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Introduction

* For the equilibrium of structures made of several
connected parts, the internal forces as well the external
forces are considered.

« In the interaction between connected parts, Newton’s 3
Law states that the forces of action and reaction

/ - between bodies in contact have the same magnitude,
! c°°f same line of action, and opposite sense.
B o « Three categories of engineering structures are considered:
AL a) Frames: contain at least one one multi-force
Af\y member, i.e., member acted upon by 3 or more
D forces.
"‘CL <o _/f; = b) Trusses: formed from two-force members, i.e.,
N { Y straight members with end point connections
y 4 c) Machines: structures containing moving parts

- Aif\ designed to transmit and modify forces.



Definition of a Truss

A truss consists of straight members connected at
joints. No member is continuous through a joint.

« Most structures are made of several trusses joined
together to form a space framework. Each truss
carries those loads which act in its plane and may
be treated as a two-dimensional structure.

 Bolted or welded connections are assumed to be
pinned together. Forces acting at the member ends
reduce to a single force and no couple. Only two-
force members are considered.

« When forces tend to pull the member apart, it is in
tension. When the forces tend to compress the
member, it is in compression.




Definition of a Truss
T /1

Stringers

Floor beams

Members of a truss are slender and not capable of
supporting large lateral loads. Loads must be applied at
the joints.



Pratt

Cantilever portion

of a truss Bascule

Other Types of Trusses



Simple Trusses

B  Arigid truss will not collapse under
the application of a load.

C . ]
1 « Asimple truss is constructed by

successively adding two members and

B D one connection to the basic triangular
truss.
A c  Inasimple truss, m=2n-3 where
- & m is the total number of members

and n is the number of joints.




Analysis of Trusses by the Method of

J Q)&irﬂﬁjﬁer the truss and create a freebody
C diagram for each member and pin.

« The two forces exerted on each member are
equal, have the same line of action, and
opposite sense.

 Forces exerted by a member on the pins or
joints at its ends are directed along the member
and equal and opposite.

« Conditions of equilibrium on the pins provide
2n equations for 2n unknowns. For a simple
truss, 2n =m + 3. May solve for m member
forces and 3 reaction forces at the supports.

« Conditions for equilibrium for the entire truss
provide 3 additional equations which are not
Independent of the pin equations.



Joints Under Special Loading

AF \E
Fa
Fap
\J
Fac
B

Fap

‘, e nd:iat(ie@im@posite members intersecting in

two straight lines at a joint are equal.

The forces in two opposite members are
equal when a load is aligned with a third
member. The third member force is equal
to the load (including zero load).

The forces in two members connected at a
joint are equal if the members are aligned
and zero otherwise.

Recognition of joints under special loading
conditions simplifies a truss analysis.

25 kN l F 50 kN
50N
% LNT 457 Fl "San



Space Trusses

 An elementary space truss consists of 6 members
connected at 4 joints to form a tetrahedron.

A simple space truss is formed and can be
extended when 3 new members and 1 joint are
added at the same time.

In a simple space truss, m = 3n - 6 where m is the
number of members and n is the number of joints.

Conditions of equilibrium for the joints provide 3n
equations. For a simple truss, 3n =m + 6 and the
eqguations can be solved for m member forces and
6 support reactions.

Equilibrium for the entire truss provides 6
additional equations which are not independent of
the joint equations.



Sample Problem 6.1

SOLUTION:

2000 Ib 1000 Ib

L

i

Using the method of joints, determine
the force in each member of the truss.

Based on a free-body diagram of the
entire truss, solve the 3 equilibrium
equations for the reactions at E and C.

Joint A is subjected to only two unknown
member forces. Determine these from the
joint equilibrium requirements.

In succession, determine unknown
member forces at joints D, B, and E from
joint equilibrium requirements.

All member forces and support reactions
are known at joint C. However, the joint
equilibrium requirements may be applied
to check the results.



Sample Problem 6.1

20001b 1000 b AC, SOLUTION:
" o « Based on a free-body diagram of the entire truss,
4 8*& solve the 3 equilibrium equations for the reactions
ol at E and C.
2. Mc =0
= (2000 Ib)(24 ft)+ (1000 Ib)(12 ft)— E(6 ft)
E =10,0001b T
Y F,=0=C, C,=0

> F, =0=-20001b-10001b+10,000Ib+C,,
C, =70001b




Qample Problem 6.1

2000 Ib 1000 Ib

12 ft ~—12 ft—>
Ya YB_ Jo L=
7B
8 ft
_”L
6k 6k - Joint A is subjected to only two unknown
2000 Ib member forces. Determine these from the
‘A joint equilibrium requirements.
Q—___F\B " 3
2000 Ib %
4L 1 2000Ib  Fag  Fap Fag =15001b T
3 - -
Fap 4 3 5 Fap =25001b C
 There are now only two unknown member
Fy, = 2500 T Foe

forces at joint D.

Fpg = Fpa Fog =25001b T
Fpe = 2(§)FDA Foe =30001b C




Sample Problem 6.1

2000 Ib 1000 1b c;

<—12f‘t~—l<—12 i~ » There are now only two unknown member
i" ~ >, f»‘“ forces at joint B. Assume both are in tension.
\ W AWAR
Y > Fy, =0=-1000-(2500)- 2 Fge
Fge =—37501b Fge =37501b C

> Fy = 0= Fpgc —1500-3(2500)- 2(3750)

FBC =+52501b FBC =52501b T

« There is one unknown member force at joint
E. Assume the member is in tension.

> Fy =0=2Fgc +3000+32(3750)

Fec =-87501b Fec =87501b C

E = 10,000 b



Sample Problem 6.1

2000 1b 1000 1h

BT C

 All member forces and support reactions are
C. known at joint C. However, the joint equilibrium
ot

C, = 7000 Ib

& Fcs=52501b i
C.=0

C
4
3

l:(.'l:' = ")TS() ”)

X

8

b requirements may be applied to check the results.
t

> Fx =—5250+2(8750)=0 (checks)
> F, =-7000+2(8750)=0 (checks)



Analysis of Trusses by the Method of
Se\%t(jrqrre]i%rce In only one member or the

forces in a very few members are desired, the
method of sections works well.

 To determine the force in member BD, pass a
section through the truss as shown and create
a free body diagram for the left side.

 With only three members cut by the section,
the equations for static equilibrium may be
applied to determine the unknown member
forces, including Fgp.




Trusses Made of Several Simple

DT.‘ s =
AN

~ 7 28 Compound trusses are statically
determinant, rigid, and completely

constrained.
m=2n-3

e Truss contains a redundant member
and is statically indeterminate.

m>2n-—3

 Additional reaction forces may be
necessary for a rigid truss.

L Necessary but insufficient condition

non-rigid o rigid for a compound truss to be statically
m<2n—3 on_4 determinant, rigid, and completely
m<eh= constrained,

m+4+r =2n



Sample Problem 6.3

SOLUTION:

 Take the entire truss as a free body.

s LN Fxig Apply the conditions for static equilib-
.9 1 kN rium to solve for the reactions at A and L.
| 1wy D et H
h=8m BYLIR | LT X ]..,. « Pass a section through members FH,
A ey GH, and Gl and take the right-hand

section as a free body.
5kN 5kN 5kN \
L—ﬁ panels @5 m = 30 m  Apply the conditions for static

equilibrium to determine the desired
member forces.

Determine the force in members FH,
GH, and Gl.



Sample Problem 6.3

1 kN
IkN _y 1kN . SOLUTION:
, jB _ lkz P SR ] - Take the entire truss as a free body.
AR N\ ! i~ Apply the conditions for static equilib-
cl El ¢l 1 K rium to solve for the reactions at A and L.

5kN 5kN 5kN
6 panels @ 5 m = 30 m——l

>Mp=0=-(5m)6KN)-(10m)6kN)—(15m)6 kN )
—(20m)(LkN)—(25m)(1kN )+ (25m)L
L=75kN T
2. Fy=0=-20kN +L+A

A=125kN T



1 kN
1 kN F
1 kN

B
A

cl ElI G

5kN 5kN 5kN
12.50 kN

~Samnle Problem 6.3

i“‘N -~  Pass a section through members FH, GH, and Gl
|

Wy «-20r  and take the right-hand section as a free body.
TR
: 7.50 k

|
n

 Apply the conditions for static equilibrium to
determine the desired member forces.

>My =0
(7.50 kN 10 m)—(1kN)5m)—Fg; (5.33m)
Fg; =+13.13kN

0

Fo) =13.13kN T




Samnple Problem 6.3

o 4_& kN tang = —— = ~05333 o =28.07°
. GL 15 m

8mI _ 5 ZMG :O
1y ok . (7.5kN)15m)—(1KkN )10 m)—(1kN)(5m)
s o +(Fpy cosa)8m)=0
Fry =-13.82kN
Fry =13.82kN C
Gl om
tan S = = =0.9375 =43.15°
P HI  £(8m) A

. L, 2M =0
bor (LKN)10m)+ (LN )5 m)+(Fgy cos A)YLOm)=0
- Foy =-1.371kN

Foy =1.371kN C




Anal sis of Frames

Frames and machines are structures with at least one
multiforce member. Frames are designed to support loads
and are usually stationary. Machines contain moving parts
and are designed to transmit and modify forces.

A free body diagram of the complete frame is used to
determine the external forces acting on the frame.

Internal forces are determined by dismembering the frame
and creating free-body diagrams for each component.

Forces on two force members have known lines of action
but unknown magnitude and sense.

Forces on multiforce members have unknown magnitude
and line of action. They must be represented with two
unknown components.

Forces between connected components are equal, have the
same line of action, and opposite sense.



Frames Which Cease To Be Rigid When
Detached From Their Supports

« Some frames may collapse if removed from
their supports. Such frames can not be treated
as rigid bodies.

A free-body diagram of the complete frame
Indicates four unknown force components which
can not be determined from the three equilibrium
conditions.

« The frame must be considered as two distinct, but
related, rigid bodies.

 With equal and opposite reactions at the contact
point between members, the two free-body
diagrams indicate 6 unknown force components.

A ,‘ « Equilibrium requirements for the two rigid
g E bodies yield 6 independent equations.



Sample Problem 6.4

160 mm

R

60 mm

80 mm g
i 150 mm

50 mn: 100 mm

M

Members ACE and BCD are
connected by a pin at C and by the
link DE. For the loading shown,
determine the force in link DE and the
components of the force exerted at C
on member BCD.

SOLUTION:

 Create a free-body diagram for the

complete frame and solve for the support
reactions.

Define a free-body diagram for member
BCD. The force exerted by the link DE
has a known line of action but unknown
magnitude. It is determined by summing
moments about C.

« With the force on the link DE known, the

sum of forces in the x and y directions
may be used to find the force
components at C.

« With member ACE as a free-body,

check the solution by summing
moments about A.



Sample Problem 6.4

SOLUTION:

>F,=0=A, ~480N

SF,=0=B+A,

Note:

_ tan—1 80 _ o
a = tan @_28.07

 Create a free-body diagram for the complete frame
and solve for the support reactions.

A, =480N T

> M =0=—(480 N)100 mm )+ B(160 mm)

B=300ON —

A, =—300N <«




Sample Problem 6.4

» Define a free-body diagram for member i i
BCD. The force exerted by the link DE has a
known line of action but unknown 80 mm | .
magnitude. It is determined by summing e :;_
moments about C.

I"
300 N |B | ] |
O p

> M¢ =0=(Fpg sina)(250 mm )+ (300 N )(60 mm )+ (480 N (100 mm )
Fpe =—561N Foe =561N C

i3 * Sum of forces in the x and y directions may be used to find the force
components at C.

> F,=0=C, —Fpg cosa+300 N
0=C, —(~561N)cosa +300 N C,=-795N

ZFy :OZCy_FDE sina—480 N
0=C, —(-561N)sina—480 N Cy, =216N




Sample Problem 6.4

« With member ACE as a free-body, check
the solution by summing moments about A.

LW

> M 5 =(Fpg cosa )(300 mm )+ (Fpg sina (100 mm)—C, (220 mm)
(—561cosa (300 mm )+ (—561sina (100 mm)—(—795)220 mm)=0

(checks)



(a)

Machines

» Machines are structures designed to transmit
and modify forces. Their main purpose is to
transform input forces into output forces.

Given the magnitude of P, determine the
magnitude of Q.

Create a free-body diagram of the complete
machine, including the reaction that the wire
exerts.

The machine is a nonrigid structure. Use
one of the components as a free-body.

Taking moments about A,

SMa=0=aP-bQ Q=P



Unit -2
Energy theorems & Three
Hinged Arches



Potential Energy and
Energy Conservation

Gravitational Potential Energy
Elastic Potential Energy
Work-Energy Theorem
Conservative and
Non-conservative Forces
Conservation of Energy



Definition of Work W

 The work, W, done by a constant force on an object is
defined as the product of the component of the force

along the direction of displacement and the magnitude
of the displacement

F
“ A{‘
— Fis the magnitude of the force Frcos 0
— A x is the magnitude of the ;
object’s displacement -
AX

— O is the angle between —




Work Done by Multiple Forces

* If more than one force acts on an object, then the
total work is equal to the algebraic sum of the work
done by the individual forces

Wnet — ZWby iIndividual forces

— Remember work is a scalar, so
this is the algebraic sum

Wi =W, +Wy +W, = (F cos 9)Ar



Kinetic Energy and Work

* Kinetic energy associated with the motion of an
object 1

KE = = mv?
2

e Scalar quantity with the same unit as work

* Work is related to kinetic energy

-
E mv? — E mv,’ = (F
2 2

:J’:f F-dr

COS B) AX



Work done by a Gravitational Force

e @Gravitational Force i
— Magnitude: mg Negative Positive
. . work done work done
— Direction: downwards to the by the by the
Earth’s center gravitational ¥ gravitational
force | force
 Work done by Gravitational

Force
“ Q

W =FArcos@=F-Ar

W, =mgArcos &



Potential Energy

* Potential energy is associated with the
position of the object

* Gravitational Potential Energy is the !
energy associated with the relative . Vg
position of an object in space near the =l
Earth’s surface —==

* The gravitational potential energy i T 1 ol

@ PE — mgy i mg
— m is the mass of an object J'
— g is the acceleration of gravity Y

— VY is the vertical position of the mass relative
the surface of the Earth

— Sl unit: joule (J)



Reference Levels

* Alocation where the gravitational potential
energy is zero must be chosen for each problem

— The choice is arbitrary since the change in the potential
energy is the important quantity

— Choose a convenient location for the zero reference
height
e often the Earth’s surface
* may be some other point suggested by the problem

— Once the position is chosen, it must remain fixed for
the entire problem



Work and Gravitational

Potential Energy

* PE =mgy
* W, =FAycosd=mg(y; —Y;)cos180
=-mg(y; —V;) = PE —PE,
* Units of Potential
Energy are the same as

those of Work and
Kinetic Energy

A




Extended Work-Energy Theorem

* The work-energy theorem can be extended to include
potential energy:

* If we only have gravitational force, then W, =W
KE, —KE; = PE, —PE,

KE; + PE; = PE, + KE

gravity

 The sum of the kinetic energy and the gravitational potential
energy remains constant at all time and hence is a conserved
guantity



Extended Work-Energy Theorem

* We denote the total mechanical energy by

E =KE+ PE
* Since KE, +PE, = PE. +KE,

* The total mechanical energy is conserved and remains the
A same at all times

1 5 1 >
Emvi +MQay, :Emvf +Mgy;



Problem-Solving Strategy

Define the system

Select the location of zero gravitational potential
energy

— Do not change this location while solving the problem

ldentify two points the object of interest moves
between
— One point should be where information is given

— The other point should be where you want to find out
something



Platform Diver

 Adiver of mass mdrops froma ;. .-I-|

board 10.0 m above the
water’s surface. Neglect air
resistance.

* (a) Find is speed 5.0 m above
the water surface

* (b) Find his speed as he hits
the water

5.00 m -

[ HAEEEENENEEEEEEEREEENENE

KE;=0

PE ;= mgy,
o= 1y, 9

I\I,_/ = o m

PE;=0

P T e e TR e T e e



Platform Diver

(a) Find his speed 5.0 m above the water

10.0 m

surface =
2 1 2 B
= mv? +mgy. ==mv? +mgy, {E KE;=0
? 2 PE;= mgy;
1, -
0+ 9y, ZEVf +May; -
Vf _ \/Zg(y. . yf) 5.00 m - E
= /2(9.8m/s2)(10m —5m) =9.9m/s =
(b) Find his speed as he hits the water E 1 o
1 — KE; = '/‘_» muy*
0+mgy, = mv; +0 o iy

V. =./20y, =14m/s



Spring Force

x=D Block
* Involves the spring constant, k hm%‘%\ ¢ o ot
 Hooke’s Law gives the force T
- . (a)
F p— —kd Ix posmve
negatlve = [
— Fis in the opposite direction of ‘ s 1
displacement d, always back T—x—]
towards the equilibrium point. ()

— k depends on how the spring was | xnegiv
formed, the material it is made Wﬂé g
from, thickness of the wire, etc. Unit:

N/m. |‘_’“_(<'>)



Potential Energy in a Spring

e Elastic Potential Energy:
— Sl unit: Joule (J)
— related to the work required to

compress a spring from its equilibriur l ﬂ :r
position to some final, arbitrary,
position X

& . Work done by the spring l rr - e

& | —li
—
Vv

U,=0

© A= " ]
4 J K = —i,—mv‘)




Extended Work-Energy Theorem

* The work-energy theorem can be extended to include
potential energy:

* If we include gravitational force and spring force, then
W, =W +W,

grawty

(KE, —KEi)+(PEf —PE.)+(PE,; —PE,)=0

KE, +PE, + PE_ = PE, + KE, + KE,



Extended Work-Energy Theorem

* We denote the total mechanical energy by

E = KE + PE + PE,

* Since  (KE+PE+PE,), =(KE+PE+PE,),

* The total mechanical energy is conserved and remains the
I same at all times

1 1., 1 1.5
—mv: +may. + —kx  ==—=mv: +m + —kx
5 gy, 5 X 5 Vi OY; 5 1



A block projected up a incline

* A 0.5-kg block rests on a horizontal, frictionless surface. The
block is pressed back against a spring having a constant of k
=625 N/m, compressing the spring by 10.0 cm to point A.
Then the block is released.

e (a) Find the maximum distance d the block travels up the
frictionless incline if 6 =30° .

* (b) How fast is the block going when halfway to its maximum
height?
d/ ©

- C /OJW ______ x

0




A block projected up a incline

* Point A (initial state): v, =0,y =0,% =-10cm =-0.1m
* Point B (final state): Vi =0,y =h=dsing,x; =0

—MmMv. +M -+—kX|- =—Mmv; +M +—kx

1kxi2 =mgy, = mgdsiné
lkxi2 2
- 0
mgsin &
~ 0.5(625N /m)(—0.1m)" k
(0.5kg)(9.8m/s?)sin 30°
=1.28m |




A block projected up a incline

* Point A (initial state): Vv, =0,y. =0,x. =-10cm =-0.1m
 Point B (final state): Vi =2y, =h/2=dsind/2,x; =0

1 1., 1 1,
—mv:+may. + — kX =—mv: +m +—kx
5 i ay; 5 X 5 Vi gy; 5 1

1
_kxu _me+mg( ) thZV?%—gh
- m
h=dsind=(1.28m)sin 30" = 0.64m
Vi = hXi2 —gh ¥
m




Types of Forces

e Conservative forces

— Work and energy associated with ,
the force can be recovered

— Examples: Gravity, Spring Force, EM Hl
forces |\

 Nonconservative forces -
— The forces are generally dissipative LMMM ’r
ray and work done against it cannot -
easily be recovered
— Examples: Kinetic friction, air drag P_‘,r
forces, normal forces, tension daid

forces, applied forces ...

X 0
| —_—
L v
mewﬂ 3l
KEp=tm
)
0



Conservative Forces

* Aforce is conservative if the work it does on an
object moving between two points is independent of
the path the objects take between the points

— The work depends only upon the initial and final positions
of the object

— Any conservative force can have a potential energy function
associated with it

— Work done by gravity
— Work done by spring force



Nonconservative Forces

e Aforce is nonconservative if the work it does on an
object depends on the path taken by the object
between its final and starting points.

— The work depends upon the movement path

— For a non-conservative force, potential energy can NOT
be defined
__®

pay — Work done by a nonconservative force ®

Wnc - Z IE ) CT - 1:kd + Z\Notherforces

— It is generally dissipative. The dispersal
of energy takes the form of heat or sound




Extended Work-Energy Theorem

 The work-energy theorem can be written as:

Wnet :WI’IC _l_WC
— W, _represents the work done by nonconservative forces
— W, represents the work done by conservative forces

* Any work done by conservative forces can be accounted for by
&l changes in potential energy

W, = PE; —PE; =mgy;, —mgy;

— Gravity work

1 1
— Spring force work W, =PE, —PE, = Ek)(i2 —EkX?



Extended Work-Energy Theorem

* Any work done by conservative forces can be accounted for
by changes in potential energy

W._ = AKE + APE = (KE, — KE,) + (PE, — PE,)
W, = (KE, +PE,)—(KE, + PE,)

my  * Mechanical energy includes kinetic and potential energy



Problem-Solving Strategy

Define the system to see if it includes non-conservative forces
(especially friction, drag force ...)

Without non-conservative forces
Lve may, + 2k =2 mv2 + may. +=kx?
| 2.1‘ gy o e =5 gy, 2Xi
With non-conservative forces W._ = (KE, +PE, )~ (KE, + PE,)
—fd+> W,

otherforcs

=(=mv: +mqy, +—kx:)—(=mv. +magy. + —kx
Select the location of zero potential energy

— Do not change this location while solving the problem

ldentify two points the object of interest moves between
— One point should be where information is given
— The other point should be where you want to find out something



Conservation of Mechanical Energy

W.. =(KE; + PE,)—(KE, + PE;)

Ly Lo =ty Lie  0+0+Zkd?=2mv2+0+0
2mvf+mgyf+2kxf_2mvi+mgyi+2kxi 5 5

._>
o — ,/%vz =1.15cm

/— Frictionless

m




—fd+> W

otherforce

1 1 1 1
- (E mV? +mgy; + E kX? ) - (E mVi2 +magy; + E kxiz)

1 1 1 1
G mv; +may, +§k><?) =G mv;” +Q0V; +5k>92)

d =1m,y, =dsin30° =0.5m,v, =0

y, =0,v, =?

(%mv?+0+0):(0+mgyi+0)

V. =.,/20y, =3.1m/s

©2007 Thomson Higher Education



—fd+> W, = (% mv? +mgy, +%kx$)—(% mv’> +magy, +%kxﬁ)

therforcs

— 14, Nd +O:(%mv? +0+0)— (0+mgy

t, =0.15d =1Im,y. =dsin30° =0.5m,N =?
N —mgcoséd =0

— 1, dmgcos @ = % mv; —mgy,

V, =+/29(Y; — 14,d cos @) =2.7m/s

© 2007 Thomson Higher Education



—fd+> W, = (% mv? +mgy, +%kx$)—(% mv’> +magy, +%kxﬁ)

therforcs

—ykNx+O:(O+O+O)—(%mvi2+O+O)

L, =0.15v. =2.7m/s,N =?
N—-mg=0

1
— M MgX=—=mV,
.2
L =2.5m
Zlukg N

V

X =



Block-Spring Collision

* A block having a mass of 0.8 kg is given an initial velocity v, = 1.2 m/s to the
right and collides with a spring whose mass is negligible and whose force
constant is k = 50 N/m as shown in figure. Assuming the surface to be
frictionless, calculate the maximum compression of the spring after the
collision.

e L9
E= 5 Mg

—MVe + M +—=kx; =—mv" +m -+—kX|-

E= - mv.+ kx.
(b)

Ve +O+O:%mvf\+0+0

Xy = va_ 0.8kg ———(1.2m/s) =0.15m
K 50N /m




Block-Spring Collision

A block having a mass of 0.8 kg is given an initial velocity v, = 1.2 m/s to the
right and collides with a spring whose mass is negligible and whose force
constant is k = 50 N/m as shown in figure. Suppose a constant force of
kinetic friction acts between the block and the surface, with p, = 0.5, what is

the maximum compression x_in the spring.

=0
[
[

B
—fd + Zwotherforces - (% mV? +Mmay; + % kX?) - (% mViZ +mgy; + % kx,z) (a) ﬁ WWW E= émv@‘Z

— 14, Nd +O:(O+O+%kxf)—(%mvi+0+0)

N =mg
1 1
Zkxt —=mv?
2 e T M

25x2 +3.9%. —0.58 =0

and d=x_

= —H mgxc

X, =0.093m

-

I | 2, 1 2
| W&WMMW E= gmug + skxg
(b) ; 2 2
[xe1
: 7@2 0
5 1 <
() 1 E= §kx12n;lx
xmax"l
V©= —V®

Pk o L 2
E= T MV = 5Mug




Energy Review

* Kinetic Energy
— Associated with movement of members of a system

* Potential Energy
— Determined by the configuration of the system
— Gravitational and Elastic

* Internal Energy

— Related to the temperature of the system



Conservation of Energy

* Energy is conserved

— This means that energy cannot be created nor
destroyed

— If the total amount of energy in a system changes,
it can only be due to the fact that energy has
iy crossed the boundary of the system by some




Ways to Transfer Energy
Into or Out of A System

Work — transfers by applying a force and causing a
displacement of the point of application of the force

Mechanical Waves — allow a disturbance to propagate
through a medium

Heat — is driven by a temperature difference between two
regions in space

Matter Transfer — matter physically crosses the boundary of
the system, carrying energy with it

Electrical Transmission — transfer is by electric current

Electromagnetic Radiation — energy is transferred by
electromagnetic waves



Connected Blocks in Motion

Two blocks are connected by a light string that passes over a frictionless
pulley. The block of mass m, lies on a horizontal surface and is connected to
a spring of force constant k. The system is released from rest when the
spring is unstretched. If the hanging block of mass m, falls a distance h
before coming to rest, calculate the coefficient of kinetic friction between
the block of mass m; and the surface.

— fd + D> W, pertorce = AKE +APE

k
APE = APE, + APE, = (0-m,gh) +( k¢ ~0) HW# m |
—IleNX+O=—m2gh+%kX2

N=mg and x=h

5
ol
g

— u.m,gh=-m,gh +%kh2 He=— =



Power

Work does not depend on time interval

The rate at which energy is transferred is important
in the design and use of practical device

The time rate of energy transfer is called power
The average power is given by

p-W

— when the method of energkitransfer is work



Instantaneous Power

* Power is the time rate of energy transfer. Power is
valid for any means of energy transfer

* Other expression _ W FAx
P=—=_""—Fy
At At
A more general definition of instantaneous power
L]

W W - dfr = _
P = I|m—:d—:F-d—:F V

a0 At dt t



Units of Power

* The Sl unit of power is called the watt
— 1 watt =1 joule /second =1 kg -m?/s3

* A unit of power in the US Customary system is
horsepower
—1hp =550 ft-Ib/s =746 W

® « Units of power can also be used to express

units of work or energy
— 1 kWh = (1000 W)(3600 s) = 3.6 x10° J



FORM ACTIVE STRUCTURE
SYSTEM

»Non rigid, flexible matter, shaped in a
certain way & secured at the ends which can
support itself and span space.

»Form active structure systems develop at
their ends horizontal stresses.

»>The Dbearing mechanism of a form active
systems rests essentially on the material form.




Arch

O A curved structure designed to carry loads across a gap mainly by
compression.

O The mechanical principle of the arch is precisely the same as that of the
portal frame. The straight pieces of material joined by sharp bends are
smoothened into a continuous curve. This increases the cost of construction
but greatly reduces the stresses.

O The geometry of the curve further affects
the cost and stresses. The circular arch is
easiest to construct, the catenary arch is the
most efficient.

O Arches can be three pinned, two pinned or
rigid.




Arch Terminology

CROWN
ARCH AXIS EXTRADOS

DEPTH (d)

SKEWBACK

SOFFIT

ISE (r
=

INTRADOS e S

x
: SPRING LINE SPRING LINEZ FEABUTMENTA
1| (MINOR ARCH) (MAJOR ARCH) H-TrT—L7

I SPAN (S) =t
I

—t— — 1

T SPAN (L) .

Lo




It is important to minimize the arch THRUST so as to reduce the
dimensions of the tie rod, or to ensure that the soil will not move under the
pressure of the abutments.

The THRUST is proportional to the total LOAD & to the SPAN, and
inversely proportional to the RISE of the arch.

In arches rise to span ratio should not be less than 1/8
Riser minimum should be 1/8 of the span & 2/3" maximum.

Lesser rise takes compression but not tensile load.



® [n masonry design the arch is heavy &
loaded by the weight of walls, its shape is

I usually the funicular of the dead load, &
some bending is introduced in it by live |

loads. |

m |n large steel arches, the live load represents
a gQreater share of the total load &
Introduces a large amount of bending but it g
IS seldom in view of the tensile strength of Eeas
steel. -

m The SHAPE of the arch may be chosen to
be as close as possible to the FUNICULAR
of the heaviest loads, so as to minimize
BENDING.




The arch thrust is absorbed by a tie-rod

whenever the foundation material is not °

suitable to resist it.

When it must allow the free passage of
traffic under it, its thrust is asorbed either by
buttresses or by tie-rods buried under
ground.

The stationary or moving loads carried by
the arch are wusually supported on a
horizontal surface.

This surface may be above or below the
arch, connected to it by compression struts
or tension hangers.




MATERIALS USED

WOOQOD-both evenly

CONCRETE-takes more compression




LOAD APPLICATIONS

FUNICULAR ARCHES - CONCENTRATED LOADS

¢ The sum total of all rotational effects produced about any such location by
the external and internal forces must be zero. In three hinged arch having a
non-funicular shape, this observation is true only at three hinged conditions.

*» The external shear at a section is balanced by an internal resisting shear
force that is provided by vertical component of the internal axial force.




DESIGN OF ARCH STRUCTURES

The first important consideration when designing a brick arch is whether
the arch is structural or non-structural. That is, will the arch be required to
transfer vertical loads to abutments or will it be fully supported by a steel
angle. While this may seem obvious, confusion often develops because of
the many configurations of arch construction. To answer this question,
one must consider the two structural requirements necessary for a brick
arch to adequately carry vertical loads. First, vertical loads must be
carried by the arch and transferred to the abutments. Second, vertical load
and lateral thrust from the arch must be resisted by the abutments.



If either the arch or the abutment is deficient, the arch must be considered as
non-structural and the arch and its tributary load must be fully supported by a
steel angle or plates. Alternately, reinforcement may be used to increase the
strength of either or both the arch and the abutments.

[A] DESIGNING FOR LOAD VARIATIONS

O One of the most significant aspect of the modern arch is that it can be
designed to sustain some amount of variation in load without either changing
shape or experiencing damage.

O The shape of an arch is initially determined as a response to its primary
loading condition (e.g.: parabolic for uniformly distributed loads)
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[B] SUPPORT ELEMENTS

LA basic issue Is that whether or not to absorb the horizontal thrusts by some
Interior element (a tie rod or by the foundations). When it is functionally

possible the rods are frequently used.

The rod is a tension element and highly efficient to take up the outward arch

thrusts.

Usually there is less need to support an arch on the top of vertical elements,
the use of buttressing elements is generally preferable as head room has to be

maintained.

7,

‘ %, : g . / \\
ot ! ke Lo
Tha threé-higgéd arch s elafjvely The two-hinged arch is relatively
gnatfecte,d by support settiements unaffected by vertical settlaments

ince thg two arch segments merely  since the hinges allow the structure
(r;'tatg.wnh réspect to one another to simply rotate as a unit, Hori-
€ ninges allow the structurs to zontal spreading of the foundations,

flex fregly). '
) however, induce= destructive bending
atthe crown of tt.. arch,

The fixed-ended arcn is severely
affected by any type of foundation
settlement. The absence of hinges
does not allow the structure to flex
freely, and destructiva bending
moments are consequantly induced
in the structure.



[C] CHOICE OF END CONDITIONS

= There are 3 primary types of arches used that are normally described in
I terms of end conditions :-

Three hinged arch

> — L .‘

Fixed end arch

Two hinged arch

dDifferent end conditions are preferable with respect to different

phenomenon.
The presence of hinges is very important when supports, settlements and

thermal expansions are considered.



_ateral Behavior Of Arches

O To deal with behaviour of arch in the lateral
direction, there are two methods- iz

O Provide fixed base connections

Q Commonly used is by relying on members f
placed transversely to the arch. -

# a pair of arches is stabilized through use of == =
diagonal elements.

~ # interior arches are stabilized by being
connected to the end arches by connecting
transverse members

Q Lateral buckling can be solved by laterally bracing arches with other
elements.



Flashing

O In residential construction, the presence of eaves, overhangs and small
wall areas above openings will reduce the potential for water penetration
at arch locations. However, flashing at an arch is just as important as over
any other wall opening.

O Flashing an arch can be difficult, depending on the type of arch and the
type of flashing material. Jack arches are the easiest to flash because they
are flat.

O Flashing may be placed below the arch on the window framing for
structural arches or above the steel lintel for non-structural arches.

O Alternately, flashing may be placed in the mortar joint above the arch or
keystone. Attachment of the flashing to the backing and end dams should
follow standard procedures.

O A segmental or semi-circular arch is more difficult to flash properly. This
Is because flashing materials such as metal flashings are very rigid and
may be hard to work around a curved arch.



Construction Concerns

Both structural and non-structural arches must be properly supported
throughout construction. Premature removal of the temporary support for a
structural arch may result in a collapse of the arch. This is most often due to
the introduction of lateral thrust on the abutment before proper curing has
occurred. Out-of-plane bracing is required for all arches. In veneer
construction, it is provided by the backup material through the wall ties.
Arches that are not laterally braced may require increased masonry thickness
or reinforcements to carry loads perpendicular to the arch plane. Arches may
be constructed of special shapes or regular units. Mortar joints may be tapered
with uncut regular units.

Alternately, regular units may be cut t0 o S8N
maintain uniform joint thickness. In ESisas
general, use of specially shaped brick that s
result in uniform joint thickness will be &
more aesthetically pleasing. Many brick ¢
manufacturers offer such specially-shaped
arch units.




FAILURE MODES

1. Rotation of the arch about the abutment-

Rotation occurs when tension develops in the arch. Tension can be
reduced by increasing the depth or rise of the arch. If tension
develops in the arch, reinforcement can be added to resist the tensile
forces.

2. Sliding of the arch at the skewback-

Sliding of the arch will depend on the angle of skewback (measured
from horizontal) and the vertical load carried by the arch.
Reinforcement can be added to avoid sliding at the skewback, as the
reinforcement acts as a shear key.

3. Crushing of the masonry-

Crushing will occur when compressive stresses in the arch exceed
the compressive strength of the brick masonry. If compressive
stresses are too larae. the arch must be redesigned with a shorter



CORRECTIVE MEASURES AND
DESIGN CHANGES

O Arches have horizontal restraints and these are responsible for their
superior structural performance.

O During the night the arch shortens and during the day, it elongates. Similar
problems are created by moisture movement in concrete as the concrete
absorbs water and then dries out again. The stresses caused by temperature
and moisture movement in arches are often much greater than the stresses
caused by the live load, and thus they cannot be ignored.
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EARLY CURVED ARCHES

Q Structure was often made more stable by the 8§
superimposition of additional weight on its
top, thus firming up the arch.

O SHAPE OF ARCH is not chosen for purely
structural reasons. The HALF CIRCLE,
used by the Romans, has convenient
construction properties that justify its use.

a Similarly, the POINTED gothic arch has
both visual & structural advantages, while
the arabic arch, typical of the mosques & of
some venetian architecture is ‘incorrect’
from a purely structural viewpoint.




Notre-Dame Cathedral- Fine example
of Gothic architecture, built in mid-13th
century. Ornate west entrance shows the
use of arches in early building
construction. (Chartres, France)

AL R R A et £ :
Notre-Dame Cathedral- (South entrance)
Note the use of heavy ornate pinnacles to
Increase the stability of the piers against
overturning  from  horizontal  thrust
component of the arch. (Chartres, France)

T
King's College Chapel- One of the finest
examples of medieval architecture in England.
Built in 1446-1515, Fan vaulting in the ceiling is
essentially a series of pointed arches that require
external buttresses to react to the horizontal
thrust. (Cambridge, England)




APPLICATIONS & ADVANTAGES

O Roman & romanesque architecture are immediately recognized by the
I circular arch motif. Romans were pioneers in the use of arches for bridges,
buildings, and aqueducts. This bridge, the Ponte Fabricio in Rome, spans
between the bank of the River Tiber and Tiber Island. Built in 64 B.C.
(Rome, Italy.)
O The gothic high rise arch & the buttresses required to absorb its thrust are
typical of one of the greatest achievements in architectural design.

O Roman circular arches spanned about 100° & medieval stone bridges up to
180°.




a

a

The NEW RIVER GORGE BRIDGE in west virginia, the longest steel
arch spans 1700’ (1986).

The largest single arch span in reinforced concrete built to date is the
1280feet span KRK BRIDGE , yugoslavia.

Combinations of trussed arches with cantilevered half arches connected by
trusses were built to span as much as 1800feet in THE QUEBEC BRIDGE
in 1917.

To this day no other
structural element is as
commonly used to span
large distances as the
arch.




Unit-3
Propped Cantilever
and Fixed Beams



Beam

e Structural member that carries a load that is
applied transverse to its length

e Used in floors and roofs

* May be called floor joists, stringers, floor
m  beams, or girders



Chasing the Load

* The loads are Initially P~
applied to a building |/
surface (floor or roof). . e

* Loads are transferred to 3=y ||
beams which transfer the % A TS
load to another building -

m  component.




Static Equilibrium

* The state of an object in which the forces
counteract each other so that the object
remains stationary

A beam must be in static equilibrium to
m  successfully carry loads

-l



Static Equilibrium

 The loads applied to the beam (from the roof

or floor) must be resisted by forces from the
beam supports.

* The resisting forces are called reaction forces.

l Applied Load

Reaction Reaction
Force Force



Reaction Forces

* Reaction forces can be linear or rotational.
— A linear reaction is often called a shear reaction (F or R).

— A rotational reaction is often called a moment reaction
(M).

 The reaction forces must balance the applied forces.



Beam Supports

The method of support dictates the types of
reaction forces from the supporting members.

o

Roller: %

Y

FY
Hin ¢ J . 4 F,
Connection |

F}“
Fixed »: M.
Support: . = < (4%°F

F}“



Beam Types

ﬁ

Simple T T

Continuous ‘ ‘ ‘ |

Cantilever '<E;T

Moment

(fixed at one end)



Beam Types

Fixed

| | Z
Moments at each end

Propped — Fixed at one end; supported at other

A

Overhang ‘ ‘



Simple Beams

Applied Load

BEAM
DIAGRAM

ay !Applied Load
EEEEERN I)
T FREE BODY T

DIAGRAM

Note: When there is no applied
horizontal load, you may
Ignore the horizontal reaction
at the pinned connection.



Fundamental Principles of Equilibrium

The sum of all vertical forces acting
on a body must equal zero.

The sum of all horizontal forces
acting on a body must equal zero.

The sum of all moments (about any
point) acting on a body must equal
Zero.



Moment

e A moment is created when a force tends to
rotate an object.

* The magnitude of the moment is equal to the
force times the perpendicular distance to the

force (moment arm).
el F

I\/IC
| 1 d=moment arm

M=F1d °




Calculating Reaction Forces

Sketch a beam diagram.

¥ =4000™




Calculating Reaction Forces

Sketch a free body diagram.

P= 4c00'® -

W= Q50}—;
__,dd‘iLLL_LLL k

F\/A4 @.“L (2! F‘JB




Calculating Reaction Forces

Use the equilibrium equations to find the magnitude of the reaction
forces.

— Horizontal Forces

— Assume to the right is positive




Calculating Reaction Forces

* Vertical Forces
e Assume up is positive +T

ZFY =0 Equivalent

o- entrated | oad
F, . +F, ;= 4000lb

(i foors
y

Equivalent
y z Concentrated |_oad
F,4+F,5 =17,000lb * ‘

& F

a4t Fys — 40001b —

0




Calculating Reaction Forces

* Moments

* Assume counter clockwise rotation is positive

Yoo )

(F-201t)—(4000 Ib-6 ft)—(13,000 Ib-10 1t )+(F,-0)=0

&
(20 ft)F,;, — 24,000 ft-Ib—130,000 ft - Ib+0 =0
(20 ft )FyB :154,000 ft-lb lt 4cco '
"' 13,000 Ib B
154,000 t-Ib may |
: = t — f o 77001

F,, =7,700 Ib ool e




Calculating Reaction Forces
Fyp

* Now that we know 7, we fan use the
previous equation to flnd

F,a+F,5 = 17,000b

y
&l F,,+77001b=17,0001[b
Fya = 9300 [b LTI
0 =Fx, ? f
9300 Ib = Fut L A7 Fyp=77001Ib
—



Shear Diagram

P= 4cc0'®
. w =e5o}%
i ST C .

fF\j z= 7700 Ib

e
—
0 =Fx, A
9300 Ib=Fyy -[J ,
20

C‘?f’o‘b o S —— v A | A & A c
l (507 )" F3900'

-77600 lb

Shear at a point along the
beam is equal to the
reactions (upward) minus
the applied loads
(downward) to the left of
that point.




Moment Diagram

SHEAR

-770¢ b

Kink In
2 moment
curve ——

Mmey | =L k=190 _ 515 1t
MomeNT ‘w 650 ft




Moment Diagram

4000
W—L-L-kii) M

M +(4000Ib)(215 ft )+ (650 )(815 ft)- (225 )—(9300Ib )(815ft) =0

M =M__ =45608 ft-Ib




Moment Diagram

9200
L3900 b

SHEAR

-7700 b

Mg = 45,608 ft - b

Mmm( S




Moment Diagram

‘1%00“’

SHEAR

—7700 b

M ma\y‘ _—"‘—_—7_-— T ——

Momen T / \'\*

M0 = Area A + Area B + Area C
— 2(6 ft)(3900 1) + (6 f)(5400 Ib) + 2(2.15 £t)(1400 Ib)

= 45,605 ft- b




Beam Analysis

 Example : simple beam with a uniform load,
w,= 1090 Ib/ft

* Span =18 feet

P A N B
FrrF FrArF

#
(fty O 18,
Load Diagram

Test your understanding: Draw the shear and moment
diagrams for this beam and loading condition.



Shear and Moment Diagrams

Load Diagram

IFt j I Loads EI I Reactions EI
Click. on an area far mare details L

8,810.00

Shear I\DDD\DIDD

-9,810.00

®
(ft) 9.0

III:u vI Shear Diagram EI

)

44,145.00

Moment

0.00

0.00

k)
(ft) 9.0

Im Moment Diagram EI
Max. Moment = 44,145] ft-1b Max. Shear = 9,810 Ib
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Slope Deflection &
Moment Distribution Method



MOMENT DISTRIBUTION METHOD - AN OVERVIEW

7.1 MOMENT DISTRIBUTION METHOD - AN OVERVIEW
7.2 INTRODUCTION

7.3 STATEMENT OF BASIC PRINCIPLES

7.4 SOME BASIC DEFINITIONS

7.5 SOLUTION OF PROBLEMS

7.6 MOMENT DISTRIBUTION METHOD FOR STRUCTURES
HAVING NONPRISMATIC MEMBERS



7.2 MOMENT DISTRIBUTION METHOD -
INTRODUCTION AND BASIC PRINCIPLES

/.1 Introduction

(Method developed by Prof. Hardy Cross in 1932)

The method solves for the joint moments in continuous beams and
rigid frames by successive approximation.

7.2 Statement of Basic Principles

Consider the continuous beam ABCD, subjected to the given loads,
as shown in Figure below. Assume that only rotation of joints occur
at B, C and D, and that no support displacements occur at B, C and

D. Due to the applied loads in spans AB, BC and CD, rotations
occur at B, C and D.

150 kN

15 kN/m 10 KN/m

3m

] ! .

8m 6m 8m




In order to solve the problem in a successively approximating manner,
It can be visualized to be made up of a continued two-stage problems
viz., that of locking and releasing the joints in a continuous sequence.

7.2.1 Step |

The joints B, C and D are locked in position before any load is
applied on the beam ABCD; then given loads are applied on the
beam. Since the joints of beam ABCD are locked in position, beams
AB, BC and CD acts as individual and separate fixed beams,
subjected to the applied loads; these loads develop fixed end
moments.

-80 kN.m 15 kN/m 10 kN/m

“B0KN-M _197 5kN.m 1125kNm O333KNmM s 5333k
N E KN 33kN,
> // w 3m 15P KN /7 > //
AT \ 5 \/ v \ Cr \
L~
7 8m \ 84/ 6 \ —C // 8m \ /D
m




In beam AB
Fixed end moment at A = -wl?/12 = - (15)(8)(8)/12 = - 80 kN.m
Fixed end moment at B = +wl%/12 = +(15)(8)(8)/12 = + 80 KN.m

In beam BC
Fixed end moment at B = - (Pab?)/I°= - (150)(3)(3)%/6
=-112.5 kN.m
Fixed end moment at C = + (Pab?)/12= + (150)(3)(3)4/62
=+ 112.5kN.m
In beam AB

Fixed end moment at C = -wl%/12 = - (10)(8)(8)/12 = - 53.33 KN.m
Fixed end moment at D = +wl?%/12 = +(10)(8)(8)/12 = + 53.33kN.m



[.2.2 Step 11

Since the joints B, C and D were fixed artificially (to compute the the fixed-
end moments), now the joints B, C and D are released and allowed to rotate.
Due to the joint release, the joints rotate maintaining the continuous nature of
the beam. Due to the joint release, the fixed end moments on either side of
joints B, C and D act in the opposite direction now, and cause a net

unbalanced moment to occur at the joint.

15 kN/ 150 kN 10 KN/
m m
3m K
D
! i N
8m | N 6 m | N\ 8 m
S s s G
Released moments -80.0  +1125 -112.5 +53.33 -53.33
Net unbalanced moment
— (+32.5 — 6’59-17



[.2.3 Step 111

These unbalanced moments act at the joints and modify the joint moments at
B, C and D, according to their relative stiffnesses at the respective joints. The
joint moments are distributed to either side of the joint B, C or D, according to

their relative stiffnesses. These distributed moments also modify the moments
at the opposite side of the beam span, viz., at joint A in span AB, at joints B
and C in span BC and at joints C and D in span CD. This modification is
dependent on the carry-over factor (which is equal to 0.5 in this case); when
this carry over is made, the joints on opposite side are assumed to be
fixed.

[.2.4 Step IV

The carry-over moment becomes the unbalanced moment at the joints
to which they are carried over. Steps 3 and 4 are repeated till the carry-
over or distributed moment becomes small.

[.2.5 Step V

Sum up all the moments at each of the joint to obtain the joint
moments.




7.3 SOME BASIC DEFINITIONS

In order to understand the five steps mentioned in section 7.3, some words
need to be defined and relevant derivations made.

7.3.1 Stiffness and Carry-over Factors

Stiffness = Resistance offered by member to a unit displacement or rotation at a
point, for given support constraint conditions

M, Mg A clockwise moment M, is
A — . applied at A to produce a +ve
LN R NG bending in beam AB. Find 6,
and M.
RA RB
L

E, | — Member properties



Using method of consistent deformations

Applying the principle of
consistent deformation,

M
A +Rf =0 R =-——2%
A A AA A 2L
2 M
:MAL+RAL _M,L M, = EHA, hence k, = v A
TR 2R 4RI L 0, L

Stiffness factor = ky = 4EI/L



Considering moment M&

Mg+ M, +R,L=0
~Mg = M,/2= (1/2)M,,

Carry - over Factor =1/2

7.3.2 Distribution Factor

Distribution factor is the ratio according to which an externally applied
unbalanced moment M at a joint is apportioned to the various members
mating at the joint

K é \\B _______ I.—" = L~ ’—\\
g :_1 (II i I L22 I\/IBD
' SR At joint B
\ 3
) M - Mga-Mgc-Mgp =
[j D




Le., M = Mg + Mgc + Mgp

55

— (KBA + KBC + KBD )HB

0 — M M
5 = =
(KBA+KBC +KBD) ZK
Men = Kgabg :[gBPA(jM =(D.F)g M
Similarly
K
Mec = ZB;:( M =(D.F)g M
K
Megp = ZBID( M =(D.F)g;p M



7.3.3 Modified Stiffness Factor

The stiffness factor changes when the far end of the beam is simply-
supported.

As per earlier equations for deformation, given in Mechanics of Solids
text-books.

M,L
3E|

M, 3EI (3Y4El
=0, T T lah
A

3
= Z (KAB)fixed

0, =




7.4 SOLUTION OF PROBLEMS -

7.4.1 Solve the previously given problem by the moment
distribution method

7.4.1.1: Fixed end moments
“wl? - (15)(8)°

Mo = Mg, == =272 = -0 kN.m
M, =M, =—V;' :—(15%)(6) —112.5kN.m

2 2
M., =M. =—"i"2 =—(101);8) — 53.333kN.m

7.4.1.2 Stiffness Factors (Unmodified Stiffness)

K =—k_ =2EL_@ED 45
AB BA L 8

K =k _=2E_@ED_qee7e
BC cB L

K = |:£ = ﬂ El = 0.5EIl
CD 8 8

K _=2El _osEl



7.4.1.3 Distribution Factors

DF
DF
DF

DF = =0.
B K . +KCD 0.667EIl + 0.500EI

DF_ = = = 0.
c® K _+K__ 0.667El +0.500El
CB CD

DF =—"=1.00
K

BA

0.5El

K +K 0.5+ (wall stiffnesy

BA

0.5El

BC

= =0.
BA KBA + KBC 0.5El + 0.667El

0.667EI

K

CB

sc” K +K__ 05El +0.667El
BA BC

0.667EI

C

K

CD

0.500El

K

DC
DC

4284

0.5716

5716

4284



7.4.1.4 Moment Distribution Table

Joint A C D
Member AB BA BC CB CD DC
Distribution Factors 0 0.4284 | 0.5716 | 0.5716 | 0.4284 1

Computed end moments -80 80 -1125 | 1125 | -563.33 | 53.33
Cycle 1

Distribution 13.923 | 18.577 | -33.82| -25.35 | -53.33

Carry-over moments 6.962 -16.91 | 9.289 | -26.67 | -12.35
Cycle 2

Distribution 7.244 | 9.662 9.935| 7.446 | 12.35

Carry-over moments 3.622 4.968 4831 6.175 | 3.723
Cycle 3

Distribution -2.128 | -2.84 | -6.129| -4.715 | -3.723

Carry-over moments -1.064 -3.146 -1.42| -1.862 | -2.358
Cycle 4

Distribution 1.348 | 1.798 1.876| 1.406 | 2.358

Carry-over moments 0.674 0.938 0.9] 1.179 | 0.703
Cycle 5

Distribution -0.402 | -0.536 | -1.187| -0.891 | -0.703

Summed up -69.81 | 99.985 | -99.99 | 96.613 | -96.61 0

moments




7.4.1.5 Computation of Shear Forces

15 kN/mx

150 kN

yal

10 KN/m

5| c
A
meavaul | oo I
8 m 3m 3m 8 m
Simply-supported 60 60 75 75 40 40
reaction
End reaction
due to left hand FEM 8.726 -8.726 | 16.665 -16.67 | 12.079 -12.08
End reaction
due to right hand FEM | -12.5 12.498 -16.1 16.102 0 0
Summed-up 56.228 63.772 | 75.563 74.437 | 53.077 27.923
moments




7.4.1.5 Shear Force and Bending Moment Diagrams

56.23

75.563

52.077

\ 2792m

3.74m

Max=+ 35.59 kN.m

T27.923

14.437

M .,=+38.985 kN.m

-69.806




Simply-supported bending moments at center of span

Mooy IN AB = (15)(8)2/8 = +120 kN.m
Moy in BC = (150)(6)/4 = +225 KN.m
Mooy in AB = (10)(8)%8 = +80 kN.m



7.5 MOMENT DISTRIBUTION METHOD FOR
NONPRISMATIC MEMBER (CHAPTER 12)

The section will discuss moment distribution method to analyze
beams and frames composed of nonprismatic members. First
the procedure to obtain the necessary carry-over factors,
stiffness factors and fixed-end moments will be outlined. Then
the use of values given in design tables will be illustrated.
Finally the analysis of statically indeterminate structures using
the moment distribution method will be outlined



7.5.1 Stiffness and Carry-over Factors

Use moment-area method to find the stiffness and carry-over factors of
the non-prismatic beam.

Oa

M, :(KQ)ABHA
MB :CABMA

Cag= Carry-over factor of moment M, from A to B



(@) (b)

Use of Betti-Maxwell’s reciprocal theorem requires that the work
done by loads in case (a) acting through displacements in case (b) is
equal to work done by loads in case (b) acting through displacements in

case (a)

(M, )0) +(Mg )D) = (M} XL.0) + (M )(0.0)
Casla =CgaKg



7.5.2 Tabulated Design Tables

Graphs and tables have been made available to determine fixed-end
moments, stiffness factors and carry-over factors for common
structural shapes used in design. One such source is the Handbook of
Frame constants published by the Portland Cement Association,
Chicago, Illinois, U. S. A. A portion of these tables, is listed here as
Table 1 and 2

Nomenclature of the Tables

a, a,, = ratio of length of haunch (at end A and B to the length
of span

b = ratio of the distance (from the concentrated load to end A)
to the length of span
h,, hg= depth of member at ends A and B, respectively

he = depth of member at minimum section



|. = moment of inertia of section at minimum section = (1/12)B(h.)3,
with B as width of beam
Kag, Kgc = stiffness factor for rotation at end A and B, respectively
L = Length of member
M g, Mg, = Fixed-end moments at end A and B, respectively; specified in
tables for uniform load w or concentrated force P




Téble 12-1 Straight Haunches—Constant Width

ol fal

R I}’BhC

B

Note: All carry-over factors are negative and
all stiffness factors are positive.

Concentrated Load FEM—Coef. X PL

Haunch Load at

Right
Huaunch

Carry-over
Factors

Stiffness
Factors

Unif. Load
FEM
Coef. X wl?

b

Left

Right

0.1

0.3

0.5

0.7

09

FEM
Coef. ¥ wyl?

FEM
Coef. X wpl?

ag '

CAB

CBA

kA B

kBA

MAB

Mg,

MAB MBA

MAB MBA

MAB

MBA

MAB MBA

MAB

MAB MBA

MAB MBA

aa = 03 a

» = variable

Fq = 1.0

rg = variable

(.4
0.6
1.0
1.5
20

0.4
0.6
L0
1.5
20

012

0.3

0.543
0.576
0.622
0.660
0.684

0.579
0.629
(.705
0.771
(.817

0.766
0.758
0.748
0.740
0.734

0.741
0.726
0.705
0.689
0.678

9.19
9.53
10.06
10.52
10.683

947
9.98
1083
1170
12.33

6.52
7.24
837
938
10.09

7.40
8.64
10.85
13.10
14.85

0.1194
0.1152
0.1089
0.1037
(.1002

0.1175
0.1120
0.1034
0.0956
0.0501

0.0791
0.0831
0.0942
0.1018
0.106%

0.0822
0.0002
(.1034
0.1157
0.1246

0.0935 | 0.0034
0.0934 | 0.0038
0.0931 | 0.0042
0.0927 | 0.0047
0.0924 § 0.0050

0.0934 1 0.0037
0.0931 | 0.0042
0.0924 | 0.0052
0.0917 | 0.0062
0.0913 1 0.0069

0.2185 | 0.0384
0.2158 | 0.0422
0.2118 10.0480
(.2085 | 0.0530
0.2062 | 0.0565

0.2164 | 0.0419
0.2126 | 0.0477
0.2063 | 0.0577
0.2002 | 0.0675
0.1957 {0.0750

0.1955
(11883
01771
0.1678
0.1614

0.1909
0.1808
0.1640
0.1483
0.1368

0.1147
0.1250
6.1411
0.1550
0.1645

0.1225
0.1379
0.1640
0.1892
0.2080

0.0889
0.0798
0.0663
0.0559
0.0487

0.0856
0.0747
0.0577
0.0428
0.0326

0.1601
0.1729
0.1919
0.2078
0.2185

0.1649
0.1807
0.2063
0.2294
0.2455

0.0096
0.0075
0.0047
0.0028
0.0019

0.0100
0.0080
0.0052
0.0033
0.0022

(L0870
0.0898
0.0935
0.0961
0.0974

0.0861
0.0888
0.0924
0.0953
0.0968

0.0133
0.0133
0.0132
0.0130
0.0129

0.0133
0.0132
0.0131
0.0129
0.0128

{.0008
0.0009
0.0011
0.0012
0.0013

0.0009
0.0010
0.0013
0.0015
0.0017

0.0058
0.0060
0.0062
0.0064
0.0063

0.0118
0.0124
0.0131
0.0137
0.0141

0.0006
0.0005
0.0004
0.0002
0.0001

0.0022
0.0018
0.0013
0.0008
(.0006

a,=02 @

5 = variuble

FAZI.S

rg = variable

04
0.6
1.0
15
2.0

0.4
0.6
1.0
L5
2.0

0.2

03

0.569
0.603
0.652
0.691
0.716

0.607
0.659
0.740
0.809
0.857

0.714
0.707
0.698
0.691
0.686

0.692
0.678
0.660
0.645
0.636

1.97
8.26
8.70
9.08
9.34

8.21
8.63
9.38
10.09
10.62

6.35
7.04
8.12
9.08
9.75

721
.40
10.52
12.66
14.32

0.1166
0.1127
0.1069
0.1021
0.09%0

0.1148
0.1098
0.1018
0.0947
0.0897

0.0799
0.0858
0.0947
0.1021
0.107

0.0829
0.0907
(.1037
0.1156
0.1242

0.0019
0.0021
(.0023
(0023
0.0028

0.0021
0.0024
0.0028
0.0033
0.0038

0.0966
0.0965
0.0963
0.0962
0.0960

0.0965
0.0964
0.0961
0.0958
0.0935

0.0371
0.0413
0.0468
0.0515
0.0547

0.0409
0.0464
0.0559
0.0631
0.0720

02186
0.2163
0.2127
0.2007
0.2077

0.2168
0.2135
02078
0.2024
0.1985

0.1847
0.1778
0.1675
0.1587
0.1528

0.1801
0.1706
0.1550
0.1403
0.1296

0.1183
(0.1288
0.1449
0.1587
0.1681

{.1263
0.1418
0.1678
0.1928
0.2119

0.1626
0.1752
0.1940
0.2097
0.2202

0.1674
0.1831
0.2085
(2311
0.2469

0.0821
0.0736
0.0616
0.0515
0.0449

0.0789
0.0688
0.0530
0.0393
0.0299

0.0088
0.0068
0.0043
0.0025
0.0017

(10091
0.0072
0.0047
0.0029
0.0020

0.0873
0.0801
0.0937
0.0962
0.0975

0.0866
0.0892
0.0927
0.0950
0.0968

0001
0.0001
0.0002
0.0002
0.0002

(.0002
0.0002
0.0002
0.0003
0.0003

0.0064
0.0064
0.0064
0.0064
0.0064

0.0064
0.0064
0.0064
(.0063
0.0063

0.0058
0.0060
0.0062
0.0064
0.0065

0.0118
0.0123
0.0130
0.0137
0.0141

0.0006
0.0003
0.0004
0.0002
0.0001

0.0020
0.0017
0.0012
0.0008
0.0003




Table 12-2 Parabolic Haunches—Constant Width

Note: All carry-over factors are negative and
all stiffness factors are positive.

Concentrated Load FEM—Coef. X PL

Haineh Load at

Right
Haunch

Carry-over
Factors

Stiffness
Factors

Unif. Load
FEM
Coef. X wl?

b

Left

Right

0.1

0.3

0.5

0.7

0.9

FEM
Coef. % wyl?

FEM
Coef. X wgl®

dg

s

CAB CBA

kAB kBA

MAB MBA

Mup Mgy

MAB MBA

MAB

M BA

MAB MBA

Mys

MAB MBA

My Mpy

ay = 02 a

5 = variable

Fa— 1.0

tg = variable

0.2

0.3

04
0.6
1.0
1.5
20

0.4
0.6
10
13

0.558
0.582
0.619
0.649
0.671

0.588
0.625
0.683
0.735
0.772

0.627
0.624
0.619
0.614
0.011

0.616
0.609
0.598
0.589
0.582

5.40
5.80
6.41
6.97
7.38

593
6.58
7.68
8.76
9.61

6.08
6.21
6.41
6.59
6,71

6.22
6.4}
6.73
742
725

0.1022
0.0995
0.0936
0.0021
0.0899

0.1002
0.0966
0.0911
0.0862
0.0827

0.0841
0.0887
0.0956
0.1013
0.1056

0.0877
0.0942
0.1042
0.1133
0.1198

0.0938
0.0936
0.0935
0.0933
0.0932

0.0937
(.0935
0.0932
0.0929
0.0927

0.0033
0.0036
0.0038
(0.0041
0.0044

0.0035
0.0039
0.0044
0.0050
0.0054

0.0502
0.0533
0.0584
0.0628
0.0660

0.0537
0.0587
0.0669
0.0746
{1.0803

(1891
0.1872
0.1844
0.1819
0.1801

0.1873
0.1845
0.1801
0.1760
0.1730

0.1572
0.1527
0.1459
0.1399
0.1358

0.1532
0.1467
0.1365
(.1272
0.1203

0.1261
0.1339
0.1459
0.1563
0.1638

0.1339
0.1455
0.1643
0.1819
0.1951

0.0715 [ 0.1618
0.0663 | 0.1708
0.0584 ; 0.1844
0.0518 | 0.1962
00472 10.2042

0.0678 | 0.1686
0.0609 1 0.1808
0.0502 | 0.2000
0.0410 1 0.2170
0.0345 | 0.2293

0.0073
0.0053
0.0038
0.0025
0.0017

(.0073
0.0057
0.0037
0.0023
0.0016

(.0902
0.0933
0.0058
0.0971

0.0877
0.0902
0.0936
0.0959
0.0972

0.0877 ,

0.0001
0.0001
0.0001
0.0001
0.0001

0.0001
0.0001
0.0001
0.0001
0.0001

0.0032
(.0032
0.0032
0.0032
0.0032

0.0032
0.0032
0.0031
0.0031
0.0031

0.0030
0.0031
0.0032
0.0032
0.0033

0.0063
0.0065
0.0068
0.0070
0.0072

0.0002
0.0002
0.0001
0.0001
0.0000

(.0007
0.0005
0.0004
0.0003
0.0002

da =05 a

» = variable

Fqg = 1.0

ry = variable

0.2

0.5

0.4
0.6
1.0
L5
2.0

0.4
0.6
1.0
15
2.0

0.807
0.803
0.796
0.786
0.784

0.753
0.730
0.654
0.664
0.642

0.438
0.513
0.547
0.571
0.590

0.554
0.606
0.694
0.781
0.850

397
6.45
722
7.90
8.40

7.66
9.12
12.03
1547
18.64

9.85
10.10
10.51
10.90
11.17

1042
10.96
12.03
13.12
14.09

0.0753
0.0795
0.0805
0.0922
0.0961

00811
0.0889
0.1025
0.1163
0.1273

0.1214
0.1183
{.1138
(.1093
0.1063

0.1170
0.1115
0.1025
0.0937
0.0870

0.0034
0.0036
0.0040
0.0043
0.0046

0.0040
0.0046
0.0057
0.0070
0.0082

0.092%
0.0928
0.0926
0.0923
0.0922

0.0926
0.0922
0.0915
0.0908
0.0901

0.0371
0.0404
0.0448
0.0485
0.0506

0.0442
0.0506
0.0626
0.0759
0.0877

0.2131
0.2110
0.2079
0.2055
0.2041

0.2087
0.2045
0.1970
(0.1891
0.1825

0.2021
0.1969
0.18%0
0.1318
0.1764

(.1924
0.1820
0.1639
0.1456
0.1307

0.1061
0.1136
0.1245
0.1344
0.1417

0.1205
0.1360
0.1639
0.1939
0.2193

0.1506
0.1600
0.1740
0.1862
0.1948

0.1595
0.1738
0.1970
0.2187
0.2348

0.0979
0.0917
0.0800
0.0719
0.0661

0.0398
0.0791
0.0626
0.0479
0.0376

0.0863
(.0892
0.0928
0.0951
0.0968

0.0853
0.0873
0.0915
(.0940
0.0957

{.0103
0.0083
0.0056
0.0033
(.0025

0.0107
0.0086
0.0057
0.0039
0.0027

0.0171
0.0170
0.0168
0.0167
0.0166

0.0169
0.0167
0.0164
0.0160
0157

0.0017
0.0018
0.0020
0.0021
0.0022

0.0020
0.0022
0.0028
(.0034
0.0039

0.0030
0.0030
0.0031
0.0032
0.0032

0.0145
0.0152
0.0164
0.0174
0.0181

0.0003
0.0002
0.0001
.0001
0.0001

0.0042
0.0036
0.0028
0.0021
0.0016




Unit-5
Influence Lines For Statically
Determinate Structures



3. INFLUENCE LINES FOR STATICALLY DETERMINATE
STRUCTURES - AN OVERVIEW

Introduction - What is an influence line?

Influence lines for beams

Qualitative influence lines - Muller-Breslau Principle
Influence lines for floor girders

Influence lines for trusses

Live loads for bridges

Maximum influence at a point due to a series of
concentrated loads

Absolute maximum shear and moment

143



3.1 INTRODUCTION TO INFLUENCE LINES




3.2 INFLUENCE LINES FOR BEAMS

e Procedure:

(1) Allow a unit load (either 1b, 1N, 1kip, or 1 tonne) to move over beam
from left to right

(2) Find the values of shear force or bending moment, at the point under
consideration, as the unit load moves over the beam from left to right

(3) Plot the values of the shear force or bending moment, over the length of
the beam, computed for the point under consideration
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3.4 QUALITATIVE INFLUENCED LINES - MULLER-BRESLAU’S

PRINCIPLE




3.5 PROBLEMS - 3.5.1 Influence Line for a Determinate Beam by
Muller-Breslau’s Method

influence line for A,

@ (b) ©

Fig. 6-12

Influence line for Reaction at A
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3.5.2 Influence Lines for a Determinate Beam by Muller-
Breslau’s Method

infiuence line for V¢

(c)
Fig. 6-13

Influence Line for Shear at C

influence line for M.

©
Fig. 6-14

Influence Line for
Bending Moment at C
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3.5.3 Influence Lines for an Indeterminate Beam by Muller-
Breslau’s Method

1

| Influence Line for
R <~ Shear at E

1 (b)

1

fm::__r_;l
!’ © foe
Fig. 9-24

Agl; ! : =

Fig. 9-25

Influence Line for Bending Moment at E
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3.6 INFLUENCE LINE FOR FLOOR GIRDERS

Floor systems are constructed as shown in figure below,

(2)

Elevation : I¥'
e L. T
A\ 8]z
= | \ | Bl
7
Truss

Plan (deck not shown)

Fig. 8.14



3.6 INFLUENCE LINES FOR FLOOR GIRDERS (cont’d)

™~ Girder

Girder
yd
]
I
|
]
1
! —
|
L,
Plan (deck not shown)

‘{-— Stringers

=] — Stringer

Ginder—aF > Floor beam

Section b-b

ck

De

Stringer —J D

Girder/

Section a-a
{(b)

Fig. 8.10



3.6 INFLUENCE LINES FOR FLOOR GIRDERS (cont’d)

3.6.1 Force Equilibrium Method:

Draw the Influence Lines for: (a) Shear in panel CD of
the girder; and (b) the moment at E.

>
'

C D’ E F

| y=
B C D E O
% /

5 spaces @ 10" each = 50 ft

158



3.6.2 Place load over region A'B” (0 < x < 10 ft)

Find the shear over panel CD

Vo= - Xx/50
At x=0,V =0
At x=10, Vp = -0.2 l?r v A E
Shear is -ve R=x/50
a
Find moment at E = +(x/50)(10)=+x/5 ( F
At X=O, ME=O \% E

At x=10, M:=+2.0 +ve moment R-=x/50

159



Continuation of the Problem

I. L. forVQ

=
WO.Z
| A 20

I. L. for ME

160



Problem Continued -

3.6.3 Place load over region B'C” (10 ft < x < 20ft)

Vp = -x/50 kip
At x =10 ft
Ve =-0.2

At x = 20 ft
V=-0.4

M. = +(x/50)(10)

= +x/5 kip.ft
At x = 10 ft, Mg = +2.0 kip.ft
At x = 20 ft, M = +4.0 kip.ft

J= F
D
Shear is -ve
Re= x/50
(' | D(' D F
E
Moment is +ve Re= x/50

161



~ +ve 4.0
2.0 '

I. L. for ME
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3.6.4 Place load over region C'D" (20 ft < x < 30 ft)

When the load is at C’ (x = 20 ft)

— Cl ) TD_l

When the load isat D’ (x = 30 ft)

T

R-=20/50
=0.4

A | i |l T|
| : :
R,= (50 - x)/50

Vep=+ 20/50

=+ 0.4 Kkip

"

D
Shear is +ve

163



M, = + (x/50)(10) = + x/5

. . LoadP <f><

Re= x/50

| | +ve moment
A B C P
NP
|. L. for Vp

2.0 4.0 6.0
|. L. for Mg

164



3.6.5 Place load over region D'E” (30 ft < x < 40 ft)

Vep= + (1-x/50) Kkip

!

A | |

B
R,= (1-x/50)

M= +(x/50)(10)

Igl

|lD| |

Shear is +ve

= +x/5kipft 7 D (l
(=

Moment Is +ve

At x = 30 ft, M = +6.0
At x = 40 ft, M = +8.0
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Problem continued

X |

. L. forV@

8.0

. L. for ME
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3.6.6 Place load over region E'F” (40 ft < x <50 ft)

Vep = + 1-X/50 Atlx = 40 ft, V= + 0.2
At x =50 ft, Vp = 0.0

| X | 1.0

A | | N | N |
=S e

R,=1-X/50 Shear is +ve

M.= + (1-x/50)(40) = (50-x)*40/50 = +(4/5)(50-x)

| X

S N V '

Moment IS +ve
R,=1-x/50 At x =40 ft, M=+ 8.0 kip.ft
Atx=50ft, Mc=0.0
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+ve

I. L. for I\/IE
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3.7 INFLUENCE LINES FOR TRUSSES

Draw the influence lines for: (a) Force in Member GF; and
(b) Force in member FC of the truss shown below in Figure below

20 ft

10(3)Y
600

/%7 B ¢ 777"

| 20 ft | 20 ft | 20 ft |
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Problem 3.7 continued -
3.7.1 Place unit load over AB

(1) To compute GF, cut section (1) - (1)

(1)
G /| F E

Q C J D
&, - 1- /60 ® B =60
Atx =0 Taking moment about B to its right,
Fer =0 R0)- o0V =0 v
At x = 20 ft For = (X/60)(40)(1/ 10V3) = x/(15 V3) (-ve)

FGF - - 0.77
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PROBLEM 3.7 CONTINUED -
(11) To compute F@ cut section (2) - (2)

@)

1-
reactions at nodes S
Ry, =1-X/60 @ Rp=x/60
i

Resolving vertically over the right hand section
Fee c0s30° - Ry =0
Fee = Rp/c0s30 = (x/60)(2/+/3) = x/(30 V/3) (-ve)
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Atx=0,F,=0.0
At x = 20 ft, FFC =-0.385

20 ft

.............. l. L. for FE

-vVe

Ve |. L. for Fre
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PROBLEM 3.7 Continued -
3.7.2 Place unit load over BC (20 ft < x <40 ft)

[Section (1) - (1) is valid for 20 < x < 40 ft]

(1) To compute FE use section (1) -(1)

G @) F E

SN (40-%)120
| X \\\ \\\/ |1 (X'20)/20
\Q reaclions at nodes
A \\

20 ft B C D

(1)
_ | | _
R,=1-x/60 (x-20) I (@0-x) I Rp=x/60

Taking moment about B, to its left,
(Ra)(20) - (FGF)(]-O\/B) =0
Fer = (20R,)/(10V3) = (1-x/60)(2 /\3)

At x = 20 ft, Fg = 0.77 (-ve)
At x = 40 ft, Fg = 0.385 (-ve)
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PROBLEM 6.7 Continued -
(11) To compute F@ use section (2) - (2)

Section (2) - (2) is valid for 20 < x <40 ft
G F /(2

(40-x)/20

N

A T B SO TD
(2)

R, =1-x/60 Rp=x/60

(x-20)/20"

e
.I. 1
7 4 \

Resolving force vertically, over the right hand section,
F-c c0s30 - (x/60) +(x-20)/20 =0
F-c c0s30 = x/60 - x/20 +1= (1-2x)/60 (-ve)
Fec = ((60 - 2x)/60)(2/V3) -ve
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At x = 20 ft, F- = (20/60)(2/ V3) = 0.385 (-ve)
At x = 40 ft, F- = ((60-80)/60)(2/ V3) = 0.385 (+Ve)

0.77 0.385

. L. for F&

I. L. for F&
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PROBLEM 3.7 Continued -
3.7.3 Place unit load over CD (40 ft < x <60 ft)

(1) To compute FG_F, use section (1) - (1)

(1)

G F E

R x-40) .1 60-x

AN\ e

(60-x)/20 (x-40)/20
20 ft 21) C ) / D
reactions at nodes
RA:l—XIGO RD:X/GO

Take moment about B, to its left,
(Fes)(10N3) - (RA)(20) = 0
Fee = (1-X/60)(20/10V3) = (1-x/60)(2/N/3) -ve

At x = 60 ft, Frg = 0.0
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PROBLEM 3.7 Continued -
(i) To compute Frs, use section (2) - (2)

reactlons at node
E
(60- x)/ZQ

(x-40)/20

\FFC |

’.)nO

i T B C  x-40 60-x
2 I I
R, =1-x/60 @) Rp=x/60

Resolving forces vertically, to the left of C,

(Rp) - Feccos30=0
Fee = Ra/cos 30 = (1-x/10) (2/+/3) +ve
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At X = 40 ft, F. = 0.385 (+ve)
At x = 60 ft, Fr. = 0.0

0.385 I. L. for FE

M /
0.385

0.770

I. L. for F&
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3.8 MAXIMUM SHEAR FORCE AND BENDING MOMENT
UNDER A SERIES OF CONCENTRATED LOADS

P P
P 2 3 P
1 al a2 a3 4
X
Pr= resultant load
Py P, X s P,
a, a, a,

OCe O |70 O

A | 1

s % e
R L/2 L Pr= resultant load BE
R —

| Taking moment about A,
Re x L=Pg x[L/2- (X —x)]
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Taking moment about E,

RyxL=P;x[L/2+(X—-X)]

RA=P—LR(L/2+>_<—X)

Mp = Ryx(L/2+%)—R(a +a,) — P, xa,
=P—I_R(|_/2+x—x)(|_/2+x)—Pl(a1+a2)—sz(az)

dM ,
dx

o=P—I_R(|_/2+>—<—x)+P—LR(|_/2+x)(—1)

=0

=P—LR[(L/2)+>_<—X—(L/2)—X]

2x=0

e, X-—
X =2X

The centerline must divide the distance between the resultant of
all the loads in the moving series of loads and the load considered
under which maximum bending moment occurs.
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