
UNIT1  

Introduction 



Algorithm 

• An Algorithm is a sequence of unambiguous 
instructions for solving a problem,  

• i.e., for obtaining a required output for any legitimate 
input in a finite amount of time. 

 



Notion of algorithm 

            “computer”  

Algorithmic solution 

problem 

algorithm 

input output 



PSEUDOCODE 
     
 Pseudocode (pronounced SOO-doh-kohd) is a detailed yet 

readable description of what a computer program or 
algorithm must do, expressed in a formally-styled natural 
language rather than in a programming language.  

 
 It is sometimes used as a detailed step in the process of 

developing a program.  
 
 It allows programmers to express the design in great detail 

and provides programmers a detailed template for the next 
step of writing code in a specific programming language.  



Formatting and Conventions in Pseudocoding 

 INDENTATION in pseudocode should be 
identical to its implementation in a 
programming language. Try to indent at least 
four spaces.  

 The pseudocode entries are to be cryptic, 
AND SHOULD NOT BE PROSE. NO SENTENCES.  

 No flower boxes in  pseudocode.  
 Do not include data declarations in  

pseudocode. 
 



 Some Keywords That Should be Used  
 
 
 

• For looping and selection,  

Do While...EndDo;  

– Do Until...Enddo;  

– Case...EndCase;  

– If...Endif;  

– Call ... with (parameters); Call; Return ....; 
Return; When; Always use scope terminators 
for loops and iteration.  



 
 Some Keywords … 

• As verbs, use the words  

– generate, Compute, Process,  

– Set, reset, 

– increment,  

– calculate, 

– add, sum, multiply, ...  

– print, display,  

– input, output, edit, test , etc.  

 



Methods of finding GCD 

M - 1 

M - 2 

M - 3 



Fundamentals of Analysis of 

algorithm efficiency 



Analysis of algorithms 

 Issues: 

 correctness 

 time efficiency 

 space efficiency 

 optimality 

 

 Approaches:  

 theoretical analysis 

 empirical analysis 



Theoretical analysis of time 
efficiency 

Time efficiency is analyzed by determining the 
number of repetitions of the basic operation as a 
function of input size 
 

 Basic operation: the operation that contributes 
the most towards the running time of the 
algorithm 
 
 

                       T(n) ≈ copC(n) 
running time execution time 

for basic operation 

or cost 

Number of times 

basic operation is 

executed 

input size 

Note: Different basic operations may cost differently! 



Input size and basic operation examples 

Problem Input size measure Basic operation 

Searching for key 

in a list of n items 

Number of list’s 

items,  i.e. n 
Key comparison 

Multiplication of 

two matrices 

Matrix dimensions or 

total number of 

elements 

Multiplication of 

two numbers 

Checking primality 

of a given integer n 

n’size = number of 

digits (in binary 

representation) 

Division 

Typical graph 

problem 

#vertices and/or 

edges 

Visiting a vertex 

or traversing an 

edge 



Empirical analysis of time efficiency 

Select a specific (typical) sample of inputs 
 

Use physical unit of time (e.g.,  milliseconds) 
        or 
    Count actual number of basic operation’s 

executions 
 

Analyze the empirical data 



Efficiencies 

 Worst Case Efficiency: 

 Is its efficiency for the worst case input of size n, 
which is an input of size n for which the algorithm 
runs the longest among all possible inputs of that size 

 Cworst(n) 

 Best-case efficiency: 

 Is its efficiency for the worst case input of size n, 
which is an input of size n for which the algorithm 
runs the fastest among all possible inputs of that size 

 Cbest(n) 

 

 



Amortized efficiency 

– It applies not to a single run of an 
algorithm, but rather to a sequence of 
operations performed on the same data 
structure 



Best-case, average-case, worst-case 

For some algorithms, efficiency depends on form of input: 
 Worst case:    Cworst(n) – maximum over inputs of size n 
 Best case:        Cbest(n) –  minimum over inputs of size n 
 Average case:  Cavg(n) – “average” over inputs of size n 
 
 Number of times the basic operation will be executed on 

typical  input 

 NOT the average of worst and best case 

 Expected number of basic operations considered as a random 
variable under some assumption about the probability 
distribution of all possible inputs. So, avg = expected under 
uniform distribution. 

 



Example: Sequential search 

 Worst case 
 

 Best case 
 

 Average case 

 n key comparisons 

 1 comparisons 

(n+1)/2, assuming K is in A 



Types of formulas for basic operation’s count 

 Exact formula 
            e.g., C(n) = n(n-1)/2 

 
 Formula indicating order of growth with 

specific multiplicative constant 
            e.g., C(n) ≈ 0.5 n2 

 
 Formula indicating order of growth with 

unknown multiplicative constant 
            e.g., C(n) ≈ cn2 

 



Order of growth  
• Most important: Order of growth within a 

constant multiple as n→∞ 

 

• Example: 

– How much faster will algorithm run on computer 
that is twice as fast? 

 

– How much longer does it take to solve problem of 
double input size? 

 

 



Values of some important functions as n   



Asymptotic Notations 

• O (Big-Oh)-notation 

• Ω (Big-Omega) -notation 

• Θ (Big-Theta) -notation 

 

 



Asymptotic order of growth 
A way of comparing functions that ignores constant 

factors and small input sizes (because?) 
 

 O(g(n)): class of functions f(n) that grow no faster 
than g(n) 
 

 Θ(g(n)): class of functions f(n) that grow at same 
rate as g(n) 
 

 Ω(g(n)): class of functions f(n) that grow at least as 
fast as g(n) 
 

 
 



O-notation 

Definition: A function t(n) is said to be in O(g(n)), 
denoted t(n)  O(g(n)) is bounded above by 
some constant multiple of g(n) for all large n, 
i.e., there exist positive constant c and non-
negative integer n0 such that 

                 f(n) ≤ c g(n) for every n ≥ n0  

 



Big-oh 



-notation 

• Formal definition 
– A function t(n) is said to be in (g(n)), denoted 

t(n)  (g(n)), if t(n) is bounded below by some 
constant multiple of g(n) for all large n, i.e., if 
there exist some positive constant c and some 
nonnegative integer n0 such that 

 t(n)  cg(n) for all n  n0 

 

 
 



Big-omega 



-notation 

• Formal definition 
– A function t(n) is said to be in (g(n)), denoted 

t(n)  (g(n)), if t(n) is bounded both above 
and below by some positive constant multiples 
of g(n) for all large n, i.e., if there exist some 
positive constant c1 and c2 and some 
nonnegative integer n0 such that 

  c2 g(n)  t(n)  c1 g(n) for all n  n0 

 

 
 

 



Big-theta 



Theorem 
• If t1(n)  O(g1(n)) and t2(n)  O(g2(n)), then 
 t1(n) + t2(n)  O(max{g1(n), g2(n)}). 

– The analogous assertions are true for the -
notation and -notation. 

Proof.  There exist constants c1, c2, n1, n2 such that  

          t1(n)  c1*g1(n),   for all n  n1 

          t2(n)  c2*g2(n),   for all n  n2 

Define c3 = c1 + c2 and n3 = max{n1,n2}. Then 

          t1(n) + t2(n)  c3*max{g1(n), g2(n)}, for all n  n3 



Some properties of asymptotic order of growth 

 f(n)  O(f(n)) 
 

 f(n)  O(g(n)) iff g(n) (f(n))  
 

 If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n)  
O(h(n))  
 
Note similarity with a ≤ b 
 

 If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then 
                  f1(n) + f2(n)  O(max{g1(n), g2(n)})  

 
 Also,  1in (f(i)) =  (1in f(i))  
 



Establishing order of growth using limits 

lim T(n)/g(n) 
=  

    0    order of growth of T(n)  <  order of growth of g(n)  

c > 0  order of growth of T(n) = order of growth of g(n)  

 ∞    order of growth of T(n) >  order of growth of g(n)  

n→∞ 



L’Hôpital’s rule and Stirling’s formula 

L’Hôpital’s rule:  If limn f(n) = limn g(n) =   and  
                               the derivatives f´, g´ exist, then 

        
        
        
        
        
        
        
        
  

Stirling’s formula:  n!  (2n)1/2 (n/e)n 
 

         
       

   

f(n) 

g(n) 
lim 
n 

=  
f ´(n) 

g ´(n) 
lim 
n 

Example:  log n  vs. n 

Example:  2n vs. n! 



Orders of growth of some important functions 

 All logarithmic functions loga n belong to the same class  
(log n) no matter what the logarithm’s base a > 1 is 
 
because   

 
 All polynomials of the same degree k belong to the same class:  
    
        akn

k + ak-1nk-1 + … + a0  (nk)  
 
 

 Exponential functions an have different orders of growth for 
different a’s 
 
 

 order log n  < order n  (>0)  < order an  < order n! < order nn

         
         
          

          
      

   

ann bba log/loglog 



Basic asymptotic efficiency classes 
1 constant 

log n logarithmic 

n linear 

n log n n-log-n 

n2 quadratic 

n3 cubic 

2n exponential 

n! factorial 



Plan for analyzing nonrecursive 
algorithms 

General Plan for Analysis 
  

 Decide on parameter n indicating input size 
 

 Identify algorithm’s basiyc operation 
 

 Determine worst, average, and best cases for 
input of size n 
 

 Set up a sum for the number of times the 
basic operation is executed 
 

 Simplify the sum using standard formulas and 
rules (see Appendix A) 

                        



Useful summation formulas and rules 

lin1 = 1+1+…+1 = n - l + 1 
     In particular, lin1 = n - 1 + 1 = n  (n)  
 
1in i = 1+2+…+n = n(n+1)/2   n2/2  (n2)  
 
1in i

2 = 12+22+…+n2 = n(n+1)(2n+1)/6  n3/3  (n3)  
 
0in a

i  = 1 + a  +…+ an  = (an+1 - 1)/(a - 1)  for any a  1 
         In particular, 0in 2

i  = 20 + 21 +…+ 2n  = 2n+1 - 1  
(2n )  
 

(ai ± bi ) = ai ± bi         cai  = cai       liuai  = limai 

+ m+1iuai  



Example 1: Maximum element 

 

 

T(n) = 1in-1 1 = n-1 = (n)  comparisons 



Example 2: Element uniqueness 
problem 

T(n) = 0in-2  (i+1jn-1 1)  

        = 0in-2 n-i-1 = (n-1+1)(n-1)/2  

        = (     )  comparisons 2n



Example 3: Matrix multiplication 

T(n) = 0in-1 0in-1  n 

        = 0in-1 (      ) 

        =  (      )   multiplications 

 

2n

3n



Example 4:  Gaussian elimination 

Algorithm GaussianElimination(A[0..n-1,0..n]) 
//Implements Gaussian elimination on an n-by-
(n+1) matrix A 
for i   0 to n - 2 do 
      for j   i + 1 to n - 1 do  
            for k   i to n do 
                 A[j,k]  A[j,k] - A[i,k]  A[j,i] / A[i,i] 
 
Find the efficiency class and a constant factor 
improvement. 
 

for i   0 to n - 2 do 

      for j   i + 1 to n - 1 do  

            B  A[j,i] / A[i,i] 

            for k   i to n do 

                 A[j,k]  A[j,k] – A[i,k] * B  

 



Example 5: Counting binary digits   

 

 

 

 

 

 

 



Plan for Analysis of Recursive Algorithms 

 Decide on  a parameter indicating an input’s size. 
 

 Identify the algorithm’s basic operation.  
 

 Check whether the number of times the basic op. 
is executed may vary on different inputs of the 
same size.  (If it may, the worst, average, and best 
cases must be investigated separately.) 
 

 Set up a recurrence relation with an appropriate 
initial condition expressing the number of times 
the basic op. is executed. 
 

 Solve the recurrence (or, at the very least, establish 
its solution’s order of growth) by backward 
substitutions or another method. 



Example 1: Recursive evaluation of n! 

Definition: n ! = 1  2  … (n-1)  n  for n ≥ 1  and  
0! = 1 
 

Recursive definition of n!:  F(n) = F(n-1)  n  for n ≥ 
1  and   

                                               F(0) = 1 
 

 
 
 
 
 
 

 

Size: 
Basic operation: 

n 

multiplication 

M(n) = M(n-1) + 1 

  M(0) = 0 



Solving the recurrence for M(n) 

M(n) = M(n-1) + 1,  M(0) = 0 
M(n) = M(n-1) + 1 

         = (M(n-2) + 1) + 1   =   M(n-2) + 2 

         = (M(n-3) + 1) + 2   =   M(n-3) + 3 

         … 

         = M(n-i) + i 

         = M(0) + n 

         = n 

The method is called backward substitution. 



Solving recurrence for number of moves 

M(n) = 2M(n-1) + 1,  M(1) = 1 
M(n) = 2M(n-1) + 1 

         = 2(2M(n-2) + 1) + 1 = 2^2*M(n-2) + 2^1 + 2^0 

         = 2^2*(2M(n-3) + 1) + 2^1 + 2^0  

         = 2^3*M(n-3) + 2^2 + 2^1 + 2^0 

         = … 

         = 2^(n-1)*M(1) + 2^(n-2) + … + 2^1 + 2^0 

         = 2^(n-1) + 2^(n-2) + … + 2^1 + 2^0 

         = 2^n    - 1 
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DIVIDE AND CONQUER 

 



Divide and Conquer 
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The most well known algorithm design strategy: 

1.  Divide instance of problem into two or more 
smaller instances 

 

2. Solve smaller instances recursively 

 

3. Obtain solution to original (larger) instance by 
combining these solutions 

 



Divide-and-conquer technique 
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subproblem 2  

of size n/2 

subproblem 1  

of size n/2 

a solution to  

subproblem 1 

a solution to 

the original problem 

a solution to  

subproblem 2 

a problem of size n 



Divide and Conquer Examples 
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 Sorting: mergesort and quicksort 

 
 Tree traversals 

 
 Binary search 

 
 Matrix multiplication-Strassen’s algorithm 

 
 Convex hull-QuickHull algorithm 
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General Divide and Conquer recurrence: 

Master Theorem 

T(n) = aT(n/b) + f (n)        where f (n) € Θ(nd)  

 

1. a < bd             T(n) € Θ(nd)  

2. a = bd             T(n) € Θ(nd lg n )  

3. a > bd             T(n) € Θ(nlog b a)  

 

Note: the same results hold with O instead of Θ. 
 



Mergesort 
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Algorithm: 
Split array A[1..n] in two and make copies of each half 
 in arrays B[1.. n/2 ] and C[1.. n/2 ] 
Sort arrays B and C 
Merge sorted arrays B and C into array A as follows: 
Repeat the following until no elements remain in one of the 

arrays: 
 compare the first elements in the remaining unprocessed portions of 

the arrays 
 copy the smaller of the two into A, while incrementing the index 

indicating the unprocessed portion of that array  

Once all elements in one of the arrays are processed, copy the 
remaining unprocessed elements from the other array into A. 

 



Mergesort Example 
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8  3  2  9  7  1  5  4

8  3  2  9 7  1  5  4

8  3  2  9 7 1 5  4

8 3 2 9 7 1 5 4

3  8 2  9 1  7 4  5

2  3  8  9 1  4  5  7

1  2  3  4  5  7  8   9



Pseudocode for Mergesort  
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ALGORITHM Mergesort(A[0..n-1]) 
 //Sorts array A[0..n-1] by recursive mergesort 
    // Input: An array A[0..n-1] of orderable elements 
    // Output: Array A[0..n-1] sorted in non-increasing 

order 
If n>1 
      copy A[0..[n/2]-1] to B[0..[n/2]-1] 
      copy A[[n/2]..n-1] to C[0..[n/2]-1] 
      Mergesort(B[0..[n/2]-1]) 
      Mergesort(C[0..[n/2]-1]) 
      Merge(B,C,A) 
 
 



Pseudocode for Merge 
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ALGORITHM Merge (B[0..p-1], C[0..q-1], A[0..p+q-1] 
          // Merges two sorted arrays into one sorted array 
          // Input: Arrays B[0..p-1] and C[0..q-1] both sorted 
          // Output: Sorted array A[0..p+q-1] of the elements of B and C 
i  0; j 0; k0 
While i<p and j<q do 
   if B[i]<=C[j] 
       A[k]  B[i]; i  i+1 
   else A[k]  C[j]; j  j+1 
   k  k+1 
If i=p 
    copy C[j..q-1] to A[k..p+q-1] 
Else 
   copy B[i..p-1] to A[k..p+q-1] 



Recurrence Relation for Mergesort 

Design and Analysis of Algorithms - Unit II 54 

• Let T(n) be worst case time on a sequence of 
n keys 

• If n = 1, then T(n) = (1) (constant) 

• If n > 1, then T(n) = 2 T(n/2) + (n)  
– two subproblems of size n/2 each that are solved 

recursively 

– (n) time to do the merge 



Efficiency of mergesort 
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All cases have same efficiency: Θ( n log n)  
 

Number of comparisons is close to theoretical 
minimum for comparison-based sorting:  
  log n !   ≈    n lg n  - 1.44 n 

 
Space requirement: Θ( n ) (NOT in-place) 

 
Can be implemented without recursion (bottom-

up) 



Quick-Sort 
Quick-sort is a randomized 

sorting algorithm based on the 
divide-and-conquer paradigm: 

Divide: pick a random element 
x (called pivot) and partition S 
into  

L elements less than x 

E elements equal x 

G elements greater than x 

Recur: sort L and G 

Conquer: join L, E and G 

56 
Design and Analysis of 

Algorithms - Unit II 

x 

x 

L G E 

x 



Quicksort 
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• Select a pivot (partitioning element) 

• Rearrange the list so that all the elements in 
the positions before the pivot are smaller 
than or equal to the pivot and those after the 
pivot are larger than the pivot  

• Exchange the pivot with the last element in 
the first (i.e., ≤ sublist) – the pivot is now in its 
final position 

• Sort the two sublists 

 

p 

A[i]≤p A[i]>p 



The partition algorithm 
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Efficiency of quicksort 
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Best case: split in the middle — Θ( n log n)  
Worst case: sorted array! — Θ( n2)  
Average case: random arrays — Θ( n log n) 

 
Improvements: 
better pivot selection: median of three partitioning avoids 

worst case in sorted files 
switch to insertion sort on small subfiles 

 
Considered the method of choice for internal sorting 

for large files (n ≥ 10000) 
 



Binary Search -  an Iterative 
Algorithm 
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Very efficient algorithm for searching in sorted 
array: 

 
           K         vs      A[0]  .  .  .  A[m]  .  .  .  A[n-1] 
 
If K = A[m], stop (successful search);   
 
otherwise, continue searching by the same 

method 
       in           A[0..m-1]  if K < A[m] 
 
and in          A[m+1..n-1] if K > A[m] 
 



Pseudocode for Binary Search 
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ALGORITHM BinarySearch(A[0..n-1], K) 
l  0;   r  n-1 
while l  r do                       // l and r crosses over can’t find K 
 m  (l+r)/2 
     if  K = A[m]  return m           //the key is found 
     else if K < A[m]  r  m-1     //the key is on the left half of  
            the array 
     else l  m+1                          // the key is on the right half of 

      the array 
return -1 

 



Binary Search – a Recursive Algorithm 
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ALGORITHM BinarySearchRecur(A[0..n-1], l, r, K) 
if l > r    
 return –1  
else     
     m  (l + r) / 2 
 if K = A[m]    
  return m  
 else if K < A[m]   
  return BinarySearchRecur(A[0..n-1], l, m-1, K)          
 else    
  return BinarySearchRecur(A[0..n-1], m+1, r, K) 

  
 



Analysis of Binary Search 

 Worst-case (successful or fail) :   
 Cw (n) = 1 + Cw( n/2 ),   
 Cw (1) = 1  

solution: Cw(n) =  log2 n +1 = log2(n+1)  
 

 This is VERY fast: e.g., Cw(106) = 20 
 
 Best-case:       successful  Cb (n) = 1,  
                                          fail  Cb (n) =   log2 n +1 

 
 Average-case: successful Cavg(n) = log2 n – 1 

                          fail Cavg(n) = log2(n+1) 

Design and Analysis of Algorithms - Unit II 
63 



Binary Tree Traversals 
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• Definitions 
– A binary tree T is defined as a finite set of nodes that is 

either empty or consists of a root and two disjoint binary 
trees TL and TR called, respectively, the left and right 
subtree of the root. 

– The height of a tree is defined as the length of the longest 
path from the root to a leaf. 

• Problem: find the height of a binary tree. 
T TL R



Pseudocode - Height of a Binary 
Tree 
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ALGORITHM Height(T) 
//Computes recursively the height of a binary 

tree 
//Input: A binary tree T 
//Output: The height of T 
if T =   
 return –1 
else  
 return max{Height(TL), Height(TR)} + 1 
 



Analysis: 
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 Number of comparisons of a tree T with : 2n + 
1 

 
 Number of comparisons made to compute  

height is the same as number of additions:  
 
 A(n(T)) = A(n(TL)) + A(n(TR)) +1 for n>0,   
     A(0) = 0 
 
  The solution is A(n) = n 

 



Binary Tree Traversals– preorder, inorder, and 
postorder traversal 
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Binary tee traversal: visit all nodes of a binary 
tree recursively. 

 
 
 
 
 
 

Algorithm Preorder(T) 

//Implement the preorder traversal of a binary tree 

//Input: Binary tree T (with labeled vertices) 

//Output: Node labels listed in preorder 

if T ‡   

 write label of T’s root 

 Preorder(TL) 

 Preorder(TR) 



Multiplication of Large Integers  
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Consider the problem of multiplying two (large) n-digit integers represented by 
arrays of their digits such as: 
 
A = 12345678901357986429   B = 87654321284820912836 
 
The grade-school algorithm: 

  a1  a2 …  an 

                 b1  b2 …  bn 
 

     (d10) d11d12 … d1n 

         (d20) d21d22 … d2n 

        … … … … … … …  
(dn0) dn1dn2 … dnn 

  
 
Efficiency: n2 one-digit multiplications 



First Divide-and-Conquer Algorithm 
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A small example: A  B where A = 2135 and B = 4014 

      A = (21·102 + 35),              B = (40 ·102 + 14) 

 

So, A  B = (21 ·102 + 35)  (40 ·102 + 14)  

      = 21  40 ·104  + (21  14 + 35  40) ·102 + 35  14 
 

In general, if A = A1A2 and B = B1B2   (where A and B are n-digit,  

A1, A2, B1, B2 are n/2-digit numbers), 

A  B = A1  B1·10n  + (A1  B2 + A2  B1) ·10n/2 + A2  B2 

 

Recurrence for the number of one-digit multiplications M(n):  

                             M(n) = 4M(n/2),   M(1) = 1 
Solution: M(n) = n2  



Second Divide-and-Conquer Algorithm 
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A  B = A1  B1·10n  + (A1  B2 + A2  B1) ·10n/2 + A2  B2 

 

The idea is to decrease the number of multiplications from 4 to 3:   

   (A1 + A2 )  (B1 + B2 ) = A1  B1 + (A1  B2 + A2  B1) + A2  B2, 

 

I.e., (A1  B2 + A2  B1) = (A1 + A2 )  (B1 + B2 ) - A1  B1 - A2  B2,  
 

which requires only 3 multiplications at the expense of (4-1) extra add/sub. 
 

Recurrence for the  number of multiplications M(n): 
                             M(n) = 3M(n/2),   M(1) = 1 
 

Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585  



Strassen’s matrix multiplication 

Design and Analysis of Algorithms - Unit II 71 

• Strassen observed [1969] that  the product of 
two matrices can be computed as follows: 

 
C00   C01                A00   A01              B00   B01 

                             =                            * 

C10   C11                A10   A11              B10   B11 

 

 

                            M1   + M4  - M5 + M7                        M3 + M5  

                             =                    

                           M2 + M4                                               M1   + M3  - M2 + M6  
 



Submatrices: 

Design and Analysis of Algorithms - Unit II 72 

 M1 = (A00 + A11) * (B00 + B11) 

 

 M2 = (A10 + A11) * B00 

 

 M3 = A00 * (B01 - B11) 

 

 M4 =  A11 * (B10 - B00) 

 

 M5 = (A00 + A01) * B11 

 

 M6 = (A10 - A00) * (B00 + B01) 

 

 M7 = (A01 - A11) * (B10 + B11) 

 

 



Efficiency  of Strassen’s algorithm 
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• If n  is not a power of 2, matrices can be 
padded with zeros 

 

• Number of multiplications: 7 

 

 

• Number of additions: 18 

 

 



Time Analysis 
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Standard vs Strassen 

N Multiplications Additions 

Standard alg. 100 1,000,000 990,000 

Strassen’s alg. 100 411,822 2,470,334 

Standard alg. 1000 1,000,000,000 999,000,000 

Strassen’s alg. 1000 264,280,285 1,579,681,709 

Standard alg. 10,000 1012 9.99*1011 

Strassen’s alg. 10,000 0.169*1012 1012 

Design and Analysis of Algorithms - Unit II 
75 



Greedy Technique 



Greedy Technique 

77 

Constructs a solution to an optimization problem piece by  
piece through a sequence of choices that are: 

 
• feasible, i.e. satisfying the constraints 
 
• locally optimal (with respect to some neighborhood 

definition) 
 

• greedy (in terms of some measure), and irrevocable 
 

     For some problems,  
  it yields a globally optimal solution for every instance.  
    For most, does not but can be useful for fast 

approximations.  

Defined by an 
objective function and 
a set of constraints 



Applications of the Greedy Strategy 

78 

• Optimal solutions: 
– change making for “normal” coin denominations 

– minimum spanning tree (MST) 

– single-source shortest paths  

– simple scheduling problems 

– Huffman codes 

 

• Approximations/heuristics: 
– traveling salesman problem (TSP) 

– knapsack problem 

– other combinatorial optimization problems 

 



Change-Making Problem 
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Given unlimited amounts of coins of denominations d1 > … > 
dm ,  

give change for amount n with the least number of coins 
 
Example:  d1 = 25c,  d2 =10c,  d3 = 5c,  d4 = 1c  and  n = 48c 
 
Greedy solution:  
 
Greedy solution is 
• optimal for any amount and “normal’’ set of 

denominations 
•  may not be optimal for arbitrary coin denominations 

 

<1, 2, 0,  3> 

For example, d1 = 25c, d2 = 10c, d3 = 1c, and n = 30c 

Q: What are the objective function and constraints? 



Minimum Spanning Tree (MST) 

80 

• Spanning tree of a connected graph G: a 
connected acyclic subgraph of G that includes 
all of G’s vertices 

 

• Minimum spanning tree of a weighted, 
connected graph G: a spanning tree of G of 
the minimum total weight 

 

Example: 
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Prim’s MST algorithm 

81 

• Start with tree T1 consisting of one (any) vertex 
and “grow” tree one vertex at a time to 
produce MST through a series of expanding 
subtrees T1, T2, …, Tn 

 

• On each iteration, construct Ti+1 from Ti  by 
adding vertex not in Ti  that is closest to those 
already in Ti (this is a “greedy” step!) 

 

• Stop when all vertices are included 



Pseudocode – Prim’s algorithm 
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ALGORITHM Prim(G) 

       // Prim’s algorithm for computing a MST 

      // Input:A weighted connected graph G = (V,E) 

     // Output: Et, the set of edges composing a MST of G 

     VT    {v0 } 

      ET  Ø 

      for I  1 to |v|   - 1 do 

         find a minimum weight edge e*=(v*,u*) among all edges(v,u) such      
that v is in VT and u is in V – VT 

           

         VT  VT  {u*} 

               ET  ET  {v*} 

     return ET 



Example 
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Notes about Prim’s algorithm 
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• Needs priority queue for locating closest fringe 
vertex.  

 

• Efficiency 
– O(n2) for weight matrix representation of graph and array 

implementation of priority queue  

– O(m log n) for adjacency lists representation of graph with n 
vertices and m edges and min-heap implementation of the 
priority queue 



Another greedy algorithm for MST: Kruskal’s 

85 

• Sort the edges in nondecreasing order of lengths 
 

• “Grow” tree one edge at a time to produce MST 
through a series of expanding forests F1, F2, …, Fn-

1 

 

• On each iteration, add the next edge on the 
sorted list unless this would create a cycle.  (If it 
would, skip the edge.) 

 



Pseudocode – Kruskal’s algorithm 
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ALGORITHM Kruskal(G) 

// Kruskal’s algorithm for constructing a minimum spanning tree 

// Input: A weighted connected graph G = (V,E) 

// Output: ET, The set of edges composing a MST of G 

    ET  Ø; ecounter  0 

    k  0 

    while ecounter < |V| - 1 

          k  k +1 

          if ET  {eik} is acyclic 

                 ET  ET  {eik} ; 

                 ecounter  ecounter + 1 

     return ET 



Example 
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Notes about Kruskal’s algorithm 
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• Algorithm looks easier than Prim’s but is harder to 
implement (checking for cycles!) 

 

• Cycle checking: a cycle is created iff added edge 
connects vertices in the same connected component 
 

• Kruskal’s algorithm relies on a union-find algorithm for 
checking cycles  
 

• Runs in O(m log m) time, with m = |E|. The time is 
mostly spent on sorting. 

 



Disjoint Sets 
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• Union of two sets A and B, denoted by A  B, is the set    
{x | x  A or x  B} 

 
• The intersection of two sets A and B, denoted by A ∩ B, 

is the set {x| x  A and x  B}. 
 
• Two sets A and B are said to be disjoint if A ∩ B = . 
 
• If S = {1,2,…,11} and there are 4 subsets {1,7,10,11} , 

{2,3,5,6}, {4,8} and {9}, these subsets may be labeled as 
1, 3, 8 and 9, in this order. 
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Disjoint Sets 

• A disjoint-set is a collection ={S1, S2,…, Sk} of distinct 
dynamic sets. 

 
• Each set is identified by a member of the set, called 

representative. 
 
• Disjoint-set data structures can be used to solve the 

union-find problem 
Disjoint set operations: 

– MAKE-SET(x): create a new set with only x. assume x is not 
already in some other set. 

– UNION(x,y): combine the two sets containing x and y into 
one new set. A new representative is selected. 

– FIND-SET(x): return the representative of the set containing 
x. 



The Union-Find problem 
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• N balls initially, each ball in its own bag 

– Label the balls 1, 2, 3, ..., N 

• Two kinds of operations: 

– Pick two bags, put all balls in these bags into a 
new bag (Union) 

– Given a ball, find the bag containing it (Find) 



92 

• to design efficient algorithms for Union & Find operations. 

• Approach: to represent each set as a rooted tree with data elements 
stored in its nodes.  

• Each element x other than the root has a pointer to its parent p(x) in the 
tree.  

• The root has a null pointer, and it serves as the name or set representative 
of the set.  

• This results in a forest in which each tree corresponds to one set. 

• For any element x, let root(x) denote the root of the tree containing x. 

– FIND(x) returns root(x).  

– union(x, y) means UNION(root(x), root(y)). 

OBJECTIVE 



Implementation of FIND and UNION 

93 

• FIND(x)   follow the path from x until the 
root is reached, then return root(x). 
– Time complexity is O(n) 
– Find(x) = Find(y),  when x and y are in the same set 

 

• UNION(x,y)  UNION(FIND(x) , FIND(y) )  UNION(root(x) , root(y) )  
UNION(u,v) then let v be the parent of u. Assume u is root(x), v is root(y) 

– Time complexity is O(n) 
– Union(x, y) Combine the set that contains x with the set that contains y 



The Union-Find problem 
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• An example with 4 balls 

• Initial: {1}, {2}, {3}, {4} 

• Union {1}, {3}  {1, 3}, {2}, {4} 

• Find 3. Answer: {1, 3} 

• Union {4}, {1,3}  {1, 3, 4}, {2} 

• Find 2. Answer: {2} 

• Find 1. Answer {1, 3, 4} 



Forest Representation 
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• A forest is a collection of trees 

• Each bag is represented by a rooted tree, with 
the root being the representative ball 

1 

5 3 

6 

4 

2 7 

Example: Two bags --- {1, 3, 5} and {2, 4, 6, 7}. 



Forest Representation 
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• Find(x) 

– Traverse from x up to the root 

• Union(x, y) 

– Merge the two trees containing x and y 



Forest Representation 
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Initial: 

Union 1 3: 

Union 2 4: 

Find 4: 

1 3 4 2 

1 

3 

4 2 

1 

3 4 

2 

1 

3 4 

2 



Forest Representation 

98 

  

Union 1 4: 

Find 4: 
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Union by Rank & Path Compression 

• Union by Rank: Each node is associated with a 
rank, which is the upper bound on the height of 
the node (i.e., the height of subtree rooted at the 
node), then when UNION, let the root with smaller 
rank point to the root with larger rank.  

 

• Path Compression: used in FIND-SET(x) operation, 
make each node in the path from x to the root  
directly point to the root. Thus reduce the tree 
height. 
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Path Compression 
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Shortest paths – Dijkstra’s algorithm 
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Single Source Shortest Paths Problem: Given a weighted  

connected (directed) graph G, find shortest paths from source vertex s 

to each of the other vertices 

 

Dijkstra’s algorithm: Similar to Prim’s MST algorithm, with  

a different way of computing numerical labels: Among vertices 

not already in the tree, it finds vertex u with the smallest sum  

                                        dv +  w(v,u) 

where  

  v  is a vertex for which shortest path has been already found 
     on preceding iterations (such vertices form a tree rooted at s) 

  dv is the length of the shortest path from source s to v 
 w(v,u) is the length (weight) of edge from v to u 

 



Pseudocode – Dijkstra’s algorithm 
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ALGORITHM Dijkstra(G,S) 
   // Dijkstra’s algorithm for single source shortest paths 
  //  Input: A weighted connected graph G= (V,E) and its vertex s 
  // Output: The length dv of a shortest path from s to v and its 
                     penultimate vertex pv for every vertex v in V 
      Initialize(Q) 
      for every vertex v in V do 
              dv∞;pv=null 
              Insert(Q,v,dv) 
      ds0; Decrease(Q, s, ds) 
      VT  Ø 
      for I  1 to |v|   - 1 do 
           u*  DeleteMin(Q) 
           VT  VT  {u*} 
           for every vertex u in V - VT  that is adjacent to u* do 
                    if du + w(u*, u) < du  
                          du  du * + w(u*,u);           pu  u* 
                          Decrease (Q,u, du ) 
 
 
                
             



Example 

  

Design and Analysis of Algorithms - Unit II 
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Notes on Dijkstra’s algorithm 
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• Doesn’t work for graphs with  negative 
weights (whereas Floyd’s algorithm does, as 
long as there is no negative cycle).  

 
• Applicable to both undirected and directed 

graphs 
 

• Efficiency 
– O(|V|2) for graphs represented by weight matrix and array 

implementation of priority queue 
– O(|E|log|V|) for graphs represented by adj. lists and min-

heap implementation of priority queue 
 



Graphs 

Minimum Spanning Tree 

PLSD210 



Key Points 
• Dynamic Algorithms 

• Optimal Binary Search Tree 

– Used when  

• some items are requested more often than others 

• frequency for each item is known 

– Minimises cost of all searches 

– Build the search tree by  

• Considering all trees of size 2, then 3, 4, .... 

• Larger tree costs computed from smaller tree costs 

– Sub-trees of optimal trees are optimal trees! 

• Construct optimal search tree by saving root of each optimal sub-
tree and tracing back 

• O(n3) time   /   O(n2) space 

 



Key Points 
• Other Problems using Dynamic Algorithms 

• Matrix chain multiplication 

– Find optimal parenthesisation of a matrix product 

• Expressions within parentheses 

– optimal parenthesisations themselves 

• Optimal sub-structure characteristic of dynamic algorithms 

• Similar to optimal binary search tree 

• Longest common subsequence 

– Longest string of symbols found in each of two sequences 

• Optimal triangulation 

– Least cost division of a polygon into triangles 

– Maps to matrix chain multiplication 

 



Graphs - Definitions 
• Graph 

– Set of vertices (nodes) and edges connecting them 

– Write 

                                                                      G = ( V, E ) 
 where 

• V is a set of vertices:                           V = { vi } 

• An edge connects two vertices:         e = ( vi , vj  ) 

• E is a set of edges:                               E  = {  (vi , vj ) } 
 

 Vertices 

Edges 



Graphs - Definitions 
• Path 

– A path, p, of length, k, is a sequence of 
connected vertices 

– p = <v0,v1,...,vk>        where     (vi,vi+1)     E               
< i, c, f, g, h > 
Path of length 5 

< a, b > 

Path of length 2 



Graphs - Definitions 
• Cycle 

– A graph contains no cycles if there is no path 

– p = <v0,v1,...,vk>        such that     v0 = vk                                                                          

< i, c, f, g, i > 
is a cycle 



Graphs - Definitions 
• Spanning Tree 

– A spanning tree is a set of  |V|-1 edges that 
connect all the vertices of a graph 

 

 

 

 

 

The red path connects  

all vertices, 

so it’s a spanning tree 



Graphs - Definitions 
• Minimum Spanning Tree 

– Generally there is more than one spanning tree 

– If a cost cij   is associated with edge     eij = (vi,vj)    

 then the minimum spanning tree is the set of edges  Espan such that 

   C = ( cij  | " eij  Espan ) 
 is a minimum               

The red tree is the  

Min ST 

Other ST’s can be formed .. 

• Replace 2 with 7 

• Replace 4 with 11 



Graphs - Kruskal’s Algorithm 
• Calculate the minimum spanning tree 

– Put all the vertices into single node trees by themselves 

– Put all the edges in a priority queue 

– Repeat until we’ve constructed a spanning tree 

• Extract cheapest edge 

• If it forms a cycle, ignore it 
else add it to the forest of trees 
(it will join two trees into a larger tree) 

– Return the spanning tree          



Graphs - Kruskal’s Algorithm 
• Calculate the minimum spanning tree 

– Put all the vertices into single node trees by themselves 

– Put all the edges in a priority queue 

– Repeat until we’ve constructed a spanning tree 

• Extract cheapest edge 

• If it forms a cycle, ignore it 
else add it to the forest of trees 
(it will join two trees into a larger tree) 

– Return the spanning tree 

•              
Note that this algorithm makes no attempt  

• to be clever 

• to make any sophisticated choice of the next edge 

• it just tries the cheapest one!    



Graphs - Kruskal’s Algorithm in C Forest MinimumSpanningTree( Graph g, int n,  

                                  double **costs ) { 

   Forest T; 

   Queue q; 

   Edge e; 

   T = ConsForest( g ); 

   q = ConsEdgeQueue( g, costs ); 

   for(i=0;i<(n-1);i++) { 

       do { 

          e = ExtractCheapestEdge( q ); 

       } while ( !Cycle( e, T ) ); 

       AddEdge( T, e ); 

   } 

   return T; 

}  

Initial Forest: single vertex trees 

P Queue of edges 



Graphs - Kruskal’s Algorithm in C Forest MinimumSpanningTree( Graph g, int n,  

                                  double **costs ) { 

   Forest T; 

   Queue q; 

   Edge e; 

   T = ConsForest( g ); 

   q = ConsEdgeQueue( g, costs ); 

   for(i=0;i<(n-1);i++) { 

       do { 

          e = ExtractCheapestEdge( q ); 

       } while ( !Cycle( e, T ) ); 

       AddEdge( T, e ); 

   } 

   return T; 

}  

We need n-1 edges  

to fully connect (span)  

n vertices 



Graphs - Kruskal’s Algorithm in C Forest MinimumSpanningTree( Graph g, int n,  

                                  double **costs ) { 

   Forest T; 

   Queue q; 

   Edge e; 

   T = ConsForest( g ); 

   q = ConsEdgeQueue( g, costs ); 

   for(i=0;i<(n-1);i++) { 

       do { 

          e = ExtractCheapestEdge( q ); 

       } while ( !Cycle( e, T ) ); 

       AddEdge( T, e ); 

   } 

   return T; 

}  

Try the cheapest edge 

Until we find one that doesn’t 

form a cycle 

... and add it to the forest 



Kruskal’s Algorithm 

• Priority Queue 

– We already know about this!! 

 

Forest MinimumSpanningTree( Graph g, int n,  

                                  double **costs ) { 

   Forest T; 

   Queue q; 

   Edge e; 

   T = ConsForest( g ); 

   q = ConsEdgeQueue( g, costs ); 

   for(i=0;i<(n-1);i++) { 

       do { 

          e = ExtractCheapestEdge( q ); 

       } while ( !Cycle( e, T ) ); 

       AddEdge( T, e ); 

   } 

   return T; 

}  

Add to  

a heap here 

Extract from 

a heap here 



Kruskal’s Algorithm 

• Cycle detection 

 

Forest MinimumSpanningTree( Graph g, int n,  

                                  double **costs ) { 

   Forest T; 

   Queue q; 

   Edge e; 

   T = ConsForest( g ); 

   q = ConsEdgeQueue( g, costs ); 

   for(i=0;i<(n-1);i++) { 

       do { 

          e = ExtractCheapestEdge( q ); 

       } while ( !Cycle( e, T ) ); 

       AddEdge( T, e ); 

   } 

   return T; 

}  

But how do 

we detect a  

cycle? 



Kruskal’s Algorithm 
• Cycle detection 

– Uses a Union-find structure 

– For which we need to understand a partition of 
a set 

• Partition 

– A set of sets of elements of a set 

• Every element belongs to one of the sub-sets 

• No element belongs to more than one sub-set 

– Formally: 

• Set,    S    =  {  si  } 

• Partition(S)  =   {   Pi   },   where  Pi  =  { si } 

 " si S,   si   Pj 

•  " j, k    P   P   = 

Pi are subsets of S 

All si belong to one of the Pj 

None of the Pi  

have common elements 

S is the union of all the Pi  



Kruskal’s Algorithm 
• Partition 

– The elements of each set of a partition 

• are related by an equivalence relation 

• equivalence relations are 
– reflexive 

– transitive 

– symmetric 

 

– The sets of a partition are equivalence classes 

• Each element of the set is related to every other 
element  

x ~ x 

if x ~ y and y ~ z, then x ~ z 

if x ~ y, then y ~ x 



Kruskal’s Algorithm 
• Partitions 

– In the MST algorithm, 
the connected vertices form equivalence 
classes 

• “Being connected” is the equivalence relation 

– Initially, each vertex is in a class by itself 

– As edges are added, 
more vertices become related 
and the equivalence classes grow 

– Until finally all the vertices are in a single 
equivalence class 



Kruskal’s Algorithm 
• Representatives 

– One vertex in each class may be chosen as the 
representative of that class 

– We arrange the vertices in lists that lead to the 
representative 

• This is the union-find structure 

 

• Cycle determination 

 



Kruskal’s Algorithm 
• Cycle determination 

– If two vertices have the same representative, 
they’re already connected and adding a further 
connection between them is pointless 

– Procedure: 

• For each end-point of the edge that you’re going to 
add 

• follow the lists and find its representative 

• if the two representatives are equal, 
then the edge will form a cycle 



Kruskal’s Algorithm in operation  

Each vertex is its 

own representative 

All the vertices are in 

single element trees 



Kruskal’s Algorithm in operation  

The cheapest edge 

is h-g 

All the vertices are in 

single element trees 

Add it to the forest, 

joining h and g into a 

2-element tree 



Kruskal’s Algorithm in operation  

The cheapest edge 

is h-g 

Add it to the forest, 

joining h and g into a 

2-element tree 

Choose g as its 

representative 



Kruskal’s Algorithm in operation  
The next cheapest edge 

is c-i 
Add it to the forest, 

joining c and i into a 

2-element tree 

Choose c as its 

representative 

Our forest now has 2 two-element trees 

and 5 single vertex ones 



Kruskal’s Algorithm in operation  
The next cheapest edge 

is a-b 
Add it to the forest, 

joining a and b into a 

2-element tree 

Choose b as its 

representative 

Our forest now has 3 two-element trees 

and 4 single vertex ones 



Kruskal’s Algorithm in operation  
The next cheapest edge 

is c-f 
Add it to the forest, 

merging two 

2-element trees 

Choose the rep of one 

as its representative 



Kruskal’s Algorithm in operation  

The next cheapest edge 

is g-i 

The rep of g is c 

\ g-i forms a cycle 

The rep of i is also c 

 It’s clearly not needed! 



Kruskal’s Algorithm in operation  

The next cheapest edge 

is c-d 

The rep of c is c 

\ c-d joins two 

trees, so we add it 

The rep of d is d 

.. and keep c as the representative 



Kruskal’s Algorithm in operation  
The next cheapest edge 

is h-i 

The rep of h is c 

\ h-i forms a cycle, 

so we skip it 

The rep of i is c 



Kruskal’s Algorithm in operation  
The next cheapest edge 

is a-h 

The rep of a is b 

\ a-h joins two trees, 

and we add it 

The rep of h is c 



Kruskal’s Algorithm in operation  
The next cheapest edge 

is b-c But b-c forms a cycle 

... and we now have a spanning tree 

So add d-e instead 



Greedy Algorithms 

• At no stage did we attempt to “look ahead” 

• We simply made the naïve choice 

– Choose the cheapest edge! 

• MST is an example of a greedy algorithm 

• Greedy algorithms 

– Take the “best” choice at each step 

– Don’t look ahead and try alternatives 

– Don’t work in many situations 

• Try playing chess with a greedy approach! 

– Are often difficult to prove 



Proving Greedy Algorithms 

• MST Proof 

– “Proof by contradiction” is usually the best 
approach! 

– Note that 

• any edge creating a cycle is not needed 

\Each edge must join two sub-trees 

– Suppose that the next cheapest edge, ex, would 
join trees Ta and Tb 

– Suppose that instead of ex we choose ez - a more 
expensive edge, which joins Ta and Tc 

– But we still need to join Tb to Ta or some other tree 
to which T  is connected 



MST - Time complexity 

• Steps 

– Initialise forest             O( |V| ) 

– Sort edges             O( |E|log|E| ) 

• Check edge for cycles O( |V| ) x 

• Number of edges          O( |V| )         O( |V|2 ) 

– Total                                                        O(  

|V|+|E|log|E|+|V|2  ) 

– Since |E| = O( |V|2 )            O(  |V|2 log|V|  ) 

 

– Thus we would class MST as O( n2 log n ) 

 for a graph with  n  vertices 

This is an upper bound, 



MST - Time complexity 

• Steps 

– Initialise forest             O( |V| ) 

– Sort edges             O( |E|log|E| ) 

• Check edge for cycles O( |V| ) x 

• Number of edges          O( |V| )         O( |V|2 ) 

– Total                                                        O(  

|V|+|E|log|E|+|V|2  ) 

– Since |E| = O( |V|2 )            O(  |V|2 log|V|  ) 

 

– Thus we would class MST as O( n2 log n ) 

 for a graph with  n  vertices 

This is an upper bound, 

Here’s the  

“professionals read  textbooks” 

theme recurring again! 

 



UNIT-IV 

     
 
   BACKTRACKING 

 
 



Tackling Difficult Combinatorial Problems 

There are two principal approaches to tackling 
difficult combinatorial problems (NP-hard 
problems): 
 

Use a strategy that guarantees solving the 
problem exactly but doesn’t guarantee to find a 
solution in polynomial time 
 

Use an approximation algorithm that can find an 
approximate (sub-optimal) solution in polynomial 
time 



Exact Solution Strategies 
• exhaustive search (brute force) 

– useful only for small instances 
 

• dynamic programming 

– applicable to some problems (e.g., the knapsack problem) 

 

• backtracking 

– eliminates some unnecessary cases from consideration 

– yields solutions in reasonable time for many instances but worst 
case is still exponential 

 

• branch-and-bound 

– further refines the backtracking idea for optimization problems 



Backtracking 

Construct the state-space tree 
nodes:  partial solutions 
edges: choices in extending partial solutions 

 

Explore the state space tree using depth-first 
search 
 

“Prune” nonpromising nodes 
dfs stops exploring subtrees rooted at nodes that cannot lead to 

a solution and backtracks to such a node’s parent to continue 
the search 

 



Example:  n-Queens Problem 

 

Place n queens on an n-by-n chess board so that 
no two of them are in the same row, column, or 
diagonal 

 
1 2 3 4

1

2

3

4

queen 1

queen 2

queen 3

queen 4



State-Space Tree of the 4-Queens 
Problem 



n-Queens Problem 

Algorithm NQueens(k,n) 
{ 
   for i=1 to n do 
   { 
           if place(k,i) then 
          { 
               x[k]=i; 
               if (k = n) then write (x[1:n]); 
               else NQueens(k+1, n); 
           } 
   } 
   NQueens(k-1,n); 
   i= x[k-1]+1; 
} 
 



n-Queens Problem 

Algorithm place(k,i)   

// To place a new queen in the chessboard 

// Returns true if a queen can be placed in kth row and ith column, otherwise  
false. 

// x[ ] is a global array whose first (k-1) values have been set 

// Abs(r) returns the absolute value of r 

{ 

   for j = 1 to k-1 do 

     if ((x[j] = i) or (Abs (j-k))) then 

         return false; 

  return true; 

} 

     



Hamiltonian Circuit 

Hamiltonian Path: is a path in an undirected 
graph which visits each vertex exactly once 
 

Hamiltonian circuit: is a cycle in an undirected 
graph which visits each vertex exactly once and 
also returns to the starting vertex. 

 
Determining whether such paths and cycles 

exists is the hamiltonian path problem. 
 

Hamiltonian paths and cycles are named after 
William Rowan Hamilton 



State Space Tree of  Hamiltonian Circuit 
Problem 

d

a b

e

c f
0 

1 

2 

3 
6 

9 

10 

11 

12 

8 7 4 

5 

Dead-end 

Dead-end 

Sol. 



SUBSET-SUM PROBLEM 

    Let  S= {s1,…..,sn} be a set of positive integers, 
then we have to find a subset whose sum is equal 
to given positive integer ‘d’. 

     

    Sort the elements of the set in ascending order. 

    s1<=s2<=s3………<=sn 

 

S={1,2,5,6,8}         d=9 

2 solutions:    {1,2,6} and {1,8} 

 

 

 



 
 Subset – Sum  Problem 

Steps: 

1. The root of the tree represents the starting point, with no 
decisions about the given elements. 

2. Its left and right children represent, inclusion and exclusion of s1 
in the set being sought 

3. Going to the left from a node of the first level corresponds to 
inclusion of s2, while going to right corresponds to exclusion 

4. A path from the root to a node at the ith level of the tree 
indicates which of the first i numbers have been included in the 
subsets represented by that nodeWe record the value of s’, the 
sum of these numbers in the node. 

5.  If s’ =d, we have a solution to the problem and stop. If all the 
solutions need to be found, continue by backtracking to the 
node’s parent. 

6. If s’ is not equal to d, we can terminate the node as 
nonpromising if either of the two equalities holds. 

7. s’+si+1   > d ( the sum s’ too large) 
                n 
      s’ +   ∑    sj < d ( the sum s’ too small) 
               j=i+1 
 
 



State Space Tree of Subset – Sum  Problem 

0

0

05

11 5

3

38

3

with 3

with 5

with 6

w/o 3

w/o 5

w/o 6 with 6 w/o 6

w/o 5 with 5

X X X X

X

14+7>15 3+7<15 11+7>14 5+7<15

0+13<15
with 6

X

9+7>15

14 98

8

w/o 7

w/o 6

X
8<15

solution

with 7

15

S= {3,5,6,7}   and d=15 

 

No. of Nodes in the state space tree is  1+2+22+…+2n = 2n+1 -1 



Pseudocode: Backtracking 



 

BRANCH AND BOUND 



• Branch and bound (BB) is a general algorithm 
for finding optimal solutions of various 
optimization problems, especially in discrete 
and combinatorial optimization.  
 

• It consists of a systematic enumeration of all 
candidate solutions, where large subsets of 
fruitless candidates are discarded, by using 
upper and lower estimated bounds of the 
quantity being optimized. 

Branch-and-Bound 
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Branch-and-Bound 

• In the standard terminology of optimization 
problems, a feasible solution is a point in the 
problem’s search space that satisfies all the 
problem’s constraints 

 

• An optimal solution is a feasible solution with 
the best value of the objective function 
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Branch-and-Bound 

• 3 Reasons for terminating a search path at the 
current node in a state-space tree of a branch-
and-bound algorithm: 
 

1. The value of the node’s bound is not better than the value of the best 
solution seen so far.  
 

2. The node represents no feasible solutions because the constraints of the 
problem are already violated. 
 

3. The subset of feasible solutions represented by the node consists of a 
single point—in this case we compare the value of the objective function 
for this feasible solution with that of the best solution seen so far and 
update the latter with the former if the new solution is better. 

 



Branch-and-Bound 

• An enhancement of backtracking 
 

• Applicable to optimization problems  
 

• For each node (partial solution) of a state-space 
tree, computes a bound on the value of the 
objective function for all descendants  of the 
node (extensions of the partial solution) 
 

• Uses the bound for: 
– ruling out certain nodes as “nonpromising” to prune the tree – if a node’s bound is 

not better than the best solution seen so far 
– guiding the search through state-space 

 



Select one element in each row of the cost matrix C so that:  
• no two selected elements are in the same column 
• the sum is minimized 
 
Example 

   Job 1  Job 2  Job 3 Job 4 

         Person a      9      2      7     8 

         Person b       6      4      3     7 

         Person c      5      8      1     8 

         Person d      7      6      9     4 

 

Lower bound: Any solution to this problem will have total cost 

                         at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4) 

Example: Assignment Problem 



Example: First two levels of the state-space tree 



Example (cont.) 



Example: Complete state-space 
tree 



Solution: 

• Person a – job 2 

• Person b – job 1 

• Person c – job 3 

• Person d – job 4 

 



KNAPSACK PROBLEM 

• N items of known weights wi and values vi, 
i=1,2,….n 

• Knapsack capacity W =10 

• Item Weight Value  Value/Weight 

 1  4  $40   10 

     2  7  $42   6 

     3  5  $25   5 

 4  3  $12   4 

 

ub = v+ (W-w) (v /w ) 



State space tree of knapsack 
problem 

ub=100 

w=0, v=0 

ub=76 

w=4, v=40 

ub=60 

w=0, v=0 

w=11 

ub=70 

w=4, v=40 

ub=69 

w=9, v=65 

ub=64 

w=4, v=40 

w=12 

ub=65 

w=9, v=65 

0 

1 

3 

2 

4 

5 6 

7 8 

with 1 w/o 1 

with 2 w/o 2 

with 3 w/o 3 

with 4 w/o 4 

X 

X 

X 

X 

not feasible 

not feasible 

inferior to node 8 

inferior to node 8 

Optimal Solution 



Traveling Salesman Problem 

• For each city i, 1 <= i <=n, find the sum of the 
distances from city i to the two nearest cities. 

• Compute the sum s of these n numbers 

• Divide the result by 2 

• If all the distances are integers, round up the 
result to the nearest integer 

•  lb = [ s/2 ]  



Example: Traveling Salesman 
Problem 



UNIT - V 

NP PROBLEMS   
&               APPROXIMATION 

ALGORITHMS 



P, NP and NP-Complete Problems 



Problem Types: Optimization and 
Decision 

Optimization problem: find a solution that maximizes or 
minimizes some objective function 
 

Decision problem: answer yes/no to a question 
 

Many problems have decision and optimization versions. 
 
E.g.: traveling salesman problem 
optimization: find Hamiltonian cycle of minimum length 
decision: find Hamiltonian cycle of length  m 

 
Decision problems are more convenient for formal 

investigation of their complexity. 



Class P 
P: the class of decision problems that are solvable in 

O(p(n)) time, where p(n) is a polynomial of problem’s 
input size n 

 
Examples: 
searching 

 
element uniqueness 

 
graph connectivity  

 
graph acyclicity 

 
primality testing 



Class NP 
NP (nondeterministic polynomial): class of decision 

problems whose proposed solutions can be verified in 
polynomial time = solvable  by a nondeterministic 
polynomial algorithm 
 

A nondeterministic polynomial algorithm is an abstract 
two-stage procedure that: 

generates a random string purported to solve the 
problem 

checks whether this solution is correct in polynomial 
time 

By definition, it solves the problem if it’s capable of 
generating and verifying a solution on one of its tries   
 



Example: CNF satisfiability 
Problem: Is a boolean expression in its conjunctive 

normal form (CNF) satisfiable, i.e., are there 
values of its variables that makes it true? 

 
This problem is in NP.  Nondeterministic algorithm: 
 Guess truth assignment 
 Substitute the values into the CNF formula to 

see if it evaluates to true 
 

Example: (A | ¬B | ¬C) & (A | B) & (¬B | ¬D | E) & (¬D | ¬E) 
Truth assignments: 

A B C D E 
0  0  0  0  0 

    .   .   . 
1  1  1  1  1 

Checking phase: O(n) 



What problems are in NP? 

• Hamiltonian circuit existence  

• Partition problem: Is it possible to partition a 
set of n integers into two disjoint subsets with 
the same sum? 

• Decision versions of TSP, knapsack problem, 
graph coloring, and many other combinatorial 
optimization problems.  (Few exceptions 
include: MST, shortest paths) 

 

• All the problems in P can also be solved in this 
manner (but no guessing is necessary), so we 
have:  



NP-Complete Problems 
A decision problem D is NP-complete if it’s as hard as any  

problem in NP, i.e., 

• D is in NP 

• every problem in NP is polynomial-time reducible to D 

 

 

 

 

 

 

 

Cook’s theorem (1971): CNF-sat is NP-complete 

NP-complete

problem

NP problems



NP-Complete Problems (cont.) 

Other NP-complete problems obtained through 
polynomial- 

time reductions from a known NP-complete 
problem 

 

 

 

 

 

 

 

known

NP-complete

problem

NP problems

candidate

 for  NP -

completeness



P  = NP ? Dilemma Revisited 
• P  = NP would imply that every problem in NP, including all NP-

complete problems, could be solved in polynomial time 

• If a polynomial-time algorithm for just one NP-complete problem 
is discovered, then every problem in NP can be solved in 
polynomial time, i.e., P  = NP 
 

 

 

 

 

 

• Most but not all researchers believe that P  NP , i.e. P is a proper 
subset of NP 

 

NP-complete

problem

NP problems


