
UNIT1

Introduction

Algorithm

• An Algorithm is a sequence of unambiguous
instructions for solving a problem,

• i.e., for obtaining a required output for any legitimate
input in a finite amount of time.

Notion of algorithm

 “computer”

Algorithmic solution

problem

algorithm

input output

PSEUDOCODE

 Pseudocode (pronounced SOO-doh-kohd) is a detailed yet

readable description of what a computer program or
algorithm must do, expressed in a formally-styled natural
language rather than in a programming language.

 It is sometimes used as a detailed step in the process of

developing a program.

 It allows programmers to express the design in great detail

and provides programmers a detailed template for the next
step of writing code in a specific programming language.

Formatting and Conventions in Pseudocoding

 INDENTATION in pseudocode should be
identical to its implementation in a
programming language. Try to indent at least
four spaces.

 The pseudocode entries are to be cryptic,
AND SHOULD NOT BE PROSE. NO SENTENCES.

 No flower boxes in pseudocode.
 Do not include data declarations in

pseudocode.

 Some Keywords That Should be Used

• For looping and selection,

Do While...EndDo;

– Do Until...Enddo;

– Case...EndCase;

– If...Endif;

– Call ... with (parameters); Call; Return;
Return; When; Always use scope terminators
for loops and iteration.

 Some Keywords …

• As verbs, use the words

– generate, Compute, Process,

– Set, reset,

– increment,

– calculate,

– add, sum, multiply, ...

– print, display,

– input, output, edit, test , etc.

Methods of finding GCD

M - 1

M - 2

M - 3

Fundamentals of Analysis of

algorithm efficiency

Analysis of algorithms

 Issues:

 correctness

 time efficiency

 space efficiency

 optimality

 Approaches:

 theoretical analysis

 empirical analysis

Theoretical analysis of time
efficiency

Time efficiency is analyzed by determining the
number of repetitions of the basic operation as a
function of input size

 Basic operation: the operation that contributes
the most towards the running time of the
algorithm

 T(n) ≈ copC(n)
running time execution time

for basic operation

or cost

Number of times

basic operation is

executed

input size

Note: Different basic operations may cost differently!

Input size and basic operation examples

Problem Input size measure Basic operation

Searching for key

in a list of n items

Number of list’s

items, i.e. n
Key comparison

Multiplication of

two matrices

Matrix dimensions or

total number of

elements

Multiplication of

two numbers

Checking primality

of a given integer n

n’size = number of

digits (in binary

representation)

Division

Typical graph

problem

#vertices and/or

edges

Visiting a vertex

or traversing an

edge

Empirical analysis of time efficiency

Select a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds)
 or
 Count actual number of basic operation’s

executions

Analyze the empirical data

Efficiencies

 Worst Case Efficiency:

 Is its efficiency for the worst case input of size n,
which is an input of size n for which the algorithm
runs the longest among all possible inputs of that size

 Cworst(n)

 Best-case efficiency:

 Is its efficiency for the worst case input of size n,
which is an input of size n for which the algorithm
runs the fastest among all possible inputs of that size

 Cbest(n)

Amortized efficiency

– It applies not to a single run of an
algorithm, but rather to a sequence of
operations performed on the same data
structure

Best-case, average-case, worst-case

For some algorithms, efficiency depends on form of input:
 Worst case: Cworst(n) – maximum over inputs of size n
 Best case: Cbest(n) – minimum over inputs of size n
 Average case: Cavg(n) – “average” over inputs of size n

 Number of times the basic operation will be executed on

typical input

 NOT the average of worst and best case

 Expected number of basic operations considered as a random
variable under some assumption about the probability
distribution of all possible inputs. So, avg = expected under
uniform distribution.

Example: Sequential search

 Worst case

 Best case

 Average case

 n key comparisons

 1 comparisons

(n+1)/2, assuming K is in A

Types of formulas for basic operation’s count

 Exact formula
 e.g., C(n) = n(n-1)/2

 Formula indicating order of growth with

specific multiplicative constant
 e.g., C(n) ≈ 0.5 n2

 Formula indicating order of growth with

unknown multiplicative constant
 e.g., C(n) ≈ cn2

Order of growth
• Most important: Order of growth within a

constant multiple as n→∞

• Example:

– How much faster will algorithm run on computer
that is twice as fast?

– How much longer does it take to solve problem of
double input size?

Values of some important functions as n

Asymptotic Notations

• O (Big-Oh)-notation

• Ω (Big-Omega) -notation

• Θ (Big-Theta) -notation

Asymptotic order of growth
A way of comparing functions that ignores constant

factors and small input sizes (because?)

 O(g(n)): class of functions f(n) that grow no faster
than g(n)

 Θ(g(n)): class of functions f(n) that grow at same
rate as g(n)

 Ω(g(n)): class of functions f(n) that grow at least as
fast as g(n)

O-notation

Definition: A function t(n) is said to be in O(g(n)),
denoted t(n) O(g(n)) is bounded above by
some constant multiple of g(n) for all large n,
i.e., there exist positive constant c and non-
negative integer n0 such that

 f(n) ≤ c g(n) for every n ≥ n0

Big-oh

-notation

• Formal definition
– A function t(n) is said to be in (g(n)), denoted

t(n) (g(n)), if t(n) is bounded below by some
constant multiple of g(n) for all large n, i.e., if
there exist some positive constant c and some
nonnegative integer n0 such that

 t(n) cg(n) for all n n0

Big-omega

-notation

• Formal definition
– A function t(n) is said to be in (g(n)), denoted

t(n) (g(n)), if t(n) is bounded both above
and below by some positive constant multiples
of g(n) for all large n, i.e., if there exist some
positive constant c1 and c2 and some
nonnegative integer n0 such that

 c2 g(n) t(n) c1 g(n) for all n n0

Big-theta

Theorem
• If t1(n) O(g1(n)) and t2(n) O(g2(n)), then
 t1(n) + t2(n) O(max{g1(n), g2(n)}).

– The analogous assertions are true for the -
notation and -notation.

Proof. There exist constants c1, c2, n1, n2 such that

 t1(n) c1*g1(n), for all n n1

 t2(n) c2*g2(n), for all n n2

Define c3 = c1 + c2 and n3 = max{n1,n2}. Then

 t1(n) + t2(n) c3*max{g1(n), g2(n)}, for all n n3

Some properties of asymptotic order of growth

 f(n) O(f(n))

 f(n) O(g(n)) iff g(n) (f(n))

 If f (n) O(g (n)) and g(n) O(h(n)) , then f(n)
O(h(n))

Note similarity with a ≤ b

 If f1(n) O(g1(n)) and f2(n) O(g2(n)) , then
 f1(n) + f2(n) O(max{g1(n), g2(n)})

 Also, 1in (f(i)) = (1in f(i))

Establishing order of growth using limits

lim T(n)/g(n)
=

 0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

 ∞ order of growth of T(n) > order of growth of g(n)

n→∞

L’Hôpital’s rule and Stirling’s formula

L’Hôpital’s rule: If limn f(n) = limn g(n) = and
 the derivatives f´, g´ exist, then

Stirling’s formula: n! (2n)1/2 (n/e)n

f(n)

g(n)
lim
n

=
f ´(n)

g ´(n)
lim
n

Example: log n vs. n

Example: 2n vs. n!

Orders of growth of some important functions

 All logarithmic functions loga n belong to the same class
(log n) no matter what the logarithm’s base a > 1 is

because

 All polynomials of the same degree k belong to the same class:

 akn

k + ak-1nk-1 + … + a0 (nk)

 Exponential functions an have different orders of growth for
different a’s

 order log n < order n (>0) < order an < order n! < order nn

ann bba log/loglog

Basic asymptotic efficiency classes
1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial

Plan for analyzing nonrecursive
algorithms

General Plan for Analysis

 Decide on parameter n indicating input size

 Identify algorithm’s basiyc operation

 Determine worst, average, and best cases for
input of size n

 Set up a sum for the number of times the
basic operation is executed

 Simplify the sum using standard formulas and
rules (see Appendix A)

Useful summation formulas and rules

lin1 = 1+1+…+1 = n - l + 1
 In particular, lin1 = n - 1 + 1 = n (n)

1in i = 1+2+…+n = n(n+1)/2 n2/2 (n2)

1in i

2 = 12+22+…+n2 = n(n+1)(2n+1)/6 n3/3 (n3)

0in a

i = 1 + a +…+ an = (an+1 - 1)/(a - 1) for any a 1
 In particular, 0in 2

i = 20 + 21 +…+ 2n = 2n+1 - 1
(2n)

(ai ± bi) = ai ± bi cai = cai liuai = limai

+ m+1iuai

Example 1: Maximum element

T(n) = 1in-1 1 = n-1 = (n) comparisons

Example 2: Element uniqueness
problem

T(n) = 0in-2 (i+1jn-1 1)

 = 0in-2 n-i-1 = (n-1+1)(n-1)/2

 = () comparisons 2n

Example 3: Matrix multiplication

T(n) = 0in-1 0in-1 n

 = 0in-1 ()

 = () multiplications

2n

3n

Example 4: Gaussian elimination

Algorithm GaussianElimination(A[0..n-1,0..n])
//Implements Gaussian elimination on an n-by-
(n+1) matrix A
for i 0 to n - 2 do
 for j i + 1 to n - 1 do
 for k i to n do
 A[j,k] A[j,k] - A[i,k] A[j,i] / A[i,i]

Find the efficiency class and a constant factor
improvement.

for i 0 to n - 2 do

 for j i + 1 to n - 1 do

 B A[j,i] / A[i,i]

 for k i to n do

 A[j,k] A[j,k] – A[i,k] * B

Example 5: Counting binary digits

Plan for Analysis of Recursive Algorithms

 Decide on a parameter indicating an input’s size.

 Identify the algorithm’s basic operation.

 Check whether the number of times the basic op.
is executed may vary on different inputs of the
same size. (If it may, the worst, average, and best
cases must be investigated separately.)

 Set up a recurrence relation with an appropriate
initial condition expressing the number of times
the basic op. is executed.

 Solve the recurrence (or, at the very least, establish
its solution’s order of growth) by backward
substitutions or another method.

Example 1: Recursive evaluation of n!

Definition: n ! = 1 2 … (n-1) n for n ≥ 1 and
0! = 1

Recursive definition of n!: F(n) = F(n-1) n for n ≥
1 and

 F(0) = 1

Size:
Basic operation:

n

multiplication

M(n) = M(n-1) + 1

 M(0) = 0

Solving the recurrence for M(n)

M(n) = M(n-1) + 1, M(0) = 0
M(n) = M(n-1) + 1

 = (M(n-2) + 1) + 1 = M(n-2) + 2

 = (M(n-3) + 1) + 2 = M(n-3) + 3

 …

 = M(n-i) + i

 = M(0) + n

 = n

The method is called backward substitution.

Solving recurrence for number of moves

M(n) = 2M(n-1) + 1, M(1) = 1
M(n) = 2M(n-1) + 1

 = 2(2M(n-2) + 1) + 1 = 2^2*M(n-2) + 2^1 + 2^0

 = 2^2*(2M(n-3) + 1) + 2^1 + 2^0

 = 2^3*M(n-3) + 2^2 + 2^1 + 2^0

 = …

 = 2^(n-1)*M(1) + 2^(n-2) + … + 2^1 + 2^0

 = 2^(n-1) + 2^(n-2) + … + 2^1 + 2^0

 = 2^n - 1

Design and Analysis of Algorithms - Unit II 45

DIVIDE AND CONQUER

Divide and Conquer

Design and Analysis of Algorithms - Unit II 46

The most well known algorithm design strategy:

1. Divide instance of problem into two or more
smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

Divide-and-conquer technique

Design and Analysis of Algorithms - Unit II 47

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n

Divide and Conquer Examples

Design and Analysis of Algorithms - Unit II 48

 Sorting: mergesort and quicksort

 Tree traversals

 Binary search

 Matrix multiplication-Strassen’s algorithm

 Convex hull-QuickHull algorithm

Design and Analysis of Algorithms - Unit II 49

General Divide and Conquer recurrence:

Master Theorem

T(n) = aT(n/b) + f (n) where f (n) € Θ(nd)

1. a < bd T(n) € Θ(nd)

2. a = bd T(n) € Θ(nd lg n)

3. a > bd T(n) € Θ(nlog b a)

Note: the same results hold with O instead of Θ.

Mergesort

Design and Analysis of Algorithms - Unit II 50

Algorithm:
Split array A[1..n] in two and make copies of each half
 in arrays B[1.. n/2] and C[1.. n/2]
Sort arrays B and C
Merge sorted arrays B and C into array A as follows:
Repeat the following until no elements remain in one of the

arrays:
 compare the first elements in the remaining unprocessed portions of

the arrays
 copy the smaller of the two into A, while incrementing the index

indicating the unprocessed portion of that array

Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

Mergesort Example

Design and Analysis of Algorithms - Unit II 51

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

Pseudocode for Mergesort

Design and Analysis of Algorithms - Unit II 52

ALGORITHM Mergesort(A[0..n-1])
 //Sorts array A[0..n-1] by recursive mergesort
 // Input: An array A[0..n-1] of orderable elements
 // Output: Array A[0..n-1] sorted in non-increasing

order
If n>1
 copy A[0..[n/2]-1] to B[0..[n/2]-1]
 copy A[[n/2]..n-1] to C[0..[n/2]-1]
 Mergesort(B[0..[n/2]-1])
 Mergesort(C[0..[n/2]-1])
 Merge(B,C,A)

Pseudocode for Merge

Design and Analysis of Algorithms - Unit II 53

ALGORITHM Merge (B[0..p-1], C[0..q-1], A[0..p+q-1]
 // Merges two sorted arrays into one sorted array
 // Input: Arrays B[0..p-1] and C[0..q-1] both sorted
 // Output: Sorted array A[0..p+q-1] of the elements of B and C
i 0; j 0; k0
While i<p and j<q do
 if B[i]<=C[j]
 A[k] B[i]; i i+1
 else A[k] C[j]; j j+1
 k k+1
If i=p
 copy C[j..q-1] to A[k..p+q-1]
Else
 copy B[i..p-1] to A[k..p+q-1]

Recurrence Relation for Mergesort

Design and Analysis of Algorithms - Unit II 54

• Let T(n) be worst case time on a sequence of
n keys

• If n = 1, then T(n) = (1) (constant)

• If n > 1, then T(n) = 2 T(n/2) + (n)
– two subproblems of size n/2 each that are solved

recursively

– (n) time to do the merge

Efficiency of mergesort

Design and Analysis of Algorithms - Unit II 55

All cases have same efficiency: Θ(n log n)

Number of comparisons is close to theoretical
minimum for comparison-based sorting:
 log n ! ≈ n lg n - 1.44 n

Space requirement: Θ(n) (NOT in-place)

Can be implemented without recursion (bottom-

up)

Quick-Sort
Quick-sort is a randomized

sorting algorithm based on the
divide-and-conquer paradigm:

Divide: pick a random element
x (called pivot) and partition S
into

L elements less than x

E elements equal x

G elements greater than x

Recur: sort L and G

Conquer: join L, E and G

56
Design and Analysis of

Algorithms - Unit II

x

x

L G E

x

Quicksort

Design and Analysis of Algorithms - Unit II 57

• Select a pivot (partitioning element)

• Rearrange the list so that all the elements in
the positions before the pivot are smaller
than or equal to the pivot and those after the
pivot are larger than the pivot

• Exchange the pivot with the last element in
the first (i.e., ≤ sublist) – the pivot is now in its
final position

• Sort the two sublists

p

A[i]≤p A[i]>p

The partition algorithm

Design and Analysis of Algorithms - Unit II 58

Efficiency of quicksort

Design and Analysis of Algorithms - Unit II 59

Best case: split in the middle — Θ(n log n)
Worst case: sorted array! — Θ(n2)
Average case: random arrays — Θ(n log n)

Improvements:
better pivot selection: median of three partitioning avoids

worst case in sorted files
switch to insertion sort on small subfiles

Considered the method of choice for internal sorting

for large files (n ≥ 10000)

Binary Search - an Iterative
Algorithm

Design and Analysis of Algorithms - Unit II 60

Very efficient algorithm for searching in sorted
array:

 K vs A[0] . . . A[m] . . . A[n-1]

If K = A[m], stop (successful search);

otherwise, continue searching by the same

method
 in A[0..m-1] if K < A[m]

and in A[m+1..n-1] if K > A[m]

Pseudocode for Binary Search

Design and Analysis of Algorithms - Unit II 61

ALGORITHM BinarySearch(A[0..n-1], K)
l 0; r n-1
while l r do // l and r crosses over can’t find K
 m (l+r)/2
 if K = A[m] return m //the key is found
 else if K < A[m] r m-1 //the key is on the left half of
 the array
 else l m+1 // the key is on the right half of

 the array
return -1

Binary Search – a Recursive Algorithm

Design and Analysis of Algorithms - Unit II 62

ALGORITHM BinarySearchRecur(A[0..n-1], l, r, K)
if l > r
 return –1
else
 m (l + r) / 2
 if K = A[m]
 return m
 else if K < A[m]
 return BinarySearchRecur(A[0..n-1], l, m-1, K)
 else
 return BinarySearchRecur(A[0..n-1], m+1, r, K)

Analysis of Binary Search

 Worst-case (successful or fail) :
 Cw (n) = 1 + Cw(n/2),
 Cw (1) = 1

solution: Cw(n) = log2 n +1 = log2(n+1)

 This is VERY fast: e.g., Cw(106) = 20

 Best-case: successful Cb (n) = 1,
 fail Cb (n) = log2 n +1

 Average-case: successful Cavg(n) = log2 n – 1

 fail Cavg(n) = log2(n+1)

Design and Analysis of Algorithms - Unit II
63

Binary Tree Traversals

Design and Analysis of Algorithms - Unit II 64

• Definitions
– A binary tree T is defined as a finite set of nodes that is

either empty or consists of a root and two disjoint binary
trees TL and TR called, respectively, the left and right
subtree of the root.

– The height of a tree is defined as the length of the longest
path from the root to a leaf.

• Problem: find the height of a binary tree.
T TL R

Pseudocode - Height of a Binary
Tree

Design and Analysis of Algorithms - Unit II 65

ALGORITHM Height(T)
//Computes recursively the height of a binary

tree
//Input: A binary tree T
//Output: The height of T
if T =
 return –1
else
 return max{Height(TL), Height(TR)} + 1

Analysis:

Design and Analysis of Algorithms - Unit II 66

 Number of comparisons of a tree T with : 2n +
1

 Number of comparisons made to compute

height is the same as number of additions:

 A(n(T)) = A(n(TL)) + A(n(TR)) +1 for n>0,
 A(0) = 0

 The solution is A(n) = n

Binary Tree Traversals– preorder, inorder, and
postorder traversal

Design and Analysis of Algorithms - Unit II 67

Binary tee traversal: visit all nodes of a binary
tree recursively.

Algorithm Preorder(T)

//Implement the preorder traversal of a binary tree

//Input: Binary tree T (with labeled vertices)

//Output: Node labels listed in preorder

if T ‡

 write label of T’s root

 Preorder(TL)

 Preorder(TR)

Multiplication of Large Integers

Design and Analysis of Algorithms - Unit II 68

Consider the problem of multiplying two (large) n-digit integers represented by
arrays of their digits such as:

A = 12345678901357986429 B = 87654321284820912836

The grade-school algorithm:

 a1 a2 … an

 b1 b2 … bn

 (d10) d11d12 … d1n

 (d20) d21d22 … d2n

 … … … … … … …
(dn0) dn1dn2 … dnn

Efficiency: n2 one-digit multiplications

First Divide-and-Conquer Algorithm

Design and Analysis of Algorithms - Unit II 69

A small example: A B where A = 2135 and B = 4014

 A = (21·102 + 35), B = (40 ·102 + 14)

So, A B = (21 ·102 + 35) (40 ·102 + 14)

 = 21 40 ·104 + (21 14 + 35 40) ·102 + 35 14

In general, if A = A1A2 and B = B1B2 (where A and B are n-digit,

A1, A2, B1, B2 are n/2-digit numbers),

A B = A1 B1·10n + (A1 B2 + A2 B1) ·10n/2 + A2 B2

Recurrence for the number of one-digit multiplications M(n):

 M(n) = 4M(n/2), M(1) = 1
Solution: M(n) = n2

Second Divide-and-Conquer Algorithm

Design and Analysis of Algorithms - Unit II 70

A B = A1 B1·10n + (A1 B2 + A2 B1) ·10n/2 + A2 B2

The idea is to decrease the number of multiplications from 4 to 3:

 (A1 + A2) (B1 + B2) = A1 B1 + (A1 B2 + A2 B1) + A2 B2,

I.e., (A1 B2 + A2 B1) = (A1 + A2) (B1 + B2) - A1 B1 - A2 B2,

which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the number of multiplications M(n):
 M(n) = 3M(n/2), M(1) = 1

Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585

Strassen’s matrix multiplication

Design and Analysis of Algorithms - Unit II 71

• Strassen observed [1969] that the product of
two matrices can be computed as follows:

C00 C01 A00 A01 B00 B01

 = *

C10 C11 A10 A11 B10 B11

 M1 + M4 - M5 + M7 M3 + M5

 =

 M2 + M4 M1 + M3 - M2 + M6

Submatrices:

Design and Analysis of Algorithms - Unit II 72

 M1 = (A00 + A11) * (B00 + B11)

 M2 = (A10 + A11) * B00

 M3 = A00 * (B01 - B11)

 M4 = A11 * (B10 - B00)

 M5 = (A00 + A01) * B11

 M6 = (A10 - A00) * (B00 + B01)

 M7 = (A01 - A11) * (B10 + B11)

Efficiency of Strassen’s algorithm

Design and Analysis of Algorithms - Unit II 73

• If n is not a power of 2, matrices can be
padded with zeros

• Number of multiplications: 7

• Number of additions: 18

Time Analysis

Design and Analysis of Algorithms - Unit II 74

Standard vs Strassen

N Multiplications Additions

Standard alg. 100 1,000,000 990,000

Strassen’s alg. 100 411,822 2,470,334

Standard alg. 1000 1,000,000,000 999,000,000

Strassen’s alg. 1000 264,280,285 1,579,681,709

Standard alg. 10,000 1012 9.99*1011

Strassen’s alg. 10,000 0.169*1012 1012

Design and Analysis of Algorithms - Unit II
75

Greedy Technique

Greedy Technique

77

Constructs a solution to an optimization problem piece by
piece through a sequence of choices that are:

• feasible, i.e. satisfying the constraints

• locally optimal (with respect to some neighborhood

definition)

• greedy (in terms of some measure), and irrevocable

 For some problems,
 it yields a globally optimal solution for every instance.
 For most, does not but can be useful for fast

approximations.

Defined by an
objective function and
a set of constraints

Applications of the Greedy Strategy

78

• Optimal solutions:
– change making for “normal” coin denominations

– minimum spanning tree (MST)

– single-source shortest paths

– simple scheduling problems

– Huffman codes

• Approximations/heuristics:
– traveling salesman problem (TSP)

– knapsack problem

– other combinatorial optimization problems

Change-Making Problem

79

Given unlimited amounts of coins of denominations d1 > … >
dm ,

give change for amount n with the least number of coins

Example: d1 = 25c, d2 =10c, d3 = 5c, d4 = 1c and n = 48c

Greedy solution:

Greedy solution is
• optimal for any amount and “normal’’ set of

denominations
• may not be optimal for arbitrary coin denominations

<1, 2, 0, 3>

For example, d1 = 25c, d2 = 10c, d3 = 1c, and n = 30c

Q: What are the objective function and constraints?

Minimum Spanning Tree (MST)

80

• Spanning tree of a connected graph G: a
connected acyclic subgraph of G that includes
all of G’s vertices

• Minimum spanning tree of a weighted,
connected graph G: a spanning tree of G of
the minimum total weight

Example:

c

d
b

a

6

2

4

3

1

c

d
b

a

2

3

1

c

d
b

a

6

4 1

Prim’s MST algorithm

81

• Start with tree T1 consisting of one (any) vertex
and “grow” tree one vertex at a time to
produce MST through a series of expanding
subtrees T1, T2, …, Tn

• On each iteration, construct Ti+1 from Ti by
adding vertex not in Ti that is closest to those
already in Ti (this is a “greedy” step!)

• Stop when all vertices are included

Pseudocode – Prim’s algorithm

82

ALGORITHM Prim(G)

 // Prim’s algorithm for computing a MST

 // Input:A weighted connected graph G = (V,E)

 // Output: Et, the set of edges composing a MST of G

 VT {v0 }

 ET Ø

 for I 1 to |v| - 1 do

 find a minimum weight edge e*=(v*,u*) among all edges(v,u) such
that v is in VT and u is in V – VT

 VT VT {u*}

 ET ET {v*}

 return ET

Example

83

 c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

Notes about Prim’s algorithm

84

• Needs priority queue for locating closest fringe
vertex.

• Efficiency
– O(n2) for weight matrix representation of graph and array

implementation of priority queue

– O(m log n) for adjacency lists representation of graph with n
vertices and m edges and min-heap implementation of the
priority queue

Another greedy algorithm for MST: Kruskal’s

85

• Sort the edges in nondecreasing order of lengths

• “Grow” tree one edge at a time to produce MST
through a series of expanding forests F1, F2, …, Fn-

1

• On each iteration, add the next edge on the
sorted list unless this would create a cycle. (If it
would, skip the edge.)

Pseudocode – Kruskal’s algorithm

86

ALGORITHM Kruskal(G)

// Kruskal’s algorithm for constructing a minimum spanning tree

// Input: A weighted connected graph G = (V,E)

// Output: ET, The set of edges composing a MST of G

 ET Ø; ecounter 0

 k 0

 while ecounter < |V| - 1

 k k +1

 if ET {eik} is acyclic

 ET ET {eik} ;

 ecounter ecounter + 1

 return ET

Example

87

 c

d
b

a

4

2

6
1

3

c

d
b

a

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

2

1

3

Notes about Kruskal’s algorithm

88

• Algorithm looks easier than Prim’s but is harder to
implement (checking for cycles!)

• Cycle checking: a cycle is created iff added edge
connects vertices in the same connected component

• Kruskal’s algorithm relies on a union-find algorithm for
checking cycles

• Runs in O(m log m) time, with m = |E|. The time is
mostly spent on sorting.

Disjoint Sets

89

• Union of two sets A and B, denoted by A B, is the set
{x | x A or x B}

• The intersection of two sets A and B, denoted by A ∩ B,

is the set {x| x A and x B}.

• Two sets A and B are said to be disjoint if A ∩ B = .

• If S = {1,2,…,11} and there are 4 subsets {1,7,10,11} ,

{2,3,5,6}, {4,8} and {9}, these subsets may be labeled as
1, 3, 8 and 9, in this order.

90

Disjoint Sets

• A disjoint-set is a collection ={S1, S2,…, Sk} of distinct
dynamic sets.

• Each set is identified by a member of the set, called

representative.

• Disjoint-set data structures can be used to solve the

union-find problem
Disjoint set operations:

– MAKE-SET(x): create a new set with only x. assume x is not
already in some other set.

– UNION(x,y): combine the two sets containing x and y into
one new set. A new representative is selected.

– FIND-SET(x): return the representative of the set containing
x.

The Union-Find problem

91

• N balls initially, each ball in its own bag

– Label the balls 1, 2, 3, ..., N

• Two kinds of operations:

– Pick two bags, put all balls in these bags into a
new bag (Union)

– Given a ball, find the bag containing it (Find)

92

• to design efficient algorithms for Union & Find operations.

• Approach: to represent each set as a rooted tree with data elements
stored in its nodes.

• Each element x other than the root has a pointer to its parent p(x) in the
tree.

• The root has a null pointer, and it serves as the name or set representative
of the set.

• This results in a forest in which each tree corresponds to one set.

• For any element x, let root(x) denote the root of the tree containing x.

– FIND(x) returns root(x).

– union(x, y) means UNION(root(x), root(y)).

OBJECTIVE

Implementation of FIND and UNION

93

• FIND(x) follow the path from x until the
root is reached, then return root(x).
– Time complexity is O(n)
– Find(x) = Find(y), when x and y are in the same set

• UNION(x,y) UNION(FIND(x) , FIND(y)) UNION(root(x) , root(y))
UNION(u,v) then let v be the parent of u. Assume u is root(x), v is root(y)

– Time complexity is O(n)
– Union(x, y) Combine the set that contains x with the set that contains y

The Union-Find problem

94

• An example with 4 balls

• Initial: {1}, {2}, {3}, {4}

• Union {1}, {3} {1, 3}, {2}, {4}

• Find 3. Answer: {1, 3}

• Union {4}, {1,3} {1, 3, 4}, {2}

• Find 2. Answer: {2}

• Find 1. Answer {1, 3, 4}

Forest Representation

95

• A forest is a collection of trees

• Each bag is represented by a rooted tree, with
the root being the representative ball

1

5 3

6

4

2 7

Example: Two bags --- {1, 3, 5} and {2, 4, 6, 7}.

Forest Representation

96

• Find(x)

– Traverse from x up to the root

• Union(x, y)

– Merge the two trees containing x and y

Forest Representation

97

Initial:

Union 1 3:

Union 2 4:

Find 4:

1 3 4 2

1

3

4 2

1

3 4

2

1

3 4

2

Forest Representation

98

Union 1 4:

Find 4:

1

3

4

2

1

3

4

2

99

Union by Rank & Path Compression

• Union by Rank: Each node is associated with a
rank, which is the upper bound on the height of
the node (i.e., the height of subtree rooted at the
node), then when UNION, let the root with smaller
rank point to the root with larger rank.

• Path Compression: used in FIND-SET(x) operation,
make each node in the path from x to the root
directly point to the root. Thus reduce the tree
height.

Design and Analysis of Algorithms - Unit II 100

Path Compression

f

e

d

c

f

e d c

Shortest paths – Dijkstra’s algorithm

Design and Analysis of Algorithms - Unit II 101

Single Source Shortest Paths Problem: Given a weighted

connected (directed) graph G, find shortest paths from source vertex s

to each of the other vertices

Dijkstra’s algorithm: Similar to Prim’s MST algorithm, with

a different way of computing numerical labels: Among vertices

not already in the tree, it finds vertex u with the smallest sum

 dv + w(v,u)

where

 v is a vertex for which shortest path has been already found
 on preceding iterations (such vertices form a tree rooted at s)

 dv is the length of the shortest path from source s to v
 w(v,u) is the length (weight) of edge from v to u

Pseudocode – Dijkstra’s algorithm

Design and Analysis of Algorithms - Unit II 102

ALGORITHM Dijkstra(G,S)
 // Dijkstra’s algorithm for single source shortest paths
 // Input: A weighted connected graph G= (V,E) and its vertex s
 // Output: The length dv of a shortest path from s to v and its
 penultimate vertex pv for every vertex v in V
 Initialize(Q)
 for every vertex v in V do
 dv∞;pv=null
 Insert(Q,v,dv)
 ds0; Decrease(Q, s, ds)
 VT Ø
 for I 1 to |v| - 1 do
 u* DeleteMin(Q)
 VT VT {u*}
 for every vertex u in V - VT that is adjacent to u* do
 if du + w(u*, u) < du
 du du * + w(u*,u); pu u*
 Decrease (Q,u, du)

Example

Design and Analysis of Algorithms - Unit II
103

d
4

Tree vertices Remaining vertices

 a(-,0) b(a,3) c(-,∞) d(a,7) e(-,∞)

a

b
4

e

3

7

6
2 5

c

a

b

d

4
c

e

3

7 4

6
2 5

a

b

d

4
c

e

3

7 4

6
2 5

a

b

d

4
c

e

3

7 4

6
2 5

 b(a,3) c(b,3+4) d(b,3+2) e(-,∞)

 d(b,5) c(b,7) e(d,5+4)

 c(b,7) e(d,9)

 e(d,9)

d

a

b

d

4
c

e

3

7 4

6
2 5

Notes on Dijkstra’s algorithm

104

• Doesn’t work for graphs with negative
weights (whereas Floyd’s algorithm does, as
long as there is no negative cycle).

• Applicable to both undirected and directed

graphs

• Efficiency
– O(|V|2) for graphs represented by weight matrix and array

implementation of priority queue
– O(|E|log|V|) for graphs represented by adj. lists and min-

heap implementation of priority queue

Graphs

Minimum Spanning Tree

PLSD210

Key Points
• Dynamic Algorithms

• Optimal Binary Search Tree

– Used when

• some items are requested more often than others

• frequency for each item is known

– Minimises cost of all searches

– Build the search tree by

• Considering all trees of size 2, then 3, 4,

• Larger tree costs computed from smaller tree costs

– Sub-trees of optimal trees are optimal trees!

• Construct optimal search tree by saving root of each optimal sub-
tree and tracing back

• O(n3) time / O(n2) space

Key Points
• Other Problems using Dynamic Algorithms

• Matrix chain multiplication

– Find optimal parenthesisation of a matrix product

• Expressions within parentheses

– optimal parenthesisations themselves

• Optimal sub-structure characteristic of dynamic algorithms

• Similar to optimal binary search tree

• Longest common subsequence

– Longest string of symbols found in each of two sequences

• Optimal triangulation

– Least cost division of a polygon into triangles

– Maps to matrix chain multiplication

Graphs - Definitions
• Graph

– Set of vertices (nodes) and edges connecting them

– Write

 G = (V, E)
 where

• V is a set of vertices: V = { vi }

• An edge connects two vertices: e = (vi , vj)

• E is a set of edges: E = { (vi , vj) }

 Vertices

Edges

Graphs - Definitions
• Path

– A path, p, of length, k, is a sequence of
connected vertices

– p = <v0,v1,...,vk> where (vi,vi+1) E
< i, c, f, g, h >
Path of length 5

< a, b >

Path of length 2

Graphs - Definitions
• Cycle

– A graph contains no cycles if there is no path

– p = <v0,v1,...,vk> such that v0 = vk

< i, c, f, g, i >
is a cycle

Graphs - Definitions
• Spanning Tree

– A spanning tree is a set of |V|-1 edges that
connect all the vertices of a graph

The red path connects

all vertices,

so it’s a spanning tree

Graphs - Definitions
• Minimum Spanning Tree

– Generally there is more than one spanning tree

– If a cost cij is associated with edge eij = (vi,vj)

 then the minimum spanning tree is the set of edges Espan such that

 C = (cij | " eij Espan)
 is a minimum

The red tree is the

Min ST

Other ST’s can be formed ..

• Replace 2 with 7

• Replace 4 with 11

Graphs - Kruskal’s Algorithm
• Calculate the minimum spanning tree

– Put all the vertices into single node trees by themselves

– Put all the edges in a priority queue

– Repeat until we’ve constructed a spanning tree

• Extract cheapest edge

• If it forms a cycle, ignore it
else add it to the forest of trees
(it will join two trees into a larger tree)

– Return the spanning tree

Graphs - Kruskal’s Algorithm
• Calculate the minimum spanning tree

– Put all the vertices into single node trees by themselves

– Put all the edges in a priority queue

– Repeat until we’ve constructed a spanning tree

• Extract cheapest edge

• If it forms a cycle, ignore it
else add it to the forest of trees
(it will join two trees into a larger tree)

– Return the spanning tree

•
Note that this algorithm makes no attempt

• to be clever

• to make any sophisticated choice of the next edge

• it just tries the cheapest one!

Graphs - Kruskal’s Algorithm in C Forest MinimumSpanningTree(Graph g, int n,

 double **costs) {

 Forest T;

 Queue q;

 Edge e;

 T = ConsForest(g);

 q = ConsEdgeQueue(g, costs);

 for(i=0;i<(n-1);i++) {

 do {

 e = ExtractCheapestEdge(q);

 } while (!Cycle(e, T));

 AddEdge(T, e);

 }

 return T;

}

Initial Forest: single vertex trees

P Queue of edges

Graphs - Kruskal’s Algorithm in C Forest MinimumSpanningTree(Graph g, int n,

 double **costs) {

 Forest T;

 Queue q;

 Edge e;

 T = ConsForest(g);

 q = ConsEdgeQueue(g, costs);

 for(i=0;i<(n-1);i++) {

 do {

 e = ExtractCheapestEdge(q);

 } while (!Cycle(e, T));

 AddEdge(T, e);

 }

 return T;

}

We need n-1 edges

to fully connect (span)

n vertices

Graphs - Kruskal’s Algorithm in C Forest MinimumSpanningTree(Graph g, int n,

 double **costs) {

 Forest T;

 Queue q;

 Edge e;

 T = ConsForest(g);

 q = ConsEdgeQueue(g, costs);

 for(i=0;i<(n-1);i++) {

 do {

 e = ExtractCheapestEdge(q);

 } while (!Cycle(e, T));

 AddEdge(T, e);

 }

 return T;

}

Try the cheapest edge

Until we find one that doesn’t

form a cycle

... and add it to the forest

Kruskal’s Algorithm

• Priority Queue

– We already know about this!!

Forest MinimumSpanningTree(Graph g, int n,

 double **costs) {

 Forest T;

 Queue q;

 Edge e;

 T = ConsForest(g);

 q = ConsEdgeQueue(g, costs);

 for(i=0;i<(n-1);i++) {

 do {

 e = ExtractCheapestEdge(q);

 } while (!Cycle(e, T));

 AddEdge(T, e);

 }

 return T;

}

Add to

a heap here

Extract from

a heap here

Kruskal’s Algorithm

• Cycle detection

Forest MinimumSpanningTree(Graph g, int n,

 double **costs) {

 Forest T;

 Queue q;

 Edge e;

 T = ConsForest(g);

 q = ConsEdgeQueue(g, costs);

 for(i=0;i<(n-1);i++) {

 do {

 e = ExtractCheapestEdge(q);

 } while (!Cycle(e, T));

 AddEdge(T, e);

 }

 return T;

}

But how do

we detect a

cycle?

Kruskal’s Algorithm
• Cycle detection

– Uses a Union-find structure

– For which we need to understand a partition of
a set

• Partition

– A set of sets of elements of a set

• Every element belongs to one of the sub-sets

• No element belongs to more than one sub-set

– Formally:

• Set, S = { si }

• Partition(S) = { Pi }, where Pi = { si }

 " si S, si Pj

• " j, k P P =

Pi are subsets of S

All si belong to one of the Pj

None of the Pi

have common elements

S is the union of all the Pi

Kruskal’s Algorithm
• Partition

– The elements of each set of a partition

• are related by an equivalence relation

• equivalence relations are
– reflexive

– transitive

– symmetric

– The sets of a partition are equivalence classes

• Each element of the set is related to every other
element

x ~ x

if x ~ y and y ~ z, then x ~ z

if x ~ y, then y ~ x

Kruskal’s Algorithm
• Partitions

– In the MST algorithm,
the connected vertices form equivalence
classes

• “Being connected” is the equivalence relation

– Initially, each vertex is in a class by itself

– As edges are added,
more vertices become related
and the equivalence classes grow

– Until finally all the vertices are in a single
equivalence class

Kruskal’s Algorithm
• Representatives

– One vertex in each class may be chosen as the
representative of that class

– We arrange the vertices in lists that lead to the
representative

• This is the union-find structure

• Cycle determination

Kruskal’s Algorithm
• Cycle determination

– If two vertices have the same representative,
they’re already connected and adding a further
connection between them is pointless

– Procedure:

• For each end-point of the edge that you’re going to
add

• follow the lists and find its representative

• if the two representatives are equal,
then the edge will form a cycle

Kruskal’s Algorithm in operation

Each vertex is its

own representative

All the vertices are in

single element trees

Kruskal’s Algorithm in operation

The cheapest edge

is h-g

All the vertices are in

single element trees

Add it to the forest,

joining h and g into a

2-element tree

Kruskal’s Algorithm in operation

The cheapest edge

is h-g

Add it to the forest,

joining h and g into a

2-element tree

Choose g as its

representative

Kruskal’s Algorithm in operation
The next cheapest edge

is c-i
Add it to the forest,

joining c and i into a

2-element tree

Choose c as its

representative

Our forest now has 2 two-element trees

and 5 single vertex ones

Kruskal’s Algorithm in operation
The next cheapest edge

is a-b
Add it to the forest,

joining a and b into a

2-element tree

Choose b as its

representative

Our forest now has 3 two-element trees

and 4 single vertex ones

Kruskal’s Algorithm in operation
The next cheapest edge

is c-f
Add it to the forest,

merging two

2-element trees

Choose the rep of one

as its representative

Kruskal’s Algorithm in operation

The next cheapest edge

is g-i

The rep of g is c

\ g-i forms a cycle

The rep of i is also c

 It’s clearly not needed!

Kruskal’s Algorithm in operation

The next cheapest edge

is c-d

The rep of c is c

\ c-d joins two

trees, so we add it

The rep of d is d

.. and keep c as the representative

Kruskal’s Algorithm in operation
The next cheapest edge

is h-i

The rep of h is c

\ h-i forms a cycle,

so we skip it

The rep of i is c

Kruskal’s Algorithm in operation
The next cheapest edge

is a-h

The rep of a is b

\ a-h joins two trees,

and we add it

The rep of h is c

Kruskal’s Algorithm in operation
The next cheapest edge

is b-c But b-c forms a cycle

... and we now have a spanning tree

So add d-e instead

Greedy Algorithms

• At no stage did we attempt to “look ahead”

• We simply made the naïve choice

– Choose the cheapest edge!

• MST is an example of a greedy algorithm

• Greedy algorithms

– Take the “best” choice at each step

– Don’t look ahead and try alternatives

– Don’t work in many situations

• Try playing chess with a greedy approach!

– Are often difficult to prove

Proving Greedy Algorithms

• MST Proof

– “Proof by contradiction” is usually the best
approach!

– Note that

• any edge creating a cycle is not needed

\Each edge must join two sub-trees

– Suppose that the next cheapest edge, ex, would
join trees Ta and Tb

– Suppose that instead of ex we choose ez - a more
expensive edge, which joins Ta and Tc

– But we still need to join Tb to Ta or some other tree
to which T is connected

MST - Time complexity

• Steps

– Initialise forest O(|V|)

– Sort edges O(|E|log|E|)

• Check edge for cycles O(|V|) x

• Number of edges O(|V|) O(|V|2)

– Total O(

|V|+|E|log|E|+|V|2)

– Since |E| = O(|V|2) O(|V|2 log|V|)

– Thus we would class MST as O(n2 log n)

 for a graph with n vertices

This is an upper bound,

MST - Time complexity

• Steps

– Initialise forest O(|V|)

– Sort edges O(|E|log|E|)

• Check edge for cycles O(|V|) x

• Number of edges O(|V|) O(|V|2)

– Total O(

|V|+|E|log|E|+|V|2)

– Since |E| = O(|V|2) O(|V|2 log|V|)

– Thus we would class MST as O(n2 log n)

 for a graph with n vertices

This is an upper bound,

Here’s the

“professionals read textbooks”

theme recurring again!

UNIT-IV

 BACKTRACKING

Tackling Difficult Combinatorial Problems

There are two principal approaches to tackling
difficult combinatorial problems (NP-hard
problems):

Use a strategy that guarantees solving the
problem exactly but doesn’t guarantee to find a
solution in polynomial time

Use an approximation algorithm that can find an
approximate (sub-optimal) solution in polynomial
time

Exact Solution Strategies
• exhaustive search (brute force)

– useful only for small instances

• dynamic programming

– applicable to some problems (e.g., the knapsack problem)

• backtracking

– eliminates some unnecessary cases from consideration

– yields solutions in reasonable time for many instances but worst
case is still exponential

• branch-and-bound

– further refines the backtracking idea for optimization problems

Backtracking

Construct the state-space tree
nodes: partial solutions
edges: choices in extending partial solutions

Explore the state space tree using depth-first
search

“Prune” nonpromising nodes
dfs stops exploring subtrees rooted at nodes that cannot lead to

a solution and backtracks to such a node’s parent to continue
the search

Example: n-Queens Problem

Place n queens on an n-by-n chess board so that
no two of them are in the same row, column, or
diagonal

1 2 3 4

1

2

3

4

queen 1

queen 2

queen 3

queen 4

State-Space Tree of the 4-Queens
Problem

n-Queens Problem

Algorithm NQueens(k,n)
{
 for i=1 to n do
 {
 if place(k,i) then
 {
 x[k]=i;
 if (k = n) then write (x[1:n]);
 else NQueens(k+1, n);
 }
 }
 NQueens(k-1,n);
 i= x[k-1]+1;
}

n-Queens Problem

Algorithm place(k,i)

// To place a new queen in the chessboard

// Returns true if a queen can be placed in kth row and ith column, otherwise
false.

// x[] is a global array whose first (k-1) values have been set

// Abs(r) returns the absolute value of r

{

 for j = 1 to k-1 do

 if ((x[j] = i) or (Abs (j-k))) then

 return false;

 return true;

}

Hamiltonian Circuit

Hamiltonian Path: is a path in an undirected
graph which visits each vertex exactly once

Hamiltonian circuit: is a cycle in an undirected
graph which visits each vertex exactly once and
also returns to the starting vertex.

Determining whether such paths and cycles

exists is the hamiltonian path problem.

Hamiltonian paths and cycles are named after
William Rowan Hamilton

State Space Tree of Hamiltonian Circuit
Problem

d

a b

e

c f
0

1

2

3
6

9

10

11

12

8 7 4

5

Dead-end

Dead-end

Sol.

SUBSET-SUM PROBLEM

 Let S= {s1,…..,sn} be a set of positive integers,
then we have to find a subset whose sum is equal
to given positive integer ‘d’.

 Sort the elements of the set in ascending order.

 s1<=s2<=s3………<=sn

S={1,2,5,6,8} d=9

2 solutions: {1,2,6} and {1,8}

 Subset – Sum Problem

Steps:

1. The root of the tree represents the starting point, with no
decisions about the given elements.

2. Its left and right children represent, inclusion and exclusion of s1
in the set being sought

3. Going to the left from a node of the first level corresponds to
inclusion of s2, while going to right corresponds to exclusion

4. A path from the root to a node at the ith level of the tree
indicates which of the first i numbers have been included in the
subsets represented by that nodeWe record the value of s’, the
sum of these numbers in the node.

5. If s’ =d, we have a solution to the problem and stop. If all the
solutions need to be found, continue by backtracking to the
node’s parent.

6. If s’ is not equal to d, we can terminate the node as
nonpromising if either of the two equalities holds.

7. s’+si+1 > d (the sum s’ too large)
 n
 s’ + ∑ sj < d (the sum s’ too small)
 j=i+1

State Space Tree of Subset – Sum Problem

0

0

05

11 5

3

38

3

with 3

with 5

with 6

w/o 3

w/o 5

w/o 6 with 6 w/o 6

w/o 5 with 5

X X X X

X

14+7>15 3+7<15 11+7>14 5+7<15

0+13<15
with 6

X

9+7>15

14 98

8

w/o 7

w/o 6

X
8<15

solution

with 7

15

S= {3,5,6,7} and d=15

No. of Nodes in the state space tree is 1+2+22+…+2n = 2n+1 -1

Pseudocode: Backtracking

BRANCH AND BOUND

• Branch and bound (BB) is a general algorithm
for finding optimal solutions of various
optimization problems, especially in discrete
and combinatorial optimization.

• It consists of a systematic enumeration of all
candidate solutions, where large subsets of
fruitless candidates are discarded, by using
upper and lower estimated bounds of the
quantity being optimized.

Branch-and-Bound

156

Branch-and-Bound

• In the standard terminology of optimization
problems, a feasible solution is a point in the
problem’s search space that satisfies all the
problem’s constraints

• An optimal solution is a feasible solution with
the best value of the objective function

157

Branch-and-Bound

• 3 Reasons for terminating a search path at the
current node in a state-space tree of a branch-
and-bound algorithm:

1. The value of the node’s bound is not better than the value of the best
solution seen so far.

2. The node represents no feasible solutions because the constraints of the
problem are already violated.

3. The subset of feasible solutions represented by the node consists of a
single point—in this case we compare the value of the objective function
for this feasible solution with that of the best solution seen so far and
update the latter with the former if the new solution is better.

Branch-and-Bound

• An enhancement of backtracking

• Applicable to optimization problems

• For each node (partial solution) of a state-space
tree, computes a bound on the value of the
objective function for all descendants of the
node (extensions of the partial solution)

• Uses the bound for:
– ruling out certain nodes as “nonpromising” to prune the tree – if a node’s bound is

not better than the best solution seen so far
– guiding the search through state-space

Select one element in each row of the cost matrix C so that:
• no two selected elements are in the same column
• the sum is minimized

Example

 Job 1 Job 2 Job 3 Job 4

 Person a 9 2 7 8

 Person b 6 4 3 7

 Person c 5 8 1 8

 Person d 7 6 9 4

Lower bound: Any solution to this problem will have total cost

 at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4)

Example: Assignment Problem

Example: First two levels of the state-space tree

Example (cont.)

Example: Complete state-space
tree

Solution:

• Person a – job 2

• Person b – job 1

• Person c – job 3

• Person d – job 4

KNAPSACK PROBLEM

• N items of known weights wi and values vi,
i=1,2,….n

• Knapsack capacity W =10

• Item Weight Value Value/Weight

 1 4 $40 10

 2 7 $42 6

 3 5 $25 5

 4 3 $12 4

ub = v+ (W-w) (v /w)

State space tree of knapsack
problem

ub=100

w=0, v=0

ub=76

w=4, v=40

ub=60

w=0, v=0

w=11

ub=70

w=4, v=40

ub=69

w=9, v=65

ub=64

w=4, v=40

w=12

ub=65

w=9, v=65

0

1

3

2

4

5 6

7 8

with 1 w/o 1

with 2 w/o 2

with 3 w/o 3

with 4 w/o 4

X

X

X

X

not feasible

not feasible

inferior to node 8

inferior to node 8

Optimal Solution

Traveling Salesman Problem

• For each city i, 1 <= i <=n, find the sum of the
distances from city i to the two nearest cities.

• Compute the sum s of these n numbers

• Divide the result by 2

• If all the distances are integers, round up the
result to the nearest integer

• lb = [s/2]

Example: Traveling Salesman
Problem

UNIT - V

NP PROBLEMS
& APPROXIMATION

ALGORITHMS

P, NP and NP-Complete Problems

Problem Types: Optimization and
Decision

Optimization problem: find a solution that maximizes or
minimizes some objective function

Decision problem: answer yes/no to a question

Many problems have decision and optimization versions.

E.g.: traveling salesman problem
optimization: find Hamiltonian cycle of minimum length
decision: find Hamiltonian cycle of length m

Decision problems are more convenient for formal

investigation of their complexity.

Class P
P: the class of decision problems that are solvable in

O(p(n)) time, where p(n) is a polynomial of problem’s
input size n

Examples:
searching

element uniqueness

graph connectivity

graph acyclicity

primality testing

Class NP
NP (nondeterministic polynomial): class of decision

problems whose proposed solutions can be verified in
polynomial time = solvable by a nondeterministic
polynomial algorithm

A nondeterministic polynomial algorithm is an abstract
two-stage procedure that:

generates a random string purported to solve the
problem

checks whether this solution is correct in polynomial
time

By definition, it solves the problem if it’s capable of
generating and verifying a solution on one of its tries

Example: CNF satisfiability
Problem: Is a boolean expression in its conjunctive

normal form (CNF) satisfiable, i.e., are there
values of its variables that makes it true?

This problem is in NP. Nondeterministic algorithm:
 Guess truth assignment
 Substitute the values into the CNF formula to

see if it evaluates to true

Example: (A | ¬B | ¬C) & (A | B) & (¬B | ¬D | E) & (¬D | ¬E)
Truth assignments:

A B C D E
0 0 0 0 0

 . . .
1 1 1 1 1

Checking phase: O(n)

What problems are in NP?

• Hamiltonian circuit existence

• Partition problem: Is it possible to partition a
set of n integers into two disjoint subsets with
the same sum?

• Decision versions of TSP, knapsack problem,
graph coloring, and many other combinatorial
optimization problems. (Few exceptions
include: MST, shortest paths)

• All the problems in P can also be solved in this
manner (but no guessing is necessary), so we
have:

NP-Complete Problems
A decision problem D is NP-complete if it’s as hard as any

problem in NP, i.e.,

• D is in NP

• every problem in NP is polynomial-time reducible to D

Cook’s theorem (1971): CNF-sat is NP-complete

NP-complete

problem

NP problems

NP-Complete Problems (cont.)

Other NP-complete problems obtained through
polynomial-

time reductions from a known NP-complete
problem

known

NP-complete

problem

NP problems

candidate

 for NP -

completeness

P = NP ? Dilemma Revisited
• P = NP would imply that every problem in NP, including all NP-

complete problems, could be solved in polynomial time

• If a polynomial-time algorithm for just one NP-complete problem
is discovered, then every problem in NP can be solved in
polynomial time, i.e., P = NP

• Most but not all researchers believe that P NP , i.e. P is a proper
subset of NP

NP-complete

problem

NP problems

