UNIT1

Intitroduction

Algorithm

- An Algorithm is a sequence of unambiguous instructions for solving a problem,
- i.e., for obtaining a required output for any legitimate input in a finite amount of time.

Notion of algorithm

Algorithmic solution

PSEUDOCODE

- Pseudocode (pronounced SOO-doh-kohd) is a detailed yet readable description of what a computer program or algorithm must do, expressed in a formally-styled natural language rather than in a programming language.
- It is sometimes used as a detailed step in the process of developing a program.
- It allows programmers to express the design in great detail and provides programmers a detailed template for the next step of writing code in a specific programming language.

Formatting and Conventions in Pseudocoding

- INDENTATION in pseudocode should be identical to its implementation in a programming language. Try to indent at least four spaces.
- The pseudocode entries are to be cryptic, AND SHOULD NOT BE PROSE. NO SENTENCES.
- No flower boxes in pseudocode.
- Do not include data declarations in pseudocode.
- For looping and selection,

Do While...EndDo;

- Do Until...Enddo;
- Case...EndCase;
- If...Endif;
- Call ... with (parameters); Call; Return; Return; When; Always use scope terminators for loops and iteration.

Some Keywords ...

- As verbs, use the words
- generate, Compute, Process,
- Set, reset,
- increment,
- calculate,
- add, sum, multiply, ...
- print, display,
- input, output, edit, test , etc.

Methods of finding GCD

Competition
 Computing Greatest Common Divisor: gcd(m,n)

Primary School	
1.	$t:=\min (m, n)$
2.	$m \bmod t=0 ?$
3.	Yes? $n \bmod t=0$?
Return t	
4.	No? $t=t-1 ;$ goto 2

> Secondary School 1. $\begin{array}{ll}\text { 2. } & \text { Find prime factors of } m \\ \text { 3. } & \text { Identify common factors of } n \\ \text { 4. } & \text { Return product of these }\end{array}$
M-2

433-253 Algorithms and Data Structures

```
University
1. }n=0\mathrm{ ?
2. Yes? Return m
3. r=m mod n,
    m:= n
    n:=r
4. Go to 1
```


Fundamentals of Analysis of algorithm efficiency

Analysis of algorithms

- Issues:
- correctness
- time efficiency
- space efficiency
- optimality
- Approaches:
- theoretical analysis
- empirical analysis

Theoretical analysis of time

efficiency

Time efficiency is analyzed by determining the number of repetitions of the basic operation as a function of input size

- Basic operation: the operation that contributes the most towards the run running time of the algorithm

Note: Different basic operations may cost differently!

Input size and basic operation examples

Problem	Input size measure	Basic operation
Searching for key in a list of n items	Number of list's items, i.e. n	Key comparison
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers
Checking primality of a given integer n	n 'size $=$ number of digits (in binary representation)	Division
Typical graph problem	\#vertices and/or edges	Visiting a vertex or traversing an edge

Empirical analysis of time efficiency

OSelect a specific (typical) sample of inputs
OUse physical unit of time (e.g., milliseconds) or
Count actual number of basic operation's executions

OAnalyze the empirical data

Efficiencies

- Worst Case Efficiency:
- Is its efficiency for the worst case input of size n, which is an input of size n for which the algorithm runs the longest among all possible inputs of that size
- $\mathrm{C}_{\text {worst }}(n)$
- Best-case efficiency:
- Is its efficiency for the worst case input of size n, which is an input of size n for which the algorithm runs the fastest among all possible inputs of that size
- $\mathrm{C}_{\text {best }}(n)$

Amortized efficiency

- It applies not to a single run of an algorithm, but rather to a sequence of operations performed on the same data structure

Best-case, average-case, worst-case

For some algorithms, efficiency depends on form of input:

- Worst case: $\mathrm{C}_{\text {worst }}(n)$-maximum over inputs of size n
- Best case: $\quad \mathrm{C}_{\text {best }}(n)$ - minimum over inputs of size n
- Average case: $\mathrm{C}_{\text {avg }}(n)$ - "average" over inputs of size n
- Number of times the basic operation will be executed on typical input
- NOT the average of worst and best case
- Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs. So, avg = expected under uniform distribution.

Example: Sequential search

ALGORITHM SequentialSearch (A[0..n-1], K)
//Searches for a given value in a given array by sequential search
$/ /$ Input: An array $A[0 . . n-1]$ and a search key K
//Output: The index of the first element of A that matches K
// or -1 if there are no matching elements
$i \leftarrow 0$
while $i<n$ and $A[i] \neq K$ do
$i \leftarrow i+1$
if $i<n$ return i
else return - 1

- Worst case
- Best case
- Average case
n key comparisons
1 comparisons
$(\mathrm{n}+1) / 2$, assuming K is in A

Types of formulas for basic operation's count

- Exact formula

$$
\text { e.g., } C(n)=n(n-1) / 2
$$

- Formula indicating order of growth with specific multiplicative constant

$$
\text { e.g., } \mathrm{C}(n) \approx 0.5 n^{2}
$$

- Formula indicating order of growth with unknown multiplicative constant

$$
\text { e.g., } C(n) \approx c n^{2}
$$

Order of growth

- Most important: Order of growth within a constant multiple as $n \rightarrow \infty$
- Example:
- How much faster will algorithm run on computer that is twice as fast?
- How much longer does it take to solve problem of double input size?

Values of some important functions as $n \rightarrow \infty$

n	$\log _{2} n$	n	$n \log _{2} n$	n^{2}	n^{3}	2^{n}	$n!$
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^{6}$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^{2}$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^{4}$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^{5}$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^{6}$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^{7}$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Asymptotic Notations

- O (Big-Oh)-notation
- Ω (Big-Omega) -notation
- Θ (Big-Theta) -notation

Asymptotic order of growth

A way of comparing functions that ignores constant factors and small input sizes (because?)

- $O(g(n))$: class of functions $f(n)$ that grow no faster than $g(n)$
- $\Theta(g(n))$: class of functions $f(n)$ that grow at same rate as $g(n)$
- $\Omega(g(n))$: class of functions $f(n)$ that grow at least as fast as $g(n)$

O-notation

Definition: A function $t(n)$ is said to be in $O(g(n))$, denoted $\mathrm{t}(\mathrm{n}) \in O(\mathrm{~g}(\mathrm{n}))$ is bounded above by some constant multiple of $g(n)$ for all large n, i.e., there exist positive constant c and nonnegative integer n_{0} such that

$$
f(n) \leq c g(n) \text { for every } n \geq n_{0}
$$

Big-oh

Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$

Ω-notation

- Formal definition
- A function $t(n)$ is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if $t(n)$ is bounded below by some constant multiple of $g(n)$ for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_{0} such that
$\mathrm{t}(\mathrm{n}) \geq \mathrm{cg}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n}_{0}$

Big-omega

Fig. 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

Θ-notation

- Formal definition
- A function $t(n)$ is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if $t(n)$ is bounded both above and below by some positive constant multiples of $g(n)$ for all large n, i.e., if there exist some positive constant c_{1} and c_{2} and some nonnegative integer n_{0} such that
$\mathrm{c}_{2} \mathrm{~g}(\mathrm{n}) \leq \mathrm{t}(\mathrm{n}) \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n}_{0}$

Big-theta

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

Theorem

- If $t_{1}(n) \in O\left(g_{1}(n)\right)$ and $t_{2}(n) \in O\left(g_{2}(n)\right)$, then $t_{1}(n)+t_{2}(n) \in O\left(\max \left\{g_{1}(n), g_{2}(n)\right\}\right)$.
- The analogous assertions are true for the Ω notation and Θ-notation.

Proof. There exist constants $c 1, c 2, n 1, n 2$ such that

$$
\begin{array}{ll}
t 1(n) \leq c l^{*} g 1(n), & \text { for all } n \geq n 1 \\
t_{2}(n) \leq c 2^{*} g_{2}(n), & \text { for all } n \geq m_{2}
\end{array}
$$

Define $c 3=c 1+c 2$ and $n 3=\max \{(n 1, n 2\}$. Then

$$
41(n)+12(n) \leq c 3^{*} \max \left\{\left(g 1(n), g_{2}(n)\right\}, \text { for all } n \geq n 3\right.
$$

Some properties of asymptotic order of growth

- $f(n) \in O(f(n))$
- $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$
- If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in$ $\mathrm{O}(h(n))$

Note similarity with $\mathrm{a} \leq \mathrm{b}$

- If $f_{1}(n) \in \mathrm{O}\left(g_{1}(n)\right)$ and $f_{2}(n) \in \mathrm{O}\left(g_{2}(n)\right)$, then

$$
f_{1}(n)+f_{2}(n) \in O\left(\max \left\{g_{1}(n), g_{2}(n)\right\}\right)
$$

Also, $\Sigma_{1 \leq i \leq n} \Theta(f(i))=\Theta\left(\Sigma_{1 \leq i \leq n} f(i)\right)$

Establishing order of growth using limits

L'Hôpital's rule and Stirling's formula

L'Hôpital's rule: If $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and the derivatives $f^{\prime}, \vec{g}^{\infty}$ exist, then

$$
\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

Exsumple: $\log n$ vs. μ

Stirling's formula: $n!\approx(2 \pi n)^{1 / 2}(n / e)^{n}$
Exsimple: 2^{n} vs. $\mu!$

Orders of growth of some important functions

- All logarithmic functions $\log _{a} n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base $a>1$ is because

$$
\log _{a} n=\log _{b} n / \log _{b} a
$$

- All polynomials of the same degree k belong to the same class:

$$
a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{0} \in \Theta\left(n^{k}\right)
$$

- Exponential functions a^{n} have different orders of growth for different a 's
- order $\log n<\operatorname{order} n^{\alpha}(\alpha>0)<\operatorname{order} a^{n}<\operatorname{order} n!<\operatorname{order} n^{n}$

Basic asymptotic efficiency classes

1	constant
$\log \pi$	Iogarithmie
11	linestr
$n \log n$	n-log-n
u^{2}	Clutideratic
1^{3}	cubie
$2^{\prime \prime}$	exponentis!
$n!$	P起toris]

Plan for analyzing nonrecursive algorithms General Plan for Analysis

- Decide on parameter n indicating input size
- Identify algorithm's basiyc operation
- Determine worst, average, and best cases for input of size n
- Set up a sum for the number of times the basic operation is executed
- Simplify the sum using standard formulas and rules (see Appendix A)

Useful summation formulas and rules

$$
\begin{aligned}
& \Sigma_{\text {liㄴ } n} 1=1+1+\ldots+1=n-I+1 \\
& \text { In particular, } \Sigma_{\text {ISi<n }} 1=n-1+1=n \in \Theta(n) \\
& \Sigma_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right) \\
& \Sigma_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right) \\
& \Sigma_{0 \leq i \leq n} a^{i}=1+a+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1) \text { for any } a \neq 1 \\
& \text { In particular, } \Sigma_{0 \leq i \leq n} 2^{i}=2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1 \in \\
& \Theta\left(2^{n}\right) \\
& \Sigma\left(a_{i} \pm b_{i}\right)=\Sigma a_{i} \pm \Sigma b_{i} \quad \Sigma c a_{i}=c \Sigma a_{i} \quad \Sigma_{l \leq i \leq u} a_{i}=\Sigma_{l \leq i \leq m} a_{i} \\
& +\sum_{m+1 \leq i \leq u} a_{i}
\end{aligned}
$$

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n-1])
//Determines the value of the largest element in a given array //Input: An array $A[0 . . n-1]$ of real numbers //Output: The value of the largest element in A
maxval $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do

$$
\begin{aligned}
& \text { if } A[i]>\text { maxval } \\
& \quad \text { maxval } \leftarrow A[i]
\end{aligned}
$$

return maxval
$\mathrm{T}(\mathrm{n})=\boldsymbol{\Sigma} \boldsymbol{1} \leq i \leq \boldsymbol{n}-\boldsymbol{1} \boldsymbol{1}=\boldsymbol{m} \mathbf{- \boldsymbol { 1 }}=\boldsymbol{\Theta}(\boldsymbol{n})$ comparisons

Example 2: Element uniqueness problem

ALGORITHM UniqueElements(A[0..n - 1])
//Determines whether all the elements in a given array are distinct //Input: An array $A[0 . . n-1]$
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
for $i \leftarrow 0$ to $n-2$ do

$$
\begin{aligned}
& \text { for } j \leftarrow i+1 \text { to } n-1 \text { do } \\
& \quad \text { if } A[i]=A[j] \text { return false }
\end{aligned}
$$

return true

$$
\begin{aligned}
T(n) & =\Sigma^{\prime} 0 \leq i \leq n-2 \quad\left(\sum i+1 \leq j \leq n-1\right. \\
& =\Sigma^{\prime} 0 \leq i \leq n-2 n-i-1=(n-1 \\
& =\Theta\left(n^{2}\right) \text { comparison }
\end{aligned}
$$

Example 3: Matrix multiplication

ALGORITHM MatrixMultiplication(A[0..n-1, 0..n-1], $B[0 . . n-1,0 . . n-1]$)
//Multiplies two n-by- n matrices by the definition-based algorithm
//Input: Two n-by- n matrices A and B
//Output: Matrix $C=A B$
for $i \leftarrow 0$ to $n-1$ do

$$
\begin{aligned}
& \text { for } j \leftarrow 0 \text { to } n-1 \text { do } \\
& \quad C[i, j] \leftarrow 0.0 \\
& \quad \text { for } k \leftarrow 0 \text { to } n-1 \text { do } \\
& \quad C[i, j] \leftarrow C[i, j]+A[i, k] * B[k, j]
\end{aligned}
$$

return C

$$
\begin{aligned}
& =\Sigma^{\prime} 0 \leq i \leq n-1 \Sigma^{\prime} 0 \leq i \leq n-1 \\
& =\Sigma^{\prime} 0 \leq i \leq n-1 \Theta\left(n^{2}\right) \\
& =\Theta\left(n^{3}\right. \text { multip }
\end{aligned}
$$

Example 4: Gaussian elimination

Algorithm GaussianElimination(A[0..n-1,0..n]) //Implements Gaussian elimination on an n-by$(n+1)$ matrix A
for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
for $k \leftarrow i$ to n do

$$
A[j, k] \leftarrow A[j, k]-A[i, k] * A[j, i] / A[i, i]
$$

 improvement.

```
B\leftarrowA[j,]/A[[,]
```

for $k \leftarrow i$ to n do
$A[j, k] \leftarrow A[j, k]-A[i, k] * B$

Example 5: Counting binary digits

ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in n 's binary representation
count $\leftarrow 1$
while $n>1$ do

$$
\begin{aligned}
& \text { count } \leftarrow \text { count }+1 \\
& n \leftarrow\lfloor n / 2\rfloor
\end{aligned}
$$

return count

Plan for Analysis of Recursive Algorithms

- Decide on a parameter indicating an input's size.
- Identify the algorithm's basic operation.
- Check whether the number of times the basic op. is executed may vary on different inputs of the same size. (If it may, the worst, average, and best cases must be investigated separately.)
- Set up a recurrence relation with an appropriate initial condition expressing the number of times the basic op. is executed.
- Solve the recurrence (or, at the very least, establish its solution's order of growth) by backward substitutions or another method.

Example 1: Recursive evaluation of n !

Definition: $n!=1 * 2 * \ldots *(n-1) * n$ for $n \geq 1$ and $0!=1$

//Computes n ! recursively
//Input: A nonnegative integer $n:(0)=1$
//Output: The value of n !
if $n=0$ return 1
else return $F(n-1) * n$
n
multiplication

$$
\begin{aligned}
& \mathrm{M}(\mathrm{n})=\mathrm{M}(\mathrm{n}-1)+1 \\
& \mathrm{M}(0)=0
\end{aligned}
$$

Solving the recurrence for $\mathrm{M}(n)$

$$
\begin{aligned}
\mathrm{M}(n) & =\mathrm{M}(n-1)+1, \mathrm{M}(0)=0 \\
\mathrm{M}(\mathrm{n}) & =\mathrm{M}(\mathrm{n}-1)+1 \\
& =(\mathrm{M}(\mathrm{n}-2)+1)+1=\mathrm{M}(\mathrm{n}-2)+2 \\
& =(\mathrm{M}(\mathrm{n}-3)+1)+2=\mathrm{M}(\mathrm{n}-3)+3 \\
& \ldots \\
& =\mathrm{M}(\mathrm{n}-\mathrm{i})+\mathrm{i} \\
& =\mathrm{M}(0)+\mathrm{n} \\
& =\mathrm{n}
\end{aligned}
$$

The method is called backward substitution.

Solving recurrence for number of moves

$$
\begin{aligned}
\mathrm{M}(n) & =2 \mathrm{M}(n-1)+1, \mathrm{M}(1)=1 \\
\mathrm{M}(\mathrm{n}) & =2 \mathrm{M}(\mathrm{n}-1)+1 \\
& =2(2 \mathrm{M}(\mathrm{n}-2)+1)+1=2^{\wedge} 2^{*} \mathrm{M}(\mathrm{n}-2)+2^{\wedge} 1+2^{\wedge} 0 \\
& =2^{\wedge} 2^{*}(2 \mathrm{M}(\mathrm{n}-3)+1)+2^{\wedge} 1+2^{\wedge} 0 \\
& =2^{\wedge} 3^{*} \mathrm{M}(\mathrm{n}-3)+2^{\wedge} 2+2^{\wedge} 1+2^{\wedge} 0 \\
& =\ldots \\
& =2^{\wedge}(\mathrm{n}-1)^{*} \mathrm{M}(1)+2^{\wedge}(\mathrm{n}-2)+\ldots+2^{\wedge} 1+2^{\wedge} 0 \\
& =2^{\wedge}(\mathrm{n}-1)+2^{\wedge}(\mathrm{n}-2)+\ldots+2^{\wedge} 1+2^{\wedge} 0 \\
& =2^{\wedge} n-1
\end{aligned}
$$

DIVIDE AND CONQUER

Divide and Conquer

The most well known algorithm design strategy:

1. Divide instance of problem into two or more smaller instances
2. Solve smaller instances recursively
3. Obtain solution to original (larger) instance by combining these solutions

Divide-and-conquer technique

Divide and Conquer Examples

\square Sorting: mergesort and quicksort
\square Tree traversals
\square Binary search
\square Matrix multiplication-Strassen's algorithm
\square Convex hull-QuickHull algorithm

Ceneral Divide and Compuer recurrence: Inaster Theorem

$$
\begin{aligned}
& \text { 1. }!<i^{4} \\
& T(u) E^{\prime} \in\left(n^{\prime t}\right) \\
& \text { 2. }!=i^{d} \\
& T(u) E^{\prime} G\left(n^{4} \lg n\right) \\
& \text { 3. } a>i^{d} \\
& T^{\prime}(u) E^{\prime}\left(-1\left(\mu^{\log _{0} u}\right)\right.
\end{aligned}
$$

Note the stme results hold with 0 instend or Θ.

Mergesort

Algorithm:

\square Split array $\mathrm{A}[1 . . n]$ in two and make copies of each half in arrays $\mathrm{B}[1 . . n / 2$] and $\mathrm{C}[1 . . n / 2$]
\square Sort arrays B and C
\square Merge sorted arrays B and C into array A as follows:

- Repeat the following until no elements remain in one of the arrays:

■ compare the first elements in the remaining unprocessed portions of the arrays

- copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array
-Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.

Mergesort Example

Pseudocode for Mergesort

ALGORITHM Mergesort(A[0.n-1])
$/ /$ Sorts array $A[0 . . n-1]$ by recursive mergesort
//Input: An array $A[0 . . n-1]$ of orderable elements
//Output: Array $A[0 . n-1]$ sorted in nondecreasing order if $n>1$
copy $A[0 . .\lfloor n / 2\rfloor-1]$ to $B[0 . .\lfloor n / 2\rfloor-1]$
copy $A[\lfloor n / 2\rfloor . . n-1]$ to $C[0 . .[n / 2\rceil-1]$
$\operatorname{Mergesort}(B[0 . .\lfloor n / 2\rfloor-1])$
$\operatorname{Mergesort}(C[0 . .[n / 2]-1])$
$\operatorname{Merge}(B, C, A)$

Pseudocode for Merge

ALGORITHM $\operatorname{Merge}(B[0 . p-1], C[0 . q-1], A[0 . p+q-1])$
//Merges two sorted arrays intc one sorted array
$/ /$ Input: Arrays $B[0 . . p-1]$ and $C[0 . . q-1]$ both sorted
$/ /$ Output: Sorted array $A[0 . \ldots p+q-1]$ of the elements of B and C
$i \leftarrow 0 ; j \leftarrow 0 ; k \leftarrow 0$
while $i<p$ and $j<q$ do
if $B[i] \leq C[j]$
$A[k] \leftarrow B[i] ; i \leftarrow i+1$
else $A[k] \leftarrow C[j] ; j \leftarrow j+1$
$k \leftarrow k+1$
if $i=p$
copy $C[j-q-1]$ to $A[k . p+q-1]$
else copy $B[i . . p-1]$ to $A[k . p+q-1]$

Recurrence Relation for Mergesort

- Let $T(n)$ be worst case time on a sequence of n keys
- If $n=1$, then $T(n)=\Theta(1)$ (constant)
- If $n>1$, then $T(n)=2 T(n / 2)+\Theta(n)$
- two subproblems of size $n / 2$ each that are solved recursively
$-\Theta(n)$ time to do the merge

Efficiency of mergesort

\square All cases have same efficiency: $\Theta(n \log n)$
\square Number of comparisons is close to theoretical minimum for comparison-based sorting:

- $\log n!\approx n \lg n-1.44 n$
\square Space requirement: $\Theta(n)$ (NOT in-place)
\square Can be implemented without recursion (bottomup)

Quick-Sort

\square Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
\square Divide: pick a random element x (called pivot) and partition S into
L elements less than x

- E elements equal x
- G elements greater than x
\square Recur: sort L and G

\square Conquer: join L, E and G

Quicksort

- Select a pivot (partitioning element)
- Rearrange the list so that all the elements in the positions before the pivot are smaller than or equal to the pivot and those after the pivot are larger than the pivot
- Exchange the nivot with the last element in p
final position
- Sort the two sublists
$\mathrm{A}[i]>p$

The partition algorithm

```
Algorithm Partition(A[l.r])
//Partitions a subarray by using its first element as a pivot
//Input: A subarray A[l..r] of A[0..n - 1], defined by its left and right
// indices l and r (l<r)
//Output: A partition of A[l.r], with the split position returned as
// this function's value
p\leftarrowA[l]
i\leftarrowl; j\leftarrowr+1
repeat
    repeat }i\leftarrowi+1\mathrm{ until }A[i]\geq
    repeat }j\leftarrowj-1 until A[j] . 
    swap(A[i],A[j])
until i\geqj
swap(A[i],A[j]) //undo last swap when i\geqj
swap(A[l],A[j])
return j
```


Efficiency of quicksort

\square Best case: split in the middle $-\Theta(n \log n)$
\square Worst case: sorted array! - $\Theta\left(n^{2}\right)$
\square Average case: random arrays $-\Theta(n \log n)$
\square Improvements:
Dbetter pivot selection: median of three partitioning avoids worst case in sorted files

- switch to insertion sort on small subfiles
\square Considered the method of choice for internal sorting for large files ($n \geq 10000$)

Binary Search - an Iterative

Algorithm

Very efficient algorithm for searching in sorted array:

$$
K \quad \text { vs } \quad \mathrm{A}[0] \ldots \mathrm{A}[m] \ldots \mathrm{A}[n-1]
$$

If $K=\mathrm{A}[m]$, stop (successful search);
otherwise, continue searching by the same method in $\quad \mathrm{A}[0 . . m-1]$ if $K<\mathrm{A}[m]$
and in
$\mathrm{A}[m+1 . . n-1]$ if $K>\mathrm{A}[m]$

Pseudocode for Binary Search

ALGORITHM BinarySearch(A[0..n-1], K)
$I \leftarrow 0 ; r \leftarrow n-1$
while $I \leq r$ do
// I and r crosses over \rightarrow can't find K
$m \leftarrow\lfloor(1+r) / 2\rfloor$
if $K=\mathrm{A}[m]$ return $m \quad / /$ the key is found else if $K<\mathrm{A}[m] r \leftarrow m-1 \quad / /$ the key is on the left half of
else $I \leftarrow m+1$ the array
// the key is on the right half of the array
return -1

Binary Search - a Recursive Algorithm

ALGORITHM BinarySearchRecur(A[0..n-1], I, r, K)
if I > r
return-1
else

$$
m \leftarrow\lfloor(1+r) / 2\rfloor
$$

if $K=A[m]$
return m
else if $K<A[m]$
return BinarySearchRecur(A[0..n-1], I, m-1, K)
else
return BinarySearchRecur(A[0..n-1], m+1, r, K)

Analysis of Binary Search

\square Worst-case (successful or fail):

- $C_{w}(n)=1+C_{w}(\lfloor n / 2\rfloor)$,
- $C_{w}(1)=1$
solution: $C_{w}(n)=\left\lfloor\log _{2} n\right\rfloor+1=\left\lceil\log _{2}(n+1)\right\rceil$
\square This is VERY fast: e.g., $\mathrm{C}_{w}\left(10^{6}\right)=20$
\square Best-case: successful $C_{b}(n)=1$,

$$
\text { fail } C_{b}(n)=\left\lfloor\log _{2} n\right\rfloor+1
$$

\square Average-case: successful $C_{\text {avg }}(\mathrm{n})=\log _{2} n-1$ fail $C_{\text {avg }}(n)=\log _{2}(n+1)$

Binary Tree Traversals

- Definitions
- A binary tree T is defined as a finite set of nodes that is either empty or consists of a root and two disjoint binary trees T_{L} and T_{R} called, respectively, the left and right subtree of the root.
- The height of a tree is defined as the length of the longest path from the root to a leaf.
- Problem: find the height of a bi ary tree.

Pseudocode - Height of a Binary

Tree

ALGORITHM Height(T)
//Computes recursively the height of a binary tree
//Input: A binary tree T
//Output: The height of T
if $T=\varnothing$
return-1
else
return $\max \left\{\operatorname{Height}\left(T_{L}\right), \operatorname{Height}\left(T_{R}\right)\right\}+1$

Analysis:

Number of comparisons of a tree T with $\varnothing: 2 n+$ 1

Number of comparisons made to compute height is the same as number of additions:

$$
\begin{aligned}
& \mathrm{A}(n(T))=\mathrm{A}\left(n\left(T_{L}\right)\right)+\mathrm{A}\left(n\left(T_{R}\right)\right)+1 \text { for } n>0 \\
& \mathrm{~A}(0)=0
\end{aligned}
$$

The solution is $\mathrm{A}(n)=n$

Binary Tree Traversals- preorder, inorder, and postorder traversal

\square Binary tee traversal: visit all nodes of a binary tree recursively.

```
Algorithm Preorder(T)
//Implement the preorder traversal of a binary tree
//Input: Binary tree T (with labeled vertices)
//Output: Node labels listed in preorder
if T # \varnothing
    write label of T's root
    Preorder(T
    Preorder(T}\mp@subsup{\textrm{R}}{\textrm{R}}{
```


Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers represented by arrays of their digits such as:
$A=12345678901357986429 \quad B=87654321284820912836$
The grade-school algorithm:

$$
\begin{gathered}
\begin{array}{c}
a_{1} a_{2} \ldots \\
b_{1} \\
b_{1} b_{2} \ldots
\end{array} b_{n} \\
\left(d_{10}\right) d_{11} d_{12} \ldots d_{1 n} \\
\left(d_{20}\right) d_{21} d_{22} \ldots
\end{gathered} d_{2 n} .
$$

Efficiency: n^{2} one-digit multiplications

First Divide-and-Conquer Algorithm

A small example: $A * B$ where $A=2135$ and $B=4014$

$$
A=\left(21 \cdot 10^{2}+35\right), \quad B=\left(40 \cdot 10^{2}+14\right)
$$

So, $A * B=\left(21 \cdot 10^{2}+35\right) *\left(40 \cdot 10^{2}+14\right)$

$$
=21 * 40 \cdot 10^{4}+(21 * 14+35 * 40) \cdot 10^{2}+35 * 14
$$

In general, if $A=A_{1} A_{2}$ and $B=B_{1} B_{2}$ (where A and B are n-digit, $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ are $n / 2$-digit numbers),
$A * B=A_{1} * B_{1} \cdot 10^{n}+\left(A_{1} * B_{2}+A_{2} * B_{1}\right) \cdot 10^{n / 2}+A_{2} * B_{2}$
Recurrence for the number of one-digit multiplications $M(n)$:

$$
M(n)=4 M(n / 2), \quad M(1)=1
$$

Solution: $\mathrm{M}(n)=n^{2}$

Second Divide-and-Conquer Algorithm

$$
A * B=A_{1} * B_{1} \cdot 10^{n}+\left(A_{1} * B_{2}+A_{2} * B_{1}\right) \cdot 10^{n / 2}+A_{2} * B_{2}
$$

The idea is to decrease the number of multiplications from 4 to 3:

$$
\begin{aligned}
& \left(A_{1}+A_{2}\right) *\left(B_{1}+B_{2}\right)=A_{1} * B_{1}+\left(A_{1} * B_{2}+A_{2} * B_{1}\right)+A_{2} * B_{2} \\
& \text { l.e., }\left(A_{1} * B_{2}+A_{2} * B_{1}\right)=\left(A_{1}+A_{2}\right) *\left(B_{1}+B_{2}\right)-A_{1} * B_{1}-A_{2} * B_{2}
\end{aligned}
$$

which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the number of multiplications $M(n)$:

$$
\mathrm{M}(n)=3 M(n / 2), \quad \mathrm{M}(1)=1
$$

Solution: $\mathrm{M}(n)=3^{\log _{2} n}=n^{\log _{2} 3} \approx n^{1.585}$

Strassen's matrix multiplication

- Strassen observed [1969] that the product of two matrices can be computed as follows:

$\mathrm{C}_{10} \mathrm{C}_{11}$

$$
\begin{aligned}
& A_{10} A_{11} \quad B_{10} B_{11} \\
& \\
& M_{1}+M_{4}-M_{5}+M_{7} \\
& M_{2}+M_{4}
\end{aligned}
$$

Submatrices:

$\square M_{1}=\left(A_{00}+A_{11}\right) *\left(B_{00}+B_{11}\right)$
$\square \mathrm{M}_{2}=\left(\mathrm{A}_{10}+\mathrm{A}_{11}\right) * \mathrm{~B}_{00}$
$\square M_{3}=A_{00} *\left(B_{01}-B_{11}\right)$
$\square \mathrm{M}_{4}=\mathrm{A}_{11} *\left(\mathrm{~B}_{10}-\mathrm{B}_{00}\right)$
$\square \mathrm{M}_{5}=\left(\mathrm{A}_{00}+\mathrm{A}_{01}\right) * \mathrm{~B}_{11}$
$\square M_{6}=\left(A_{10}-A_{00}\right) *\left(B_{00}+B_{01}\right)$
$\square M_{7}=\left(A_{01}-A_{11}\right) *\left(B_{10}+B_{11}\right)$

Efficiency of Strassen's algorithm

- If n is not a power of 2 , matrices can be padded with zeros
- Number of multiplications: 7
- Number of additions: 18

Time Analysis

$$
\begin{aligned}
& T(1)=1 \quad\left(\text { assume } N=2^{k}\right) \\
& T(N)=7 T(N / 2) \\
& T(N)=7^{k} T\left(N / 2^{k}\right)=7^{k} \\
& T(N)=7^{\log N}=N^{\log 7}=N^{2.81}
\end{aligned}
$$

Standard vs Strassen

	N	MYultiplications	Acditions
Stinderditg.	100	1,000,000	950.0000
Strassen's alg.	100	-111,822	$20.4500,33=1$
Stindtrot	1000	1,000,000, 000	$595,000.0000$
Strassen's alg.	1000	26-1,280,283	$1.5750,681,709$
Standtrdstg.	10,000	10^{12}	$5.95 * 10^{11}$
Strassen's alg,	10.000	$0.169 * 10{ }^{12}$	10^{12}

Greedy Technicue

Greedy Technique

Constructs a solution to an optimization problem piece by piece through a sequence of choices that ake:

- feasible, i.e. satisfying the constraints

Defined by an
objective function and
a set of constraints

- locally optimal (with respect to some neighborhood definition)
- greedy (in terms of some measure), and irrevocable

For some problems,
it yields a globally optimal solution for every instance. For most, does not but can be useful for fast approximations.

Applications of the Greedy Strategy

- Optimal solutions:
- change making for "normal" coin denominations
- minimum spanning tree (MST)
- single-source shortest paths
- simple scheduling problems
- Huffman codes
- Approximations/heuristics:
- traveling salesman problem (TSP)
- knapsack problem
- other combinatorial optimization problems

Change-Making Problem

Given unlimited amounts of coins of denominations $d_{1}>\ldots>$ d_{m},
give change for ampunt n with the least number of coins
Example: $d_{1}=25 c, d_{2}=10 c, d_{3}=5 c, d_{4}=1 c$ and $n=48 c$
Greedy solution: <1, 2, $0,3>$

Greedy solution is

- optimal for any amount and "normal" set of denominations

Minimum Spanning Tree (MST)

- Spanning tree of a connected graph G: a connected acyclic subgraph of G that includes all of G's vertices
- Minimum spanning tree of a weighted, connected graph G : a spanning tree of G of the mininium total weight

Example:

Prim's MST algorithm

- Start with tree T_{1} consisting of one (any) vertex and "grow" tree one vertex at a time to produce MST through a series of expanding subtrees $T_{1}, T_{2}, \ldots, T_{n}$
- On each iteration, construct T_{i+1} from T_{i} by adding vertex not in T_{i} that is closest to those already in T_{i} (this is a "greedy" step!)
- Stop when all vertices are included

Pseudocode - Prim's algorithm

ALGORITHM Prim(G)
// Prim's algorithm for computing a MST
// Input:A weighted connected graph G = (V,E)
// Output: Et, the set of edges composing a MST of G
$\mathrm{V}_{\mathrm{T}} \leftarrow\left\{\mathrm{v}_{0}\right\}$
$\mathrm{E}_{\mathrm{T}} \leftarrow \varnothing$
for $\mathrm{l} \leftarrow 1$ to $|\mathrm{v}|-1$ do
find a minimum weight edge $e^{*}=\left(v^{*}, u^{*}\right)$ among all edges (v, u) such
that v is in V_{T} and u is in $V-V_{T}$

$$
\begin{array}{r}
V_{T} \leftarrow V_{T} \cup\left\{u^{*}\right\} \\
E_{T} \leftarrow E_{T} \cup\left\{v^{*}\right\} \\
\text { return } E_{T}
\end{array}
$$

Example

Notes about Prim's algorithm

- Needs priority queue for locating closest fringe vertex.
- Efficiency
- O($\left.n^{2}\right)$ for weight matrix representation of graph and array implementation of priority queue
- O($m \log n$) for adjacency lists representation of graph with n vertices and m edges and min-heap implementation of the priority queue

Another greedy algorithm for MST: Kruskal's

- Sort the edges in nondecreasing order of lengths
- "Grow" tree one edge at a time to produce MST through a series of expanding forests $F_{1}, F_{2}, \ldots, F_{n-}$ 1
- On each iteration, add the next edge on the sorted list unless this would create a cycle. (If it would, skip the edge.)

Pseudocode - Kruskal's algorithm

ALGORITHM Kruskal(G)

// Kruskal's algorithm for constructing a minimum spanning tree
// Input: A weighted connected graph G = (V,E)
// Output: $\mathrm{E}_{\mathrm{T},}$ The set of edges composing a MST of G
$\mathrm{E}_{\mathrm{T}} \leftarrow \varnothing$; ecounter $\leftarrow 0$
$\mathrm{k} \leftarrow 0$
while ecounter < |V|-1
$k \leftarrow k+1$
if $\mathrm{E}_{\mathrm{T}} \cup\left\{\mathrm{e}_{\mathrm{ik}}\right\}$ is acyclic
$\mathrm{E}_{\mathrm{T}} \leftarrow \mathrm{E}_{\mathrm{T}} \cup\left\{\mathrm{e}_{\mathrm{ik}}\right\} ;$
ecounter \leftarrow ecounter +1
return E_{T}

Example

Notes about Kruskal's algorithm

- Algorithm looks easier than Prim's but is harder to implement (checking for cycles!)
- Cycle checking: a cycle is created iff added edge connects vertices in the same connected component
- Kruskal's algorithm relies on a union-find algorithm for checking cycles
- Runs in $O(m \log m)$ time, with $m=|E|$. The time is mostly spent on sorting.

Disjoint Sets

- Union of two sets A and B, denoted by $A \cup B$, is the set $\{x \mid x \in A$ or $x \in B\}$
- The intersection of two sets A and B, denoted by $A \cap B$, is the set $\{x \mid x \in A$ and $x \in B\}$.
- Two sets A and B are said to be disjoint if $A \cap B=\phi$.
- If $S=\{1,2, \ldots, 11\}$ and there are 4 subsets $\{1,7,10,11\}$, $\{2,3,5,6\},\{4,8\}$ and $\{9\}$, these subsets may be labeled as $1,3,8$ and 9 , in this order.

Disjoint Sets

- A disjoint-set is a collection © $=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{k}\right\}$ of distinct dynamic sets.
- Each set is identified by a member of the set, called representative.
- Disjoint-set data structures can be used to solve the union-find problem
Disjoint set operations:
- MAKE-SET (x) : create a new set with only x. assume x is not already in some other set.
- UNION (x, y) : combine the two sets containing x and y into one new set. A new representative is selected.
- FIND-SET(x): return the representative of the set containing x.

The Union-Find problem

- N balls initially, each ball in its own bag
- Label the balls $1,2,3, \ldots, N$
- Two kinds of operations:
- Pick two bags, put all balls in these bags into a new bag (Union)
- Given a ball, find the bag containing it (Find)
- to design efficient algorithms for Union \& Find operations.
- Approach: to represent each set as a rooted tree with data elements stored in its nodes.
- Each element x other than the root has a pointer to its parent $p(x)$ in the tree.
- The root has a null pointer, and it serves as the name or set representative of the set.
- This results in a forest in which each tree corresponds to one set.
- For any element x, let $\operatorname{root}(x)$ denote the root of the tree containing x.
$-\operatorname{FIND}(x)$ returns root (x).
- union (x, y) means UNION(root (x), root(y)).

Implementation of FIND and UNION

- $\operatorname{FIND}(x) \rightarrow$ follow the path from x until the root is reached, then return $\operatorname{root}(x)$.
- Time complexity is $\mathrm{O}(\mathrm{n})$
- Find $(x)=\operatorname{Find}(y)$, when x and y are in the same set
- UNION(x,y) \rightarrow UNION(FIND(x), FIND(y)) \rightarrow UNION(root $(x), \operatorname{root}(y)) \rightarrow$ UNION (u, v) then let v be the parent of u. Assume u is $\operatorname{root}(x), v$ is root(y)
- Time complexity is $\mathrm{O}(\mathrm{n})$
- Union (x, y) Combine the set that contains x with the set that contains y

The Union-Find problem

- An example with 4 balls
- Initial: $\{1\},\{2\},\{3\},\{4\}$
- Union $\{1\},\{3\} \rightarrow\{1,3\},\{2\},\{4\}$
- Find 3. Answer: $\{1,3\}$
- Union $\{4\},\{1,3\} \rightarrow\{1,3,4\},\{2\}$
- Find 2. Answer: $\{2\}$
- Find 1. Answer $\{1,3,4\}$

Forest Representation

- A forest is a collection of trees
- Each bag is represented by a rooted tree, with the root being the representative ball

Example: Two bags --- $\{1,3,5\}$ and $\{2,4,6,7\}$.

Forest Representation

- $\operatorname{Find}(x)$
- Traverse from x up to the root
- Union (x, y)
- Merge the two trees containing x and y

Forest Representation

Initial:

Union 1 3:

Union 24 :

Find 4:

Forest Representation

Union 14 :

Find 4:

Union by Rank \& Path Compression

- Union by Rank: Each node is associated with a rank, which is the upper bound on the height of the node (i.e., the height of subtree rooted at the node), then when UNION, let the root with smaller rank point to the root with larger rank.
- Path Compression: used in FIND-SET(x) operation, make each node in the path from x to the root directly point to the root. Thus reduce the tree height.

Path Compression

Shortest paths - Dijkstra's algorithm

Single Source Shortest Paths Problem: Given a weighted connected (directed) graph G, find shortest paths from source vertex s to each of the other vertices

Dijkstra's algorithm: Similar to Prim's MST algorithm, with a different way of computing numerical labels: Among vertices not already in the tree, it finds vertex u with the smallest sum

$$
d_{v}+w(v, u)
$$

where
v is a vertex for which shortest path has been already found on preceding iterations (such vertices form a tree rooted at s)
d_{v} is the length of the shortest path from source s to v
$w(v, u)$ is the length (weight) of edge from v to u

Pseudocode - Dijkstra's algorithm
 ALGORITHM Dijkstra(G,S)

// Dijkstra's algorithm for single source shortest paths
// Input: A weighted connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and its vertex s
// Output: The length d_{v} of a shortest path from s to v and its penultimate vertex p_{v} for every vertex v in V
Initialize(Q)
for every vertex v in V do
$\mathrm{d}_{\mathrm{v}} \leftarrow \infty ; \mathrm{p}_{\mathrm{v}}=$ null
Insert($\mathrm{Q}, \mathrm{v}, \mathrm{d}_{\mathrm{v}}$)
$d_{s} \leftarrow 0$; Decrease $\left(Q, s, d_{s}\right)$
$V_{T}^{s} \leftarrow \varnothing$
for $1 \leftarrow 1$ to $|v|-1$ do
$\mathrm{u}^{*} \leftarrow$ DeleteMin(Q)
$\mathrm{V}_{\mathrm{T}} \leftarrow \mathrm{V}_{\mathrm{T}} \cup\left\{\mathrm{u}^{*}\right\}$
for every vertex u in $V-V_{T}$ that is adjacent to u^{*} do if $d_{u}+w\left(u^{*}, u\right)<d_{u}$

$$
d_{u} \leftarrow d_{u}+w\left(u^{*}, u\right) ; \quad p_{u} \leftarrow u^{*}
$$

$$
\text { Decrease }\left(Q, u, d_{u}\right)
$$

Tree vertices
$\mathrm{a}(-, 0)$
$\underline{b}(\mathrm{a}, 3) \mathrm{c}(-, \infty) \mathrm{d}(\mathrm{a}, 7) \mathrm{e}(-, \infty)$
$b(a, 3)$ $c(b, 3+4) \quad \underline{d}(b, 3+2) \quad e(-, \infty)$
d(b,5)
$\underline{c(b, 7)} \quad e(d, 5+4)$
$c(b, 7)$
$\mathrm{e}(\mathrm{d}, 9)$

e(d,9)

Notes on Dijkstra's algorithm

- Doesn't work for graphs with negative weights (whereas Floyd's algorithm does, as long as there is no negative cycle).
- Applicable to both undirected and directed graphs
- Efficiency
- $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ for graphs represented by weight matrix and array implementation of priority queue
- $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$ for graphs represented by adj. lists and minheap implementation of priority queue

Graphs
Minimum Spanning Tree
PLSD210

- Dynamic Algorithms

Key Points

- Optimal Binary Search Tree
- Used when
- some items are requested more often than others
- frequency for each item is known
- Minimises cost of all searches
- Build the search tree by
- Considering all trees of size 2 , then $3,4, \ldots$.
- Larger tree costs computed from smaller tree costs
- Sub-trees of optimal trees are optimal trees!
- Construct optimal search tree by saving root of each optimal subtree and tracing back
- $O\left(n^{3}\right)$ time / $O\left(n^{2}\right)$ space

Key Points

- Other Problems using Dynarnic Algorithms
- Matrix chain multiplication
- Find optimal parenthesisation of a matrix product
- Expressions within parentheses
- optimal parenthesisations themselves
- Optimal sub-structure characteristic of dynamic algorithms
- Similar to optimal binary search tree
- Longest common subsequence
- Longest string of symbols found in each of two sequences
- Optimal triangulation
- Least cost division of a polygon into triangles
- Maps to matrix chain multiplication
- Graph

Graphs - Definitions

- Set of vertices (nodes) and edges connecting them
- Write

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E})
$$

where

- V is a set of vertices:
- An edge connects two vertices:
- E is a set of edges:

$$
\begin{aligned}
& \mathrm{V}=\left\{\mathrm{v}_{\mathrm{i}}\right\} \\
& \mathrm{e}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \\
& \mathrm{E}=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\} \\
& \quad \text { Vertices }
\end{aligned}
$$

Edges

Graphs - Definitions

- Path
- A path, p, of length, k, is a sequence of connected vertices

$$
\begin{array}{r}
\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+\mathrm{l}}\right), f, f, \underset{\mathrm{~g}}{\in}, \underset{\mathrm{~h}}{\mathrm{E}}> \\
\text { Path of length } 5
\end{array}
$$

$$
\begin{gathered}
<a, b> \\
\text { Path of length } 2
\end{gathered}
$$

Graphs - Definitions

- Cycle
- A graph contains no cycles if there is no path
$-\mathrm{p}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$ such that $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$

$$
\begin{gathered}
<\mathrm{i}, \mathrm{c}, \mathrm{f}, \mathrm{~g}, \mathrm{i}> \\
\text { is a cycle }
\end{gathered}
$$

Graphs - Definitions

- Spanning Tree
- A spanning tree is a set of $|\mathrm{V}|-1$ edges that connect all the vertices of a graph

The red path connects all vertices,
so it's a spanning tree

Graphs - Definitions

- Generally there is more than one spanning tree
- If a cost C_{ij} is associated with edge $\mathrm{e}_{\mathrm{ij}}=\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$
then the minimum spanning tree is the set of edges $\mathrm{E}_{\text {span }}$ such that

$$
\mathrm{C}=\Sigma\left(\mathrm{c}_{\mathrm{ij}} \mid \forall \mathrm{e}_{\mathrm{ij}} \in \text { Espan }\right)
$$

is a minimum

Other ST's can be formed

- Replace 2 with 7
- Replace 4 with 11

The red tree is the Min ST

Graphs - Kruskal's Algorithm

- Calculate the minimum spanning tree
- Put all the vertices into single node trees by themselves
- Put all the edges in a priority queue
- Repeat until we've constructed a spanning tree
- Extract cheapest edge
- If it forms a cycle, ignore it else add it to the forest of trees (it will join two trees into a larger tree)
- Return the spanning tree

Graphs - Kruskal's Algorithm

- Calculate the min mum spanning tree
- Put all the vertices into single node trees by themselves
- Put all the edges in a priority queue
- Repeat until we've constructed a spanning tree
- Extract cheapest edge
- If it forms a cycle, ignore it else add it to the forest of trees (it will join two trees into a larger tree)
- Return the spanning tree

Note that this algorithm makes no attempt - to be clever

- to make any sophisticated choice of the next edge
- it just tries the cheapest one!


```
                        double **costs ) {
                    Forest T;
                    Queue q;
                    T = Cor Initial Forest: single vertex trees
    q = ConsEdgeQueue( g, P Queue of edges
        do {
    e = ExtractCheapestEdge( q );
    } while ( !Cycle( e, T ) );
        AddEdge( T, e );
                        }
        return T;
        }
```



```
            T=C{}\begin{array}{c}{\mathrm{ Foract T. }}\\{\begin{array}{c}{\mathrm{ We need n-1 edges }}\\{\mathrm{ to fully connect (span)}}\\{n vertices}\end{array}}
q = ConsEdgeQueue( g, costs );
    for(i=0;i<(n-1);i++) {
        do {
    e = ExtractCheapestEdge( q );
    } while ( !Cycle( e, T ) );
        AddEdge( T, e );
                        }
        return T;
        }
```


double **costs) \{

```
        Forest T;
            Queue q;
            Edge e;
            T = ConsForest( g );
    q = ConsEdgenmomel a nacts ).
        for (i=0 Try the cheapest edge
                        do {
        e = ExtractCheapestEdge( q );
        } while ( !Cycle(e, T ) );
        AddEdge ( Until we find one that doesn't
                        form a cycle
```

 ... and add it to the forest

Kruskal's Algorithm

- Pridority MoutertespanningTree (Graph g, int n,
- We already know apopytthist!! double **costs) \{

Queue q;
Edge e;
T = ConsForest (g) ; i Add to
$q=\quad$ ConsEdgeQueue(g, oosts $)$ Add to do \{
e = ExtractCheapestEdged \} while (!Cycle(e, T)); 'a heap here AddEdge (T, e);
\}

```
return T;
    }
```


Kruskal's Algorithm

- Gyboles derientiampanningTree (Graph g, int n, double **costs) \{
Forest T;
Queue q ;
Edge e;
T = ConsForest(g);
$\mathrm{q}=$ ConsEdgeQueue(g, costs);
for (i=0;i<(n-1);i++) \{ do \{
e = ExtractCheapestEdge(
\} while (CYycle(e,
AddEdge (T, e);
But how do we detect a cycle?
\}
return T;
\}

Kruskal's Algorithm

- Cycle detection
- Uses a Union-find structure
- For which we need to understand a partition of a set
- Partition
- A set of sets of elements of a set
- Every element belongs to one of the sirh men
- No element belongs to more than one sud-set
- Formally:

All s_{i} belong to one of the P_{j}

- Set, $S=\left\{\mathrm{s}_{\mathrm{i}}\right\}$

None of the P_{i} have common elements

- Partition $(S)=\{P$. $\}$ where $P_{i}=\left\{S_{i}\right\}$
$\underset{s_{i} \subset}{ }$ is the union of all the P_{i}

Kruskal's Algorithm

- Partition
- The elements of each set of a partition
- are related by an equivalence relation
- equivalence relations are $\mathbf{x} \sim \mathbf{x}$
- reflexive
- transitive
- symmetric
if $x \sim y$ and $y \sim z$, then $x \sim z$
if $x \sim y$, then $y \sim x$
- The sets of a partition are equivalence classes
- Each element of the set is related to every other element
- Partitions

Kruskal's Algorithm

- In the MST algorithm, the connected vertices form equivalence classes
- "Being connected" is the equivalence relation
- Initially, each vertex is in a class by itself
- As edges are added, more vertices become related and the equivalence classes grow
- Until finally all the vertices are in a single equivalence class

Kruskal's Algorithm

- Representatives
- One vertex in each class may be chosen as the representative of that class
- We arrange the vertices in lists that lead to the representative
- This is the union-find structure
- Cycle determination

Kruskal's Algorithm

- Cycle determination
- If two vertices have the same representative, they're already connected and adding a further connection between them is pointless
- Procedure:
- For each end-point of the edge that you're going to add
- follow the lists and find its representative
- if the two representatives are equal, then the edge will form a cycle

Kruskal's Algorithm in operation

All the vertices are in single element trees

> Each vertex is its own representative

Kruskal's Algorithm in operation

All the vertices are in single element trees

The cheapest edge is $h-g$

Add it to the forest, joining h and g into a

2-element tree

Kruskal's Algorithm in operation

The cheapest edge is $\mathrm{h}-\mathrm{g}$

Add it to the forest, joining h and g into a

Choose g as its representative
2-element tree

Kruskal's Algorithm in operation
The next cheapest edge is $\mathbf{C - i}$

Our forest now has 2 two-element trees and 5 single vertex ones

Kruskal's Algorithm in operation

The next cheapest edge is $\mathrm{a}-\mathrm{b}$

Our forest now has 3 two-element trees and 4 single vertex ones

Kruskal's Algorithm in operation
The next cheapest edge is $\mathbf{C - f}$

Add it to the forest, merging two 2-element trees

Choose the rep of one as its representative

Kruskal's Algorithm in operation

The next cheapest edge is $\mathrm{g}-\mathrm{i}$

The rep of \mathbf{g} is \mathbf{c}
The rep of i is also \mathbf{c}
\therefore g-i forms a cycle

It's clearly not needed!

Kruskal's Algorithm in operation

Kruskal's Algorithm in operation

The next cheapest edge is $\mathrm{h}-\mathrm{i}$

The rep of \mathbf{h} is \mathbf{c}
The rep of i is \mathbf{c}
\therefore h-i forms a cycle, so we skip it

Kruskal's Algorithm in operation

The next cheapest edge
is a-h

Kruskal's Algorithm in operation

The next cheapest edge is $b-c$

But b-c forms a cycle

... and we now have a spanning tree

Greedy Algorithms

- At no stage did we attempt to "look ahead"
- We simply made the naïve choice
- Choose the cheapest edge!
- MST is an example of a greedy algorithm
- Greedy algorithms
- Take the "best" choice at each step
- Don't look ahead and try alternatives
- Don't work in many situations
- Try playing chess with a greedy approach!
- Are often difficult to prove

Proving Greedy Algorithms

- MST Proof
- "Proof by contradiction" is usually the best approach!
- Note that
- any edge creating a cycle is not needed
\therefore Each edge must join two sub-trees
- Suppose that the next cheapest edge, e_{x}, would join trees T_{a} and T_{b}
- Suppose that instead of e_{x} we choose e_{z} - a more expensive edge, which joins T_{a} and T_{c}
- But we still need to join T_{b} to T_{a} or some other tree

MST - Time complexity

- Steps
- Initialise forest
- Sort edges
$O(|E| \log |E|)$
- Check edge for cycles $O(|V|)$ x
- Number of edges
- Total
$O($
$\left.|V|+|E| \log |E|+|V|^{2}\right)$
- Since $|E|=O\left(|V|^{2}\right)$
$O\left(|V|^{2} \log |V|\right)$
- Thus we would class MST as $O\left(n^{2} \log n\right)$ for a graph with n vertices

MST - Time complexity

- Steps
- Initialise f

Here's the

"professionals read textbooks" theme recurring again!

- Sort edge
- Check edge for cycles $O(|V|$
- Number of edges
- Total

$$
\left.|V|+|E| \log |E|+|V|^{2}\right)
$$

- Since $|E|=O\left(|V|^{2}\right)$

- Thus we would class MST as $O\left(n^{2} \log n\right)$ for a graph with n vertices

UNIT-IV

BACKTRACKING

Tackling Difficult Combinatorial Problems

There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems):
\square Use a strategy that guarantees solving the problem exactly but doesn't guarantee to find a solution in polynomial time
\square Use an approximation algorithm that can find an approximate (sub-optimal) solution in polynomial time

Exact Solution Strategies

- exhaustive search (brute force)
- useful only for small instances
- dynamic programming
- applicable to some problems (e.g., the knapsack problem)
- backtracking
- eliminates some unnecessary cases from consideration
- yields solutions in reasonable time for many instances but worst case is still exponential
- branch-and-bound
- further refines the backtracking idea for optimization problems

Backtracking

\square Construct the state-space tree
\square nodes: partial solutions
\square edges: choices in extending partial solutions
\square Explore the state space tree using depth-first search
\square "Prune" nonpromising nodes
$\square \mathrm{dfs}$ stops exploring subtrees rooted at nodes that cannot lead to a solution and backtracks to such a node's parent to continue the search

Example: n-Queens Problem

Place n queens on an n-by- n chess board so that no two of them are in the same row, column, or diagonal

State-Space Tree of the 4-Queens Problem

n-Queens Problem

```
Algorithm NQueens(k,n)
{
    for i=1 to n do
    {
            if place(k,i) then
            {
            x[k]=i;
            if (k = n) then write (x[1:n]);
            else NQueens(k+1, n);
            }
    }
    NQueens(k-1,n);
    i=x[k-1]+1;
}
```


n-Queens Problem

Algorithm place(k,i)
// To place a new queen in the chessboard
// Returns true if a queen can be placed in kth row and ith column, otherwise false.
// x[] is a global array whose first ($k-1$) values have been set
// $\mathrm{Abs}(r)$ returns the absolute value of r
\{
for $\mathrm{j}=1$ to $\mathrm{k}-1$ do
if $((x[j]=i)$ or $(A b s(j-k)))$ then return false;
return true;
\}

Hamiltonian Circuit

\square Hamiltonian Path: is a path in an undirected graph which visits each vertex exactly once
\square Hamiltonian circuit: is a cycle in an undirected graph which visits each vertex exactly once and also returns to the starting vertex.
\square Determining whether such paths and cycles exists is the hamiltonian path problem.
\square Hamiltonian paths and cycles are named after William Rowan Hamilton

State Space Tree of Hamiltonian Circuit Problem

SUBSET-SUM PROBLEM

Let $S=\left\{S_{1}, \ldots . ., S_{n}\right\}$ be a set of positive integers, then we have to find a subset whose sum is equal to given positive integer ' d '.

Sort the elements of the set in ascending order. $\mathrm{s}_{1}<=\mathrm{s}_{2}<=\mathrm{s}_{3} \ldots \ldots . . .<=\mathrm{s}_{\mathrm{n}}$
$S=\{1,2,5,6,8\} \quad d=9$
2 solutions: $\{1,2,6\}$ and $\{1,8\}$

Subset - Sum Problem

Steps:

1. The root of the tree represents the starting point, with no decisions about the given elements.
2. Its left and right children represent, inclusion and exclusion of s1 in the set being sought
3. Going to the left from a node of the first level corresponds to inclusion of s2, while going to right corresponds to exclusion
4. A path from the root to a node at the ith level of the tree indicates which of the first i numbers have been included in the subsets represented by that nodeWe record the value of s^{\prime}, the sum of these numbers in the node.
5. If $s^{\prime}=d$, we have a solution to the problem and stop. If all the solutions need to be found, continue by backtracking to the node's parent.
6. If s^{\prime} is not equal to d, we can terminate the node as nonpromising if either of the two equalities holds.
7. $s^{\prime}+s i+1>d$ (the sum s^{\prime} too large)
n
$s^{\prime}+\sum_{j=i+1} s j<d$ (the sum s^{\prime} too small)

State Space Tree of Subset - Sum Problem

No. of Nodes in the state space tree is $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$

Pseudocode: Backtracking

ALGORITHM Backtrack(X[1..i])
//Gives a template of a generic backtracking algorithm
//Input: $X[1 . . i]$ specifies first i promising components of a solution //Output: All the tuples representing the problem's solutions if $X[1 . i]$ is a solution write $X[1 . . i]$ else $/ /$ see Problem 8 in the exercises
for each element $x \in S_{i+1}$ consistent with $X[1 . . i]$ and the constraints do

$$
\begin{aligned}
& X[i+1] \leftarrow x \\
& \operatorname{Backtrack}(X[1 . . i+1])
\end{aligned}
$$

BRANCH AND BOUND

Branch-and-Bound

- Branch and bound (BB) is a general algorithm for finding optimal solutions of various optimization problems, especially in discrete and combinatorial optimization.
- It consists of a systematic enumeration of all candidate solutions, where large subsets of fruitless candidates are discarded, by using upper and lower estimated bounds of the quantity being optimized.

Branch-and-Bound

- In the standard terminology of optimization problems, a feasible solution is a point in the problem's search space that satisfies all the problem's constraints
- An optimal solution is a feasible solution with the best value of the objective function

Branch-and-Bound

- 3 Reasons for terminating a search path at the current node in a state-space tree of a branch-and-bound algorithm:

1. The value of the node's bound is not better than the value of the best solution seen so far.
2. The node represents no feasible solutions because the constraints of the problem are already violated.
3. The subset of feasible solutions represented by the node consists of a single point-in this case we compare the value of the objective function for this feasible solution with that of the best solution seen so far and update the latter with the former if the new solution is better.

Branch-and-Bound

- An enhancement of backtracking
- Applicable to optimization problems
- For each node (partial solution) of a state-space tree, computes a bound on the value of the objective function for all descendants of the node (extensions of the partial solution)
- Uses the bound for:
- ruling out certain nodes as "nonpromising" to prune the tree - if a node's bound is not better than the best solution seen so far
- guiding the search through state-space

Example: Assignment Problem

Select one element in each row of the cost matrix C so that:

- no two selected elements are in the same column
- the sum is minimized

Example

	Job 1	Job 2	Job 3	Job 4
Person a	9	2	7	8
Person b	6	4	3	7
Person c	5	8	1	8
Person d	7	6	9	4

Lower bound: Any solution to this problem will have total cost at least: $2+3+1+4($ or $5+2+1+4)$

Example: First two levels of the state-space tree

Figure 11.5 Levels 0 and 1 of the state-space tree for the instance of the assignment problem being solved with the best-first branch-and-bound algorithm. The number above a node shows the order in which the node was generated. A node's fields indicate the job number assigned to person a and the lower bound value, $l b$, for this node.

Example (cont.)

Figure 11.6 Levels 0, 1, and 2 of the state-space tree for the instance of the assignment problem being solved with the best-first branch-and-bound algorithm

Example: Complete state-space

solution
inferior solution

Figure 11.7 Complete state-space tree for the instance of the assignment problem solved with the best-first branch-and-bound algorithm

Solution:

- Person a - job 2
- Person b-job 1
- Person c - job 3
- Person d - job 4

KNAPSACK PROBLEM

- N items of known weights wi and values vi, $\mathrm{i}=1,2, \ldots . \mathrm{n}$
- Knapsack capacity W =10
- Item Weight Value

Value/Weight
1
4
\$40
10
2
3
4
3
$\$ 42$
6
5
4

State space tree of knapsack

Traveling Salesman Problem

- For each city $\mathrm{i}, 1<=\mathrm{i}<=\mathrm{n}$, find the sum of the distances from city i to the two nearest cities.
- Compute the sum s of these n numbers
- Divide the result by 2
- If all the distances are integers, round up the result to the nearest integer
- $\mathrm{lb}=[\mathrm{s} / 2$]

Example: Traveling Salesman Problem

UNIT - V

NP PROBLEMS
 \& APPROXIMATION ALGORITHMS

P, NP and NP-Complete Problems

Problem Types: Optimization and Decision

\square Optimization problem: find a solution that maximizes or minimizes some objective function
\square Decision problem: answer yes/no to a question
Many problems have decision and optimization versions.
E.g.: traveling salesman problem
\square optimization: find Hamiltonian cycle of minimum length
\square decision: find Hamiltonian cycle of length $\leq m$
Decision problems are more convenient for formal investigation of their complexity.

Class P

\underline{P} : the class of decision problems that are solvable in $\mathrm{O}(p(n))$ time, where $p(n)$ is a polynomial of problem's input size n

Examples:
\square searching
\square element uniqueness
\square graph connectivity
\square graph acyclicity
\square primality testing

Class NP

NP (nondeterministic polynomial): class of decision problems whose proposed solutions can be verified in polynomial time = solvable by a nondeterministic polynomial algorithm

A nondeterministic polynomial algorithm is an abstract two-stage procedure that:
\square generates a random string purported to solve the problem
\square checks whether this solution is correct in polynomial time
By definition, it solves the problem if it's capable of generating and verifying a solution on one its tries

Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal form (CNF) satisfiable, i.e., are there values of its variables that makes it true?

This problem is in NP. Nondeterministic algorithm:
\square Guess truth assignment
\square Substitute the values into the CNF formula to see if it evaluates to true

Example: $(\mathrm{A}|\neg \mathrm{B}| \neg \mathrm{C}) \&(\mathrm{~A} \mid \mathrm{B}) \&(\neg \mathrm{~B}|\neg \mathrm{D}| \mathrm{E}) \&(\neg \mathrm{D} \mid \neg \mathrm{E})$
Truth assignments:

$$
\begin{aligned}
& \text { ABCDE } \\
& \hline 00000 \\
& 11101
\end{aligned}
$$

Checking phase: O(n)

What problems are in $N P$?

- Hamiltonian circuit existence
- Partition problem: Is it possible to partition a set of n integers into two disjoint subsets with the same sum?
- Decision versions of TSP, knapsack problem, graph coloring, and many other combinatorial optimization problems. (Few exceptions include: MST, shortest paths)
- All the problems in P can also be solved in this manner (but no guessing is necessary), so we

NP-Complete Problems

A decision problem D is $N P$-complete if it's as hard as any problem in NP, i.e.,

- D is in NP
- every problem in NP is polynomial-time reducible to D

Cook's theorem (1971): CNF-sat is NP-complete

NP-Complete Problems (cont.)

Other $N P$-complete problems obtained through polynomial-
time reductions from ${ }^{\text {NPpoblens }}$ N/P-complete problem

$P=N P$? Dilemma Revisited

- $\quad P=N P$ would imply that every problem in NP, including all NPcomplete problems, could be solved in polynomial time
- If a polynomial-time algorithm for just one NP-complete problem is discovered, then every problem in NP can be solved in polynomial time, i.e., $P=N P$

- Most but not all researchers belleve that $P \neq N P$, i.e. P is a proper subset of NP

