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Introduction 
• For the equilibrium of structures made of several 

connected parts, the internal forces as well the external 

forces are considered. 

• In the interaction between connected parts, Newton’s 3rd 

Law states that the forces of action and reaction 

between bodies in contact have the same magnitude, 

same line of action, and opposite sense. 

• Three categories of engineering structures are considered: 

a) Frames:  contain at least one one multi-force 

member, i.e., member acted upon by 3 or more 

forces. 

b) Trusses:  formed from two-force members, i.e., 

straight members with end point connections 

c) Machines:  structures containing moving parts 

designed to transmit and modify forces. 



Definition of a Truss 
• A truss consists of straight members connected at 

joints.  No member is continuous through a joint. 

• Bolted or welded connections are assumed to be 

pinned together.  Forces acting at the member ends 

reduce to a single force and no couple.  Only two-

force members are considered. 

• Most structures are made of several trusses joined 

together to form a space framework.  Each truss 

carries those loads which act in its plane and may 

be treated as a two-dimensional structure. 

• When forces tend to pull the member apart, it is in 

tension.  When the forces tend to compress the 

member, it is in compression. 



Definition of a Truss 

Members of a truss are slender and not capable of 

supporting large lateral loads.  Loads must be applied at 

the joints. 



Definition of a Truss 



Simple Trusses 
• A rigid truss will not collapse under 

the application of a load. 

• A simple truss is constructed by 

successively adding two members and 

one connection to the basic triangular 

truss. 

• In a simple truss,  m = 2n - 3  where 

m is the total number of members 

and n is the number of joints. 



Analysis of Trusses by the Method of 
Joints • Dismember the truss and create a freebody 

diagram for each member and pin. 

• The two forces exerted on each member are 

equal, have the same line of action, and 

opposite sense. 

• Forces exerted by a member on the pins or 

joints at its ends are directed along the member 

and equal and opposite. 

• Conditions of equilibrium on the pins provide 

2n equations for 2n unknowns.  For a simple 

truss, 2n = m + 3.  May solve for m member 

forces and 3 reaction forces at the supports. 

• Conditions for equilibrium for the entire truss 

provide 3 additional equations which are not 

independent of the pin equations. 



Joints Under Special Loading 
Conditions • Forces in opposite members intersecting in 

two straight lines at a joint are equal. 

• The forces in two opposite members are 

equal when a load is aligned with a third 

member.  The third member force is equal 

to the load (including zero load). 

• The forces in two members connected at a 

joint are equal if the members are aligned 

and zero otherwise. 

• Recognition of joints under special loading 

conditions simplifies a truss analysis. 



Space Trusses 
• An elementary space truss consists of 6 members 

connected at 4 joints to form a tetrahedron. 

• A simple space truss is formed and can be 

extended when 3 new members and 1 joint are 

added at the same time.  

• Equilibrium for the entire truss provides 6 

additional equations which are not independent of 

the joint equations. 

• In a simple space truss, m = 3n - 6 where m is the 

number of members and n is the number of joints. 

• Conditions of equilibrium for the joints provide 3n 

equations.  For a simple truss, 3n = m + 6 and the 

equations can be solved for m member forces and 

6 support reactions. 



Sample Problem 6.1 

Using the method of joints, determine 

the force in each member of the truss. 

SOLUTION: 

• Based on a free-body diagram of the 

entire truss, solve the 3 equilibrium 

equations for the reactions at E and C. 

• Joint A is subjected to only two unknown 

member forces.  Determine these from the 

joint equilibrium requirements. 

• In succession, determine unknown 

member forces at joints D, B, and E from 

joint equilibrium requirements. 

• All member forces and support reactions 

are known at joint C.  However, the joint 

equilibrium requirements may be applied 

to check the results. 



Sample Problem 6.1 
SOLUTION: 

• Based on a free-body diagram of the entire truss, 

solve the 3 equilibrium equations for the reactions 

at E and C. 
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Sample Problem 6.1 

• Joint A is subjected to only two unknown 

member forces.  Determine these from the 

joint equilibrium requirements. 
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Sample Problem 6.1 
• There are now only two unknown member 

forces at joint B.  Assume both are in tension. 
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• There is one unknown member force at joint 

E.  Assume the member is in tension. 
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Sample Problem 6.1 
• All member forces and support reactions are 

known at joint C.  However, the joint equilibrium 

requirements may be applied to check the results. 
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Analysis of Trusses by the Method of 
Sections • When the force in only one member or the 

forces in a very few members are desired, the 

method of sections works well. 

• To determine the force in member BD, pass a 

section through the truss as shown and create 

a free body diagram for the left side. 

• With only three members cut by the section, 

the equations for static equilibrium may be 

applied to determine the unknown member 

forces, including FBD. 



Trusses Made of Several Simple 
Trusses • Compound trusses are statically 

determinant, rigid, and completely 

constrained. 
32  nm

• Truss contains a redundant member 

and is statically indeterminate.   

32  nm

• Necessary but insufficient condition 

for a compound truss to be statically 

determinant, rigid, and completely 

constrained, 

nrm 2

non-rigid rigid 

32  nm

• Additional reaction forces may be 

necessary for a rigid truss. 

42  nm



Sample Problem 6.3 

Determine the force in members FH, 

GH, and GI. 

SOLUTION: 

• Take the entire truss as a free body.  

Apply the conditions for static equilib-

rium to solve for the reactions at A and L. 

• Pass a section through members FH, 

GH, and GI and take the right-hand 

section as a free body. 

• Apply the conditions for static 

equilibrium to determine the desired 

member forces. 



Sample Problem 6.3 
SOLUTION: 

• Take the entire truss as a free body.  

Apply the conditions for static equilib-

rium to solve for the reactions at A and L. 
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Sample Problem 6.3 
• Pass a section through members FH, GH, and GI 

and take the right-hand section as a free body. 
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• Apply the conditions for static equilibrium to 

determine the desired member forces. 
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Sample Problem 6.3 

        

  

kN 82.13

0m 8cos

m 5kN 1m 10kN 1m 15kN 7.5

0

07.285333.0
m 15

m 8
tan













FH

FH

G

F

F

M

GL

FG





CFFH   kN 82.13

 

        

kN 371.1

0m 10cosm 5kN 1m 10kN 1

0

15.439375.0
m 8

m 5
tan

3
2











GH

GH

L

F

F

M

HI

GI





CFGH   kN 371.1



Analysis of Frames 
• Frames and machines are structures with at least one 

multiforce member.  Frames are designed to support loads 

and are usually stationary.  Machines contain moving parts 

and are designed to transmit and modify forces. 

• A free body diagram of the complete frame is used to 

determine the external forces acting on the frame. 

• Internal forces are determined by dismembering the frame 

and creating free-body diagrams for each component. 

• Forces between connected components are equal, have the 

same line of action, and opposite sense. 

• Forces on two force members have known lines of action 

but unknown magnitude and sense. 

• Forces on multiforce members have unknown magnitude 

and line of action.  They must be represented with two 

unknown components. 



Frames Which Cease To Be Rigid When 
Detached From Their Supports 

• Some frames may collapse if removed from 

their supports.  Such frames can not be treated 

as rigid bodies. 

• A free-body diagram of the complete frame 

indicates four unknown force components which 

can not be determined from the three equilibrium 

conditions.  

• The frame must be considered as two distinct, but 

related, rigid bodies. 

• With equal and opposite reactions at the contact 

point between members, the two free-body 

diagrams indicate 6 unknown force components. 

• Equilibrium requirements for the two rigid 

bodies yield 6 independent equations. 



Sample Problem 6.4 

Members ACE and BCD are 

connected by a pin at C and by the 

link DE.  For the loading shown, 

determine the force in link DE and the 

components of the force exerted at C 

on member BCD. 

SOLUTION: 

• Create a free-body diagram for the 

complete frame and solve for the support 

reactions. 

• Define a free-body diagram for member 

BCD.  The force exerted by the link DE 

has a known line of action but unknown 

magnitude.  It is determined by summing 

moments about C. 

• With the force on the link DE known, the 

sum of forces in the x and y directions 

may be used to find the force  

components at C. 

• With member ACE as a free-body, 

check the solution by summing 

moments about A. 



Sample Problem 6.4 
SOLUTION: 

• Create a free-body diagram for the complete frame 

and solve for the support reactions. 
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Sample Problem 6.4 
• Define a free-body diagram for member 

BCD.  The force exerted by the link DE has a 

known line of action but unknown 

magnitude.  It is determined by summing 

moments about C. 
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• Sum of forces in the x and y directions may be used to find the force  

components at C. 
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Sample Problem 6.4 

• With member ACE as a free-body, check 

the solution by summing moments about A. 
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Machines 
• Machines are structures designed to transmit 

and modify forces.  Their main purpose is to 

transform input forces into output forces. 

• Given the magnitude of P, determine the 

magnitude of Q.   

• Create a free-body diagram of the complete 

machine, including the reaction that the wire 

exerts. 

• The machine is a nonrigid structure.  Use 

one of the components as a free-body. 

• Taking moments about A,  

P
b

a
QbQaPM A  0
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Potential Energy and 
Energy Conservation 

•  Work 

•  Kinetic Energy 

•  Work-Kinetic Energy Theorem 

•  Gravitational Potential Energy 

•  Elastic Potential Energy 

•  Work-Energy Theorem 

•  Conservative and  

    Non-conservative Forces 

•  Conservation of Energy 



Definition of Work W 

• The work, W, done by a constant force on an object is 
defined as the product of the component of the force 
along the direction of displacement and the magnitude 
of the displacement 

 

 

– F is the magnitude of the force 

– Δ x is the magnitude of the  

   object’s displacement 

– q is the angle between  

xFW  )cos( q

and F x



Work Done by Multiple Forces 

• If more than one force acts on an object, then the 
total work is equal to the algebraic sum of the work 
done by the individual forces 

 

 

– Remember work is a scalar, so 

   this is the algebraic sum 

 

rFWWWW FNgnet  )cos( q
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Kinetic Energy and Work 

• Kinetic energy associated with the motion of an 
object 

  

• Scalar quantity with the same unit as work 

• Work is related to kinetic energy 

2

2

1
mvKE 

2 2

0

1 1
( cos )

2 2
f

i

net

x

x

mv mv F x

d

q  

  F r

   
net f i
W KE KE KE

Units: N-m or J 



Work done by a Gravitational Force 

• Gravitational Force 

– Magnitude: mg 

– Direction: downwards to the 
Earth’s center 

• Work done by Gravitational 
Force 
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Potential Energy 
• Potential energy is associated with the 

position of the object 
• Gravitational Potential Energy is the 

energy associated with the relative 
position of an object in space near the 
Earth’s surface 

• The gravitational potential energy 
 

 
– m is the mass of an object 
– g is the acceleration of gravity 
– y is the vertical position of the mass relative 

the surface of the Earth 
– SI unit: joule (J) 

mgyPE 



Reference Levels 

• A location where the gravitational potential 
energy is zero must be chosen for each problem 
– The choice is arbitrary since the change in the potential 

energy is the important quantity 

– Choose a convenient location for the zero reference 
height 
• often the Earth’s surface 

• may be some other point suggested by the problem 

– Once the position is chosen, it must remain fixed for 
the entire problem 

 



Work and Gravitational  
Potential Energy 

• PE = mgy 

•   

 

• Units of Potential 
Energy are the same as 
those of Work and 
Kinetic Energy 
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Extended Work-Energy Theorem  
• The work-energy theorem can be extended to include 

potential energy: 

 

 

 

• If we only have gravitational force, then 

 

 

 

• The sum of the kinetic energy and the gravitational potential 
energy remains constant at all time and hence is a conserved 
quantity 
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Extended Work-Energy Theorem  

• We denote the total mechanical energy by  

 

 

• Since 

 

• The total mechanical energy is conserved and remains the 
same at all times 
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Problem-Solving Strategy 

• Define the system 

• Select the location of zero gravitational potential 
energy 
– Do not change this location while solving the problem 

• Identify two points the object of interest moves 
between 
– One point should be where information is given 

– The other point should be where you want to find out 
something 

 



Platform Diver 

• A diver of mass m drops from a 
board 10.0 m above the 
water’s surface. Neglect air 
resistance. 

• (a) Find is speed 5.0 m above 
the water surface 

• (b) Find his speed as he hits 
the water 

 



Platform Diver 
• (a) Find his speed 5.0 m above the water 

surface 

 

 

 

 

 

 

 

• (b) Find his speed as he hits the water 
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Spring Force 

• Involves the spring constant, k 

• Hooke’s Law gives the force 
 

 

 

– F is in the opposite direction of 
displacement d, always back 
towards the equilibrium point. 

– k depends on how the spring was 
formed, the material it is made 
from, thickness of the wire, etc. Unit: 
N/m. 

dkF
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Potential Energy in a Spring 

• Elastic Potential Energy:  

– SI unit: Joule (J) 

– related to the work required to 
compress a spring from its equilibrium 
position to some final, arbitrary, 
position x 

• Work done by the spring 
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Extended Work-Energy Theorem  
• The work-energy theorem can be extended to include 

potential energy: 

 

 

 

• If we include gravitational force and spring force, then 
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Extended Work-Energy Theorem  

• We denote the total mechanical energy by  

 

 

• Since 

 

• The total mechanical energy is conserved and remains the 
same at all times 
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A block projected up a incline  
• A 0.5-kg block rests on a horizontal, frictionless surface. The 

block is pressed back against a spring having a constant of k 
= 625 N/m, compressing the spring by 10.0 cm to point A. 
Then the block is released. 

• (a) Find the maximum distance d the block travels up the 
frictionless incline if θ = 30°. 

• (b) How fast is the block going when halfway to its maximum 
height? 



A block projected up a incline 
• Point A (initial state): 

• Point B (final state): 
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A block projected up a incline 
• Point A (initial state): 

• Point B (final state): 
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Types of Forces 
• Conservative forces 

– Work and energy associated with 
the force can be recovered 

– Examples: Gravity, Spring Force, EM 
forces 

• Nonconservative forces 
– The forces are generally dissipative 

and work done against it cannot 
easily be recovered 

– Examples: Kinetic friction, air drag 
forces, normal forces, tension 
forces, applied forces … 



Conservative Forces 
• A force is conservative if the work it does on an 

object moving between two points is independent of 
the path the objects take between the points 

– The work depends only upon the initial and final positions 
of the object 

– Any conservative force can have a potential energy function 
associated with it 

– Work done by gravity 

– Work done by spring force 
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Nonconservative Forces 

• A force is nonconservative if the work it does on an 
object depends on the path taken by the object 
between its final and starting points. 
– The work depends upon the movement path 

– For a non-conservative force, potential energy can NOT 
be defined 

– Work done by a nonconservative force 

 

 

– It is generally dissipative. The dispersal 

   of energy takes the form of heat or sound 

  sotherforceknc WdfdFW
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Extended Work-Energy Theorem  
• The work-energy theorem can be written as: 

 

 

 
– Wnc represents the work done by nonconservative forces 

– Wc represents the work done by conservative forces 

• Any work done by conservative forces can be accounted for by 
changes in potential energy 

 

– Gravity work 

 

– Spring force work 
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Extended Work-Energy Theorem  

• Any work done by conservative forces can be accounted for 
by changes in potential energy 

 

 

 

 

• Mechanical energy includes kinetic and potential energy 
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Problem-Solving Strategy 
• Define the system to see if it includes non-conservative forces 

(especially friction, drag force …) 

• Without non-conservative forces 

  

• With non-conservative forces 

 

 

• Select the location of zero potential energy 
– Do not change this location while solving the problem 

• Identify two points the object of interest moves between 
– One point should be where information is given 

– The other point should be where you want to find out something 
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 A block of mass m = 0.40 kg slides across a horizontal frictionless 
counter with a speed of v = 0.50 m/s. It runs into and compresses a 
spring of spring constant k = 750 N/m. When the block is momentarily 
stopped by the spring, by what distance d is the spring compressed? 

 

Conservation of Mechanical Energy 
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Changes in Mechanical Energy for conservative forces 

 A 3-kg crate slides down a ramp. The ramp is 1 m in length and 
inclined at an angle of 30° as shown. The crate starts from rest at the 
top. The surface friction can be negligible. Use energy methods to 
determine the speed of the crate at the bottom of the ramp. 
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Changes in Mechanical Energy for Non-conservative forces 

 A 3-kg crate slides down a ramp. The ramp is 1 m in length and 
inclined at an angle of 30° as shown. The crate starts from rest at the 
top. The surface in contact have a coefficient of kinetic friction of 0.15. 
Use energy methods to determine the speed of the crate at the bottom 
of the ramp. 
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Changes in Mechanical Energy for Non-conservative forces 

 A 3-kg crate slides down a ramp. The ramp is 1 m in length and 
inclined at an angle of 30° as shown. The crate starts from rest at the 
top. The surface in contact have a coefficient of kinetic friction of 0.15. 
How far does the crate slide on the horizontal floor if it continues to 
experience a friction force. 
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Block-Spring Collision 

• A block having a mass of 0.8 kg is given an initial velocity vA = 1.2 m/s to the 
right and collides with a spring whose mass is negligible and whose force 
constant is k = 50 N/m as shown in figure. Assuming the surface to be 
frictionless, calculate the maximum compression of the spring after the 
collision. 
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Block-Spring Collision 
• A block having a mass of 0.8 kg is given an initial velocity vA = 1.2 m/s to the 

right and collides with a spring whose mass is negligible and whose force 
constant is k = 50 N/m as shown in figure. Suppose a constant force of 
kinetic friction acts between the block and the surface, with µk = 0.5, what is 
the maximum compression xc in the spring. 
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Energy Review 

• Kinetic Energy 

– Associated with movement of members of a system 

• Potential Energy 

– Determined by the configuration of the system 

– Gravitational and Elastic 

• Internal Energy 

– Related to the temperature of the system 



Conservation of Energy 
• Energy is conserved 

– This means that energy cannot be created nor 
destroyed 

– If the total amount of energy in a system changes, 
it can only be due to the fact that energy has 
crossed the boundary of the system by some 
method of energy transfer 



Ways to Transfer Energy  
Into or Out of A System 

• Work – transfers by applying a force and causing a 
displacement of the point of application of the force 

• Mechanical Waves – allow a disturbance to propagate 
through a medium 

• Heat – is driven by a temperature difference between two 
regions in space 

• Matter Transfer – matter physically crosses the boundary of 
the system, carrying energy with it 

• Electrical Transmission – transfer is by electric current 

• Electromagnetic Radiation – energy is transferred by 
electromagnetic waves 



Connected Blocks in Motion 
• Two blocks are connected by a light string that passes over a frictionless 

pulley. The block of mass m1 lies on a horizontal surface and is connected to 
a spring of force constant k. The system is released from rest when the 
spring is unstretched. If the hanging block of mass m2 falls a distance h 
before coming to rest, calculate the coefficient of kinetic friction between 
the block of mass m1 and the surface. 
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Power 

• Work does not depend on time interval 

• The rate at which energy is transferred is important 
in the design and use of practical device 

• The time rate of energy transfer is called power 

• The average power is given by 

 

 

– when the method of energy transfer is work 

 

W
P

t
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Instantaneous Power 

• Power is the time rate of energy transfer. Power is 
valid for any means of energy transfer 

• Other expression 

 

• A more general definition of instantaneous power 
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Units of Power 

• The SI unit of power is called the watt 
– 1 watt = 1 joule / second = 1 kg . m2 / s3 

• A unit of power in the US Customary system is 
horsepower 
– 1 hp = 550 ft . lb/s = 746 W 

• Units of power can also be used to express 
units of work or energy 
– 1 kWh = (1000 W)(3600 s) = 3.6 x106 J 



 

Non rigid, flexible matter, shaped in a 

certain way & secured at the ends which can 

support itself and span space. 

 

Form active structure systems develop at 

their ends horizontal stresses. 

 

The bearing mechanism of a form active 

systems rests essentially on the material form. 

 

FORM ACTIVE STRUCTURE 
SYSTEM 



 A curved structure designed to carry loads across a gap mainly by 

compression. 

 The mechanical principle of the arch is precisely the same as that of the 

portal frame. The straight pieces of material joined by sharp bends are 

smoothened into a continuous curve. This increases the cost of construction 

but greatly reduces the stresses. 

 

Arch 

 The geometry of the curve further affects 

the cost and stresses. The circular arch is 

easiest to construct, the catenary arch is the 

most efficient. 

 Arches can be three pinned, two pinned or 

rigid. 



Arch Terminology 



 It is important to minimize the arch  THRUST so as to reduce the 
dimensions of the tie rod, or to ensure that the soil will not move under the 
pressure of the abutments. 

 

 The THRUST is proportional  to the total LOAD & to the SPAN, and 
inversely proportional to the RISE of the arch. 

 

 In arches rise to span ratio should not be less than 1/8 

 

 Riser minimum should be 1/8 of the span & 2/3rd maximum. 

 

 Lesser rise takes compression but not tensile load. 



  
 In masonry design the arch is heavy & 

loaded by the weight of walls, its shape is 
usually  the funicular of the dead load, & 
some bending is introduced in it by live 
loads.  

 

 In large steel arches, the live load represents 
a greater share of the total load & 
introduces a large amount of bending but it 
is seldom in view of the tensile strength of 
steel. 

 

 The SHAPE of the arch may be chosen to 
be as close as possible to the FUNICULAR 
of the heaviest loads, so as to minimize 
BENDING. 

 



 The arch thrust is absorbed by a tie-rod 
whenever the foundation material is not 
suitable to resist it. 

 

 When it must allow the free passage of 
traffic under it, its thrust is asorbed either by 
buttresses or by  tie-rods buried  under 
ground. 

 

 The stationary or moving loads carried by 
the arch are usually supported on a 
horizontal surface. 

 

 This surface may be above or below the 
arch, connected to it by compression struts 
or tension hangers. 



MATERIALS USED 

 CONCRETE-takes more compression 

WOOD-both evenly 

STEEL-takes more tension 



LOAD APPLICATIONS 

FUNICULAR ARCHES – CONCENTRATED LOADS 

 

 The sum total of all rotational effects produced about any such location by 

the external and internal forces must be zero. In three hinged arch having a 

non-funicular shape, this observation is true only at three hinged conditions. 

 The external shear at a section is balanced by an internal resisting shear 

force that is provided by vertical component of the internal axial force. 



DESIGN OF ARCH STRUCTURES 

The first important consideration when designing a brick arch is whether 

the arch is structural or non-structural. That is, will the arch be required to 

transfer vertical loads to abutments or will it be fully supported by a steel 

angle. While this may seem obvious, confusion often develops because of 

the many configurations of arch construction. To answer this question, 

one must consider the two structural requirements necessary for a brick 

arch to adequately carry vertical loads. First, vertical loads must be 

carried by the arch and transferred to the abutments. Second, vertical load 

and lateral thrust from the arch must be resisted by the abutments. 



[A] DESIGNING FOR LOAD VARIATIONS 

 

 One of the most significant aspect of the modern arch is that it can be 

designed to sustain some amount of variation in load without either changing 

shape or experiencing damage. 

 The shape of an arch is initially determined as a response to its primary 

loading condition (e.g.: parabolic for uniformly distributed loads) 

If either the arch or the abutment is deficient, the arch must be considered as 

non-structural and the arch and its tributary load must be fully supported by a 

steel angle or plates. Alternately, reinforcement may be used to increase the 

strength of either or both the arch and the abutments. 



[B] SUPPORT ELEMENTS 

 

A basic issue is that whether or not to absorb the horizontal thrusts by some 

interior element (a tie rod or by the foundations). When it is functionally 

possible the rods are frequently used. 

The rod is a tension element and highly efficient to take up the outward arch 

thrusts. 

Usually there is less need to support an arch on the top of vertical elements, 

the use of buttressing elements is generally preferable as head room has to be 

maintained.   

 



[C] CHOICE OF END CONDITIONS 

 

 There are 3 primary types of arches used that are normally described in 

terms of end conditions :- 

Three hinged arch 

 Two hinged arch 

Fixed end arch 

Different end conditions are preferable with respect to different 

phenomenon. 

The presence of hinges is very important when supports, settlements and 

thermal expansions are considered. 



Lateral Behavior Of Arches 

 To deal with behaviour of arch in the lateral 

direction, there are two methods- 

 Provide fixed base connections 

 Commonly used is by relying on members 

placed transversely to the arch. 

# a pair of arches is stabilized through use of 

diagonal elements. 

# interior arches are stabilized by being 

connected to the end arches by connecting 

transverse members 

 
 

 

 Lateral  buckling can be solved by laterally bracing arches with other 
elements. 

 



Flashing 
 

  In residential construction, the presence of eaves, overhangs and small 

wall areas above openings will reduce the potential for water penetration 

at arch locations. However, flashing at an arch is just as important as over 

any other wall opening. 

 

  Flashing an arch can be difficult, depending on the type of arch and the 

type of flashing material. Jack arches are the easiest to flash because they 

are flat. 

 

  Flashing may be placed below the arch on the window framing for 

structural arches or above the steel lintel for non-structural arches. 

 

  Alternately, flashing may be placed in the mortar joint above the arch or 

keystone. Attachment of the flashing to the backing and end dams should 

follow standard procedures. 

 

 A segmental or semi-circular arch is more difficult to flash properly. This 

is because flashing materials such as metal flashings are very rigid and 

may be hard to work around a curved arch. 



Construction Concerns 
 

Both structural and non-structural arches must be properly supported 

throughout construction. Premature removal of the temporary support for a 

structural arch may result in a collapse of the arch. This is most often due to 

the introduction of lateral thrust on the abutment before proper curing has 

occurred. Out-of-plane bracing is required for all arches. In veneer 

construction, it is provided by the backup material through the wall ties. 

Arches that are not laterally braced may require increased masonry thickness 

or reinforcements to carry loads perpendicular to the arch plane. Arches may 

be constructed of special shapes or regular units. Mortar joints may be tapered 

with uncut regular units. 

Alternately, regular units may be cut to 

maintain uniform joint thickness. In 

general, use of specially shaped brick that 

result in uniform joint thickness will be 

more aesthetically pleasing. Many brick 

manufacturers offer such specially-shaped 

arch units. 



 

1. Rotation of the arch about the abutment- 

Rotation occurs when tension develops in the arch. Tension can be 

reduced by increasing the depth or rise of the arch. If tension 

develops in the arch, reinforcement can be added to resist the tensile 

forces. 

 

2. Sliding of the arch at the skewback- 

 

Sliding of the arch will depend on the angle of skewback (measured 

from horizontal) and the vertical load carried by the arch. 

Reinforcement can be added to avoid sliding at the skewback, as the 

reinforcement acts as a shear key.  

 

3. Crushing of the masonry- 

 

Crushing will occur when compressive stresses in the arch exceed 

the compressive strength of the brick masonry. If compressive 

stresses are too large, the arch must be redesigned with a shorter 

span or a greater arch depth. Compression failure seldom occurs. 

FAILURE MODES 



CORRECTIVE MEASURES AND 

DESIGN CHANGES 

 Arches have horizontal restraints and these are responsible for their 

superior structural performance. 

 

 During the night the arch shortens and during the day, it  elongates. Similar 

problems are created by moisture movement in concrete as the concrete 

absorbs water and then dries out again. The stresses caused by temperature 

and moisture movement in arches are often much greater than the stresses 

caused by the live load, and thus they cannot be ignored. 



EARLY CURVED ARCHES 

 Structure was often made more stable by the 
superimposition of additional weight on its 
top, thus firming up the arch. 

 

 SHAPE OF ARCH is not chosen for purely 
structural reasons. The HALF CIRCLE, 
used by the Romans, has convenient 
construction properties that justify its use. 

 

 Similarly, the POINTED  gothic arch has 
both visual & structural advantages, while 
the arabic arch, typical of the mosques & of 
some venetian architecture is ‘incorrect’ 
from a purely structural viewpoint.  



Notre-Dame Cathedral- Fine example 

of Gothic architecture, built in mid-13th 

century. Ornate west entrance shows the 

use of arches in early building 

construction. (Chartres, France)  

Notre-Dame Cathedral- (South entrance) 

Note the use of heavy ornate pinnacles to 

increase the stability of the piers against 

overturning from horizontal thrust 

component of the arch. (Chartres, France)  

King's College Chapel- One of the finest 

examples of medieval architecture in England. 

Built in 1446-1515, Fan vaulting in the ceiling is 

essentially a series of pointed arches that require 

external buttresses to react to the horizontal 

thrust. (Cambridge, England)  



APPLICATIONS & ADVANTAGES 

 Roman & romanesque architecture are immediately recognized by the 

circular arch motif. Romans were pioneers in the use of arches for bridges, 

buildings, and aqueducts. This bridge, the Ponte Fabricio in Rome, spans 

between the bank of the River Tiber and Tiber Island. Built in 64 B.C. 

(Rome, Italy.) 

 The gothic high rise arch & the buttresses required to absorb its thrust are 

typical of one of the greatest achievements in  architectural design. 

 Roman circular arches spanned about 100’ & medieval stone bridges up to 

180’. 



 The NEW RIVER GORGE BRIDGE in west virginia, the longest steel 

arch spans 1700’ (1986). 

 The largest single arch span in reinforced concrete built to date is the 

1280feet span KRK BRIDGE , yugoslavia. 

 Combinations of trussed arches with cantilevered half arches connected by 

trusses were built to span as much as 1800feet in THE QUEBEC BRIDGE 

in 1917.  

 To this day no other 

structural element is as 

commonly used to span 

large distances as the 

arch. 



Unit – 3 
 Propped Cantilever 

and Fixed Beams 



Beam 

• Structural member that carries a load that is 
applied transverse to its length 

• Used in floors and roofs 

• May be called floor joists, stringers, floor 
beams, or girders 



• The loads are initially 
applied to a building 
surface (floor or roof). 

• Loads are transferred to 
beams which transfer the 
load to another building 
component. 

 

 

 

 

 

Chasing the Load 



Static Equilibrium 

• The state of an object in which the forces 
counteract each other so that the object 
remains stationary 

• A beam must be in static equilibrium to 
successfully carry loads 



Static Equilibrium 
• The loads applied to the beam (from the roof 

or floor) must be resisted by forces from the 
beam supports. 

• The resisting forces are called reaction forces. 

Applied Load 

Reaction 

Force 

Reaction 

Force 



Reaction Forces 
• Reaction forces can be linear or rotational. 

– A linear reaction is often called a shear reaction (F or R). 

– A rotational reaction is often called a moment reaction 
(M). 

• The reaction forces must balance the applied forces. 



Beam Supports 
 The method of support dictates the types of 

reaction forces from the supporting members. 



Beam Types 

 Simple 

 

 Continuous 

 

 Cantilever 

            Moment 

        (fixed at one end) 



Beam Types 

Fixed 

             

    Moments at each end 

Propped – Fixed at one end; supported at other 

 

 

 

Overhang 



Simple Beams 

Applied Load 

BEAM 

DIAGRAM 

FREE BODY  

DIAGRAM 

Applied Load 

Note: When there is no applied 

horizontal load, you may 

ignore the horizontal reaction 

at the pinned connection. 



Fundamental Principles of Equilibrium 

 The sum of all vertical forces acting 
on a body must equal zero. 

 The sum of all horizontal forces 
acting on a body must equal zero. 

 The sum of all moments (about any 
point) acting on a body must equal 
zero.  

 yF 0

 xF 0

 pM 0



Moment 
• A moment is created when a force tends to 

rotate an object. 

• The magnitude of the moment is equal to the 
force times the perpendicular distance to the 
force (moment arm). 

 F 

M 

M dF  
d moment arm 



Calculating Reaction Forces 
 Sketch a beam diagram. 

 

 

 

 



Calculating Reaction Forces 

 Sketch a free body diagram. 

 



Calculating Reaction Forces 
 Use the equilibrium equations to find the magnitude of the reaction 

forces. 
– Horizontal Forces 
– Assume to the right is positive 

+ 

 xF 0



Calculating Reaction Forces 
• Vertical Forces 

• Assume up is positive 
+ 

Equivalent 

Concentrated Load 

Equivalent 

Concentrated Load 

 yF 0



Calculating Reaction Forces 

• Moments 

• Assume counter clockwise rotation is positive 

+ 

A B 

0 = 
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Calculating Reaction Forces 

• Now that we know        , we can  use the 
previous equation to find       . 

= 7700 lb 9300 lb = 

0  = 



Shear Diagram 

= 7700 lb 9300 lb = 

0  = 

Shear at a point along the 

beam is equal to the 

reactions (upward) minus 

the applied loads 

(downward) to the left of 

that point. 



Moment Diagram 

1400
215

650
 

lb
ft

lb
x .  ft

Kink in 

moment  

curve 



Moment Diagram 

9300 lb = 

0  = 

4000 lb  

2.15’ 

M P 

  

    
. ftlb

ft
( lb )( . ft ) ( )(M . ft ) ( ) ( lb )( . ft )

815

2
4000 215 650 815 9300 815 0

45608  maxMM ft lb



Moment Diagram 



Moment Diagram 

A 

B 

C 

   

= 2.15 ft 



Beam Analysis 

• Example :  simple beam with a uniform load, 
w1= 1090 lb/ft 

• Span = 18 feet 

Test your understanding: Draw the shear and moment 

diagrams for this beam and loading condition. 



Moment 

Shear 

Max. Moment = 44,145l ft-lb        Max. Shear = 9,810 lb 

Shear and Moment Diagrams 



Unit – 4 
 Slope Deflection &  

Moment Distribution Method 



MOMENT DISTRIBUTION METHOD - AN OVERVIEW 

• 7.1 MOMENT DISTRIBUTION METHOD - AN OVERVIEW 

• 7.2 INTRODUCTION 

• 7.3 STATEMENT OF BASIC PRINCIPLES 

• 7.4 SOME BASIC DEFINITIONS 

• 7.5 SOLUTION OF PROBLEMS 

• 7.6 MOMENT DISTRIBUTION METHOD FOR STRUCTURES  
 HAVING NONPRISMATIC MEMBERS  



7.2 MOMENT DISTRIBUTION METHOD -  

INTRODUCTION AND BASIC PRINCIPLES 

7.1 Introduction 
(Method developed by Prof. Hardy Cross in 1932) 

The method solves for the joint moments in continuous beams and 

rigid frames by  successive approximation.  

7.2 Statement of Basic Principles 

Consider the continuous beam ABCD, subjected to the given loads, 

as shown in Figure below. Assume that only rotation of joints occur 

at B, C and D, and that no support displacements occur at B, C and 

D. Due to the applied loads in spans AB, BC and CD, rotations 

occur at B, C and D. 

15 kN/m 10 kN/m 
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A B C D 
I I I 

3 m 



In order to solve the problem in a successively approximating manner,  

it can be visualized to be made up of a continued two-stage problems  

viz., that of locking and releasing the joints in a continuous sequence. 

7.2.1 Step I 

The joints B, C and D are locked in position before any load is 

applied on the beam ABCD; then given loads are applied on the 

beam. Since the joints of beam ABCD are locked in position, beams 

AB, BC and CD acts as individual and separate fixed beams, 

subjected to the applied loads; these loads develop fixed end 

moments. 
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In beam AB 

Fixed end moment at A = -wl2/12 = - (15)(8)(8)/12 = - 80 kN.m 

Fixed end moment at B = +wl2/12 = +(15)(8)(8)/12 = + 80 kN.m 

In beam BC 

Fixed end moment at B = - (Pab2)/l2 = - (150)(3)(3)2/62  

     = -112.5 kN.m 

Fixed end moment at C = + (Pab2)/l2 = + (150)(3)(3)2/62  

     = + 112.5 kN.m 

 

In beam AB 

Fixed end moment at C = -wl2/12 = - (10)(8)(8)/12 = - 53.33 kN.m 

Fixed end moment at D = +wl2/12 = +(10)(8)(8)/12 = + 53.33kN.m 



7.2.2 Step II 

Since the joints B, C and D were fixed artificially (to compute the the fixed-

end moments), now the joints B, C and D are released and allowed to rotate. 

Due to the  joint release, the joints rotate maintaining the continuous nature of 

the beam. Due to the joint release, the fixed end moments on either side of 

joints B, C and D act in the opposite direction now, and cause a net 

unbalanced moment to occur at the joint.  

15 kN/m 10 kN/m 

8 m 6 m 8 m 

A B C D 
I I I 

3 m 

150 kN 

Released moments                  -80.0 -112.5 +53.33 -53.33 +112.5 

Net unbalanced moment 
+32.5 -59.17 -53.33 



7.2.3 Step III 

These unbalanced moments act at the joints and modify the joint moments at 

B, C and D, according to their relative stiffnesses at the respective joints. The 

joint moments are distributed to either side of the joint B, C or D, according to 

their relative stiffnesses. These distributed moments also modify the moments 

at the opposite side of the beam span, viz., at joint A in span AB, at joints B 

and C in span BC and at joints C and D in span CD. This modification is 

dependent on the carry-over factor (which is equal to 0.5 in this case); when 

this carry over is made, the joints on opposite side are assumed to be 

fixed. 

7.2.4 Step IV 

The carry-over moment becomes the unbalanced moment at the joints 

to which they are carried over. Steps 3 and 4 are repeated till the carry-

over or distributed moment becomes small. 

7.2.5 Step V 

Sum up all the moments at each of the joint to obtain the joint 

moments. 



7.3 SOME BASIC DEFINITIONS 

In order to understand the five steps mentioned in section 7.3, some words 

need to be defined and relevant derivations made.  

7.3.1 Stiffness and Carry-over Factors  

Stiffness = Resistance offered by member to a unit displacement or rotation at a 

point, for given support constraint conditions 

qA 

MA MB 

A B A 

RA RB 

L 

E, I – Member properties 

A clockwise moment MA is 

applied at A to produce a +ve 

bending in beam AB. Find qA 

and MB.  



Using method of consistent deformations 
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Considering moment MB, 

 
 MB + MA + RAL = 0 

 MB = MA/2= (1/2)MA 

Carry - over Factor = 1/2 

7.3.2 Distribution Factor 

Distribution factor is the ratio according to which an externally applied 

unbalanced moment M at a joint is apportioned to the various members 

mating at the joint 

+ ve moment M 
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i.e., M = MBA + MBC + MBD 
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7.3.3 Modified Stiffness Factor 

The stiffness factor changes when the far end of the beam is simply-

supported. 

qA MA 

A B 

RA RB 
L 

As per earlier equations for deformation, given in Mechanics of Solids 

text-books. 
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7.4 SOLUTION OF PROBLEMS -  

 

7.4.1 Solve the previously given problem by the moment 

distribution method 

7.4.1.1: Fixed end moments 
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7.4.1.2 Stiffness Factors (Unmodified Stiffness) 
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7.4.1.3 Distribution Factors 
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Joint A                B                C D

Member AB BA BC CB CD DC

Distribution Factors 0 0.4284 0.5716 0.5716 0.4284 1

Computed end moments -80 80 -112.5 112.5 -53.33 53.33
Cycle 1

Distribution 13.923 18.577 -33.82 -25.35 -53.33

Carry-over moments 6.962 -16.91 9.289 -26.67 -12.35

Cycle 2

Distribution 7.244 9.662 9.935 7.446 12.35

Carry-over moments 3.622 4.968 4.831 6.175 3.723

Cycle 3

Distribution -2.128 -2.84 -6.129 -4.715 -3.723

Carry-over moments -1.064 -3.146 -1.42 -1.862 -2.358

Cycle 4

Distribution 1.348 1.798 1.876 1.406 2.358

Carry-over moments 0.674 0.938 0.9 1.179 0.703

Cycle 5

Distribution -0.402 -0.536 -1.187 -0.891 -0.703

Summed up -69.81 99.985 -99.99 96.613 -96.61 0

moments

7.4.1.4 Moment Distribution Table 



7.4.1.5 Computation of Shear Forces 

Simply-supported 60 60 75 75 40 40

reaction

        End reaction

      due to left hand FEM 8.726 -8.726 16.665 -16.67 12.079 -12.08

        End reaction

      due to right hand FEM -12.5 12.498 -16.1 16.102 0 0

       Summed-up 56.228 63.772 75.563 74.437 53.077 27.923

           moments

8 m 3 m 3 m 8 m 

I I I 

15 kN/m 10 kN/m 
150 kN 

A 
B C 

D 



7.4.1.5 Shear Force and Bending Moment Diagrams 

56.23 
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2.792 m 

-69.806 
98.297 

35.08 

126.704 

-96.613 

31.693 

Mmax=+38.985 kN.m 
Max=+ 35.59 kN.m 

3.74 m 
84.92 

-99.985 

48.307 

2.792 m 

S. F. D. 

B. M. D 



Simply-supported bending moments at center of span 

Mcenter in AB = (15)(8)2/8 = +120 kN.m 

 

Mcenter in BC = (150)(6)/4 = +225 kN.m 

 

Mcenter in AB = (10)(8)2/8 = +80 kN.m 



7.5 MOMENT DISTRIBUTION METHOD FOR 

NONPRISMATIC MEMBER (CHAPTER 12) 

The section will discuss moment distribution method to analyze 

beams and frames composed of nonprismatic members. First 

the procedure to obtain the necessary carry-over factors, 

stiffness factors and fixed-end moments will be outlined. Then 

the use of values given in design tables will be illustrated. 

Finally the analysis of statically indeterminate structures using 

the moment distribution method will be outlined  



7.5.1 Stiffness and Carry-over Factors 

Use moment-area method to find the stiffness and carry-over factors of 

the non-prismatic beam. 
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7.5.2 Tabulated Design Tables 

Graphs and tables have been made available to determine fixed-end 

moments, stiffness factors and carry-over factors for common 

structural shapes used in design. One such source is the Handbook of 

Frame constants published by the Portland Cement Association, 

Chicago, Illinois, U. S. A. A portion of these tables, is listed here as 

Table 1 and 2 

Nomenclature of the Tables 

aA ab = ratio of length of haunch (at end A and B to the  length 

of span 

     b = ratio of the distance (from the concentrated load to  end A) 

to the length of span 

hA, hB= depth of member at ends A and B, respectively 

     hC = depth of member at minimum section 



              Ic = moment of inertia of section at minimum section = (1/12)B(hc)
3, 

  with B as width of beam 

    kAB, kBC = stiffness factor for rotation at end A and B, respectively 

 L = Length of member 

MAB, MBA = Fixed-end moments at end A and B, respectively;  specified in 

tables for uniform load w or concentrated force P 
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Unit - 5 
Influence Lines For Statically 

Determinate Structures 

142 



3. INFLUENCE LINES FOR STATICALLY DETERMINATE 
STRUCTURES - AN OVERVIEW 

• Introduction - What is an influence line? 

• Influence lines for beams 

• Qualitative influence lines - Muller-Breslau Principle 

• Influence lines for floor girders 

• Influence lines for trusses 

• Live loads for bridges 

• Maximum influence at a point due to a series of 
concentrated loads 

• Absolute maximum shear and moment 

143 



3.1 INTRODUCTION TO INFLUENCE LINES 

• Influence lines describe the variation of an analysis variable (reaction, 

shear force, bending moment, twisting moment, deflection, etc.) at a point (say at 

C in Figure 6.1)                                                                                           ..                                   
…                                                                                                                                     … 

 

 

• Why do we need the influence lines? For instance, when loads pass over a structure, 
say a bridge, one needs to know when the maximum values of 
shear/reaction/bending-moment will occur at a point so that the section may be 
designed 

• Notations:  

– Normal Forces - +ve forces cause +ve displacements in +ve directions 

– Shear Forces - +ve shear forces cause clockwise rotation & - ve shear force 
causes anti-clockwise rotation 

– Bending Moments: +ve bending moments cause “cup holding water” 

deformed shape 
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A B 
C 



3.2 INFLUENCE LINES FOR BEAMS 

• Procedure:  
(1) Allow a unit load (either 1b, 1N, 1kip, or 1 tonne) to move over beam 

from left to right 

(2) Find the values of shear force or bending moment, at the point under 
consideration, as the unit load moves over the beam from left to right 

(3) Plot the values of the shear force or bending moment, over the length of 
the beam, computed for the point under consideration 
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3.3 MOVING CONCENTRATED LOAD

3.3.1 Variation of Reactions RA and RB as functions of load position

MA =0

(RB)(10) – (1)(x) = 0

RB = x/10

RA = 1-RB

      = 1-x/10

x
1

A B

C
10 ft

3 ft

x
1

A B
C

RA=1-x/10 RB = x/10

x

A
C

RA=1-x/10 RB = x/10
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RA occurs only at A; RB occurs only at B

 Influence line

 for RB

1-x/10

1

Influence

line for RA

x 10-x

x 10-x

x/10 1.0



148 

3.3.2 Variation of Shear Force at C as a function of load position

0 < x < 3 ft (unit load to the left of C)

Shear force at C is –ve, VC =-x/10

C

x 1.0

RA = 1-x/10 RB = x/10

3 ft

10 ft

A B

x/10

C
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3 < x < 10 ft (unit load to the right of C)

Shear force at C is +ve = 1-x/10

Influence line for shear at C

C

x

3 ft

A

RA = 1-x/10 RB = x/10

B

C

1

1

-ve

+ve

0.3

0.7

RA = 1-x/10
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3.3.3   Variation of Bending Moment at C as a function of load position

0 < x < 3.0 ft (Unit load to the left of C)

Bending moment is +ve at C

C

x

3 ft

A B

RA = 1-x/10
RA = x/10

10 ft

C

 x/10

x/10

x/10

(x/10)(7)(x/10)(7)

x/10 
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3 < x < 10 ft (Unit load to the right of C)

Moment at C is +ve

Influence line for bending

Moment at C

C

x ft

3 ft

A

RA = 1-x/10

10 ft

C

1-x/10

1-x/10

(1-x/10)(3)

(1-x/10)(3)

1

RA = x/10

B

 1-x/10
(1-x/10)(3)

+ve

(1-7/10)(3)=2.1 kip-ft



3.4 QUALITATIVE INFLUENCED LINES - MULLER-BRESLAU’S 
PRINCIPLE 

• The principle gives only a procedure to determine of the influence line of a 
parameter for a determinate or an indeterminate structure 

• But using the basic understanding of the influence lines, the magnitudes 
of the influence lines also can be computed 

• In order to draw the shape of the influence lines properly, the capacity of the 
beam to resist the parameter investigated (reaction, bending moment, shear 

force, etc.), at that point, must be removed 

• The principle states that:The influence line for a parameter (say, reaction, shear 
or bending moment), at a point, is to the same scale as the deflected shape of 
the beam, when the beam is acted upon by that parameter.  

– The capacity of the beam to resist that parameter, at that point, must be 
removed. 

– Then allow the beam to deflect under that parameter 

– Positive directions of the forces are the same as before 
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3.5 PROBLEMS - 3.5.1 Influence Line for a Determinate Beam by 
Muller-Breslau’s Method 

153 

Influence line for Reaction at A 



3.5.2 Influence Lines for a Determinate Beam by Muller-
Breslau’s Method 
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Influence Line for Shear at C 
Influence Line for  

Bending Moment at C 



3.5.3 Influence Lines for an Indeterminate Beam by Muller-
Breslau’s Method 

155 
Influence Line for Bending Moment at E 

Influence Line for  

Shear at E 



3.6 INFLUENCE LINE FOR FLOOR GIRDERS 
Floor systems are constructed as shown in figure below, 

156 



3.6 INFLUENCE LINES FOR FLOOR GIRDERS (Cont’d) 

157 



3.6 INFLUENCE LINES FOR FLOOR GIRDERS (Cont’d) 

3.6.1 Force Equilibrium Method: 

 Draw the Influence Lines for: (a) Shear in panel CD of 
the girder; and (b) the moment at E. 
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A C D E F B 

B´ A´ D´ C´ E´ F´ 

x 

5 spaces @ 10´ each = 50 ft 



3.6.2 Place load over region A´B´ (0 < x < 10 ft) 

Find the shear over panel CD  
VCD= - x/50 

At x=0, VCD = 0 

At x=10, VCD = -0.2 

 

 

 

 

 

 

Find moment at E = +(x/50)(10)=+x/5 

At x=0, ME=0 

At x=10, ME=+2.0 
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D C 

Shear is -ve RF=x/50 

F 

F 

RF=x/50 

E 

+ve moment 



Continuation of the Problem 
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-ve 
0.2 

2.0 
+ve 

x 

I. L. for VCD 

I. L. for ME 



Problem Continued -  
3.6.3 Place load over region B´C´ (10 ft < x < 20ft) 

VCD = -x/50 kip 

At x = 10 ft 

VCD = -0.2 

At x = 20 ft 

VCD = -0.4 

 
 

ME = +(x/50)(10) 

   = +x/5 kip.ft 

At x = 10 ft, ME = +2.0 kip.ft 

At x = 20 ft, ME = +4.0 kip.ft 
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D F C 

Shear is -ve 
RF = x/50 

D F 

RF = x/50 

E 

Moment is +ve 
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0.4 0.2 
-ve 

x 

B´ C´ 

I. L. for VCD 

+ve 4.0 

2.0 

I. L. for ME 



3.6.4 Place load over region C´D´ (20 ft < x < 30 ft) 

163 

When the load is at C’ (x = 20 ft) 

C D 

RF=20/50 

    =0.4 

Shear is -ve 

VCD = -0.4 kip 

When the load is at D´ (x = 30 ft) 

A 

RA= (50 - x)/50 

B C D 
Shear is +ve 

VCD= + 20/50 

      = + 0.4 kip 
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ME = + (x/50)(10) = + x/5 

E 

RF= x/50 +ve moment 

-ve 

A B C 

D 

A´ B´ C´ 
D´ 

x 

+ve 

0.4 
0.2 

I. L. for VCD 

+ve 

2.0 4.0 6.0 

I. L. for ME 

Load P 
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3.6.5 Place load over region D´E´ (30 ft < x < 40 ft) 

A 
B C D 

E 

RA= (1-x/50) Shear is +ve 

VCD= + (1-x/50) kip 

RF= x/50 
Moment is +ve 

E 

ME= +(x/50)(10) 

     = + x/5 kip.ft 

At x = 30 ft, ME = +6.0 

At x = 40 ft, ME = +8.0 
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A´ B´ C´ D´ E´ 

x 

0.4 
0.2 +ve 

+ve 
8.0 

6.0 
4.0 2.0 

I. L. for VCD 

I. L. for ME 

Problem continued 
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3.6.6 Place load over region E´F´ (40 ft < x < 50 ft) 

VCD = + 1-x/50  At x = 40 ft, VCD= + 0.2 

      At x = 50 ft, VCD = 0.0 

x 1.0 

A 
B C D 

E 

RA= 1-x/50 Shear is +ve 

ME= + (1-x/50)(40) = (50-x)*40/50 = +(4/5)(50-x) 

B C D E F 
A 

x 

RA=1-x/50 At x = 40 ft, ME= + 8.0 kip.ft 

At x = 50 ft, ME = 0.0 

Moment is +ve 
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A´ B´ C´ D´ E´ F´ 

x 1.0 

0.2 
0.4 

0.4 
0.2 

2.0 
4.0 

6.0 8.0 

I. L. for VCD 

I. L. for ME 

-ve 

+ve 

+ve 
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3.7 INFLUENCE LINES FOR TRUSSES 

Draw the influence lines for: (a) Force in Member GF; and 

(b) Force in member FC of the truss shown below in Figure below 

20 ft 20 ft 20 ft 

F 

B C D 

G 

A 

E 

600 

20 ft 

10(3)1/3 
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Problem 3.7 continued -  

3.7.1 Place unit load over AB 

(i) To compute GF, cut section (1) - (1) 

Taking moment about B to its right, 

 (RD)(40) - (FGF)(103) = 0 

 FGF = (x/60)(40)(1/ 103) = x/(15 3) (-ve) 

At x = 0, 

FGF = 0 

At x = 20 ft 

FGF = - 0.77 

(1) 

(1) 

A 
B C D 

G F E 

x 

1-x/20 x/20 1 

600 

RA= 1- x/60 RD=x/60 
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PROBLEM 3.7 CONTINUED -  
(ii) To compute FFC, cut section (2) - (2) 

Resolving vertically over the right hand section 

 FFC cos300 - RD = 0 

 FFC = RD/cos30 = (x/60)(2/3) = x/(30 3) (-ve) 

 

reactions at nodes 

x 1 

1-x/20 

x/20 

(2) 

(2) 

300 

600 

A B C D 

G F E 

RA =1-x/60 RD=x/60 
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At x = 0, FFC = 0.0 

At x = 20 ft, FFC = -0.385 

I. L. for FGF 

I. L. for FFC 

0.77 

20 ft 

-ve 

0.385 

-ve 
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PROBLEM 3.7 Continued -  

3.7.2 Place unit load over BC (20 ft < x <40 ft) 

[Section (1) - (1) is valid for 20 < x < 40 ft] 

(i) To compute FGF use section (1) -(1) 

Taking moment about B, to its left, 

 (RA)(20) - (FGF)(103) = 0 

  FGF = (20RA)/(103) = (1-x/60)(2 /3)  

At x = 20 ft, FFG = 0.77 (-ve) 

At x = 40 ft, FFG = 0.385 (-ve) 

(1) 

(1) 

A 
B C D 

G F E 

x 

(40-x)/20 

(x-20)/20 1 

reactions at nodes 

20 ft 

RA=1-x/60 RD=x/60 (x-20) (40-x) 



174 

PROBLEM 6.7 Continued -  

(ii) To compute FFC, use section (2) - (2) 

Section (2) - (2) is valid for 20 < x < 40 ft 

Resolving force vertically, over the right hand section, 

 FFC cos30 - (x/60) +(x-20)/20 = 0 

 FFC cos30 = x/60 - x/20 +1= (1-2x)/60 (-ve) 

  FFC = ((60 - 2x)/60)(2/3) -ve 

 

x 
1 

(2) 

300 

600 

A B C D 

G F E 

RA =1-x/60 RD=x/60 

(40-x)/20 (x-20)/20 

(2) 

FFC 
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At x = 20 ft, FFC = (20/60)(2/ 3) = 0.385 (-ve) 

At x = 40 ft, FFC = ((60-80)/60)(2/ 3) = 0.385 (+ve) 

-ve 

0.77 0.385 

-ve 

0.385 

I. L. for FGF 

I. L. for FFC 
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PROBLEM 3.7 Continued -  

3.7.3 Place unit load over CD (40 ft < x <60 ft) 

(i) To compute FGF, use section (1) - (1) 

Take moment about B, to its left, 

 (FFG)(103) - (RA)(20) = 0 

  FFG = (1-x/60)(20/103) = (1-x/60)(2/3) -ve 

At x = 40 ft, FFG = 0.385 kip (-ve) 

At x = 60 ft, FFG = 0.0 

(1) 

(1) 

A 
B C D 

G F E 

x 

(60-x)/20 (x-40)/20 

1 

reactions at nodes 

20 ft 

RA=1-x/60 RD=x/60 

(x-40) (60-x) 
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PROBLEM 3.7 Continued -  

(ii) To compute FFG, use section (2) - (2) 

Resolving forces vertically, to the left of C, 

 

 (RA) - FFC cos 30 = 0 

  FFC = RA/cos 30 = (1-x/10) (2/3) +ve 

x 
1 

(2) 

300 

600 

A B C D 

G F E 

RA =1-x/60 

(60-x)/20 
(x-40)/20 

FFC 

RD=x/60 

x-40 60-x 

reactions at nodes 
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At x = 40 ft, FFC = 0.385 (+ve) 

At x = 60 ft, FFC = 0.0 

-ve 

0.770 
0.385 

-ve 

+ve 

I. L. for FGF 

I. L. for FFC 

0.385 
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3.8 MAXIMUM SHEAR FORCE AND BENDING MOMENT 

 UNDER A SERIES OF CONCENTRATED LOADS 

Taking moment about A, 

RE  L = PR [L/2 -  )]( xx 

)2/( xxL
L

P
R R

E 

a1 a2 a3 

x
PR= resultant load 

a1 a2 a3 
x

PR= resultant load 

C.L. 

x 
L/2 

L 
RE 

A 
B C D 

E 

P1 
P2 P3 P4 

P1 P2 
P3 P4 

RA 
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Taking moment about E, 

2

2

02.,.

])2/()2/[(

)1)(2/()2/(0

0

)()()2/)(2/(

)()2/(

)2/(

)](2/[

22211

22211

x
x

xx

xxei

xLxxL
L

P

xL
L

P
xxL

L

P

dx

dM

aPaaPxLxxL
L

P

aPaaPxLRM

xxL
L

P
R

xxLPLR

R

RR

D

R

AD

R
A

RA





















The centerline must divide the distance between the resultant of 

all the loads in the moving series of loads and the load considered 

under which maximum bending moment occurs. 


