
DESIGN AND ANALYSIS OF ALGORITHMS

Prepared By
Dr. K Rajendra Prasad
Dr. R Obulakonda Reddy
Dr. G Ramu
Dr. B V Rao
Mr. Ch Suresh Kumar Raju
Ms. K Radhika

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

Information Technology

ALGORITHMS

Algorithm Definition

Formal Definition
An Algorithm is a finite set of instructions that, if followed,

accomplishes a particular task. In addition, all algorithms should satisfy
the following criteria.

Input: Zero or more quantities are externally supplied.
Output: At least one quantity is produced.
Definiteness: Each instruction is clear and unambiguous.
Finiteness: If we trace out the instructions of an algorithm, then for

all cases, the algorithm terminates after a finite number
of steps.

Effectiveness: Every instruction must very basic so that it can be carried
out, in principle, by a person using only pencil & paper.

Areas of study of Algorithm

• How to devise or design an algorithm
It includes the study of various design techniques and helps in writing
algorithms using the existing design techniques like divide and
conquer.

• How to validate an algorithm
After the algorithm is written it is necessary to check the correctness
of the algorithm i.e for each input correct output is produced, known
as algorithm validation. The second phase is writing a program known
as program proving or program verification.

• How to analysis an algorithm
It is known as analysis of algorithms or performance analysis, refers to
the task of calculating time and space complexity of the algorithm.

• How to test a program
It consists of two phases.

1. Debugging is detection and correction of errors.
2. Profiling or performance measurement is the actual amount of
time required by the program to compute the result.

Areas of study of Algorithm

ALGORITHM SPECIFICATION

Pseudo-Code for writing Algorithms:
1. Comments begin with // and continue until the end of line.
2. Blocks are indicated with matching braces {and}.
3. An identifier begins with a letter. The data types of variables are not

explicitly declared.
4. Compound data types can be formed with records. Here is an example,

Node. Record
{

data type – 1 data-1;
.
.
data type – n data – n;
node * link;

}
Here link is a pointer to the record type node. Individual data

items of a record can be accessed with and period.

ALGORITHM SPECIFICATION

5. Assignment of values to variables is done using the assignment statement.
<Variable>:= <expression>;

6. There are two Boolean values TRUE and FALSE.
Logical Operators AND, OR, NOT
Relational Operators <, <=,>,>=, =, !=

7. The following looping statements are employed.

For, while and repeat-until
While Loop:

While < condition >do{
<statement-1>

. .
<statement-n>

}

ALGORITHM SPECIFICATION

ALGORITHM SPECIFICATION
For Loop:

for variable: = value-1 to value-2 step step do
{

<statement-1>
.
.

<statement-n>
}

One step is a key word, other Step is used for increment or decrement

repeat-until:
repeat{

<statement-1>
.
.

<statement-n>
}until<condition>

ALGORITHM SPECIFICATION

8. A conditional statement has the following forms.
(1) If <condition> then <statement>
(2) If <condition> then <statement-1>

Else <statement-2>
Case statement:
Case
{ :<condition-1>:<statement-1>

.

.
:<condition-n>:<statement-n>
:else:<statement-n+1>

}

ALGORITHM SPECIFICATION

9. Input and output are done using the instructions read & write.

10. There is only one type of procedure:
Algorithm, the heading takes the form,

Algorithm Name (<Parameter list>)

ALGORITHM SPECIFICATION

Algorithm Max(A,n)
// A is an array of size n
{

Result := A[1];
for I:= 2 to n do

if A[I] > Result then
Result :=A[I];

return Result;
}

EXAMPLE

Performance Analysis:

Performance Analysis:

• Performance of an algorithm is a process of making evaluative
judgment about algorithms.

• Performance of an algorithm means predicting the resources
which are required to an algorithm to perform its task.

• That means when we have multiple algorithms to solve a
problem, we need to select a suitable algorithm to solve that
problem.

• We compare all algorithms with each other which are solving
same problem, to select best algorithm.

• To compare algorithms, we use a set of parameters or set of
elements like memory required by that algorithm, execution
speed of that algorithm, easy to understand, easy to
implement, etc.

Generally, the performance of an algorithm depends on the
following elements...

Whether that algorithm is providing the exact solution for the
problem?

Whether it is easy to understand?
Whether it is easy to implement?
 How much space (memory) it requires to solve the problem?
 How much time it takes to solve the problem? Etc.,

When we want to analyze an algorithm, we consider only the space
and time required by that particular algorithm and we ignore all
remaining elements.

Performance Analysis:

• Performance analysis of an algorithm is the process of
calculating space required by that algorithm and time required by
that algorithm.

Performance analysis of an algorithm is performed by using the
following measures...

 Space required to complete the task of that algorithm (Space
Complexity). It includes program space and data space

 Time required to complete the task of that algorithm (Time
Complexity)

Performance evaluation can be divided into two major phases.
1. Performance Analysis (machine independent)

Space Complexity:

The space complexity of an algorithm is the amount of memory it
needs to run for completion.

Time Complexity:
The time complexity of an algorithm is the amount of computer time
it needs to run to completion.

2 . Performance Measurement (machine dependent).

Performance Analysis:

Space Complexity

The space complexity of an algorithm is the amount of memory it
needs to run to completion.

The Space Complexity of any algorithm P is given by S(P)=C+SP(I),C is
constant.

Space Complexity

• Fixed Space Requirements (C)
Independent of the characteristics of the inputs and outputs
It includes instruction space
space for simple variables, fixed-size structured variable, constants

• Variable Space Requirements (SP(I))
depend on the instance characteristic I
number, size, values of inputs and outputs associated with I
recursive stack space, formal parameters, local variables, return

address

Algorithm 1 : Simple arithmetic function

Algorithmabc(a, b, c)
{

return a + b + b * c + (a + b - c) / (a + b) + 4.00;
}

SP(I)=0

Hence S(P)=Constant

EXAMPLE 1

EXAMPLE 2

Algorithm 2: Iterative function for sum a list of
numbers

Algorithm sum(list[], n)
{

tempsum = 0;
for i = 0 ton do

tempsum += list [i];
return tempsum;

}

In the above example list[] is dependent on n. Hence SP(I)=n. The
remaining variables are i, n, tempsum each requires one location.
Hence S(P)=3+n

EXAMPLE 3

Algorithm 3: Recursive function for sum a list of
numbers
Algorithmrsum(list[], n)
{
If (n<=0) then
return 0.0
else
return rsum(list, n-1) + list[n];

}
In the above example the recursion stack space includes space for
formal parameters local variables and return address. Each call to rsum
requires 3 locations i.e. for list[],n and return address .As the length of
recursion is n+1.
S(P)>=3(n+1)

Time Complexity

The time complexity of an algorithm is the amount of computer
time it needs to run to completion.

The time T(P) taken by a program P is the sum of the compile time
and the run (or execution)time. The compile time does not
depend on the instance characteristics.

T(P)=C+TP(I)
It is combination of
-Compile time (C) independent of instance characteristics
-Run (execution) time TP dependent of instance characteristics

Time complexity is calculated in terms of program step as it is
difficult to know the complexities of individual operations.

Time Complexity

Algorithm 1 : Iterative function for finding Sum

Algorithm sum(list[], n)
{

tempsum := 0; count++; /* for assignment */
for i := 1 to n do
{

count++; /*for the for loop */
tempsum := tempsum + list[i]; count++; /* for assignment */

}
count++; /* last execution of for */

return tempsum;
count++; /* for return */
}
Hence T(n)=2n+3

EXAMPLE 1

EXAMPLE 2

Algorithm 2 : Recursive sum
Algorithmrsum(list[], n)
{

count++; /*for if conditional */
if (n<=0) {

count++; /* for return */
return 0.0 }

else
return rsum(list, n-1) + list[n];

count++;/*for return and rsum invocation*/

}
T(n)=2n+2

EXAMPLE 3
Algorithm 3: Matrix addition
Algorithm add(a[][MAX_SIZE], b[][MAX_SIZE],

c[][MAX_SIZE], rows, cols)
{

for i := 1 to rows do {
count++; /* for i for loop */

for j := 1 to cols do {
count++; /* for j for loop */

c[i][j] := a[i][j] + b[i][j];
count++; /* for assignment statement */

}
count++; /* last time of j for loop */
}

count++; /* last time of i for loop */
}
T(n)=2rows*cols+2*rows+1

Time complexity

Tabular method for computing Time Complexity :

 Complexity is determined by using a table which includes steps
per execution(s/e) i.e amount by which count changes as a result
of execution of the statement.

 Frequency – number of times a statement is executed.

Computing Time Complexity

Example 1

Statement s/e Freque

ncy

Total

steps

Algorithm sum(list[], n)

{

tempsum := 0;

for i := 0 ton do

tempsum := tempsum +

list [i];

return tempsum;

}

0

0

1

1

1

1

0

-

-

1

n+1

n

1

0

0

0

1

n+1

n

1

0

Total 2n+3

Example 1 : Iterative function for finding Sum

Example 2 : Recursive sum
Statement s/e Frequency

n=0 n>0

Total steps

n=0 n>0

Algorithmrsum(list[], n)

{

If (n<=0) then

return 0.0;

else

return rsum(list, n-1) + list[n];

}

0

0

1

1

0

1+x

0

-

-

1

1

0

0

0

-

-

1

0

0

1

0

0

0

1

1

0

0

0

0

0

1

0

0

1+x

0

Total 2 2+x

Statement s/e Frequency Total steps

Algorithm add(a,b,c,m,n)

{

for i:=1 to m do

for j:=1 to n do

c[i,j]:=a[i,j]+b[i,j];

}

0

0

1

1

1

0

-

-

m+1

m(n+1)

mn

-

0

0

m+1

mn+m

mn

0

Total 2mn+2m+1

Example 3: Matrix addition

Time complexity Analysis

•The worst-case complexity of the algorithm is the function
defined by the maximum number of steps taken on any instance of
size n. It represents the curve passing through the highest point of
each column.

•The best-case complexity of the algorithm is the function defined
by the minimum number of steps taken on any instance of size n. It
represents the curve passing through the lowest point of each
column.

•Finally, the average-case complexity of the algorithm is the
function defined by the average number of steps taken on any
instance of size n.

Time complexity Analysis

Example: Sequential Search

Efficiency of Sequential Search

Case Total Comparisons

Worst case n key comparisons

Best case 1 comparison

Average case (n+1)/2

• Total number of elements in array are n

Asymptotic Notations

Asymptotic Notations

Following are the commonly used asymptotic notations to
calculate the running time complexity of an algorithm.

 Ο Notation
 Ω Notation
 θ Notation

Asymptotic Notations

Big oh notation: O

Definition
The function f(n)=O(g(n)) (read as “f of n is big oh of g of n”) iff
there exist positive constants c and n0 such that
f(n)≤C*g(n) for all n, n≥0
The value g(n)is the upper bound value of f(n).

Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as O(g(n)) then it must satisfy
f(n) <= C x g(n) for all values of C > 0 and n0>= 1
f(n) <= C g(n)
⇒3n + 2 <= C n

Above condition is always TRUE for all values of C = 4 and n >= 2.
By using Big - Oh notation we can represent the time complexity
as follows...
3n + 2 = O(n)
3n+2=O(n) as
3n+2 ≤4n for all n≥2

Example:

void printFirstElementOfArray(int arr[])
{

printf("First element of array = %d", arr[0]);
}

This function runs in O(1) time (or "constant time") relative to
its input. The input array could be 1 item or 1,000 items, but this
function would still just require one step.

Examples

void printAllElementOfArray(int arr[], int size)
{

for (int i = 0; i < size; i++)
{

printf("%d\n", arr[i]);
}

}

This function runs in O(n) time (or "linear time"), where nn is
the number of items in the array. If the array has 10 items, we
have to print 10 times. If it has 1000 items, we have to print
1000 times.

Examples

void printAllPossibleOrderedPairs(int arr[], int size)
{

for (int i = 0; i < size; i++)
{

for (int j = 0; j < size; j++)
{

printf("%d = %d\n", arr[i], arr[j]);
}

}
}
Here we're nesting two loops. If our array has n items, our outer
loop runs n times and our inner loop runs n times for each iteration
of the outer loop, giving us n2 total prints. Thus this function runs in
O(n2) time (or "quadratic time"). If the array has 10 items, we have
to print 100 times. If it has 1000 items, we have to print 1000000
times.

Examples

Asymptotic Notations

Algorithm Definition

Omega notation: Ω

The function f(n)=Ω (g(n)) (read as “f of n is Omega of g of n”) iff
there exist positive constants c and n0 such that f(n)≥C*g(n) for all
n, n≥0

The value g(n) is the lower bound value of f(n).

Example:
3n+2=Ω (n) as
3n+2 ≥3n for all n≥1
Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as Ω(g(n)) then it must satisfy f(n) >= C
g(n) for all values of C > 0 and n0>= 1
f(n) >= C g(n)
⇒3n + 2 <= C n
Above condition is always TRUE for all values of C = 1 and n >= 1.
By using Big - Omega notation we can represent the time complexity
as follows...
3n + 2 = Ω(n)

Theta notation: θ

The function f(n)= θ (g(n)) (read as “f of n is theta of g of n”) iff there
exist positive constants c1, c2 and n0 such that C1*g(n) ≤f(n)≤C2*g(n)
for all n, n≥0

Example:
3n+2=θ (n) as
3n+2 ≥3n for all n≥2
3n+2 ≤3n for all n≥2
Here c1=3 and c2=4 and n0=2

Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n
If we want to represent f(n) as Θ(g(n)) then it must satisfy C1 g(n)
<= f(n) >= C2 g(n) for all values of C1, C2 > 0 and n0>= 1
C1 g(n) <= f(n) >= ⇒C2 g(n)
C1 n <= 3n + 2 >= C2 n

Example

Above condition is always TRUE for all values of C1 = 1, C2 = 4
and n >= 1.
By using Big - Theta notation we can represent the time
complexity as follows...
3n + 2 = Θ(n)

Asymptotic Notations

Little oh: o

Little oh: o

The function f(n)=o(g(n)) (read as “f of n is little oh of g of n”) iff
Lim f(n)/g(n)=0 for all n, n≥0
n∞

Example:
3n+2=o(n2) as

Lim ((3n+2)/n2)=0
n∞

void printAllItemsTwice(int arr[], int size)
{

for (int i = 0; i < size; i++)
{

printf("%d\n", arr[i]);
}

for (int i = 0; i < size; i++)
{

printf("%d\n", arr[i]);
}

}

This is O(2n), which we just call O(n)

EXAMPLES

void printAllNumbersThenAllPairSums(int arr[], int size)
{

for (int i = 0; i < size; i++)
{

printf("%d\n", arr[i]);
}

for (int i = 0; i < size; i++)
{

for (int j = 0; j < size; j++)
{

printf("%d\n", arr[i] + arr[j]);
}

}
}

Here our runtime is O(n + n2), which we just call O(n2)

EXAMPLES

Probabilistic analysis

Probabilistic analysis

• In analysis of algorithms, probabilistic analysis of algorithms
is an approach to estimate the computational complexity
of an algorithm or a computational problem.

• It starts from an assumption about a probabilistic distribution
of the set of all possible inputs.

•This assumption is then used to design an efficient algorithm or
to derive the complexity of a known algorithm.

•This approach is not the same as that of probabilistic algorithms,
but the two may be combined.

Probabilistic analysis

• For non-probabilistic, more specifically,
for deterministic algorithms, the most common types
of complexity estimates are

1. The average case complexity (expected time complexity),
in which given an input distribution, the expected time of
an algorithm is evaluated.

2. The almost always complexity estimates,
in which given an input distribution, it is evaluated that the
algorithm admits given complexity estimate that almost
surely holds.

•In probabilistic analysis of probabilistic (randomized)
algorithms, the distributions or averaging for all possible choices
in randomized steps are also taken into an account, in addition to t
he input distributions.

Amortized complexity

Amortized complexity

• The actual complexity of an operation is determined by the

step count for that operation, and the actual complexity of a
sequence of operations is determined by the step count for

that sequence.
• The actual complexity of a sequence of operations may be

determined by adding together the step counts for the
individual operations in the sequence.

• Typically, determining the step count for each operation in the
sequence is quite difficult, and instead, we obtain an upper
bound on the step count for the sequence by adding together

the worst-case step count for each operation.

Amortized complexity

1) Amortized cost of a sequence of operations can be seen as
expenses of a salaried person. The average monthly expense of
the person is less than or equal to the salary, but the person can
spend more money in a particular month by buying a car or
something. In other months, he or she saves money for the
expensive month.
2) The above Amortized Analysis done for Dynamic Array
example is called Aggregate Method. There are two more
powerful ways to do Amortized analysis called Accounting
Method and Potential Method. We will be discussing the other
two methods in separate posts.

Amortized complexity

3) The amortized analysis doesn’t involve probability. There is also
another different notion of average case running time where
algorithms use randomization to make them faster and expected
running time is faster than the worst case running time. These
algorithms are analyzed using Randomized Analysis. Examples of
these algorithms are Randomized Quick Sort, Quick Select and
Hashing.

Amortized complexity

DIVIDE AND CONQUER

GENERAL METHOD

• Given a function to compute on ‘n’ inputs the divide-and-
conquer strategy suggests splitting the inputs into ‘k’ distinct
subsets, 1<k<=n, yielding ‘k’ sub problems.

• These sub problems must be solved, and then a method must be
found to combine sub solutions into a solution of the whole.

• If the sub problems are still relatively large, then the divide-and-
conquer strategy can possibly be reapplied. Often the sub
problems resulting from a divide-and-conquer design are of the
same type as the original problem.

DIVIDE AND CONQUER

• DAndC(Algorithm) is initially invoked as DandC(P), where ‘p’ is
the problem to be solved.

• Small(P) is a Boolean-valued function that determines whether
the i/p size is small enough that the answer can be computed
without splitting. If this so, the function ‘S’ is invoked.

•Otherwise, the problem P is divided into smaller sub problems.

•These sub problems P1, P2 …Pk are solved by recursive
application of DAndC.

DIVIDE AND CONQUER

• Combine is a function that determines the solution to p using the
solutions to the ‘k’ sub problems. If the size of ‘p’ is n and the sizes
of the ‘k’ sub problems are n1, n2 ….nk, respectively, then the
computing time of DAndC is described by the recurrence relation.

T(n)= { g(n) n small
T(n1)+T(n2)+……………+T(nk)+f(n); otherwise.

Where T(n) is the time for DAndC on any i/p of size ‘n’.
g(n) is the time of compute the answer directly for small
i/ps.
f(n) is the time for dividing P & combining the solution to
sub problems.

DIVIDE AND CONQUER

Algorithm DAndC(P)
{

if small(P) then return S(P);
else
{

divide P into smaller instances
P1, P2… Pk, k>=1;
Apply DAndC to each of these sub problems;
return combine (DAndC(P1), DAndC(P2),…….,DAndC(Pk));

}
}

Control Abstract

The complexity of many divide-and-conquer algorithms is given
by recurrence relation of the form

T(n) = T(1) n=1
= aT(n/b)+f(n) n>1

Where a & b are known constants.

We assume that T(1) is known & ‘n’ is a power of b(i.e., n=bk)

One of the methods for solving any such recurrence relation is
called the substitution method.
This method repeatedly makes substitution for each occurrence
of the function. T is the right-hand side until all such
occurrences disappear.

DIVIDE AND CONQUER

APPLICATIONS OF DIVIDE AND
CONQUER

APPLICATIONS

APPLICATIONS OF DIVIDE AND CONQUER

 Binary search
 Quick sort
 Merge sort
 Strassen’s matrix multiplication.

• Given a list of n elements arranged in increasing order.

• The problem is to determine whether a given element is
present in the list or not. If x is present then determine the
position of x, otherwise position is zero.

• Divide and conquer is used to solve the problem.

• The value Small(p) is true if n=1.
• S(P)= i, if x=a[i], a[] is an array otherwise S(P)=0.
• If P has more than one element then it can

be divided into sub-problems.

BINARY SEARCH

• Choose an index j and compare x with aj. then there 3
possibilities
• (i). X=a[j]
• (ii) x<a*j+ (x is searched in the list a*1+…a*j-1])
• (iii) x>a*j + (x is searched in the list a*j+1+…a*n+).
• And the same procedure is applied repeatedly until the
solution is found or solution is zero.

BINARY SEARCH

BINARY SEARCH
Algorithm Binsearch(a, n, x)
// Given an array a[1:n] of elements in non-decreasing
//order, n>=0,determine whether ‘x’ is present and

// if so, return ‘j’ such that x=a*j+; else return 0.
{

low:=1; high:=n;
while (low<=high) do
{

mid:=[(low + high)/2];
if (x<a[mid]) then high;
else if(x>a[mid]) then

low:=mid+1;
else return mid;

}
return 0; } //end

Example
Let us select the 14 entries.
-15,-6,0,7,9,23,54,82,101,112,125,131,142,151.

• Place them in a[1:14], and simulate the steps Binsearch goes
through as it searches for different values of ‘x’.

• Only the variables, low, high & mid need to be traced as we
simulate the algorithm.

• We try the following values for x: 151, -14 and 9.
• For 2 successful searches & 1 unsuccessful search.
• Table shows the traces of Binsearch on these 3 steps.

Example

Example

Array Elements

-15,-6,0,7,9,23,54,82,101,112,125,131,142,151.

X=151

low high mid
1 147
8 14 11
12 14 13
14 14 14

Found

Example

Array Elements

-15,-6,0,7,9,23,54,82,101,112,125,131,142,151.

x=-14

low high mid
1 14 7
1 6 3
1 2 1
2 2 2
2 1

Not found

Example

Array Elements

-15,-6,0,7,9,23,54,82,101,112,125,131,142,151.

x=9

low high mid
1 14 7
1 6 3
4 6 5

Found

Time Complexity of binary search

The complexity of binary search is successful searches is

• Worst case is θ(log n) or θ(log n)
• Average case is θ(log n) or θ(log n)
• Best case is θ(1) or θ(1)

Unsuccessful search is: θ(log n) for all cases.

QUICKSORT

Algorithm QUICKSORT(low, high)
// sorts the elements a(low), , a(high) which reside in the
global array A(1 :n) into //ascending order a (n + 1) is considered
to be defined and must be greater than all //elements in a(1 : n);
A(n + 1) = α*/
{

If(low < high) then
{

j := PARTITION(a, low,high+1);
// J is the position of the partitioning element
QUICKSORT(low, j –1);
QUICKSORT(j + 1 ,high);

}
}

QUICKSORT

Algorithm PARTITION(a, m, p)
{

V :=a(m); i :=m; j:=p;
// a (m) is the partition element
do
{

repeat
i := i +1;

until (a(i)>v);
repeat

j := j –1;
until (a(j)<v);
if (i < j) then INTERCHANGE(a, i,j)

} while (i >j);

QUICKSORT

a[m] :=a[j];a[j]:=V;
return j;

}

Algorithm INTERCHANGE(a, i, j)
{

p:= a[i];
a[i]:=a[j];
a[j]:=p;

}

QUICKSORT

We are given array of n integers to sort:

Example

40 20 10 80 60 50 7 30 100

There are a number of ways to pick the pivot element. In this
example, we will use the first element in the array:

Pick Pivot Element

40 20 10 80 60 50 7 30 100

Given a pivot, partition the elements of the array such that
the resulting array consists of:

1. One sub-array that contains elements >= pivot

2. Another sub-array that contains elements < pivot

The sub-arrays are stored in the original a array.

Partitioning loops through, swapping elements below/above
pivot.

Partitioning Array

40 20 10 80 60 50 7 30 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

i j

Example

40 20 10 80 60 50 7 30 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

i j

1. While a[i] <= a[pivot]
++ i

40 20 10 80 60 50 7 30 100pivot_index = 0

i j

1. While a[i] <= a[pivot]
++ i

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 80 60 50 7 30 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 80 60 50 7 30 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

2. While a[j] > a[pivot]
-- j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 80 60 50 7 30 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 80 60 50 7 30 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 30 60 50 7 80 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 30 60 50 7 80 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 30 60 50 7 80 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 30 60 50 7 80 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 30 60 50 7 80 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 30 60 50 7 80 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

[0] [1] [2] [3] [4] [5] [6] [7] [8]

40 20 10 30 60 50 7 80 100pivot_index = 0

i j

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

40 20 10 30 7 50 60 80 100pivot_index = 0

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

40 20 10 30 7 50 60 80 100pivot_index = 0

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

40 20 10 30 7 50 60 80 100pivot_index = 0

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

40 20 10 30 7 50 60 80 100pivot_index = 0

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

40 20 10 30 7 50 60 80 100pivot_index = 0

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

40 20 10 30 7 50 60 80 100pivot_index = 0

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

40 20 10 30 7 50 60 80 100pivot_index = 0

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

40 20 10 30 7 50 60 80 100pivot_index = 0

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.

40 20 10 30 7 50 60 80 100pivot_index = 0

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.
5. Swap a[j]and a[pivot_index]

40 20 10 30 7 50 60 80 100pivot_index = 0

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1. While a[i]<= a[pivot]
++ i

2. While a[j]> a[pivot]
-- j

3. If i < j
swap a[i]and a[j]

4. While j > i, go to 1.
5. Swap a[j]and a[pivot_index]

7 20 10 30 40 50 60 80 100pivot_index = 4

i j

[0] [1] [2] [3] [4] [5] [6] [7] [8]

Partition Result

7 20 10 30 40 50 60 80 100

<= a[pivot] > a[pivot]

[0] [1] [2] [3] [4] [5] [6] [7] [8]

Analysis of Quick Sort

Analysis of Quick Sort

The running time of quick sort is equal to the running time of the

two recursive calls plus the linear time spent in the partition
(The pivot selection takes only constant time).
This gives the basic quick sort relation:

T (n) = T (i) + T (n – i – 1) + Cn - (1)

Where, i = |S1| is the number of elements in S1

Analysis of Quick Sort

Worst Case Analysis
The pivot is the smallest element, all the time. Then i=0 and if we
ignore T(0)=1, which is insignificant, the recurrences:

T (n) = T (n – 1) + Cn n>1 - (2)
Using equation – (1) repeatedly, thus

T (n – 1) = T (n – 2) + C (n –1)
T (n – 2) = T (n – 3) + C (n –2)

- - - - - - --
T (2) = T (1) + C(2)
Adding up all these equations yields
T (n) =O(n2) - (3)

Analysis of Quick Sort

Best Case Analysis

T (n) = 2 T (n/2) +Cn- (4)
Divide both sides by n and Substitute n/2 for ‘n’

Finally,
Which yields,

T (n) = C n log n + n = O(n logn)
T (n) = O(n logn)

Average Case Analysis
The number of comparisons for first call on partition:
Assume left_to_right moves over k smaller element and thus k
comparisons. So when right_to_left crosses left_to_right it has
made n-k+1 comparisons.
So, first call on partition makes n+1 comparisons. The average
case complexity of quick sort is

T(n) = comparisons for first call on quick sort
+
,Σ 1<=nleft, nright<=n [T(nleft) + T(nright)]}n

= (n+1) + 2 [T(0) +T(1) + T(2) + ----- +T(n-1)]/n

Analysis of Quick Sort

Analysis of Quick Sort

n T(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) +T(n-1)]

(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + ----- + T(n-2)]

Subtracting both sides:

nT(n) –(n-1)T(n-1) = [n(n+1) – (n-1)n] + 2T(n-1) = 2n + 2T(n-1)
nT(n) = 2n + (n-1)T(n-1) + 2T(n-1) = 2n +(n+1)T(n-1)
T(n) = 2 +(n+1)T(n-1)/n

The recurrence relation obtained is:
T(n)/(n+1) = 2/(n+1) +T(n-1)/n

Using the method of substitution:

Analysis of Quick Sort

T(n)/(n+1) = 2/(n+1) +T(n-1)/n

T(n-1)/n = 2/n +T(n-2)/(n-1)
T(n-2)/(n-1) = 2/(n-1) +T(n-3)/(n-2)

T(n-3)/(n-2) = 2/(n-2) +T(n-4)/(n-3)

. .

. .

T(3)/4 = 2/4 +T(2)/3
T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 +T(0)

Adding both sides:
T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3
+T(1)/2]
= [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] +
T(0)+ [2/(n+1) + 2/n + 2/(n-1) + ---------- +2/4 +2/3]

Cancelling the common terms:
T(n)/(n+1) = 2[1/2 +1/3+1/4+--------------+1/n+1/(n+1)]
Finally, We will get, O(n log n)

Analysis of Quick Sort

MERGE SORT

MERGE SORT

Algorithm MERGESORT (low, high)
// a (low : high) is a global array to be sorted.
{

if (low <high)
{

mid := (low +high)/2;//finds where to split the set
MERGESORT(low, mid); //sort one subset
MERGESORT(mid+1, high); //sort the other subset
MERGE(low, mid, high); // combine the results

}

}

MERGE SORT
Algorithm MERGE (low, mid,high)

// a (low : high) is a global array containing two sortedsubsets
// in a (low : mid) and in a (mid + 1 :high).
// The objective is to merge these sorted sets into singlesorted
// set residing in a (low : high). An auxiliary array B isused.
{

h :=low; i := low; j:= mid + 1;
while ((h <mid) and (J <high))do
{

if (a[h] <a[j])then
{

b[i] :=a[h]; h:=h+1;
}
else
{

b[i] :=a[j]; j := j +1;
}

i := i +1;
}// while

if (h > mid) then
for k := j to high do

{
b[i] := a[k]; i := i +1

}
for k := h to mid do
{

b[i] := a[K]; i := i +l;
}

for k := low to high do
a[k] :=b[k]; } //end MERGE

MERGE SORT

Example 1

Analysis of Merge Sort

Example 2

Analysis of Merge Sort

• We will assume that ‘n’ is a power of 2, so that we always split

into even halves, so we solve for the case n =2k.

•For n = 1, the time to merge sort is constant, which we will be
denote by 1.

•Otherwise, the time to merge sort ‘n’ numbers is equal to the
time to do two recursive merge sorts of size n/2, plus the time to
merge, which is linear.

The equation says this exactly:
T(1) =1
T(n) = 2 T(n/2) +n

T(1) = 1
T(n) = 2T(n/2) + n
next we will solve this recurrence relation.
First we divide (2) by n:

T(n) / n = T(n/2) / (n/2) + 1

n is a power of two, so we can write
T(n/2) / (n/2) = T(n/4) / (n/4) +1
T(n/4) / (n/4) = T(n/8) / (n/8) +1
T(n/8) / (n/8) = T(n/16) / (n/16) +1
……
……..
T(2) / 2 = T(1) / 1 + 1

T(n) / n + T(n/2) / (n/2) + T(n/4) / (n/4) + … + T(2)/2 =
T(n/2) / (n/2) + T(n/4) / (n/4) + ….+ T(2) / 2 + T(1) / 1 + Logn

T(n)/n = T(1)/1 + Logn

T(1) is 1, hence we obtain

T(n) = n + nlogn = O(nlogn)

Hence the complexity of the MergeSort algorithm
is O(nlogn).

Strassen’s Matrix Multiplication

•The matrix multiplication of algorithm due to Strassens is the
most dramatic example of divide and conquer technique (1969).

• Let A and B be two n×n Matrices.

• The product matrix C=A*B is also a n×n matrix whose i, jth

element is formed by taking elements in the ith row of A and jth

column of B and multiplying them to get result.

Strassen’s Matrix Multiplication

131

Matrix multiplication

The problem:

Multiply two matrices A and B, each of size

nnnnnn

CBA

 nn

Matrix multiplication

Topic: Divide and Conquer 132

The traditional way:

kj

n

k

ikij
BAC

1

)()(
3

nOnT

use three for-loop

133

The Divide-and-Conquer way:

2221

1211

2221

1211

2221

1211

BB

B

BB

AA

A

AA

CC

C

CC

2222122122

2122112121

2212121112

2112111111

BABAC

BABAC

BABAC

BABAC

transform the problem of multiplying A and B, each of size [n×n]
into 8 sub problems, each of size

22

nn

134

)(

)
2

(8)(

3

2

nO

an
n

TnT

which an2 is for addition
so, it is no improvement compared with the traditional way

135

111

111

111

111

111

111

0000

0333

0333

0333

0000

0111

0111

0111

0000

0111

0111

0111

00

03

00

01

00

01

01

01

00

11

00

33

00

11

00

01

11

11

00

11

03

03

00

01

01

01

01

01

11

11

33

33

00

11

01

01

11

11

11

11

22

21

12

11

C

C

C

C

Example: use Divide-and-Conquer way to solve it as following:

136

Strassens introduces new way of computing the Cij’s using 7
multiplications and 18 additions or subtractions

))((

)(

)(

)(

)(

))((

12111121

221211

112122

221211

112221

22112211

BBAAU

BAAT

BBAS

BBAR

BAAQ

BBAAP

UQRPC

SQC

TRC

VTSPC

BBAAV

22

21

12

11

22212212
))((

Strassen’s Matrix Multiplication

137

Analysis

2

2)
2

(7
)(

2

nb

nan
n

T
nT

2222

3

3

22

2

2

2

)
4

7
()

4

7
()

2

(7

)
4

7
()

2

(7

)
2

(7)(

ananan
n

T

anan
n

T

an
n

TnT

138

Assume n = 2k for some integer k

)()(

)(

)(7)
4

7
(7

)
4

7
(7

1
4

7

1)
4

7
(

7

1)
4

7
()

2
(7

81.27

777

4

7

22

2

1

21

22

1

1

nOnO

ncbcnnb

ncnbcnb

ncb

anb

an
n

T

Lg

LgLgLg

Lg
LgnLgnLgn

kk

k

k

k

k

k

Analysis

Strassen’s Matrix Multiplication

•The matrix multiplication of algorithm due to Strassens is the
most dramatic example of divide and conquer technique (1969).

• Let A and B be two n×n Matrices.

• The product matrix C=A*B is also a n×n matrix whose i, jth

element is formed by taking elements in the ith row of A and jth

column of B and multiplying them to get result.

Strassen’s Matrix Multiplication

141

Matrix multiplication

The problem:

Multiply two matrices A and B, each of size

nnnnnn

CBA

 nn

Matrix multiplication

Topic: Divide and Conquer 142

The traditional way:

kj

n

k

ikij
BAC

1

)()(
3

nOnT

use three for-loop

143

The Divide-and-Conquer way:

2221

1211

2221

1211

2221

1211

BB

B

BB

AA

A

AA

CC

C

CC

2222122122

2122112121

2212121112

2112111111

BABAC

BABAC

BABAC

BABAC

transform the problem of multiplying A and B, each of size [n×n]
into 8 sub problems, each of size

22

nn

144

)(

)
2

(8)(

3

2

nO

an
n

TnT

which an2 is for addition
so, it is no improvement compared with the traditional way

145

111

111

111

111

111

111

0000

0333

0333

0333

0000

0111

0111

0111

0000

0111

0111

0111

00

03

00

01

00

01

01

01

00

11

00

33

00

11

00

01

11

11

00

11

03

03

00

01

01

01

01

01

11

11

33

33

00

11

01

01

11

11

11

11

22

21

12

11

C

C

C

C

Example: use Divide-and-Conquer way to solve it as following:

146

Strassens introduces new way of computing the Cij’s using 7
multiplications and 18 additions or subtractions

))((

)(

)(

)(

)(

))((

12111121

221211

112122

221211

112221

22112211

BBAAU

BAAT

BBAS

BBAR

BAAQ

BBAAP

UQRPC

SQC

TRC

VTSPC

BBAAV

22

21

12

11

22212212
))((

Strassen’s Matrix Multiplication

147

Analysis

2

2)
2

(7
)(

2

nb

nan
n

T
nT

2222

3

3

22

2

2

2

)
4

7
()

4

7
()

2

(7

)
4

7
()

2

(7

)
2

(7)(

ananan
n

T

anan
n

T

an
n

TnT

148

Assume n = 2k for some integer k

)()(

)(

)(7)
4

7
(7

)
4

7
(7

1
4

7

1)
4

7
(

7

1)
4

7
()

2
(7

81.27

777

4

7

22

2

1

21

22

1

1

nOnO

ncbcnnb

ncnbcnb

ncb

anb

an
n

T

Lg

LgLgLg

Lg
LgnLgnLgn

kk

k

k

k

k

k

Analysis

GENERAL METHOD

• Greedy is the most straight forward design technique. Most of the
problems have n inputs and require us to obtain a subset that
satisfies some constraints.

• Any subset that satisfies these constraints is called a feasible
solution. We need to find a feasible solution that either maximizes
or minimizes the objective function.

• A feasible solution that does this is called an optimal solution.

• The greedy method is a simple strategy of progressively building up
a solution, one element at a time, by choosing the best possible
element at each stage.

• At each stage, a decision is made regarding whether or not a
particular input is in an optimal solution. This is done by considering
the inputs in an order determined by some selection procedure.

• If the inclusion of the next input, into the partially constructed
optimal solution will result in an infeasible solution then this input
is not added to the partial solution.

• The selection procedure itself is based on some optimization
measure. Several optimization measures are plausible for a given
problem.

• Most of them, however, will result in algorithms that generate sub-
optimal solutions. This version of greedy technique is called subset
paradigm.

• Some problems like Knapsack, Job sequencing with deadlines and
minimum cost spanning trees are based on subset paradigm

Algorithm

CONTROLABSTRACTION Algorithm Greedy (a,n)

• // a(1 : n) contains the ‘n’ inputs

• {

• solution:=ᶲ ; // initialize the solution to be empty

• for i:=1 to ndo

• {

• x := select(a);

• if feasible (solution, x)then

• solution := Union (Solution,x);

• }

• return solution;

• }

JOB SEQUENCING WITH DEADLINES

• Given a set of ‘n’ jobs. Associated with each Job i, deadline di >0
and profit Pi >0. For any job ‘i’ the profit pi is earned iff the job is
completed by its deadline.

• Only one machine is available for processing jobs. An optimal
solution is the feasible solution with maximum profit.

• Sort the jobs in ‘j’ ordered by their deadlines. The array d [1 : n] is
used to store the deadlines of the order of their p-values. The set of
jobs j [1 : k] such that j [r], 1 ≤ r ≤ k are the jobs in ‘j’ and d (j [1]) ≤ d
(j[2]) ≤ . . . ≤ d (j[k]).

• To test whether J U {i} is feasible, we have just to insert i into J
preserving the deadline ordering and then verify that d [J[r]] ≤ r, 1 ≤
r ≤k+1.

Example:

Let n=4,(P1,P2,P3,P4,)=(100,10,15,27)and(d1 d2 d3

d4)=(2,1,2,1).The

feasible solutions and their values are:

Algorithm

• The algorithm constructs an optimal set J of jobs that can be
processed by their deadlines.

• Algorithm GreedyJob (d, J,n)
• // J is a set of jobs that can be completed by their deadlines.
• {
• J :={1};
• for i := 2 to ndo
• {
• if (all jobs in J U {i} can be completed by their deadlines) then J := J

U{i};
• }
• }
• The greedy algorithm is used to obtain an optimal solution.

Algorithm

• Algorithm js(d, j, n)

• //d dead line, jsubset of jobs ,n total number of jobs

• // d*i+≥1 1 ≤ i ≤ n are the dead lines,

• // the jobs are ordered such that p*1+≥p*2+≥---≥p*n+

• //j*i+ is the ith job in the optimal solution 1 ≤ i ≤ k, k subset
range

• {

• d[0]=j[0]=0;

• j[1]=1;

• k=1;
• for i=2 to n do{
• r=k;
• while((d*j*r++>d*i+) and *d*j*r++≠r)) do
• r=r-1;
• if((d*j*r++≤d*i+) and (d*i+> r)) then
• {
• for q:=k to (r+1) setp-1 do j[q+1]= j[q];
• j[r+1]=i;
• k=k+1;
• }
• }
• return k;
• }

KNAPSACK PROBLEM

• Let us apply the greedy method to solve the knapsack problem. We are
given ‘n’ objects and a knapsack. The object ‘i’ has a weight wi and the
knapsack has a capacity ‘m’. If a fraction xi, 0 < xi < 1 of object i is placed
into the knapsack then a profit of pi xi is earned. The objective is to fill the
knapsack that maximizes the total profit earned.

• Since the knapsack capacity is ‘m’, we require the total weight of all
chosen objects to be at most ‘m’. The problem is stated as:

Algorithm

• Algorithm GreedyKnapsack (m,n)

• // P[1 : n] and w[1 : n] contain the profits and weights respectively
of

• // Objects ordered so that p[i] / w[i]> p[i + 1] / w[i + 1].

• // m is the knapsack size and x[1: n] is the solution vector.

• {

• for i := 1 to n do

• x[i] :=0.0 ; //initialize the solution vector

• U :=m;

Algorithm

• for i := 1 to n do

• {

• if (w(i) > U) then break;

• x [i] := 1.0;

• U := U –w[i];

• }

• if (i <n) then x[i] := U /w[i];

• }

Minimum Cost Spanning Trees(MST):

• A spanning tree for a connected graph is a tree whose vertex set is
the same as the vertex set of the given graph, and whose edge set
is a subset of the edge set of the given graph.

• i.e., any connected graph will have a spanning tree.

• Weight of a spanning tree w (T) is the sum of weights of all edges in
T.

• The Minimum spanning tree (MST) is a spanning tree with the

smallest possible weight.

• To explain further upon the Minimum Spanning Tree, and what it applies
to,let's consider a couple of real-world examples:

• 1. One practical application of a MST would be in the design of a network.
For instance, a group of individuals, who are separated by varying
distances, wish to be connected together in a telephone network.
Although MST cannot do anything about the distance from one
connection to another, it can be used to determine the least cost paths
with no cycles in this network, thereby connecting everyone at a
minimum cost.

• 2. Another useful application of MST would be finding airline routes. The
vertices of the graph would represent cities, and the edges would
represent routes between the cities. Obviously, the further one has to
travel, the more it will cost, so MST can be applied to optimize airline
routes by finding the least costly paths with no cycles.

•

•

• To explain how to find a Minimum Spanning Tree, we will look at
two algorithms:

• the Kruskal algorithm

• and the Prim algorithm.

• Both algorithms differ in their methodology, but both eventually
end up with the MST. Kruskal's algorithm uses edges, and Prim’s
algorithm uses vertex connections in determining theMST

Algorithm Kruskal

• Algorithm Kruskal (E, cost, n,t)

• // E is the set of edges in G. G has n vertices. cost [u, v] isthe

• // cost of edge (u, v). ‘t’ is the set of edges in the minimum-cost
spanningtree.

• // The final cost isreturned.

• {

• Construct a heap out of the edge costs usingheapify; for i := 1 to n
do parent [i] :=-1;

• // Each vertex is in a differentset.

• i := 0; mincost :=0.0;

Algorithm Kruskal

• while ((i < n -1) and (heap not empty))do

• {

• Delete a minimum cost edge (u, v) from the heapand re-heapify
usingAdjust;

• j := Find (u); k := Find(v); if (j ¹k)then

• {

• i := i +1;

• t [i, 1] := u; t [i, 2] := v; mincost :=mincost + cost [u,v]; Union (j,k);

• }

• }

• if (i ¹n-1) then write ("no spanning tree"); else returnmincost;

• }

Algorithm Prims

Algorithm Prim (E, cost, n,t)

• // E is the set of edges in G. cost [1:n, 1:n] is thecost

• // adjacency matrix of an n vertex graph such that cost [i, j]is

• // either a positive real number or µif no edge (i, j)exists.

• // A minimum spanning tree is computed and stored as a setof

• // edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edgein

• // the minimum-cost spanning tree. The final cost isreturned.

• {

• Let (k, l) be an edge of minimum cost inE; mincost := cost [k,l];

• t [1, 1] := k; t [1, 2] :=l;

Algorithm Prims

• for i :=1 tondo //Initializenearif (cost [i, l] < cost [i, k]) then near
[i] :=l;

• else near [i] := k; near [k] :=near [l] :=0;
• for i:=2 to n - 1do // Find n - 2 additional edges fort.
• {
• Let j be an index such that near [j] ¹0and
• cost [j, near [j]] isminimum;
• t [i, 1] := j; t [i, 2] := near [j]; mincost := mincost + cost [j, near [j]]; near [j]

:=0
• for k:= 1 tondo // Updatenear[].
• if ((near [k] ¹0) and (cost [k, near [k]] > cost [k, j])) then near [k] :=j;
• }
• returnmincost;
• }

Single Source Shortest-Path Problem

• In the single source, all destinations, shortest path problem, we
must find a shortest path from a given source vertex to each of the

vertices (called destinations) in the graph to which there is a path.

• Dijkstra’s algorithm is similar to prim's algorithm for finding minimal
spanning trees.

• Dijkstra’s algorithm takes a labeled graph and a pair of vertices P
and Q, and finds the shortest path between then (or one of the
shortest paths) if there is more than one.

• The principle of optimality is the basis for Dijkstra’s
algorithms.Dijkstra’s algorithm does not work for negative edges at
all.

Algorithm

• Algorithm Shortest-Paths (v, cost, dist,n)

• // dist [j], 1 <j <n, is set to the length of the shortest path

• // from vertex v to vertex j in the digraph G with n vertices.

• // dist [v] is set to zero. G is represented by its

• // cost adjacency matrix cost [1:n,1:n].

• {

• for i :=1 to n do

• {

• S [i]:=false; //Initialize S. dist [i] :=cost [v,i];

• }

Algorithm

• S[v] := true; dist[v] :=0.0; // Put v in S. for num := 2 to n – 1do

• {

• Determine n - 1 paths from v.

• Choose u from among those vertices not in S such that dist[u] is
minimum; S[u]:=true; // Put u is S.

• for (each w adjacent to u with S [w] = false)do

• if (dist [w] > (dist [u] + cost [u, w])then //Update distances
dist [w] := dist [u] + cost [u,w];

• }

• }

Example1:
Use Dijkstras algorithm to find the shortest path from A to each of the

other six vertices in the graph:

• General Method

• Dynamic programming is a name, coined by Richard Bellman in
1955. Dynamic programming, as greedy method, is a powerful
algorithm design technique that can be used when the solution to
the problem may be viewed as the result of a sequence of
decisions.

• In the greedy method we make irrevocable decisions one at a time,
using a greedy criterion. However, in dynamic programming we
examine the decision sequence to see whether an optimal decision
sequence contains optimal decision subsequence.

Dynamic Programming:

• When optimal decision sequences contain optimal decision subsequences,
we can establish recurrence equations, called dynamic-programming
recurrence equations that enable us to solve the problem in an efficient
way.

• Dynamic programming is based on the principle of optimality (also coined
by Bellman). The principle of optimality states that no matter whatever
the initial state and initial decision are, the remaining decision sequence
must constitute an optimal decision sequence with regard to the state
resulting from the first decision.

• The principle implies that an optimal decision sequence is comprised of
optimal decision subsequences. Since the principle of optimality may not
hold for some formulations of some problems, it is necessary to verify that
it does hold for the problem being solved. Dynamic programming cannot
be applied when this principle does not hold.

• The steps in a dynamic programming solution are:

• Verify that the principle of optimality holds. Set up the dynamic-
programming recurrence equations. Solve the dynamic-
programming recurrence equations for the value of the optimal
solution. Perform a trace back step in which the solution itself is
constructed.

• Dynamic programming differs from the greedy method since the
greedy method produces only one feasible solution, which may or
may not be optimal, while dynamic programming produces all
possible sub-problems at most once, one of which guaranteed to be
optimal. Optimal solutions to sub-problems are retained in a table,
thereby avoiding the work of recomputing the answer every time a
sub-problem is encountered

• Two difficulties may arise in any application of dynamic
programming:

• 1. It may not always be possible to combine the solutions of smaller
problems to form the solution of a larger one.

• 2.The number of small problems to solve may be un-acceptably
large.

• There is no characterized precisely which problems can be
effectively solved with dynamic programming; there are many hard
problems for which it does not seen to be applicable, as well as
many easy problems for which it is less efficient than standard
algorithms.

• A multistage graph G = (V, E) is a directed graph in which the
vertices are partitioned into k >2 disjoint sets Vi, 1 <i <k. In addition,
if <u, v> is an edge in E, then u Vi and v Vi+1 for some i, 1 <i <k.

• Let the vertex ‘s’ is the source, and ‘t’ the sink. Let c (i, j) be the cost
of edge <i, j>. The cost of a path from ‘s’ to ‘t’ is the sum of the
costs of the edges on the path.

• The multistage graph problem is to find a minimum cost path from
‘s’ to ‘t’. Each set Vi defines a stage in the graph. Because of the
constraints on E, every path from ‘s’ to ‘t’ starts in stage 1, goes to
stage 2, then to stage 3, then to stage 4, and so on, and eventually
terminates in stage k.

• A dynamic programming formulation for a k-stage graph problem is
obtained by first noticing that every stop path is the result of a
sequenceofk–2decisions.The ith

MULTI STAGE GRAPHS

Decision involves determining which vertex in vi+1, 1 <i <k - 2, is to beon the
path. Let c (i, j) be the cost of the path from source to destination. Then using
the forward approach, we obtain:

Algorithm

• Algorithm Fgraph(G, k, n,p)

• // The input is a k-stage graph G = (V, E) with n vertices

• // indexed in order or stages. E is a set of edges and c [i,j]

• // is the cost of (i, j). p [1 : k] is a minimum cost path.

• {

• cost [n] :=0.0;

• for j:= n - 1 to 1 step – 1do

• { // compute cost[j]

• let r be a vertex such that (j, r) is an edge of G and c [j, r] + cost [r] is
minimum; cost [j] := c [j, r] + cost[r];

• d [j] :=r:

• }

• p [1] := 1; p [k] :=n; // Find a minimum cost path.

• for j := 2 to k - 1 do

• p [j] := d [p [j -1]];

• }

Algorithm

• Algorithm Bgraph(G, k, n,p)

• // Same function asFgraph

• {

• Bcost [1] :=0.0;

• for j := 2 to ndo

• { // Compute Bcost[j].

• Let r be such that (r, j) is an edge of G and Bcost [r] + c [r, j] is minimum;
Bcost [j] := Bcost [r] + c [r,j];

• D [j] :=r;

• } //find a minimum costpath

• p [1] := 1; p [k] :=n;

• for j:= k - 1 to 2 do p [j] := d [p [j +1]];

• }

• Let us assume that the given set of identifiers is {a1, . . . , an} with
a1 < a2 < < an. Let p (i) be the probability with which we search
for ai. Let q (i) be the probability that the identifier x being searched
for is such that ai < x < ai+1, 0 <i <n (assume a0 = - and an+1 =
+). We have to arrange the identifiers in a binary search tree in a
way that minimizes the expected total access time.

• In a binary search tree, the number of comparisons needed to
access an element at depth 'd' is d + 1, so if 'ai' is placed at depth
'di', then we want to minimize:

OPTIMAL BINARY SEARCH

TREE(OBST)

Example 1: The possible binary search trees for the identifier set (a1, a2, a3) =
(do, if, stop) are as follows. Given the equal probabilities p (i) = Q (i) = 1/7 for

all i, we have:

• Example1:

• Let n = 4, and (a1, a2, a3, a4) = (do, if, need, while) Let P (1: 4) = (3,
3, 1, 1) and Q (0: 4) = (2, 3, 1, 1,1)

• First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 <i < 4; i
= 0, 1, 2 and 3; i < k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the
possible value for k =1

• W (0, 1) = P (1) + Q (1) + W (0, 0) = 3 + 3 + 2 =8

• C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} =8

• R (0, 1) = 1 (value of 'K' that is minimum in the above equation).
Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k =2

• W (1, 2) = P (2) + Q (2) + W (1, 1) = 3 + 1 + 3 =7

• C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} =7

• R (1, 2) =2

•

• Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k =3

• W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 =3

• C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] =3

• R (2, 3) =3

• Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k =4 W
(3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 =3

• C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] =3

• R (3, 4) =4

• Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 <i <
3; i = 0, 1, 2; i < k ≤ J. Start with i = 0; so j = 2; as i < k ≤ J, so the
possible values for k = 1 and2.

•

• W (0, 2) = P (2) + Q (2) + W (0, 1) = 3 + 1 + 8 =12

• C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2,2))}

• = 12 + min {(0 + 7, 8 + 0)} =19

• R (0, 2) =1

• Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2
and3.

•

• W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 7 =9

• C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3,3)]}

• = W (1, 3) + min {(0 + 3), (7 + 0)} = 9 + 3 =12

• R (1, 3) =2

• Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3
and 4. W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 =5

• C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4,4)]

• = 5 + min {(0 + 3), (3 + 0)} = 5 + 3 =8

• R (2, 4) =3

• Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 <i < 2; i =
0,1;

• i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1,
2 and3.

• W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 =14
• C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2,3)],
• [C (0, 2) + C (3,3)]}
• = 14 + min {(0 + 12), (8 + 3), (19 + 0)} = 14 + 11 =25
• R (0, 3) =2
• Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and4.

W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 9 =11
• C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3,4)],
• [C (1, 3) + C (4,4)]}
• = 11 + min {(0 + 8), (7 + 3), (12 + 0)} = 11 + 8 =19
• R (1, 4) =2

• Fourth, Computing all C (i, j) such that j - i = 4; j = i + 4 and as 0 <i <
1; i = 0; i < k ≤J.

• Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1,
2, 3 and4.

• W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 =16

• C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2,4)],

• [C (0, 2) + C (3, 4)], [C (0, 3) + C (4,4)]}

• = 16 + min [0 + 19, 8 + 8, 19+3, 25+0] = 16 + 16 =32

• R (0, 4) =2

• From the table we see that C (0, 4) = 32 is the minimum cost of a
binary search tree for (a1, a2, a3, a4). The root of the tree 'T04'
is'a2'.

• Hence the left sub tree is 'T01' and right sub tree is T24. The root of
'T01' is 'a1' and the root of 'T24' isa3.

• The left and right sub trees for 'T01' are 'T00' and 'T11'
respectively. The root of T01 is 'a1'

•

• The left and right sub trees for T24 are T22 and T34 respectively.
The root of T24 is'a3'.

• The root of T22 is null The root of T34 is a4.

• We are given n objects and a knapsack. Each object i has a positive weight
wi and a positive value Vi. The knapsack can carry a weight not exceeding
W. Fill the knapsack so that the value of objects in the knapsack is
optimized.

• A solution to the knapsack problem can be obtained by making a
sequence of decisions on the variables x1, x2, , xn. A decision on
variable xi involves determining which of the values 0or1 is to be assigned
to it.Let us assume that decisions on the xi are made in the order xn, xn-1,
. . . .x1. Following a decision on xn, we may be in one of two possible
states: the capacity remaining in m – wn and a profit of pn has accrued.

0/1 –KNAPSACK

It is clear that the remaining decisions xn-1, . . . , x1 must be
optimal with respect to the problem state resulting from the
decision on xn. Otherwise, xn,. . . . , x1 will not be optimal. Hence,
the principal of optimality holds.

• Solution:

• Initially, fo (x) = 0, for all x and fi (x) = - if x < 0. Fn (M) = max {fn-1
(M), fn-1 (M - wn) +pn}

• F3 (6) = max (f2 (6), f2 (6 – 4) + 5} = max {f2 (6), f2 (2) +5}

• F2 (6) = max (f1 (6), f1 (6 – 3) + 2} = max {f1 (6), f1 (3) +2}

• F1 (6) = max (f0 (6), f0 (6 – 2) + 1} = max {0, 0 + 1} =1

• F1 (3) = max (f0 (3), f0 (3 – 2) + 1} = max {0, 0 + 1} =1

• Therefore, F2 (6) = max (1, 1 + 2} =3

• F2 (2) = max (f1 (2), f1 (2 – 3) + 2} = max {f1 (2), - 0+ 2}

• F1 (2) = max (f0 (2), f0 (2 – 2) + 1} = max {0, 0 + 1} =1

• F2 (2) = max {1, - 0+ 2} =1

• Finally, f3 (6) = max {3, 1 + 5} =6

• In the all pairs shortest path problem, we are to find a shortest path
between every pair of vertices in a directed graph G. That is, for every pair
of vertices (i, j), we are to find a shortest path from i to j as well as one
from j to i. These two paths are the same when G is undirected.

• When no edge has a negative length, the all-pairs shortest path problem
may be solved by using Dijkstra’s greedy single source algorithm n times,
once with each of the n vertices as the source vertex.

• The all pairs shortest path problem is to determine a matrix A such that A
(i, j) is the length of a shortest path from i to j. The matrix A can be
obtained by solving n single-source problems using the algorithm shortest
Paths. Since each application of this procedure requires O (n2) time, the
matrix A can be obtained in O (n3) time.

All pairs shortest path

Problem

• In the all pairs shortest path problem, we are to find a shortest path
between every pair of vertices in a directed graph G. That is, for every
pair of vertices (i, j), we are to find a shortest path from i to j as well as
one from j to i. These two paths are the same when G is undirected.

• When no edge has a negative length, the all-pairs shortest path
problem may be solved by using Dijkstra’s greedy single source
algorithm n times, once with each of the n vertices as the source
vertex.

• The all pairs shortest path problem is to determine a matrix A such that
A (i, j) is the length of a shortest path from i to j. The matrix A can be
obtained by solving n single-source problems using the algorithm
shortest Paths. Since each application of this procedure requires O (n2)
time, the matrix A can be obtained in O (n3)time.

• The shortest i to j path in G, i ≠ j originates at vertex i and goes
through some intermediate vertices (possibly none) and terminates
at vertex j. If k is an intermediate vertex on this shortest path, then
the subpaths from i to k and from k to j must be shortest paths
from i to k and k to j, respectively.

• Otherwise, the i to j path is not of minimum length. So, the
principle of optimality holds. Let Ak (i, j) represent the length of a
shortest path from i to j going through no vertex of index greater
than k, we obtain:

• Ak (i, j) = {min {min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i,j)}

• 1<k<n

• Algorithm All Paths (Cost, A,n)

• // cost [1:n, 1:n] is the cost adjacency matrix of a graph which

• // n vertices; A [I, j] is the cost of a shortest path from vertex

• // i to vertex j. cost [i, i] = 0.0, for 1 <i <n.

• {

• for i := 1 to n do

• for j:= 1 to n do

• A [i, j] := cost [i,j]; // copy cost into A

• for k := 1 to n do

• for i := 1 to n do

• for j := 1 to n do

• A [i, j] := min (A [i, j], A [i, k] + A [k,j]);

• }

• General formula: min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i,j)}
• 1<k<n
• Solve the problem for different values of k = 1, 2 and3
• Step 1: Solving the equation for, k =1;
• A1 (1, 1) = min {(Ao (1, 1) + Ao (1, 1)), c (1, 1)} = min {0 + 0, 0} =0
• A1 (1, 2) = min {(Ao (1, 1) + Ao (1, 2)), c (1, 2)} = min {(0 + 4), 4} =4
• A1 (1, 3) = min {(Ao (1, 1) + Ao (1, 3)), c (1, 3)} = min {(0 + 11), 11} =11
• A1 (2, 1) = min {(Ao (2, 1) + Ao (1, 1)), c (2, 1)} = min {(6 + 0), 6} =6
• A1 (2, 2) = min {(Ao (2, 1) + Ao (1, 2)), c (2, 2)} = min {(6 + 4), 0)} =0
• A1 (2, 3) = min {(Ao (2, 1) + Ao (1, 3)), c (2, 3)} = min {(6 + 11), 2} =2
• A1 (3, 1) = min {(Ao (3, 1) + Ao (1, 1)), c (3, 1)} = min {(3 + 0), 3} =3
• A1 (3, 2) = min {(Ao (3, 1) + Ao (1, 2)), c (3, 2)} = min {(3 + 4), 0} =7
• A1 (3, 3) = min {(Ao (3, 1) + Ao (1, 3)), c (3, 3)} = min {(3 + 11), 0} =0

• Step 2: Solving the equation for, K =2;

• A2 (1, 1) = min {(A1 (1, 2) + A1 (2, 1), c (1, 1)} = min {(4 + 6), 0} = 0

• A2 (1, 2) = min {(A1 (1, 2) + A1 (2, 2), c (1, 2)} = min {(4 + 0), 4} = 4

• A2 (1, 3) = min {(A1 (1, 2) + A1 (2, 3), c (1, 3)} = min {(4 + 2), 11} =6

• A2 (2, 1) = min {(A (2, 2) + A (2, 1), c (2, 1)} = min {(0 + 6), 6} =6

• A2 (2, 2) = min {(A (2, 2) + A (2, 2), c (2, 2)} = min {(0 + 0), 0} =0

• A2 (2, 3) = min {(A (2, 2) + A (2, 3), c (2, 3)} = min {(0 + 2), 2} =2

• A2 (3, 1) = min {(A (3, 2) + A (2, 1), c (3, 1)} = min {(7 + 6), 3} =3

• A2 (3, 2) = min {(A (3, 2) + A (2, 2), c (3, 2)} = min {(7 + 0), 7} =7

• A2 (3, 3) = min {(A (3, 2) + A (2, 3), c (3, 3)} = min {(7 + 2), 0} =0

• Step 3: Solving the equation for, k =3;

• A3 (1, 1) = min {A2 (1, 3) + A2 (3, 1), c (1, 1)} = min {(6 + 3), 0} =0

• A3 (1, 2) = min {A2 (1, 3) + A2 (3, 2), c (1, 2)} = min {(6 + 7), 4} =4

• A3 (1, 3) = min {A2 (1, 3) + A2 (3, 3), c (1, 3)} = min {(6 + 0), 6} =6

• A3 (2, 1) = min {A2 (2, 3) + A2 (3, 1), c (2, 1)} = min {(2 + 3), 6} =5

• A3 (2, 2) = min {A2 (2, 3) + A2 (3, 2), c (2, 2)} = min {(2 + 7), 0} =0

• A3 (2, 3) = min {A2 (2, 3) + A2 (3, 3), c (2, 3)} = min {(2 + 0), 2} =2

• A3 (3, 1) = min {A2 (3, 3) + A2 (3, 1), c (3, 1)} = min {(0 + 3), 3} =3

• A3 (3, 2) = min {A2 (3, 3) + A2 (3, 2), c (3, 2)} = min {(0 + 7), 7} =7

• A3 (3, 3) = min {A2 (3, 3) + A2 (3, 3), c (3, 3)} = min {(0 + 0), 0} =0

• Let G = (V, E) be a directed graph with edge costs Cij. The variable cijis
defined such that cij> 0 for all I and j and cij= if < i, j>E.

• Let |V| = n and assume n > 1. A tour of G is a directed simple cycle that
includes every vertex in V. The cost of a tour is the sum of the cost of the
edges on the tour.

• The traveling sales person problem is to find a tour of minimum cost. The
tour is to be a simple path that starts and ends at vertex1.

• Let g (i, S) be the length of shortest path starting at vertex i, going through
all vertices in S, and terminating at vertex 1. The function g (1, V – {1}) is
the length of an optimal salesperson tour. From the principal of optimality
it followsthat:

• C(S, i) = min { C(S-{i}, j) + dis(j, i)} where j belongs to S, j != i and j != 1.

TRAVELLING SALES PERSON

PROBLEM

• Example1:

• For the following graph find minimum cost tour for the traveling
sales person problem:

• Clearly, g (i, 0) = ci1 , 1 ≤ i ≤ n.

• g (2, 0) = C21 =5

• g (3, 0) = C31 = 6 g (4, 0) = C41 =8

• Using equation – (2) we obtain:

• g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}, c13 + g (3, {2, 4}), c14 + g (4, {2,3})}

• g (2, {3, 4}) = min {c23 + g (3, {4}), c24 + g (4,{3})}

• = min {9 + g (3, {4}), 10 + g (4,{3})}

• g (3, {4}) = min {c34 + g (4, 0)} = 12 + 8 =20

• g (4, {3}) = min {c43 + g (3, 0)} = 9 + 6 =15

•

•

• Therefore, g (2, {3, 4}) = min {9 + 20, 10 + 15} = min {29, 25} =25

• g (3, {2, 4}) = min {(c32 + g (2, {4}), (c34 + g (4,{2})}

• g (2, {4}) = min {c24 + g (4, 0)} = 10 + 8 =18

• g (4, {2}) = min {c42 + g (2, 0)} = 8 + 5 =13

• Therefore, g (3, {2, 4}) = min {13 + 18, 12 + 13} = min {41, 25} =25

• g (4, {2, 3}) = min {c42 + g (2, {3}), c43 + g (3,{2})}

• g (2, {3}) = min {c23 + g (3, 0} = 9 + 6 =15

• g (3, {2}) = min {c32 + g (2, 0} = 13 + 5 =18

• Therefore, g (4, {2, 3}) = min {8 + 15, 9 + 18} = min {23, 27} =23

• g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}), c13 + g (3, {2, 4}), c14 + g (4,
{2,3})}= min {10 + 25, 15 + 25, 20 + 23} = min {35, 40, 43} =35

• The optimal tour for the graph has length = 35 The optimal tour is:
1, 2, 4, 3,1.

BACKTRACKING: GENERAL
METHOD

BACKTRACKING: GENERAL METHOD:

• Backtracking is used to solve problem in which a sequence
of objects is chosen from a specified set so that the
sequence satisfies some criterion. The desired solution is
expressed as an n-tuple (x1, , xn) where each xi Є S, S
being a finite set.

• The solution is based on finding one or more vectors that
maximize, minimize, or satisfy a criterion function P (x1, . . .
. . , xn). Form a solution and check at every step if this has
any chance of success. If the solution at any point seems
not promising, ignore it.

• All solutions requires a set of constraints divided into two
categories: explicit and implicit constraints.

• Definition 1: Explicit constraints are rules that restrict
each xi to take on values only from a given set. Explicit
constraints depend on the particular instance I of
problem being solved. All tuples that satisfy the explicit
constraints define a possible solution space for I.

• Definition 2: Implicit constraints are rules that
determine which of the tuples in the solution space of I
satisfy the criterion function. Thus, implicit constraints
describe the way in which the xi‟s must relate to each
other.

8-queens problem

Explicit constraints using 8-tuple formation, for this problem are
S= {1, 2, 3, 4, 5, 6, 7, 8}.

• The implicit constraints for this problem are that no two
queens can be the same (i.e., all queens must be on different
columns) and no two queens can be on the same diagonal.

• Backtracking is a modified depth first search of a tree.
Backtracking algorithms determine problem solutions by
systematically searching the solution space for the given
problem instance. This search is facilitated by using a tree
organization for the solution space.

• Backtracking is the procedure where by, after
determining that a node can lead to nothing but dead
end, we go back (backtrack) to the nodes parent and
proceed with the search on the next child.

• A backtracking algorithm need not actually create a
tree. Rather, it only needs to keep track of the values in
the current branch being investigated. This is the way
we implement backtracking algorithm. We say that the
state space tree exists implicitly in the algorithm
because it is not actually constructed.

Terminology:

• Problem state is each node in the depth first search tree.

• Solution states are the problem states „S‟ for which the
path from the root node to „S‟ defines a tuple in the
solution space.

• Answer states are those solution states for which the path
from root node to s defines a tuple that is a member of the
set of solutions.

• State space is the set of paths from root node to other
nodes. State space tree is the tree organization of the
solution space. The state space trees are called static trees.
This terminology follows from the observation that the tree
organizations are independent of the problem instance
being solved. For some problems it is advantageous to use
different tree organizations for different problem instance.

• In this case the tree organization is determined
dynamically as the solution space is being searched. Tree
organizations that are problem instance dependent are
called dynamic trees.

• Live node is a node that has been generated but whose
children have not yet been generated.

• E-node is a live node whose children are currently being explored.
In other words, an E-node is a node currently being expanded.

• Dead node is a generated node that is not to be expanded or
explored any further. All children of a dead node have already been
expanded.

• Branch and Bound refers to all state space search methods in which
all children of an E-node are generated before any other live node
can become the E-node.

• Depth first node generation with bounding functions is called
backtracking. State generation methods in which the E-node
remains the E-node until it is dead, lead to branch and bound
methods.

Planar Graphs:

• When drawing a graph on a piece of a paper, we
often find it convenient to permit edges to
intersect at points other than at vertices of the
graph. These points of interactions are called
crossovers.

• A graph G is said to be planar if it can be drawn
on a plane without any crossovers; otherwise G is
said to be non-planar i.e., A graph is said to be
planar iff it can be drawn in a plane in such a way
that no two edges cross each other.

Bipartite Graph:

A bipartite graph is a non-directed graph whose
set of vertices can be portioned into two sets
V1 and V2 (i.e. V1 U V2 = V and V1 ∩ V2 = ø)
so that every edge has one end in V1 and the
other in V2. That is, vertices in V1 are only
adjacent to those in V2 and vice- versa.

The vertex set V = {a, b, c, d, e, f} has been partitioned into V1
= {a, c, e} and V2 = {b, d, f}. The complete bipartite graph for
which V1 = n and V2 = m is denoted Kn,m.

Applications-8-Queens Problem

Applications-8-Queens Problem

• Let us consider, N = 8. Then 8-Queens Problem is to place
eight queens on an 8 x 8 chessboard so that no two
“attack”, that is, no two of them are on the same row,
column, or diagonal.

• All solutions to the 8-queens problem can be represented
as 8-tuples (x1, , x8), where xi is the column of the ith
row where the ith queen is placed.

• The explicit constraints using this formulation are Si = {1, 2,
3, 4, 5, 6, 7, 8}, 1 < i < 8. Therefore the solution space
consists of 8-tuples.

• The implicit constraints for this problem are that no two
xi‟s can be the same (i.e., all queens must be on different
columns) and no two queens can be on the same diagonal.

• Suppose two queens are placed at positions (i, j) and (k, l) Then:
• Column Conflicts: Two queens conflict if their xi values are identical.

• Diag 45 conflict: Two queens i and j are on the same 450 diagonal if:

• i – j = k – l.
• This implies, j – l = i – k

• Diag 135 conflict:
• i + j = k + l.
• This implies, j – l = k – I
• Where, j be the column of object in row i for the ith queen and l be

the column of object in row „k‟ for the kth queen.

Step 1:
• Add to the sequence the next number in the sequence 1, 2, . . . , 8

not yet used.

Step 2:
• If this new sequence is feasible and has length 8 then STOP with a

solution. If the new sequence is feasible and has length less then 8,
repeat Step 1.

Step 3:
• If the sequence is not feasible, then backtrack through the

sequence until we find the most recent place at which we can
exchange a value. Go back to Step 1.

4-queens problem

4-queens problem
• Let us see how backtracking works on the 4-queens

problem. We start with the root node as the only live
node. This becomes the E-node. We generate one
child.

• Let us assume that the children are generated in
ascending order. Thus node number 2 of figure is
generated and the path is now (1). This corresponds to
placing queen 1 on column 1. Node 2 becomes the E-
node. Node 3 is generated and immediately killed.

• The next node generated is node 8 and the path
becomes (1, 3). Node 8 becomes the E-node. However,
it gets killed as all its children represent board
configurations that cannot lead to an answer node. We
backtrack to node 2 and generate another child, node
13.

• The path is now (1, 4). The board configurations as
backtracking proceeds are as follows:

• The above figure shows graphically the steps that the
backtracking algorithm goes through as it tries to find a
solution. The dots indicate placements of a queen, which
were tried and rejected because another queen was
attacking.

• In Figure (b) the second queen is placed on columns 1 and 2
and finally settles on column 3. In figure (c) the algorithm
tries all four columns and is unable to place the next queen
on a square. Backtracking now takes place. In figure (d) the
second queen is moved to the next possible column,
column 4 and the third queen is placed on column 2. The
boards in Figure (e), (f), (g), and (h) show the remaining
steps that the algorithm goes through until a solution is
found.

Sum of Subsets

Sum of Subsets

• Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem
requires finding all subsets of wi whose sums are „m‟.

• All solutions are k-tuples, 1 ≤ k ≤ n. Explicit constraints:
• xi Є {j | j is an integer and 1 ≤ j ≤ n}.

• Implicit constraints:
• No two xi can be the same.

• The sum of the corresponding wi‟s be m.

• xi < xi+1 , 1 ≤ i < k (total order in indices) to avoid
generating multiple instances of the same subset (for
example, (1, 2, 4) and (1, 4, 2) represent the same subset).

• A better formulation of the problem is where
the solution subset is represented by an n-
tuple (x1, , xn) such that xi Є {0, 1}.

• The above solutions are then represented by
(1, 1, 0, 1) and (0, 0, 1, 1). For both the above
formulations, the solution space is 2n distinct
tuples.

• For example, n = 4, w = (11, 13, 24, 7) and m =
31, the desired subsets are (11,

• 13, 7) and (24, 7).

• The tree corresponds to the variable tuple size
formulation. The edges are labeled such that an
edge from a level i node to a level i+1 node
represents a value for xi. At each node, the
solution space is partitioned into sub - solution
spaces.

• All paths from the root node to any node in the
tree define the solution space, since any such
path corresponds to a subset satisfying the
explicit constraints.

• The possible paths are (1), (1, 2), (1, 2, 3), (1,
2, 3, 4), (1, 2, 4), (1, 3, 4), (2), (2,

• 3), and so on. Thus, the left mot sub-tree
defines all subsets containing w1, the next
sub-tree defines all subsets containing w2 but
not w1, and so on.

N-Queens Problem

N Queen Problem

• The N Queen is the problem of placing N chess
queens on an N×N chessboard so that no two
queens attack each other. For example,
following is a solution for 4 Queen problem.

• The expected output is a binary matrix which has 1s for the blocks where queens
are placed. For example following is the output matrix for above 4 queen solution.

• { 0, 1, 0, 0}
• { 0, 0, 0, 1}
• { 1, 0, 0, 0}
• { 0, 0, 1, 0}

Naive Algorithm
Generate all possible configurations of queens on board and print a configuration
that satisfies the given constraints.

• while there are untried conflagrations{ generate the next configuration if queens
don't attack in this configuration then

• { print this configuration;
• }
• }

Backtracking Algorithm

•
The idea is to place queens one by one in different columns, starting from
the leftmost column. When we place a queen in a column, we check for
clashes with already placed queens. In the current column, if we find a row
for which there is no clash, we mark this row and column as part of the
solution. If we do not find such a row due to clashes then we backtrack and
return false.

• 1) Start in the leftmost column
• 2) If all queens are placed return true
• 3) Try all rows in the current column. Do following for every tried row.
• a) If the queen can be placed safely in this row then mark this [row,

column] as part of the solution and recursively check if placing queen
here leads to a solution.

• b) If placing queen in [row, column] leads to a solution then return true.
• c) If placing queen doesn't lead to a solution then umark this [row,

column] (Backtrack) and go to step (a) to try other rows.
• 3) If all rows have been tried and nothing worked, return false to trigger

backtracking.

Implementation of Backtracking
solution

• # Python program to solve N Queen using backtracking
• global N
• N = 4
• def printSolution(board):
• for i in range(N):
• for j in range(N):
• print board[i][j],
• print
•

• # A utility function to check if a queen can # be placed on board[row][col].
Note that this # function is called when "col" queens are # already placed
in columns from 0 to col -1.

• # So we need to check only left side for # attacking queens
• def isSafe(board, row, col): # Check this row on left side
• for i in range(col):
• if board[row][i] == 1:
• return False # Check upper diagonal on left side
• for i,j in zip(range(row,-1,-1), range(col,-1,-1)):
• if board[i][j] == 1:
• return False

• # Check lower diagonal on left side
• for i,j in zip(range(row,N,1), range(col,-1,-1)):
• if board[i][j] == 1:
• return False
• return True
•

• def solveNQUtil(board, col):
• # base case: If all queens are placed # then return true
• if col >= N:
• return True
•

• # Consider this column and try placing # this queen in all rows one by one
• for i in range(N):
• if isSafe(board, i, col):
• # Place this queen in board[i][col]
• board[i][col] = 1
• # recur to place rest of the queens
• if solveNQUtil(board, col+1) == True:
• return True
• # If placing queen in board[i][col # doesn't lead to a solution, then # queen

from board[i][col]
• board[i][col] = 0
•

• # if queen can not be place in any row in # this colum col then return false
• return False
• # This function solves the N Queen problem using # Backtracking. It mainly uses

solveNQUtil() to
• # solve the problem. It returns false if queens # cannot be placed, otherwise return

true and
• # placement of queens in the form of 1s. # note that there may be more than one
• # solutions, this function prints one of the # feasible solutions.
• def solveNQ():
• board = [[0, 0, 0, 0],
• [0, 0, 0, 0],
• [0, 0, 0, 0],
• [0, 0, 0, 0]
•]
• if solveNQUtil(board, 0) == False:
• print "Solution does not exist"
• return False
• printSolution(board)
• return True
• # driver program to test above function
• solveNQ()

Applications-8-Queens Problem

• Let us consider, N = 8. Then 8-Queens Problem is to place
eight queens on an 8 x 8 chessboard so that no two
“attack”, that is, no two of them are on the same row,
column, or diagonal.

• All solutions to the 8-queens problem can be represented
as 8-tuples (x1, , x8), where xi is the column of the ith
row where the ith queen is placed.

• The explicit constraints using this formulation are Si = {1, 2,
3, 4, 5, 6, 7, 8}, 1 < i < 8. Therefore the solution space
consists of 88 8-tuples.

• The implicit constraints for this problem are that no two
xi‟s can be the same (i.e., all queens must be on different
columns) and no two queens can be on the same diagonal.

• Suppose two queens are placed at positions (i, j) and (k, l) Then:
• Column Conflicts: Two queens conflict if their xi values are identical.

• Diag 45 conflict: Two queens i and j are on the same 450 diagonal if:

• i – j = k – l.
• This implies, j – l = i – k

• Diag 135 conflict:
• i + j = k + l.
• This implies, j – l = k – I
• Therefore, two queens lie on the same diagonal if and only if:
• j - l= i – k
•
• Where, j be the column of object in row i for the ith queen and l be the

column of object in row „k‟ for the kth queen.

Step 1:
• Add to the sequence the next number in the sequence

1, 2, . . . , 8 not yet used.
Step 2:
• If this new sequence is feasible and has length 8 then

STOP with a solution. If the new sequence is feasible
and has length less then 8, repeat Step 1.

Step 3:
• If the sequence is not feasible, then backtrack through

the sequence until we find the most recent place at
which we can exchange a value. Go back to Step 1.

Graph Coloring

Graph Coloring (for planar graphs)

• Let G be a graph and m be a given positive integer. We want
to discover whether the nodes of G can be colored in such a
way that no two adjacent nodes have the same color, yet
only m colors are used. This is termed the m-colorabiltiy
decision problem.

• The m-colorability optimization problem asks for the
smallest integer m for which the graph G can be colored.

• Given any map, if the regions are to be colored in such a
way that no two adjacent regions have the same color, only
four colors are needed.

• For many years it was known that five colors were sufficient
to color any map, but no map that required more than four
colors had ever been found. After several hundred years,
this problem was solved by a group of mathematicians with
the help of a computer. They showed that in fact four colors
are sufficient for planar graphs.

• The function m-coloring will begin by first
assigning the graph to its adjacency matrix,
setting the array x [] to zero. The colors are
represented by the integers 1, 2, . . . , m and
the solutions are given by the n-tuple (x1, x2, .
. ., xn), where xi is the color of node i.

• A recursive backtracking algorithm for graph
coloring is carried out by invoking the
statement mcoloring(1);

Algorithm mcoloring (k)
• // This algorithm was formed using the recursive backtracking schema.

The graph is
• // represented by its Boolean adjacency matrix G [1: n, 1: n]. All

assignments of
• // 1, 2, , m to the vertices of the graph such that adjacent vertices

are assigned
• // distinct integers are printed. k is the index of the next vertex to color.
• {
• repeat
• { // Generate all legal assignments for x[k].
• NextValue (k); // Assign to x [k] a legal color. If (x [k] = 0) then return; // No

new color possible If (k = n) then // at most m colors have been
• // used to color the n vertices.
• write (x [1: n]);
• else mcoloring (k+1);
• } until (false);
• }

Algorithm NextValue (k)
• // x [1] , x [k-1] have been assigned integer values in the range [1, m] such

that
• // adjacent vertices have distinct integers. A value for x [k] is determined in the

range
• // [0, m].x[k] is assigned the next highest numbered color while maintaining

distinctness
• // from the adjacent vertices of vertex k. If no such color exists, then x [k] is 0.
• {
• repeat
• {
• x [k]: = (x [k] +1) mod (m+1) // Next highest color.
• If (x [k] = 0) then return; // All colors have been used for j := 1 to n do
• { // check if this color is distinct from adjacent colors if ((G [k, j] 0) and (x [k] = x

[j]))
• // If (k, j) is and edge and if adj. vertices have the same color. then break;
• }
• if (j = n+1) then return; // New color found
• } until (false); // Otherwise try to find another color.
• }

Hamiltonian Cycles

Hamiltonian Cycles

• Let G = (V, E) be a connected graph with n vertices. A
Hamiltonian cycle (suggested by William Hamilton) is a
round-trip path along n edges of G that visits every
vertex once and returns to its starting position.

• In other vertices of G are visited in the order v1, v2, . .
. . . , vn+1, then the edges (vi, vi+1) are in E, 1 < i < n,
and the vi are distinct expect for v1 and vn+1, which
are equal.

• The graph G1 contains the Hamiltonian cycle 1, 2, 8, 7,
6, 5, 4, 3, 1. The graph G2 contains no Hamiltonian
cycle.

• The backtracking solution vector (x1, xn) is
defined so that xi represents the ith visited vertex
of the proposed cycle. If k = 1, then x1 can be any
of the n vertices.

• To avoid printing the same cycle n times, we
require that x1 = 1. If 1 < k < n, then xk can be any
vertex v that is distinct from x1, x2, . . . , xk–1 and
v is connected by an edge to kx-1. The vertex xn
can only be one remaining vertex and it must be
connected to both xn-1 and x1.

• Using NextValue algorithm we can
particularize the recursive backtracking
schema to find all Hamiltonian cycles. This
algorithm is started by first initializing the
adjacency matrix G[1: n, 1: n], then setting
x[2: n] to zero and x[1] to 1, and then
executing Hamiltonian(2).

• The traveling salesperson problem using
dynamic programming asked for a tour that
has minimum cost. This tour is a Hamiltonian
cycles. For the simple case of a graph all of
whose edge costs are identical, Hamiltonian
will find a minimum-cost tour if a tour exists.

Algorithm NextValue (k)
• // x [1: k-1] is a path of k – 1 distinct vertices . If x[k] = 0, then no vertex has as yet been
• // assigned to x [k]. After execution, x[k] is assigned to the next highest numbered

vertex
• // which does not already appear in x [1 : k – 1] and is connected by an edge to x [k – 1].
• // Otherwise x [k] = 0. If k = n, then in addition x [k] is connected to x [1].
• {
• repeat
• {
• x [k] := (x [k] +1) mod (n+1); // Next vertex. If (x [k] = 0) then return;
• If (G [x [k – 1], x [k]] 0) then
• { // Is there an edge?
• for j := 1 to k – 1 do if (x [j] = x [k]) then break;
• // check for distinctness.
• If (j = k) then // If true, then the vertex is distinct. If ((k < n) or ((k = n) and G [x [n], x [1]]

0))
• then return;
• }
• } until (false);
• }

Hamiltonian Cycles

• Algorithm NextValue (k)
• // x [1: k-1] is a path of k – 1 distinct vertices . If x[k] = 0, then no

vertex has as yet been
• // assigned to x [k]. After execution, x[k] is assigned to the next

highest numbered vertex
• // which does not already appear in x [1 : k – 1] and is connected by

an edge to x [k – 1].
• // Otherwise x [k] = 0. If k = n, then in addition x [k] is connected to

x [1].
• {
• repeat
• {
• x [k] := (x [k] +1) mod (n+1); // Next vertex. If (x [k] = 0) then return;
• If (G [x [k – 1], x [k]] 0) then

• { // Is there an edge?

• for j := 1 to k – 1 do if (x [j] = x [k]) then break;

• // check for distinctness.

• If (j = k) then // If true, then the vertex is distinct.
If ((k < n) or ((k = n) and G [x [n], x [1]] 0))

• then return;

• }

• } until (false);

• }

• Algorithm Hamiltonian (k)

• // This algorithm uses the recursive
formulation of backtracking to find all the
Hamiltonian

• // cycles of a graph. The graph is stored as an
adjacency matrix G [1: n, 1: n]. All cycles begin

• // at node 1.

• {

• repeat

• { // Generate values for x [k].

• NextValue (k); //Assign a legal Next value to x
[k]. if (x [k] = 0) then return;

• if (k = n) then write (x [1: n]); else Hamiltonian
(k + 1)

• } until (false);

• }

Branch and Bound

Branch and Bound: General method:

• Branch and Bound is another method to systematically
search a solution space. Just like backtracking, we will use
bounding functions to avoid generating subtrees that do
not contain an answer node. However branch and Bound
differs from backtracking in two important manners:

• 1. It has a branching function, which can be a depth first
search, breadth first search or based on bounding function.

• 2. It has a bounding function, which goes far beyond the
feasibility test as a mean to prune efficiently the search
tree.

• Branch and Bound refers to all state space search methods
in which all children of the E-node are generated before
any other live node becomes the E-node

• Branch and Bound is the generalization of both graph
search strategies, BFS and D- search.

• A BFS like state space search is called as FIFO (First in first
out) search as the list of live nodes in a first in first out list
(or queue).

• A D search like state space search is called as LIFO (Last in
first out) search as the list of live nodes in a last in first out
(or stack).

• Definition 1: Live node is a node that has been generated but whose
children have not yet been generated.

• Definition 2: E-node is a live node whose children are currently being
explored. In other words, an E-node is a node currently being expanded.

• Definition 3: Dead node is a generated node that is not to be expanded or
explored any further. All children of a dead node have already been
expanded.

• Definition 4: Branch-an-bound refers to all state space search methods in
which all children of an E-node are generated before any other live node
can become the E-node.

• Definition 5: The adjective "heuristic", means" related to improving
problem solving performance".

• As a noun it is also used in regard to "any method or
trick used to improve the efficiency of a problem
solving problem". But imperfect methods are not
necessarily heuristic or vice versa. "A heuristic
(heuristic rule, heuristic method) is a rule of thumb,
strategy, trick simplification or any other kind of device
which drastically limits search for solutions in large
problem spaces.

• Heuristics do not guarantee optimal solutions, they do
not guarantee any solution at all. A useful heuristic
offers solutions which are good enough most of the
time.

Least Cost (LC) search:

• In both LIFO and FIFO Branch and Bound the selection rule for the next E-
node in rigid and blind. The selection rule for the next E-node does not
give any preference to a node that has a very good chance of getting the
search to an answer node quickly.

• The search for an answer node can be speeded by using an “intelligent”
ranking Function c(.) for live nodes. The next E-node is selected on the
basis of this ranking function. The node x is assigned a rank using:

• c (x) = f(h(x)) + g (x)

• where, c (x) is the cost of x.

• h(x) is the cost of reaching x from the root and f(.) is any non-decreasing
function.

• g (x) is an estimate of the additional effort needed to reach an answer
node from x.

• A search strategy that uses a cost function c (x) = f(h(x) + g (x) to select
the next E-node would always choose for its next E-node a live node with
least LC–search (Least Cost search)

• c(.) is called a BFS and D-search are special cases of LC-search.

• If g(x) = 0 and f(h(x)) = level of node x, then an LC search generates
nodes by levels. This is eventually the same as a BFS. If f(h(x)) = 0 and
essentially a D-search.

• g (x) > g (y) whenever y is a child of x, then the search is An LC-search
coupled with bounding functions is called an LC-branch and bound search

• We associate a cost c(x) with each node x in the state space tree. It is not
possible to easily compute the function c(x). So we compute a estimate c (
x) of c(x).

Control Abstraction for LC-Search:

• Let t be a state space tree and c() a cost function for the nodes in t.
If x is a node in t, then c(x) is the minimum cost of any answer node
in the subtree with root x. Thus, c(t) is the cost of a minimum-cost
answer node in t.

• A heuristic c (.) is used to estimate c(). This heuristic should be easy
to compute and

• generally has the property that if x is either an answer node or a
leaf node, then c(x) =c(x).

• LC-search uses c to find an answer node. The algorithm uses two
functions Least() and Add() to delete and add a live node from or to
the list of live nodes, respectively.

• Least() finds a live node with least c(). This node is deleted from the
list of live nodes and returned.

• Add(x) adds the new live node x to the list of live
nodes. The list of live nodes be implemented as a min-
heap.

• Algorithm LCSearch outputs the path from the answer
node it finds to the root node t. This is easy to do if
with each node x that becomes live, we associate a
field parent which gives the parent of node x. When
the answer node g is found, the path from g to t can be
determined by following a sequence of parent values
starting from the current E-node (which is the parent
of g) and ending at node t.

• Listnode = record

• {

• Listnode * next, *parent; float cost;

• }

• Algorithm LCSearch(t)
• { //Search t for an answer node
• if *t is an answer node then output *t and return; E := t; //E-node.
• initialize the list of live nodes to be empty; repeat
• {
• for each child x of E do
• {
• if x is an answer node then output the path from x to t and return; Add (x);

//x is a new live node.
• (x à parent) := E; // pointer for path to root
• }
• if there are no more live nodes then
• {
• write (“No answer node”); return;
• }
• E := Least();
• } until (false);
• }
•

• The root node is the first, E-node. During the execution of
LC search, this list contains all live nodes except the E-node.
Initially this list should be empty. Examine all the children
of the E-node, if one of the children is an answer node,
then the algorithm outputs the path from x to t and
terminates. If the child of E is not an answer node, then it
becomes a live node. It is added to the list of live nodes and
its parent field set to E.

• When all the children of E have been generated, E becomes
a dead node. This happens only if none of E‟s children is an
answer node. Continue the search further until no live
nodes found. Otherwise, Least(), by definition, correctly
chooses the next E-node and the search continues from
here.

• LC search terminates only when either an
answer node is found or the entire state space
tree has been generated and searched.

Bounding

Bounding

• A branch and bound method searches a state space tree using any search
mechanism in which all the children of the E-node are generated before
another node becomes the E-node. We assume that each answer node x
has a cost c(x) associated with it and that a minimum-cost answer node is
to be found. Three common search strategies are FIFO, LIFO, and LC. The
three search methods differ only in the selection rule used to obtain the
next E-node.

•

• A good bounding helps to prune efficiently the tree, leading to a faster
exploration of the solution space.

•

• A cost function c(.) such that c (x) < c(x) is used to provide lower
bounds on solutions obtainable from any node x. If upper is an upper
bound on the cost of a minimum-cost solution, then all live nodes x with
c(x) >c (x) > upper. The starting value for upper can be obtained by some
heuristic or can be set to ∞

• As long as the initial value for upper is not less than the cost of a
minimum-cost answer node, the above rules to kill live nodes will
not result in the killing of a live node that can reach a minimum-
cost answer node. Each time a new answer node is found, the value
of upper can be updated.

•

• Branch-and-bound algorithms are used for optimization problems
where, we deal directly only with minimization problems. A
maximization problem is easily converted to a minimization
problem by changing the sign of the objective function.

•

• To formulate the search for an optimal solution for a least-cost
answer node in a state space tree, it is necessary to define the cost
function c(.), such that c(x) is minimum for all nodes representing
an optimal solution. The easiest way to do this is to use the
objective function itself for c(.).

• For nodes representing feasible solutions, c(x) is the value of the
objective function for that feasible solution.

• For nodes representing infeasible solutions

• For nodes representing partial solutions, c(x) is the cost of the
minimum-cost node in the subtree with root x.

• Since, c(x) is generally hard to compute, the branch-and-bound
algorithm will use an estimate c (x) such that c (x) < c(x) for all x.

• The 15 – Puzzle Problem:

• The 15 puzzle is to search the state space for the goal state and use the
path from the initial state to the goal state as the answer. There are 16!
(16! ≈ 20.9 x 1012) different arrangements of the tiles on the frame.

• As the state space for the problem is very large it would be worthwhile to
determine whether the goal state is reachable from the initial state.
Number the frame positions 1 to 16.

•

• Position i is the frame position containing title numbered i in the goal
arrangement of Figure 8.1(b). Position 16 is the empty spot. Let position(i)
be the position number in the initial state of the title number i. Then
position(16) will denote the position of the empty spot.

• For any state let: less(i) be the number of tiles j such that j < i and
position(j) > position(i).

• The goal state is reachable from the initial state iff

• LC Search for 15 Puzzle Problem:
• A depth first state space tree generation will result in the subtree of Figure

8.3 when the next moves are attempted in the order: move the empty
space up, right, down and left. The search of the state space tree is blind.
It will take the leftmost path from the root regardless of the starting
configuration. As a result, the answer node may never be found.

• A breadth first search will always find a goal node nearest to the root.
However, such a search is also blind in the sense that no matter what the
initial configuration, the algorithm attempts to make the same sequence
of moves.

• We need a more intelligent search method. We associate a cost c(x) with
each node x in the state space tree. The cost c(x) is the length of a path
from the root to a nearest goal node in the subtree with root x. The easy
to compute estimate c (x) of c(x) is as follows:

• c (x) = f(x) + g (x)
• where, f(x) is the length of the path from the root to node x and
• g (x) is an estimate of the length of a shortest path from x to a goal node in the

subtree with root x. Here, g (x) is the number of nonblank tiles not in their goal
position.

•

• An LC-search of Figure 8.2, begin with the root as the E-node and generate all child
nodes 2, 3, 4 and 5. The next node to become the E-node is a live node with least

• c (x).
• c (2) = 1 + 4 = 5
• c (3) = 1 + 4 = 5
• c (4) = 1 + 2 = 3 and
• c(5) = 1 + 4 = 5.
• Node 4 becomes the E-node and its children are generated. The live nodes at this

time are 2, 3, 5, 10, 11 and 12. So:
• c(10) = 2 + 1 = 3
• c (11) = 2 + 3 = 5 and
• c (12) = 2 + 3 = 5.

• The live node with least cis node 10. This
becomes the next E-node. Nodes 22 and 23
are generated next. Node 23 is the goal node,
so search terminates.

• LC-search was almost as efficient as using the
exact function c(), with a suitable choice for c
(), LC-search will be far more selective than
any of the other search methods.

0/1 Knapsack

0/1 Knapsack:

• Given n positive weights wi, n positive profits
pi, and a positive number m that is the
knapsack capacity, the problem calls for
choosing a subset of the weights such that:

• The xi‟s constitute a zero–one-valued vector.

• The solution space for this problem consists of the 2n
distinct ways to assign zero or one values to the xi‟s.

• Bounding functions are needed to kill some live nodes
without expanding them. A good bounding function for
this problem is obtained by using an upper bound on
the value of the best feasible solution obtainable by
expanding the given live node and any of its
descendants. If this upper bound is not higher than the
value of the best solution determined so far, than that
live node can be killed.

• We continue the discussion using the fixed
tuple size formulation. If at node Z the values
of xi, 1 < i < k, have already been determined,
then an upper bound for Z can be obtained by
relaxing the requirements xi = 0 or 1.

• (Knapsack problem using backtracking is
solved in branch and bound chapter)

•

• 0/1 Knapsack Problem
• Consider the instance: M = 15, n = 4, (P1, P2, P3, P4) = (10, 10, 12, 18) and
• (w1, w2, w3, w4) = (2, 4, 6, 9).
• 0/1 knapsack problem can be solved by using branch and bound

technique. In this problem we will calculate lower bound and upper bound
for each node.

• Place first item in knapsack. Remaining weight of knapsack is 15 – 2 = 13.
Place next item w2 in knapsack and the remaining weight of knapsack is
13 – 4 = 9. Place next item w3 in knapsack then the remaining weight of
knapsack is 9 – 6 = 3. No fractions are allowed in calculation of upper
bound so w4 cannot be placed in knapsack.

• Profit = P1 + P2 + P3 = 10 + 10 + 12
• So, Upper bound = 32
• To calculate lower bound we can place w4 in knapsack since fractions are

allowed in calculation of lower bound.

• Lower bound = 10 + 10 + 12 + (3 X 18) = 32 + 6 = 38
•

• Knapsack problem is maximization problem but branch and
bound technique is applicable for only minimization
problems. In order to convert maximization problem into
minimization problem we have to take negative sign for
upper bound and lower bound.

• Therefore, Upper bound (U) = -32
• Lower bound (L) = -38
• We choose the path, which has minimum difference of

upper bound and lower bound. If the difference is equal
then we choose the path by comparing upper bounds and
we discard node with maximum upper bound.

•

• Now we will calculate lower bound and upper bound of node 4 and
5. Calculate difference of lower and upper bound of nodes 4 and 5.

• For node 8, U – L = -38 + 38 = 0
• For node 9, U – L = -20 + 20 = 0
• Here the difference is same, so compare upper bounds of nodes 8

and 9. Discard the node, which has maximum upper bound. Choose
node 8, discard node 9 since, it has maximum upper bound.

• Consider the path from 1 -> 2 -> 4 ->7 -> 8
• X1 = 1
• X2 = 1
• X3 = 0
• Now we will calculate lower bound and upper bound of node 4 and

5. Calculate difference of lower and upper bound of nodes 4 and 5.
• For node 8, U – L = -38 + 38 = 0
• For node 9, U – L = -20 + 20 = 0
•

• Here the difference is same, so compare upper bounds of nodes 8
and 9. Discard the node, which has maximum upper bound. Choose
node 8, discard node 9 since, it has maximum upper bound.

• Consider the path from 1 -> 2 -> 4 ->7 -> 8
• X1 = 1
• X2 = 1
• X3 = 0
•

• X4 = 1
• The solution for 0/1 Knapsack problem is (x1, x2, x3, x4) = (1, 1, 0, 1)

Maximum profit is:
• Pi xi = 10 x 1 + 10 x 1 + 12 x 0 + 18 x 1
• = 10 + 10 + 18 = 38.

• KNAPSACK PROBLEM

• •N items of known weights wi and values vi, i=1,2,….n

• •Knapsack capacity W =10 •

• Item Weight Value Value/Weight

• 1 4 $40 10

• 2 7 $42 6

• 3 5 $25 5

• 4 3 $12 4

Traveling Sale Person (TSP) using
Backtracking

Traveling Sale Person (TSP) using
Backtracking

• We have solved TSP problem using dynamic
programming. In this section we shall solve
the same problem using backtracking..

Traveling Salesman Problem

• For each city i, 1 <= i <=n, find the sum of the
distances from city i to the two nearest cities.

• Compute the sum s of these n numbers

• Divide the result by 2

• If all the distances are integers, round up the
result to the nearest integer • lb = * s/2 +

The solution space tree, similar to the n-queens
problem is as follows

• We will assume that the starting node is 1 and the ending
node is obviously 1. Then 1, {2, … ,4}, 1 forms a tour with
some cost which should be minimum. The vertices shown
as {2, 3, …. ,4} forms a permutation of vertices which
constitutes a tour. We can also start from any vertex, but
the tour should end with the same vertex.

• Since, the starting vertex is 1, the tree has a root node R
and the remaining nodes are numbered as depth-first
order. As per the tree, from node 1, which is the live node,
we generate 3 braches node 2, 7 and 12.

• We simply come down to the left most leaf node 4, which
is a valid tour {1, 2, 3, 4, 1} with cost 30 + 5 + 20 + 4 = 59.
Currently this is the best tour found so far and we backtrack
to node 3 and to 2, because we do not have any children
from node 3.

• When node 2 becomes the E- node, we generate
node 5 and then node 6. This forms the tour {1, 2,
4, 3, 1} with cost 30 + 10 + 20 + 6 = 66 and is
discarded, as the best tour so far is 59.

• Similarly, all the paths from node 1 to every leaf
node in the tree is searched in a depth first
manner and the best tour is saved. In our
example, the tour costs are shown adjacent to
each leaf nodes. The optimal tour cost is
therefore 25.

Traveling Sale Person (TSP) using
Backtracking

Traveling Sale Person

Procedure for solving traveling sale person problem:
• 1. Reduce the given cost matrix. A matrix is reduced if every row

and column is reduced. A row (column) is said to be reduced if it
contain at least one zero and all-remaining entries are non-
negative. This can be done as follows:

• a) Row reduction: Take the minimum element from first row,
subtract it from all elements of first row, next take minimum
element from the second row and subtract it from second row.
Similarly apply the same procedure for all rows.

• b) Find the sum of elements, which were subtracted from rows.

• c) Apply column reductions for the matrix obtained after row
reduction.

• Column reduction: Take the minimum element from first column,
subtract it from all elements of first column, next take minimum
element from the second column and subtract it from second
column. Similarly apply the same procedure for all columns.

• d) Find the sum of elements, which were subtracted from columns.

• e) Obtain the cumulative sum of row wise reduction and column
wise reduction.

• Cumulative reduced sum = Row wise reduction sum + column wise
reduction sum.

• Associate the cumulative reduced sum to the starting state as lower
bound and ∞ as upper bound.

• 3. Repeat step 2 until all nodes are visited.

FIFO Branch and Bound

FIFO Branch and Bound

• FIFO branch-and-bound algorithm for the job sequencing problem can
begin with upper = α as an upper bound on the cost of a minimum-cost
answer node.

•

• Starting with node 1 as the E-node and using the variable tuple size
formulation of Figure 8.4, nodes 2, 3, 4, and 5 are generated. Then u(2) =
19, u(3) = 14, u(4) =18, and u(5) = 21.

• The variable upper is updated to 14 when node 3 is generated. Since c(4)
and c(5) are greater than upper, nodes 4 and 5 get killed. Only nodes 2
and 3 remain alive.

• Node 2 becomes the next E-node. Its children, nodes 6, 7 and 8 are
generated.

• Then u(6) = 9 and so upper is updated to 9. The cost gets killed. Node 8 is
infeasible and so it is killed.

• c(7) = 10 > upper and node 7

• Next, node 3 becomes the E-node. Nodes 9 and
10 are now generated. Then u(9) =8 and so upper
becomes 8.

• The cost c(10) = 11 > upper, and this node is
killed.

• The next E-node is node 6. Both its children are
infeasible. Node 9‟s only child is also infeasible.
The minimum-cost answer node is node 9. It has
a cost of 8.

•

• When implementing a FIFO branch-and-bound
algorithm, it is not economical to kill live nodes
with c(x) > upper each time upper is updated.
This is so because live nodes are in the queue in
the order in which they were generated.

• Hence, nodes with c(x) with > upper are
distributed in some random way in the queue.
Instead, live nodes c(x) > upper can be killed
when they are about to become E-nodes.

LC Branch and Bound

• An LC Branch-and-Bound search of the tree of Figure 8.4
will begin with upper = ∞ and node 1 as the first E-node.

• When node 1 is expanded, nodes 2, 3, 4 and 5 are
generated in that order.

• As in the case of FIFOBB, upper is updated to 14 when node
3 is generated and nodes 4 and 5 are killed as c(4) > upper
and c(5) > upper.

• Node 2 is the next E-node as c(2) = 0 and c(3) = 5. Nodes 6,
7 and 8 are generated and upper is updated to 9

• when node 6 is generated. So, node 7 is killed as c(7) = 10 > upper.
Node 8 is infeasible and so killed. The only live nodes now are
nodes 3 and 6.

• Node 6 is the next E-node as c(6) = 0 < c(3) . Both its children are
infeasible.

• Node 3 becomes the next E-node. When node 9 is generated, upper
is updated to 8 as u(9) = 8. So, node 10 with

• c(10) = 11 is killed on generation. Node 9 becomes the next E-node.
Its only child is infeasible. No live nodes remain. The search
terminates with node 9 representing the minimum-cost answer
node. 2 3

• The path = 1 -> 3 -> 9 = 5 + 3 = 8

NP-Hard and NP-Complete problems:
Basic concepts

Basic concepts

In Computer Science, many problems are solved where the objective is

to maximize or minimize some values, where as in other problems we try

to find whether there is a solution or not. Hence, the problems can be

categorized as follows.

Basic concepts

Optimization Problem

Optimization problems are those for which the objective is to maximize or
minimize some values. For example,
Finding the minimum number of colors needed to color a given
graph.Finding the shortest path between two vertices in a graph.

Decision Problem
There are many problems for which the answer is a Yes or a No. These
types of problems are known as decision problems. For example,Whether
a given graph can be colored by only 4-colors.
Finding Hamiltonian cycle in a graph is not a decision problem, whereas
checking a graph is Hamiltonian or not is a decision problem.

Basic concepts

P-Class
The class P consists of those problems that are solvable in
polynomial time, i.e. these problems can be solved in time O(nk) in
worst-case, where k is constant.
These problems are called tractable, while others are
called intractable or superpolynomial.
Formally, an algorithm is polynomial time algorithm, if there exists a
polynomial p(n) such that the algorithm can solve any instance of
size n in a time O(p(n)).

Basic concepts

NP-Class
The class NP consists of those problems that are verifiable in polynomial
time. NP is the class of decision problems for which it is easy to check the
correctness of a claimed answer, with the aid of a little extra information.
Hence, we aren’t asking for a way to find a solution, but only to verify that
an alleged solution really is correct.
Every problem in this class can be solved in exponential time using
exhaustive search.

P versus NP
Every decision problem that is solvable by a deterministic polynomial time
algorithm is also solvable by a polynomial time non-deterministic
algorithm.
All problems in P can be solved with polynomial time algorithms, whereas
all problems in NP - P are intractable.

•

Non-deterministic algorithms

Non-deterministic algorithms

As we have seen, a state space is a useful abstraction in analyzing

problems. The value of the abstraction is that it provides a particular

kind of modularization: One can consider separately the space to be

searched and the algorithm used to search it.

However, as algorithms become complex, the language of states and

operators quickly becomes too inexpressive and awkward. What is

needed is a representation that combines the abstraction of a state

space with the expressivity of a procedural programming language. This

is achieved in the notion of a non-deterministic algorithm.

Non-deterministic algorithms

The language of non-deterministic algorithms consists of six reserved
words: choose, pick, fail, succeed, either/or . These are defined as follows:
choose X satisfying P(X). Consider alternatively all possible values of X that satisfy
P(X), and proceed in the code. One can imagine the code as forking at this point,
with a separate thread for each possible value of X. If any of the threads succeed,
then the choice succeeds. If a choose operator in thread T generates subthreads
T1 ... Tk, then T succeeds just if at least one of T1 ... Tk succeeds.
If thread T reaches the statement "choose X satisfying P(X)" and there is no X that
satisfied P(X), then T fails.
pick X satisfying P(X). Find any value V that satisfies P(V) and assign X := V. This
does not create a branching threads.
fail The current thread fails.
succeed The current thread succeeds and terminates.
either S1 or S2 or S3 ... or Sk. Analogous to choose. Create k threads T1 ... Tk
where thread Ti executes statement Si and continues.

Some examples
General comment on pseudo-code: I use a combination of the notations I like
in Pascal, C, and Ada, together with English. I hope it's clear enough. In
particular, the labelling of procedure parameters as "in", "out", and "in/out" is
taken from Ada. Following Pascal, assignment is notated := and equality is
notated =. I declare variables only when I feel like it.
N Queens problem
Place N queens on an NxN board so that no two queens can take one another.
function attacked(in I,J,B) : returns boolean;{ attack = false; for K := 1 to I-1 do
if ((B[K] = J) or ((B[K]-J)=(K-I)) or ((B[K]-J)=(I-K)) then attack = true;
return(attack);} N-QUEENS1(in N : integer; out B : array[1..N] of integer) /*
B[I] = the row of the queen in the Ith column. -1 initially */ { B := -1; for I := 1
to N do { choose J in 1..N such that not attacked(I,J,B) B[I]=J; }

Non-deterministic algorithms

} N-QUEENS1 above fills in the board left to right. Using "pick" we can
generalize that to fill in columns in arbitrary order, to be chosen by the
implementor.
function attacked(in I,J,B) : returns boolean;{ attack = false; for K := 1 to
N do if ((B[K] != -1) and ((B[K] = J) or ((B[K]-J)=(K-I)) or ((B[K]-
J)=(I-K))) then attack = true; return(attack);} N-QUEENS2(in N :
integer; out B : array[1..N] of integer) /* B[I] = the row of the queen in
the Ith column. -1 initially */ { B := -1; for K := 1 to N do { pick I in
1..N such that B[I]=-1; choose J such that not attacked(I,J,B) B[I]=J;
}}

Non-deterministic algorithms

The classes NP - Hard and NP complete

The classes NP - Hard and NP
complete

If an NP-hard problem can be solved in polynomial time, then all NP-
complete problems can be solved in polynomial time.
All NP-complete problems are NP-hard, but all NP- hard problems are
not NP-complete.

The class of NP-hard problems is very rich in the sense that it contains
many problems from a wide variety of disciplines.

The classes NP - Hard and
NP complete

P: The class of problems which can be solved by a deterministic
polynomial algorithm.
NP: The class of decision problem which can be solved by a non-
deterministic polynomial algorithm.

NP-hard: The class of problems to which every NP problem reduces
NP-complete (NPC): the class of problems which are NP-hard and belong
to NP. NP-Competence
How we would you define NP-Complete
They are the “hardest” problems in NP

The classes NP - Hard and
NP complete

The classes NP - Hard and
NP complete

Nondeterministic algorithms:

A non deterministic algorithm consists of Phase 1: Guessing

Phase 2: Checking

The classes NP - Hard and
NP complete

If the checking stage of a non deterministic algorithm is of polynomial
time- complexity, then this algorithm is called an NP (nondeterministic
polynomial) algorithm.
NP problems : (must be decision problems)
–e.g. searching, MST Sorting
Satisfy ability problem (SAT) travelling salesperson problem (TSP)
Example of a non deterministic algorithm
// The problem is to search for an element x //
// Output j such that A(j) =x; or j=0 if x is not in A // j choice (1 :n)
if A(j) =x then print(j) ; success endif print (‘0’) ; failure
complexity 0(1);
Non-deterministic decision algorithms generate a zero or one as their
output.
Deterministic search algorithm complexity is n.

The classes NP - Hard and
NP complete

The classes NP - Hard and NP
complete

Satisfiability:

Letx1, x2, x3…. xn denotes Boolean variables.
Let xi denotes the relation of xi.
A literal is either a variable or its negation.
A formula in the prepositional calculus is an expression that can be constructed
using literals and the operators and ^ or v.
A clause is a formula with at least one positive literal.
The satisfy ability problem is to determine if a formula is true for some
assignment of truth values to the variables.
It is easy to obtain a polynomial time non determination algorithm that
terminates s successfully if and only if a given prepositional formula E(x1,
x2……xn) is satiable.
Such an algorithm could proceed by simply choosing (non deterministically)
one of the 2n possible assignment so f truth values to (x1, x2…xn) and verify
that E(x1,x2…xn) is true for that assignment.

The classes NP - Hard and
NP complete

•The satisfy ability problem:
The logical formula:
x1v x2 v x3 & -x1 & -x2
the assignment : x1 ← F , x2 ← F , x3 ← T will make the above
formula true . (-x1, -x2, x3) represents x1 ← F, x2 ← F, x3 ← T
If there is at least one assignment which satisfies a formula, then we
say that this formula is satisfiable; otherwise, it is un satisfiable.
An un satisfiable formula:

x1vx2 &x1v-x2 &-x1vx2 &-x1v-x2

The classes NP - Hard and
NP complete

Some NP-hard Graph Problems

The strategy to show that a problem L2 is NP-hard is
•Pick a problem L1 already known to be NP-hard.
•Show how to obtain an instance I1 of L2m from any instance I of
L1 such that from the solution of I1 We can determine (in
polynomial deterministic time) thesolutiontoinstanceIofL1
•Conclude from (ii) that L1L2.
•Conclude from (1),(2), and the transitivity of that Satisfiability L1
L1L2 Satisfiability L2 L2is NP-hard

The classes NP - Hard and
NP complete

Examples:

CNF-Satisfy ability with at most three literals per clause is NP-hard. If each
clause is restricted to have at most two literals then CNF-satisfy ability is
polynomial solvable. Generating optimal code for a parallel assignment
statement is NP-hard, However if the expressions are restricted to be
simple variables, then optimal code can be generated in polynomial time.

Generating optimal code for level one directed a-cyclic graphs is NP-hard
but optimal code for trees can be generated in polynomial time.

Determining if a planner graph is three color able is NP-Hard

NP Hard Problems

NP Hard Problems

Some NP-hard Graph Problems
ThestrategytoshowthataproblemL2isNP-hardis

•Pick a problem L1 already known to be NP-hard.

•Show how to obtain an instance I1 of L2m from any instance I

of L1 such that from the solution of I1 We can determine (in

polynomial deterministic time) thesolutiontoinstanceIofL1

•Conclude from (ii) that L1L2.

•Conclude from (1),(2), and the transitivity of that Satisfiability

L1 L1L2

Satisfiability L2 L2is NP-hard

NP Hard Problems

Chromatic Number Decision Problem (CNP)
A coloring of a graph G = (V,E) is a function f : V □ , 1,2, …, k- i V

If (U, V) E then f(u) f(v).

The CNP is to determine if G has a coloring for a given K.

Satisfiability with at most three literals per clause chromatic number

problem. CNP is NP-hard.

Directed Hamiltonian Cycle(DHC)

Let G=(V,E) be a directed graph and length n=1V1

TheDHCisacyclethatgoesthrougheveryvertexexactlyonceandthenreturnst

othestartingv ertex.

The DHC problem is to determine if G has a directed Hamiltonian Cycle.

Theorem: CNF (Conjunctive Normal Form) satisfiability DHC DHC is NP-

hard.

NP Hard Problems

Travelling Salesperson Decision Problem (TSP) :

The problem is to determine if a complete directed graph G = (V,E) with

edge costs C(u,v) has a tour of cost at most M.

Theorem: Directed Hamiltonian Cycle (DHC) TSP

But from problem (2) satisfiability DHC Satisfiability TSP TSP is NP-hard.

NP Hard Problems

NP Hard Problems

NP Hard Problems

NP-Hard Problems:
‘Efficient’ Problems
A long time ago1, theoretical computer scientists like Steve Cook
and Dick Karp decided that a minimum requirement of any
efficient algorithm is that it runs in polynomial time: O(nc) for
some constant c. People recognized early on that not all problems
can be solved this quickly, but we had a hard time figuring out
exactly which ones could and which ones couldn’t. So Cook, Karp,
and others, defined the class of NP-hard problems, which most
people believe cannot be solved in polynomial time, even though
nobody can prove a super-polynomial lower bound.

NP Hard Problems

Circuit satisfiability is a good example of a problem that we don’t know

how to solve in poly- nomial time. In this problem, the input is a

boolean circuit : a collection of and, or, and not gates connected by

wires. We will assume that there are no loops in the circuit (so no delay

lines or flip-flops). The input to the circuit is a set of m boolean

(true/false) values x1, . . . , xm. The output is a single boolean value.

Given specific input values, we can calculate the output in polynomial

(actually, linear) time using depth-first-search and evaluating the output

of each gate in constant time.

NP Hard Problems

The circuit satisfiability problem asks, given a
circuit, whether there is an input that makes the
circuit output True, or conversely, whether the
circuit always outputs False. Nobody knows how
to solve this problem faster than just trying all
2m possible inputs to the circuit, but this requires
exponential time. On the other hand, nobody has
ever proved that this is the best we can do;
maybe there’s a clever algorithm that nobody has
discovered yet!

NP Hard Problems

An and gate, an or gate, and a not gate.

A boolean circuit. Inputs enter from the left, and
the output leaves to the right.

Clique decision problem

Clique Decision Problem

The Clique Problem:

Cliques:

Suppose that G is an undirected graph. Say that a set S of vertices

of G form a clique if each vertex in S is adjacent to each other

vertex in S.

Clique Decision Problem

The Clique Problem
The clique problem is as follows.
Input. An undirected graph G and a positive integer K.
Question. Does G have a clique of size at least K?
Let's look at the same example graph that was used earlier for the
Vertex Cover and Independent Set problems, where G1 has vertices
{1, 2, 3, 4, 5, 6, 7, 8, 9}
and its edges are
{1, 2},{1, 4},{1, 6},{1, 8},{2, 3},{3, 4},{4, 5},
{5, 6},{6, 7},{7, 8},{8, 9},{2, 9}.

http://www.cs.ecu.edu/karl/6420/spr16/Notes/NP/np.html

We saw that {2, 4, 6, 8} is an independent set in G1, which means that
{2, 4, 6, 8} is a clique in G1. But what about a clique in G1?
A largest clique in G1 is {1,2}, having just two vertices.
But look at graph G2 with vertices {1, 2, 3, 4, 5, 6, 7, 8} and edges
{1, 2},{1, 6},
{1, 7},{1, 8},
{2, 3},{2, 5},
{2, 6},{3, 5},
{3, 6},{4, 5},
{4, 6},{5, 6},
{7, 8}.
Does G2 have a clique of size 3? Yes: {1, 7, 8}. But what about a clique of
size 4?

Clique Decision Problem

• An idea for finding large cliques
Here is an idea for finding a large clique.
The degree of a vertex v is the number of edges that are connected to v.
To find a clique of G:
Suppose that G has n vertices.
Find a vertex v of the smallest possible degree in G.
If the degree of v is n − 1, stop; G is a clique, so the largest clique
in G has size n.
Otherwise, remove v and all of its edges from G. Find the largest clique
in the smaller graph. Report that as the largest clique in G.

Clique Decision Problem

• How to test a program
It consists of two phases.

1. Debugging is detection and correction of errors.
2. Profiling or performance measurement is the actual amount of
time required by the program to compute the result.

Clique Decision Problem

Chromatic number decision problem

Chromatic number decision
problem

The chromatic number decision problem is

defined as follows:

We are given a graph G = (V, E). For each vertex, relate it with a color in

such a way that if two vertices are connected by an edge, then these

two vertices must be related with different colors. The chromatic

number decision problem is to find the least possible number of colors

to color the vertices of the given graph.

Chromatic number decision
problem

• Types of Graphs with their respective chromatic
numbers:
Cycle Graph: Examples

•

Cycle Graph Chromatic Number: 2 colors if number of vertices is
even
3 colors if number of vertices is odd

Chromatic number decision
problem

• Planar Graph:
In planar graphs, the edges do not cross (except at a vertex). Planar
graphs are widely used to represent maps.

Examples:

• Planar Graph Chromatic Number: Less than or equal to 4

•Complete Graph:
In a complete graph, each vertex is connected to every other
vertex by an edge.

Examples:

•Complete Graph Chromatic Number: Equals to the number of
vertices of the given complete graph.

Chromatic number decision
Problem

Cook's theorem

Cook's theorem

Stephen Cook presented four theorems in his paper “The

Complexity of Theorem Proving Procedures”. These theorems are

stated below. We do understand that many unknown terms are

being used in this chapter, but we don’t have any scope to discuss

everything in detail.

Following are the four theorems by Stephen Cook −

Theorem-1

If a set S of strings is accepted by some non-deterministic Turing

machine within polynomial time, then S is P-reducible to {DNF

tautologies}.

Cook's theorem

Theorem-2

The following sets are P-reducible to each other in pairs (and hence

each has the same polynomial degree of difficulty): {tautologies}, {DNF

tautologies}, D3, {sub-graph pairs}.

Theorem-3

For any TQ(k) of type Q, TQ(k)k√(logk)2TQ(k)k(logk)2 is unbounded

There is a TQ(k) of type Q such that TQ(k)⩽2k(logk)2TQ(k)⩽2k(logk)2

Cook's theorem

Theorem-4
If the set S of strings is accepted by a non-deterministic machine within

time T(n) = 2n, and if TQ(k) is an honest (i.e. real-time countable)

function of type Q, then there is a constant K, so S can be recognized by

a deterministic machine within time TQ(K8n).

Cook's theorem

Cook's theorem
Cook’s Theorem

Cook’s Theorem states that Any NP problem can be converted to
SAT in polynomial time.
In order to prove this, we require a uniform way of representing NP
problems. Remember that what makes a problem NP is the existence of
a polynomial-time algorithm—more specifically, a Turing machine—for
checking candidate certificates. What Cook did was somewhat
analogous to what Turing did when he showed that the Entscheidungs
problem was equivalent to the Halting Problem. He showed how to
encode as Propositional Calculus clauses both the relevant facts about
the problem instance and the Turing machine which does the
certificate-checking, in such a way that the resulting set of clauses is
satisfiable if and only if the original problem instance is positive. Thus
the problem of determining the latter is reduced to the problem of
determining the former.

Cook's theorem
Let us assume that M has q states numbered 0, 1, 2, . . . , q 1, and a tape
alphabet a1, a2, . . . , as. We shall assume that the operation of the
machine is governed by the functions T , U , and D as described in the
chapter on the Entscheidungsproblem. We shall further assume that the
initial tape is inscribed with the problem instance on the squares 1, 2, 3,
. . . , n, and the putative certificate on the squares m, . . . , 2, 1. Square
zero can be assumed to contain a designated separator symbol. We shall
also assume that the machine halts scanning square 0, and that the
symbol in this square at that stage will be a1 if and only if the candidate
certificate is a true certificate. Note that we must have m P (n). This is
because with a problem instance of length n the computation is
completed in at most P (n) steps; during this process, the Turing
machine head cannot move more than P (n) steps to the left of its
starting point.

Cook's theorem
We define some atomic propositions with their intended
interpretations as follows:
−
For i = 0, 1, . . . , P (n) and j = 0, 1, . . . , q 1, the proposition Qij says that
after i computation steps, M is in state j.

For i = 0, 1, . . . , P (n), j = −P (n), . . . , P (n), and k = 1, 2, . . . , s, the
proposition Sijk says that after i computation steps, square j of the
tape contains the symbol ak.

−
i = 0, 1, . . . , P (n) and j = P (n), . . . , P (n), the proposition Tij says
that after i computation steps, the machine M is scanning square j of
the tape.

