loop tasks such as air-to-air
tracking, formation flying, and approach.

 It does not apply to open-loop aircraft characteristics such as yaw
response to a gust.

 Aircraft controllability, pilot compensation (workload), and task
performance are key factors in the pilot’s evaluation.

 A Cooper-Harper rating of “one” is highest or best and a rating of
“ten” is the worst, indicating the aircraft cannot be controlled
during a portion of the task and that improvement is mandatory.
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Flying quality requirements: 

Pole-zero specifications

Frequency response 

Time-response specifications
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Stability Augmentation System- displacement and rate
feedback:

 Stability Augmentation Systems (SAS) were generally the first
feedback control systems intended to improve dynamic stability
characteristic.

 They were also referred to as dampers, stabilizers and stability
augmenters.

 These systems generally fed back an aircraft motion parameter, such
as pitch rate, to provide a control deflection that opposed the
motion and increased damping characteristics.

 The SAS has to be integrated with primary flight control system of
the aircraft consisting of the stick, pushrod, cables, and bellcranks
leading to the control surface or the hydraulic actuator that activated
the control surface.
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Displacement (Position) feedback as a tool in SAS

Rate feedback System

Acceleration feedback

Determination of Gain, Conflict with the pilot inputs-Resolution
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Control Augmentation system:

 Control augmentation system (CAS) added a pilot command
input into the flight control computer.

 A force sensor on the control stick was usually used to provide
this command input.

 With CAS, a pilot stick input is provided to FCS in two ways-
through the mechanical system and through the CAS electrical
path.

 The CAS design eliminated the SAS problem of pilot inputs
being opposed by the feedback.
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FULL AUTHORITY FLY-BY-WIRE CONTROL
Functions and operation:
 Full authority fly-by-wire (FBW) system has no mechanical link from

the control stick to actuator system.
 Basically FBW systems are CAS system without mechanical control

system and provide the CAS full authority.
 The input from control stick, pedal and from motion sensors are

converted into electrical signals and sent to FBW computer.
 Software inside the FBW computer contains the control law which

will command the control surfaces to move.
 However to improve the reliability, triple and quad redundancy in

system components along with self-test software is used.
 Aircraft such as F-16, Mirage-2000 and Tejas have FBW FCS.
 The full authority provided by FBW allows significant tailoring of

stability and control characteristics.
 This ability has led to FBW systems with several feedback

parameters and weighting of feedback gains based on flight
condition and other parameter.
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FBW Control System Architecture  
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Advantages of FBW Control:

(a) Increased performance
(b) Reduced weight
(c) FBW control stick
(d) Automatic stabilization
(e) Carefree Maneuvering
(f) Ability to integrate additional controls.
(i) Leading and trailing edge flaps for maneuvering and not just for 

take-off and landing
(ii) Variable wing sweep
(iii) Thrust vectoring
(g) Ease of integration of the autopilot.
(h) Aerodynamics versus ‘Stealth’
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 Displacement autopilots-Pitch, yaw, bank, altitude and velocity 

hold-purpose

 Relevant Simplified Aircraft Transfer Functions

 Feedback signals

 Control actuators-Operation, analysis, Performance

Maneuvering auto-pilots: pitch rate, normal acceleration, turn 

rate.
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Autopilot design by displacement & rate 
feedback-iterative methods, design by 
displacement feedback and series PID 

compensator-Zeigler & Nichols method



Design of autopilot by displacement& rate feedback 
using iterative methods: 

 Design of an autopilot by displacement & rate feedback is explained
with an example of a pitch attitude hold auto pilot of a transport
aircraft.

 This design reference the reference pitch angle is compared with the
actual pith angle measured by the pitch gyro to produce an error
signal to activate the control surface actuator to deflect the control
surface.

 Movement of the control surface causes the aircraft to achieve a
new pitch orientation, which is feedback to close the loop.

 To design the control system for this auto pilot we need the transfer
function of each component.
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Continuous Cycling Method

• Ziegler and Nichols (1942) introduced the continuous cycling 
method for controller tuning. 

• based on the following trial-and-error procedure:

Step 1. After the process has reached steady state (at least 
approximately), eliminate the integral and derivative control action 
by setting:

= zero 

= the largest possible value.
τ

D

τ
I



Need for Robust Control:

 No mathematical system can exactly model a physical system.
Uncertainty due to un-modeled dynamics and uncertain
parameters is always present.

 Two additional causes of inconsistencies between the
mathematical model and the physical system are intentional
model simplification, such as linearization and model reduction
and incomplete data from the model identification experiment.

 Robust control theory deals with the design and synthesis of
controllers for plants with uncertainty.

 A robust control system deals with the various control and
stability specifications of plant in the presence of uncertainty.
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 Stability and control is one of the technical major
challenges in the design of an aircraft.

 Aircraft control system must work satisfactorily in all flight
conditions without any flight safety concerns.

 Aircraft is a very complex system having lot of uncertainty
in un-modeled dynamics, non-linearity, sensor noise,
actuator error, uncertain parameters.

 Also aircraft control system has to deal with the
environment such as turbulence, wind shear, and wind gust.



Typical autopilots of civil and military aircraft-description of design, 

construction, operation, performance. 

The basic modes of autopilot in military/civil aircraft are:
(a) Height hold.
(b) Heading hold.
(c) Velocity hold.
(d) VOR/ILS coupled approach and landing.
(e) Bank hold mode.
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UNIT V
Modern Control Theory-State Space 

Modeling, Analysis
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Limitations of Classical methods of control
modeling, analysis and design, applied to complex,
MIMO system:

a) Transfer function models are used for linear time invariant (LTI)
continuous time systems. These are called frequency response
models due mainly to the interpretation of the Laplace
transform variables s as complex frequency in contrast with
differential equation models, which are time-domain models.

b) In classical control design of feedback control is accomplished
using the root locus technique and Bode methods. These
techniques are very useful in designing many practical control
problems. However design of control system using root locus or
Bode technique is trial & error procedure.
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(c) With rapid development of high speed computers during
the recent decade, a new approach to control system
design has evolved. This new approach is called modern
control theory. This theory permits a more systematic
approach to control system design. In modern control
theory, the control system is specified as a system of first-
order differential equations.



State Equations

• Let us define the state of the system by an N-element column vector, x(t):

Note that in this development, v(t) will be the input, y(t) will be the output, and 
x(t) is used for the state variables.

• Any system can be modeled by the following state equations:

• This system model can handle
single input/single output systems,
or multiple inputs and outputs.

• The equations above can be
implemented using the signal flow
graph shown to the right.
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STATE VARIABLE MODELS

We consider physical sytems described by nth-order ordinary
differential equation. Utilizing a set of variables, known as state
variables, we can obtain a set of first-order differential equations.
We group these first-order equations using a compact matrix
notation in a model known as the state variable model.

The time-domain state variable model lends itself readily to
computer solution and analysis. The Laplace transform is utilized to
transform the differential equations representing the system to an
algebraic equation expressed in terms of the complex variable s.
Utilizing this algebraic equation, we are able to obtain a transfer
function representation of the input-output relationship.

With the ready availability of digital computers, it is convenient to
consider the time-domain formulation of the equations
representing control system. The time domain techniques can be
utilized for nonlinear, time varying, and multivariable systems.
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A time-varying control system is a system for which one or more of
the parameters of the system may vary as a function of time.

For example, the mass of a missile varies as a function of time as
the fuel is expended during flight. A multivariable system is a system
with several input and output.

The State Variables of a Dynamic System:

The time-domain analysis and design of control systems utilizes the 
concept of the state of a system. 

The state of a system is a set of variables such that the knowledge of
these variables and the input functions will, with the equations
describing the dynamics, provide the future state and output of the
system. The state variables describe the future response of a system,
given the present state, the excitation inputs, and the equations
describing the dynamics.
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A simple example of a state variable is the state of an on-off light
switch. The switch can be in either the on or the off position, and
thus the state of the switch can assume one of two possible values.
Thus, if we know the present state (position) of the switch at t0 and
if an input is applied, we are able to determine the future value of
the state of the element.

The concept of a set of state variables that
represent a dynamic system can be
illustrated in terms of the spring-mass-
damper system shown in Figure 2. The
number of state variables chosen to
represent this system should be as small as
possible in order to avoid redundant state
variables. A set of state variables sufficient to
describe this system includes the position
and the velocity of the mass.

k c

m

y(t) u(t)

Dof system
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In an actual system, there are several choices of a set of state
variables that specify the energy stored in a system and therefore
adequately describe the dynamics of the system.

The state variables of a system characterize the dynamic behavior of
a system. The engineer’s interest is primarily in physical, where the
variables are voltages, currents, velocities, positions, pressures,
temperatures, and similar physical variables.

The State Differential Equation:The state of a system is described
by the set of first-order differential equations written in terms of
the state variables [x1 x2 ... xn]. These first-order differential
equations can be written in general form as
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Thus, this set of simultaneous differential equations can be written in 
matrix form as follows:
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n: number of state variables, m: number of inputs.

The column matrix consisting of the state variables is called the state
vector and is written as
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The vector of input signals is defined as u. Then the system can be
represented by the compact notation of the state differential equation
as

uBxAx 

This differential equation is also commonly called the state equation.
The matrix A is an nxn square matrix, and B is an nxm matrix. The state
differential equation relates the rate of change of the state of the
system to the state of the system and the input signals. In general, the
outputs of a linear system can be related to the state variables and the
input signals by the output equation

uDxCy 
Where y is the set of output signals expressed in column vector form.
The state-space representation (or state-variable representation) is
comprised of the state variable differential equation and the output
equation.
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We can write the state variable differential equation for the RLC circuit as

and the output as
  xR0y 

The solution of the state differential equation can be obtained in a
manner similar to the approach we utilize for solving a first order
differential equation. Consider the first-order differential equation

buaxx 

Where x(t) and u(t) are scalar functions of time. We expect an
exponential solution of the form eat. Taking the Laplace transform of
both sides, we have
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The inverse Laplace transform of X(s) results in the solution 
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We expect the solution of the state differential equation to be
similar to x(t) and to be of differential form. The matrix
exponential function is defined as
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which converges for all finite t and any A. Then the solution of the
state differential equation is found to be

    )s(UBAsI)0(xAsI)s(X
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where we note that [sI-A]-1=ϕ(s), which is the Laplace transform of
ϕ(t)=eAt. The matrix exponential function ϕ(t) describes the
unforced response of the system and is called the fundamental or
state transition matrix.
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THE TRANSFER FUNCTION FROM THE STATE EQUATION

The transfer function of a single input-single output (SISO) system
can be obtained from the state variable equations.

uBxAx 

xCy 

where y is the single output and u is the single input. The Laplace
transform of the equations

)s(CX)s(Y

)s(UB)s(AX)s(sX





where B is an nx1 matrix, since u is a single input. We do not
include initial conditions, since we seek the transfer function.
Reordering the equation
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 
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Therefore, the transfer function G(s)=Y(s)/U(s) is

B)s(C)s(G 

Example:

Determine the transfer function G(s)=Y(s)/U(s) for the RLC circuit as
described by the state differential function
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THE DESIGN OF STATE VARIABLE FEEDBACK SYSTEMS

The time-domain method, expressed in terms of state variables, can also
be utilized to design a suitable compensation scheme for a control system.
Typically, we are interested in controlling the system with a control signal,
u(t), which is a function of several measurable state variables. Then we
develop a state variable controller that operates on the information
available in measured form.

State variable design is typically comprised of three steps. In the first step,
we assume that all the state variables are measurable and utilize them in a
full-state feedback control law. Full-state feedback is not usually practical
because it is not possible (in general) to measure all the states. In
paractice, only certain states (or linear combinations thereof) are
measured and provided as system outputs. The second step in state
varaible design is to construct an observer to estimate the states that are
not directly sensed and available as outputs.
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CONTROLLABILITY:

Full-state feedback design commonly relies on pole-placement
techniques. It is important to note that a system must be
completely controllable and completely observable to allow the
flexibility to place all the closed-loop system poles arbitrarily. The
concepts of controllability and observability were introduced by
Kalman in the 1960s.

A system is completely controllable if there exists an unconstrained
control u(t) that can transfer any initial state x(t0) to any other desired

location x(t) in a finite time, t0≤t≤T.
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For the system
BuAxx 

we can determine whether the system is controllable by examining
the algebraic condition

  nBABAABBrank
1n2






The matrix A is an nxn matrix an B is an nx1 matrix. For multi input
systems, B can be nxm, where m is the number of inputs.

For a single-input, single-output system, the controllability matrix Pc

is described in terms of A and B as

 BABAABBP
1n2

c


 

which is nxn matrix. Therefore, if the determinant of Pc is nonzero,
the system is controllable.
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OBSERVABILITY:
All the poles of the closed-loop system can be placed arbitrarily in the
complex plane if and only if the system is observable and
controllable. Observability refers to the ability to estimate a state
variable.

A system is completely observable if and only if there exists a finite time
T such that the initial state x(0) can be determined from the
observation history y(t) given the control u(t).

CxyandBuAxx 

Consider the single-input, single-output system

where C is a 1xn row vector, and x is an nx1 column vector. This
system is completely observable when the determinant of the
observability matrix P0 is nonzero.
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The observability matrix, which is an nxn matrix, is written as
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Consider the previously given system 
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   100CA,010CA
2
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Thus, we obtain
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The det P0=1, and the system is completely observable. Note that
determination of observability does not utility the B and C matrices.

Example: Consider the system given by
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We can check the system controllability and observability using the Pc

and P0 matrices.

From the system definition, we obtain
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Therefore, the controllability matrix is determined to be

det Pc=0 and rank(Pc)=1. Thus, the system is not controllable.
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Therefore, the controllability matrix is determined to be
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From the system definition, we obtain
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Therefore, the observability matrix is determined to be

det PO=0 and rank(PO)=1. Thus, the system is not observable.

If we look again at the state model, we note that
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An example of a canonical transformation

• Generalized coordinates are indistinguishable from their conjugate 
momenta, and the nomenclature for them is arbitrary

• Bottom-line: generalized coordinates and their conjugate momenta 
should be treated equally in the phase space
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Criterion for canonical transformations

• How to make sure this transformation is canonical?

• On the other hand
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Criterion for canonical transformations

• Similarly, 

• If

• Then 
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Criterion for canonical transformations

• So, 
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DIGITAL CONTROL-OVERVIEW, ADVANTAGES AND 
DISADVANTAGES:

Digital Control Overview and Implementation:
 A digital control takes an analog signal, samples it with an analog to

digital converter (A/D), processes the information in the digital
domain, and the converts the signal to analog with a digital-to-
analog converter.

 The key here is to provide redundant paths in the event of hard ware
failure. Here the signal comes from a sensing device, such as gyro.

 Next, it is fed in parallel along multiple paths to an analog to digital
(A/D) converter.

 After the signal is in the digital form, the flight control computer
executes the control algorithms.

 The output from the flight control computers is then fed to a digital-
to-analog (D/A) converter, which in turn operate an actuator.
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Digital Control Advantages

1. They are more versatile than analog because they can be easily
programmed without changing the hardware.

2. It is easy to implement gain scheduling to vary flight control
gains as the aircraft dynamics change with flight conditions.

3. Digital components in the form of electronic parts, transducers
and encoders are often more reliable, more rugged, and more
compact than analog equipments.

4. Multi mode and more complex digital control laws can be
implemented because of fast, light, and economical micro-
processors.

5. It is possible to design “Robust” controller that can control the
aircraft for various flight conditions including some mechanical
failures.

6. Improved sensitivity with sensitive control elements that require
relatively low energy levels.
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Disadvantages of Digital Control
1. The lag associated with sampling process reduces the system

stability.
2. The mathematical analysis and system design of a sampled data

system is more complex.
3. The signal information may be lost because it must be digitally

reconstructed from an analog signal.
4. The complexity of the control process is in the software

implemented control algorithm that may contain error.
5. Software verification becomes critical because of the safety of

flight issue. Software errors can cause the aircraft to crash.
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