UNITA

Introcluction

Algorithm

* An Algorithm is a sequence of unambiguous
instructions for solving a problem,

* i.e., for obtaining a required output for any legitimate
input in a finite amount of time.

Notion of algorithm

problem

|

algorithm

\ 4

“computer” » output

»

input

\ 4

Algorithmic solution

PSEUDOCODE

" Pseudocode (pronounced SOO-doh-kohd) is a detailed yet
readable description of what a computer program or
algorithm must do, expressed in a formally-styled natural
language rather than in a programming language.

" |tis sometimes used as a detailed step in the process of
developing a program.

= |t allows programmers to express the design in great detail
and provides programmers a detailed template for the next
step of writing code in a specific programming language.

Formatting and Conventions in Pseudocoding

= INDENTATION in pseudocode should be
identical to its implementation in a
programming language. Try to indent at least
four spaces.

" The pseudocode entries are to be cryptic,
AND SHOULD NOT BE PROSE. NO SENTENCES.

= No flower
" Do notinc

poxes in pseudocode.
ude data declarations in

pseudococ

e.

SUINTIT NCYyVWUIUO 1T11dl Jl1TUUIU JT UotTu

For looping and selection,
Do While...EndDo;

— Do Until...Enddo;

— Case...EndCase;

— If...Endif;

— Call ... with (parameters); Call; Return;
Return; When; Always use scope terminators
for loops and iteration.

Some Keywords ...

* As verbs, use the words
— generate, Compute, Process,
— Set, reset,
— Increment,
— calculate,
— add, sum, multiply, ...
— print, display,
— input, output, edit, test, etc.

Methods of finding GCD

Competition

Computing Greatest Common Divisor: gcd(m,n)

Primary School
1. t=min(m, n)
2. mmodt=07?

3. Yes? nmod =07
Return

4. No? f=1I1;goto2

Secondary School
1. Find prime factors of m
Find prime factors of n

Identify common factors

> L

Return product of these

University
1. n=07?
2. Yes? Returnm
3. r=mmodn,
m:=n
n=r
4. Gotio1l

433-253 Algorithms and Data Structures

Fundamentals of Analysis of
algorithm efficiency

Analysis of algorithms

= |ssues:
o correctness
o time efficiency
o space efficiency
o optimality

= Approaches:
o theoretical analysis
o empirical analysis

Theoretical analysis of time
efficiency

Time efficiency is analyzed by determining the
number of repetitions of the basic operation as a
function of input size

= Basic operation: then 0 Sggation that contributes
the most towzird/stfhpeaning time of the
algorithm

/N

T(fpr b%IC é’ént)n basic operation is
or o executed

Note: Different basic operations may cost differently!

Input size and basic operation examples

Problem

Input size measure

Basic operation

Searching for key
In a list of n items

Number of list’s
items, 1.e.n

Key comparison

Multiplication of
two matrices

Matrix dimensions or
total number of
elements

Multiplication of
two numbers

Checking primality
of a given integer n

n’size = number of
digits (in binary
representation)

Division

Typical graph
problem

#vertices and/or
edges

Visiting a vertex
or traversing an
edge

Empirical analysis of time efficiency

@Select a specific (typical) sample of inputs

@Use physical unit of time (e.g., milliseconds)
or
Count actual number of basic operation’s
executions

®@Analyze the empirical data

Efficiencies

" Worst Case Efficiency:

o |s its efficiency for the worst case input of size n,
which is an input of size n for which the algorithm
runs the longest among all possible inputs of that size

g CWOI"St(n)
" Best-case efficiency:

o |s its efficiency for the worst case input of size n,
which is an input of size n for which the algorithm
runs the fastest among all possible inputs of that size

. Cbest(n)

Amortized efficiency

— |t applies not to a single run of an
algorithm, but rather to a sequence of
operations performed on the same data

structure

Best-case, average-case, worst-case

For some algorithms, efficiency depends on form of input:
= Worstcase: C,,,(n) —maximum over inputs of size n
" Best case: Ciest(n) — minimum over inputs of size n

" Average case: C,,(n)— “average” over inputs of size n

o Number of times the basic operation will be executed on
typical input
o NOT the average of worst and best case

o Expected number of basic operations considered as a random
variable under some assumption about the probability
distribution of all possible inputs. So, avg = expected under
uniform distribution.

Example: Sequential search

ALGORITHM SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
/[Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
/1 or —1 if there are no matching elements
i <0
while i < n and A[i] # K do
i <1+ 1
if i <n return i
else return —1

" Worst case n key comparisons

® Best case 1 comparisons

(n+1)/2, assuming K is in A
= Average case

Types of formulas for basic operation’s count

= Exact formula
e.g., C(n) = n(n-1)/2

" Formula indicating order of growth with
specific multiplicative constant
e.g., C(n) = 0.5 n?

" Formula indicating order of growth with
unknown multiplicative constant
e.g., C(n) = cn?

Order of growth

* Most important: Order of growth within a
constant multiple as n—>oo

 Example:

— How much faster will algorithm run on computer
that is twice as fast?

— How much longer does it take to solve problem of
double input size?

Values of some important functions as n — o

n [log,m n nlogyn n? n? 27 n!

10 | 3.3 107 3.3107 107 10° 10° 3.6-10°
102 | 6.6 10%2 6.610% 10¢ 10° 1.310°° 9.3.10%7
10° | 10 10° 1.010¢ 10° 10°

104 13 104 1.310° 108 102

10° 17 10° 1.710% 1010 1018

106 | 20 109 20107 102 108

Table 2.1 Values (some approximate) of several functions important
for analysis of algorithms

Asymptotic Notations

* O (Big-Oh)-notation
*) (Big-Omega) -notation
* O (Big-Theta) -notation

Asymptotic order of growth

A way of comparing functions that ignores constant
factors and small input sizes (because?)

= O(g(n)): class of functions f(n) that grow no faster
than g(n)

= O(g(n)): class of functions f(n) that grow at same
rate as g(n)

= (O(g(n)): class of functions f(n) that grow at least as
fast as g(n)

O-notation

Definition: A function t(n) is said to be in O(g(n)),
denoted t(n) € O(g(n)) is bounded above by
some constant multiple of g(n) for all large n,
l.e., there exist positive constant ¢ and non-
negative integer n, such that

f(n) < c g(n) for every n 2 n,

Big-oh

og(n)
t{n)

doesn't
matter

=

s | S A

Figure 2.1 Big-oh notation: ¢(n) € O(g(n))

()-notation

e Formal definition

— A function t(n) is said to be in ((g(n)), denoted
t(n) € Q(g(n)), if t(n) is bounded below by some

constant multiple of g(n) for all large n, i.e., if
there exist some positive constant c and some

nonnegative integer n, such that

Big-omega

t(n)
cg(n)

doesn't
matter

:3-___.____ -— o et s e S S S e i i s S e Y S

0

Fig. 2.2 Big-omega notation: #(n) € £3{g(n))

(®-notation

e Formal definition

— A function t(n) is said to be in ®(g(n)), denoted
t(n) € ®(g(n)), if t(n) is bounded both above
and below by some positive constant multiples
of g(n) for all large n, i.e., if there exist some
positive constant ¢, and ¢, and some
nonnegative integer n, such that

Big-theta

doesn't
matter

Figure 2.3 Big-theta notation: t(n) € @(g(n))

Theorem
* Ift;(n) € O(g,(n)) and t,(n) € O(g,(n)), then
t,(n) +t,(n) € O(max{g,(n), g,(n)}).

— The analogous assertions are true for the Q-
notation and ®-notation.

Proof. There exist constants c1, ¢2, n1, n2 such that
(m) < er*gi(n), foralln 2 n1
2(n) < ¢2*ge(n), forall p 2 M2

Define ¢3 = ¢1 + ¢2 and n3 = max{n1,n2}. Then
() + 2(n) < e3*max{gi(n), g2(n)}, for all P > A3

Some properties of asymptotic order of growth

" fln) € O(f(n))
" f(n) € O(g(n)) itf g(n) €Q(f(n))

" |Iff(n) € O(g(n)) and g(n) € O(h(n)), then f(n)
O(h(n))

Note similarity witha <b

= If f,(n) € O(g,(n)) and f,(n) € O(g,(n)), then
f1(n) + f,(n) € O(max{g,(n), g,(n)})

Also, 2, ., O(f(i)) = O (.., /(i)

Establishing order of growth using limits

/’
0 order of growth of I(n) < order of growth of ¢(n)

Iim T(n)/g(n)< ¢ >0 order of growth of T'(rn) = order of growth of ¢(n)

N—-20

= o order of growth of T(n)> order of growth of ¢(n)
N

'Hopital’s rule and Stirling’s formula

L'Hopital’s rule: If lim, .. f(n)=1Ilim, ., _g(n) =0 and
the derivatives f, Emexist, then

lim 2 (’“ = lim L ’(n')
nw &) n—ew & ()

o,
X

moles logn vs, n

-

Stirling’s formula: n!= (2rn)2(n/e)"

|23

-

mples 2" vs, n!

Orders of growth of some important functions

All logarithmic functions log,n belong to the same class
®(log n) no matter what the logarithm’s base a > 1 is

because
log, n=1log, n/log, a
All polynomials of the same degree k belong to the same class:
ank+a,,nkt+ .. +a, e Onk)

Exponential functions a” have different orders of growth for
different a’s

order log n <order n* (a>0) < order a” < order n! < order n”

Basic asymptotic efficiency classes

log n logarithrmic
n linear
n log n n-log-n
n? quadratic
n cubic
2 exponential
n! factorial

Plan for analyzing nonrecursive

algorithms
General Plan for Analysis

= Decide on parameter n indicating input size

= |dentify algorithm’s basiyc operation

" Determine worst, average, and best cases for
input of size n

= Set up a sum for the number of times the
basic operation is executed

= Simplify the sum using standard formulas and
rules (see Appendix A

Useful summation formulas and rules

Yyl =141+.+1=n-/+1
In particular, X ..., 1=n-1+1=n € O(n)

Zicicni = 142+..4n = n(n+1)/2 = n?/2 € O(n?)

Yicicn 2 = 1242%2+...4n% = n(n+1)(2n+1)/6 = n3/3 € BO(n3)

Yocicy @ =1+a +..+ 0" =(a"'-1)/(a-1) foranya#1
In particular, 2,2/ =20+ 21+, .+ 20 =2m1-1 ¢

O(2")

2(a,£b;)=2Za,£Xb; Xca; =cXa; 2,0 =Xy
+ 2

m+1</<u]

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if A[i] > maxval

maxval < Ali]

return maxval

T(n) = Z1<i<n-1 1 = p-1 = O(R) comparisons

Example 2: Element uniqgueness
problem

ALGORITHM UnigqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
//Input: An array A[O..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

forj«<—i+1ton—1do

if A[i]= A[/] return false

return true

2,05i<p-2 (Z',j-;-]gjgm_,_r
= 2,0<i<n-2

9(n®)

Example 3: Matrix multiplication

ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0..n — 1. 0..n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//Tnput: Two n-by-n matrices A and B
/[Output: Matrix C = AB
fori < 0Oton —1do
forj <0ton—-1do
Cli, j] < 0.0
fork < Oton 1do
Cli, j] < Cli, j]+ Ali, K % B[k, j]
return C

2,0<i<n-1 2,0<i<p-1
0<i<n-1 C)(n
6 n3

Example 4: Gaussian elimination

Algorithm GaussianElimination(A[0..n-1,0..n])
//Implements Gaussian elimination on an n-by-
(n+1) matrix A
fori<— Oton-2do
forj« i+1ton-1do
fork < itondo
Alj,k] < Al[j,k] - Ali k] = A[j,i] / Ali,i]

Find the efflﬁréfh‘gﬁ'fl'éﬁ ind a constant factor

Improvement. B <« A[j,i] / Al

for k<« itondo
Alj k) « A[j k] - Ali k] *B

Example 5: Counting binary digits

ALGORITHM Binary(n)
/[Input: A positive decimal integer n
//Output: The number of binary digits in »n’s binary representation
count <1
while n > 1 do
count < count + 1
n<—|n/2]
return count

Plan for Analysis of Recursive Algorithms

" Decide on a parameter indicating an input’s size.
" |dentify the algorithm’s basic operation.

" Check whether the number of times the basjc op.
is executed may vary on different inputs of the
same size. (If it may, the worst, average, and best

cases must be investigated separately:

. ,Se,t,uP a recurrence relation with an appropriate
initial condition expressing the number of times
the basic op. is executed.

= Solve the recurrence (or, at the very least, establish
its solution’s order of growth) by backward
substitutions or another method

Example 1: Recursive evaluation of n!

Definition:n ! =1 %2 * ... ¥(n-1) * n forn=21 and
0l=1

ALGORITHM F(n) " " Hn)=F(n-1) = n forn=

//Computes n! recursively

//Input: A nonnegative integer n (0Q) = 1
//Output: The value of n!

if n =0 return 1

elsereturn F(n — 1) xn
n

multiplication
M(n) =M(n-1) + 1

Size: M(0)=0

Solving the recurrence for M(n)

M(n) =M(n-1)+1, M(0)=0
M(n) = M(n-1) + 1

=(M(n-2)+1)+1 = M(n-2)+2
=(M(n-3)+1)+2 = M(n-3) +3

=M(n-i) + i
= M(0) +n
=n

The method is called backward substitution.

Solving recurrence for number of moves

M(n) = 2M(n-1) +1, M(1)=1
M(n) =2M(n-1) + 1

=2(2M(n-2) + 1) + 1 = 2"2*M(n-2) + 21 + 2"0
= 2"2*(2M(n-3) + 1) + 21 + 270
= 2"3*M(n-3) + 2"2 + 2”1 + 20

=2"n-1)*M(1) + 2Mn-2) + ... + 21 + 270
=2"(n-1) + 2*(n-2) + ... + 21 + 270
=2"n -1

DIVIDE AND CONQUER

Divide and Conquer

The most well known algorithm design strategy:

1. Divide instance of problem into two or more
smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

Divide-and-conquer technique

a problem of size n

subproblem 1 subproblem 2
of size n/2 of size n/2

a solution to a solution to
subproblem 1 subproblem 2

a solution to
the original problem

Design and Analysis of Algorithms - Unit 11 47

Divide and Congquer Examples

Sorting: mergesort and quicksort

Tree traversals

Binary search

Matrix multiplication-Strassen’s algorithm

Convex hull-QuickHull algorithm

General Divide and Conguer recurrence:

T(w)=alT(o) -+ f(n) where f(n) € O(n?)

1. a<p? T(n) £ ©(n?)

2. a=9 T(r) € Onlen)

3 a> Y T(n) € (nlos:9)

Notes the same results pold with O instead of @),

Design and Analysis of Algorithms - Unit 11 49

Mergesort

Algorithm:

Split array A[1..nJ in two an sz-\ke copies of each half
in arrays B[1.. IB/Z and C[1.. n/2]
Sort arrays B and C

Merge sorted arrays B and C into array A as follows:

O Repeat the following until no elements remain in one of the
arrays:

B compare the first elements in the remaining unprocessed portions of
the arrays

M copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

K Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

Mergesort Example

88888888

VANENVAN
AN AN AN
VA
e

11111111

Pseudocode for Mergesort

ALGORITHM Mergesort(A|0.n — 1])

/{Sorts array A[0..n — 1] by recursive mergesort
/fInput: An array A[0..n — 1] of orderable elements
/[Output: Array A[0..n — 1] sorted in nondecreasing order
ifn>1
copy A[0..|n/2] — 1] to B[0..|n "7J —1]
copy A |n/2|..n — 1] to C[0..[n/2] - 1]
Mergesort(B|0..|n/2] — 1])
Mergesort(C[0..[n/ ;_“ - 1])
Merge(B, C, A)

Design and Analysis of Algorithms - Unit 11 52

Pseudocode for Merge

ALGORITHM MergeiBl0.p —1]. C[0.g — 1] Al0.p+g —1])
(Mherges two sorted arravs intc one sorted array
(Moput: Arrays B[0..p — 1] and C[0..g — 1] both sorted
(MOutput: Sorted array A[ll.p + g — 1] of the elements of B and C
i jeIlk k<10
while | < pand | < ¢ do

if B[i] < C[f]

Alk] — B[if i <1 +1
else A[K] « C[jk j« j+1
Le—k+1

ifi =p

copy Cli.g — 1]t Alk..p+g —1]
else copy Bli.p = 1]to Alk.p+g —1]

Design and Analysis of Algorithms - Unit 11

53

Recurrence Relation for Mergesort

e Let T(n) be worst case time on a sequence of
n keys

e I[fn=1, then T(n) = ®(1) (constant)
* Ifn>1, then T(n) =2 T(n/2) + &(n)

— two subproblems of size n/2 each that are solved
recursively

— @(n) time to do the merge

Efficiency of mergesort

All cases have same efficiency: ©(n log n)

Number of comparisons is close to theoretical
minhimum for comparison-based sorting:
Ologn! = nlgn -1.44n

Space requirement: ©(n) (NOT in-place)

Can be implemented without recursion (bottom-
up)

Quick-Sort

L1 Quick-sort is a randomized
sorting algorithm based on the

divide-and-conquer paradigm:

[1 Divide: pick a random element I [] I .
x (called pivot) and partition S
into

O/ elements less than x
OFE elements equal x I . . I

LG elements greater than x

[IRecur:sortLand G
[1Conquer:join L, Eand G

Design and Analysis of
Algorithms - Unit 11

56

Quicksort

Select a pivot (partitioning element)

Rearrange the list so that all the elements in
the positions before the pivot are smaller
than or equal to the pivot and those after the
pivot are larger than the pivot

S .

fiﬁa position—— - ~ ~
Al] Alil>

Sort the t[\/g/OpSUbHStS [1]>p

Design and Analysis of Algorithms - Unit 11 57

The partition algorithm

Algorithm Peartition(A[l.r])
[{Partitions a subarray by using is first element as a pivot
/ {Input: A subarray A[l..r] of A[0..n — 1], defined by its left and right
I indices I and r (I < r)
/ {Output: A partition of A[l..r], with the split position returned as
I this fimction’s value
p + All]
i1+l je—r+1
repeat
repeat i + ¢+ 1 until Af{] > p
repeat j + § — 1 until A[j] - »p
swap(Al[f], Alj])
until ¢ > j
swap(Al[d, A[j]) [/undo last swap when ¢ > j
swap (A[l], A[j])

return j

Design and Analysis of Algorithms - Unit Il 58

Efficiency of quicksort

Best case: split in the middle — O(n log n)
Worst case: sorted array! — O(n?)
Average case: random arrays — O(n log n)

Improvements:

Dbetter pivot selection: median of three partitioning avoids
worst case in sorted files

Dswitch to insertion sort on small subfiles

Considered the method of choice for internal sorting
for large files (n = 10000)

Binary Search - an Iterative
Algorithm

Very efficient algorithm for searching in sorted
array:

K vs A[O0] ... Alm] . . . A[n-1]

If K = A[m], stop (successful search);

otherwise, continue searching by the same
method

in A[0..m-1] if K< A[m]

and in Alm+1..n-1] if K> A[m]

Pseudocode for Binary Search

ALGORITHM BinarySearch(A[O..n-1], K)
|<0; r<n-1
while [< rdo

m <« |(l+r)/2]

if K=A[m] return m

elseif K< A[m] r < m-1

else [< m+1

return -1

Binary Search — a Recursive Algorithm

ALGORITHM BinarySearchRecur(A[0..n-1], |, r, K)
ifl>r
return —1
else
m&l(+r)/2]
if K=A[m]
return m
else if K< A[m]
return BinarySearchRecur(A[O..n-1], |, m-1, K)
else
return BinarySearchRecur(A[O..n-1], m+1, r, K)

Analysis of Binary Search

Worst-case (successful or fail) :
O c, (n)=1+C,Ln/2]),

O C =
soltl’JonlC (n) = |_Iog2nJ+1 |_Iog2(n+1)_|

This is VERY fast: e.g., C,(10°) = 20

Best-case: successful C,(n) =
fail C,(n)= |_Iog2nj+1

Average-case: successful C, (n) = log,n -1
fail C,4(n) = Iogz(n+1)

Binary Tree Traversals

 Definitions

— A binary tree T is defined as a finite set of nodes that is
either empty or consists of a root and two disjoint binary
trees T, and T, called, respectively, the left and right
subtree of the root.

— The height of a tree is defined as the length of the longest
path from the root to a leaf.

* Problem: find the height of a b}

Pseudocode - Height of a Binary
Tree

ALGORITHM Height(T)

//Computes recursively the height of a binary
tree

//Input: A binary tree T
//Output: The height of T
ifT=C
return -1
else
return max{Height(T,), Height(T;)} + 1

Analysis:

Number of comparisons of a tree T with J: 2n +
1

Number of comparisons made to compute
height is the same as number of additions:

A(n(T)) = A(n(T,)) + A(n(TR)) +1 for n>0,
A(0)=0

The solution is A(n) = n

Binary Tree Traversals— preorder, inorder, and
postorder traversal

Binary tee traversal: visit all nodes of a binary

tree recursively.

Algorithm Preorder(T)
//Implement the preorder traversal of a binary tree
//Input: Binary tree T (with labeled vertices)
//Output: Node labels listed in preorder
ifT+Q

write label of T's root

Preorder(T,)

Preorder(Tg)

Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers represented by
arrays of their digits such as:

A =12345678901357986429 B =87654321284820912836

The grade-school algorithm:

a, a,.. a,
b, b,.. b,

(dlo) d11d12 dln
(dZO) d21d22 d2n

(an) dnldnz dnn

Efficiency: n? one-digit multiplications

First Divide-and-Conquer Algorithm

A small example: A * B where A =2135 and B =4014
A =(21-10% + 35), B = (40 -10% + 14)

So, A * B = (21 -102 + 35) * (40 -102 + 14)
=21 * 40 -10% + (21 * 14 + 35 * 40) -102 + 35 * 14

In general, if A=A A,and B = B,B, (where A and B are n-digit,
A, A,, B, B, are n/2-digit numbers),
A*B=A *B;-10" + (A, * B,+ A, * B,) 102+ A, * B,

Recurrence for the number of one-digit multiplications M(n):
M(n) =4M(n/2), M(1)=1
Solution: M(n) = n?

Second Divide-and-Conquer Algorithm

AxB=A *B-10" + (A, * B,+ A, *B,) -1072+ A, * B,

The idea is to decrease the number of multiplications from 4 to 3:
(A;+A,)* (B, +B,)=A,*B,+ (A *B,+A,*B))+A,*B,

l.e., (A;*B,+A,*B;)=(A;+A,) * (B, +B,)-A; *B;,-A,*B,
which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the number of multiplications M(n):
M(n) =3M(n/2), M(1)=1

Solution: M(n) = 30821 = plog23 = 1585

Strassen’s matrix multiplication

e Strassen observed [1969] that the product of
two matrices can b com/pute as follows:

COO ;01 AOO “01 B B

DQ 01
—_ *

ClO Cll 10 All B10 Bll
M, +M, -M:;+ M, M, + M.

Submatrices:

M = (Ago + Ayy) * (Bog + Byy)
M, = (Ajg+Ag) * Byg
Ms =Ago * (Bgs - By1)
Mg = Ap; ™ (Byg - Bgo)
Ms = (Ago + Agy) * Byy
Mg = (A1o - Agg) * (Bgo + Bga)

My = (Ag; - Agq) * (Byg + Byy)

Efficiency of Strassen’s algorithm

* Ifn is not a power of 2, matrices can be
padded with zeros

* Number of multiplications: 7

* Number of additions: 18

Time Analysis

r'()=1 (assume N = 2%)
T(N)=TT(N/2)
T(N)=T'T(N/2*)=T7"
T(N) = 7103N :N1‘5’37 :N2.81

Design and Analysis of Algorithms - Unit Il

74

Standard vs Strassen

N Multiplications Additions
Standard alg, 100 1,000,000 990,000
Strassen’s aly, 100 411,822 2,470,334

Standard alg, 1000 1,000,000,000 9,000,000
Siragsen’s aly, 1000 204,280,285 1,579,081,709
Standard alg, 10,000 1o 9,99%1 "
Stragsen’s aly, 10,000 | 0,169%10?2 1012

Design and Analysis of Algorithms - Unit 11

75

gk
gk,

gk

Greedy Technique

Constructs a solution to an optimization problem piece by
piece through a sequence of choices that ags;

i i icfyi i Defined by an
* feasible, i.e. satisfying the constraints e e e
a set of constraints

* locally optimal (with respect to some neig
definition)

e greedy (in terms of some measure), and irrevocable

For some problems,
it yields a globally optimal solution for every instance.

For most, does not but can be useful for fast
approximations.

77

Applications of the Greedy Strategy

* Optimal solutions:

— change making for “normal” coin denominations
— minimum spanning tree (MST)

— single-source shortest paths

— simple scheduling problems

— Huffman codes

* Approximations/heuristics:
— traveling salesman problem (TSP)
— knapsack problem
— other combinatorial optimization problems

Change-Making Problem

Given unlimited amounts of coins of denominations d, > ... >
d

m?
Bive ChegRAQY AR Bh AN EHSR ShA LBABRLiR5oInS
Example: d,=25c, d,=10c, d;=5c, d,=1c and n=48c

Greedy solution: <1,2,0, 3>

Greedy solution is

e optimal for any amount and “normal” set of
denominations

* magnaiampeetanal fog apoitiaey goinidearindoens

Minimum Spanning Tree (MST)

e Spanning tree of a connected graph G: a

connected acyclic subgraph of G that includes
all of G’s vertices

* Minimum spanning tree of a weighted,
connecte graph G: a sp ning tree of 68‘

80

Prim’s MIST algorithm

 Start with tree T, consisting of one (any) vertex
and “grow” tree one vertex at a time to
produce MST through a series of expanding
subtreesT,, T,, ..., T

n

* On each iteration, construct T,,, from T, by
adding vertex not in T; that is closest to those
already in T, (this is a “greedy” step!)

e Stop when all vertices are included

Pseudocode — Prim’s algorithm

ALGORITHM Prim(G)
// Prim’s algorithm for computing a MST
// Input:A weighted connected graph G = (V,E)
// Output: Et, the set of edges composing a MST of G
Vi € {v,}
E,< @
forl < 1to |v] -1do

find a minimum weight edge e*=(v*,u*) among all edges(v,u) such
thatvisinVranduisinV—V;

V; < V.U {u*}
E. < E; U {v*}
return E;

Notes about Prim’s algorithm

* Needs priority queue for locating closest fringe
vertex.

e Efficiency

— 0O(n?) for weight matrix representation of graph and array
implementation of priority queue

— O(m log n) for adjacency lists representation of graph with n
vertices and m edges and min-heap implementation of the
priority queue

Another greedy algorithm for MST: Kruskal’s

* Sort the edges in nondecreasing order of lengths

 “Grow” tree one edge at a time to produce MST

through a series of expanding forests F,, F,, ..., F,.
1

* On each iteration, add the next edge on the
sorted list unless this would create a cycle. (Ifit
would, skip the edge.)

Pseudocode — Kruskal’s algorithm

ALGORITHM Kruskal(G)
// Kruskal’s algorithm for constructing a minimum spanning tree
// Input: A weighted connected graph G = (V,E)
// Output: E; The set of edges composing a MST of G
E; € @; ecounter € 0
k<0
while ecounter < |V| -1
k < k+1
if E;U {e, } is acyclic
£ € EU{ey;
ecounter € ecounter + 1
return E;

Notes about Kruskal’s algorithm

Algorithm looks easier than Prim’s but is harder to
implement (checking for cycles!)

Cycle checking: a cycle is created iff added edge
connects vertices in the same connected component

Kruskal’s algorithm relies on a union-find algorithm for
checking cycles

Runs in O(m log m) time, with m = [E[. The time is
mostly spent on sorting.

Disjoint Sets

Union of two sets A and B, denoted by A U B, is the set
{x | x e Aorx € B}

The intersection of two sets A and B, denoted by A n B,
is the set {x| x € A and x € B}.

Two sets A and B are said to be disjoint if A n B = ¢.

If S={1,2,...,11} and there are 4 subsets {1,7,10,11},
{2,3,5,6}, {4,8} and {9}, these subsets may be labeled as
1,3,8and 9, in this order.

Disjoint Sets

* Adisjoint-set is a collection ©={S,, S,,..., S;} of distinct
dynamic sets.

 Each setis identified by a member of the set, called
representative.

* Disjoint-set data structures can be used to solve the
union-find problem
Disjoint set operations:

— MAKE-SET(x): create a new set with only x. assume x is not
already in some other set.

— UNION(x,y): combine the two sets containing x and y into
one new set. A new representative is selected.

— FIND-SET(x): return the representative of the set containing
X.

The Union-Find problem

* N balls initially, each ball in its own bag
— Labelthe balls 1, 2, 3, ..., N

* Two kinds of operations:

— Pick two bags, put all balls in these bags into a
new bag (Union)

— Given a ball, find the bag containing it (Find)

OBJECTIVE

to design efficient algorithms for Union & Find operations.

Approach: to represent each set as a rooted tree with data elements
stored in its nodes.

Each element x other than the root has a pointer to its parent p(x) in the
tree.

The root has a null pointer, and it serves as the name or set representative
of the set.

This results in a forest in which each tree corresponds to one set.
For any element x, let root(x) denote the root of the tree containing x.

— FIND(x) returns root(x).
— union(x, y) means UNION(root(x), root(y)).

92

Implementation of FIND and UNION

* FIND(x) = follow the path from x until the
root is reached, then return root(x).

— Time complexity is O(n)

— Find(x) = Find(y), when x and y are in the same set

« UNION(x,y) = UNION(FIND(x) , FIND(y)) = UNION(root(x) , root(y)) >
UNION(u,v) then let v be the parent of u. Assume u is root(x), v is root(y)

— Time complexity is O(n)

— Union(x, y) Combine the set that contains x with the set that contains y

The Union-Find problem

* An example with 4 balls
 |nitial: {1}, {2}, {3}, {4}

 Union {1}, {3} - {1, 3}, {2}, {4}
* Find 3. Answer: {1, 3}

 Union {4}, {1,3} —> {1, 3, 4}, {2}
* Find 2. Answer: {2}

* Find 1. Answer {1, 3, 4}

Forest Representation

e A forestis a collection of trees

* Each bag is represented by a rooted tree, with
the root being the representative ball

¢ o

Example: Two bags --- {1, 3, 5} and {2, 4, 6, /}.

95

Forest Representation

* Find(x)
— Traverse from x up to the root
* Union(x, y)
— Merge the two trees containing x and y

Ad - gh

96

Forest Representation

Initial:

Union 1 3;

Union 2 4:

Find 4:

o
Y1

66

97

Forest Representation

Union 1 4:

Find 4:

98

Union by Rank & Path Compression

 Union by Rank: Each node is associated with a
rank, which is the upper bound on the height of
the node (i.e., the height of subtree rooted at the
node), then when UNION, let the root with smaller
rank point to the root with larger rank.

e Path Compression: used in FIND-SET(x) operation,
make each node in the path from x to the root
directly point to the root. Thus reduce the tree
height.

Path Compression

$33h

Design and Analysis of Algorithms - Unit Il 100

Shortest paths — Dijkstra’s algorithm

Single Source Shortest Paths Problem: Given a weighted

connected (directed) graph G, find shortest paths from source vertex s
to each of the other vertices

Dijkstra’s algorithm: Similar to Prim’s MST algorithm, with

a different way of computing numerical labels: Among vertices

not already in the tree, it finds vertex u with the smallest sum
d,+ w(v,u)

where

v is a vertex for which shortest path has been already found
on preceding iterations (such vertices form a tree rooted at s)

d, is the length of the shortest path from source s to v
w(v,u) is the length (weight) of edge from vto u

Pseudocode — Dijkstra’s algorithm
ALGORITHM Dijkstra(G,S)
// Dijkstra’s algorithm for single source shortest paths
// Input: A weighted connected graph G= (V,E) and its vertex s
// Output: The length d, of a shortest path from s to v and its
penultimate vertex p, for every vertex vin V
Initialize(Q)
for every vertex vin V do
d, € o°;p,=null
Insert(Q,v,d,)
d.€0; Decrease(Q s, d,)
V; € @
rI < 1to|v|] -1do
u* < DeleteMin(Q)
V; € V;U {u*}
for every vertex uin V - V; that is adjacent to u* do
ifd, + w(u*, u)<d,
d < d, *+w(u ,u); p, € u*
Decrease (Qu,d,)

4

b

6
X @pee

3

a

Tree vertices Remaining vertices 4

a(-,0) b(a,3) c(-0) d(a7) e(-) f ER

b(a,3) c(b,3+4) d(b,3+2) e(-,) 3 "

7 d e

d(b,5) c(b.7) e(d,5+4) @f\;/%
c(b,7) e(d.9) N %

e(d,9)

Design and Analysis of Algorithms - Unit 11 103

Notes on Dijkstra’s algorithm

* Doesn’t work for graphs with negative
weights (whereas Floyd’s algorithm does, as
ong as there is no negative cycle).

* Applicable to both undirected and directed
graphs

e Efficiency

— O(|V]?) for graphs represented by weight matrix and array
implementation of priority queue

— O(|E|log|V]) for graphs represented by adj. lists and min-
heap implementation of priority queue

Graphs
Minimum Spanning Tree
PLSD210

Key Points

e Optimal Binary Search Tree

 Dynamic Algorithms

— Used when
* some items are requested more often than others
* frequency for each item is known
— Minimises cost of all searches
— Build the search tree by
* Considering all trees of size 2, then 3, 4,
* Larger tree costs computed from smaller tree costs
— Sub-trees of optimal trees are optimal trees!

* Construct optimal search tree by saving root of each optimal sub-
tree and tracing back

° O(n3) time / O(n2) space

Kevy Points

Other Problems using Dynafnic Algorithms
Matrix chain multiplication

— Find optimal parenthesisation of a matrix product
* Expressions within parentheses
— optimal parenthesisations themselves
* Optimal sub-structure characteristic of dynamic algorithms
* Similar to optimal binary search tree
Longest common subsequence
— Longest string of symbols found in each of two sequences
Optimal triangulation
— Least cost division of a polygon into triangles
— Maps to matrix chain multiplication

Graphs - Definitions

Graph
— Set of vertices (nodes) and edges connecting them
— Write
G=(V,E)
where
* Vs a set of vertices: V= { Vi }
* An edge connects two vertices: €= (Vi , Vj)
 Eis a set of edges: E:{(Vi,Vj)}

@ @ @ O Vertices
G 0. ®
-1 —@ O

Graphs - Definitions
e Path

— A path, p, of length, kK, is a sequence of
connected vertices

N — &\ \J S wihoro +Q %
I< i'c, f,g,h>

4@ Q @ Path of length 5
@ (If

: <a,b>
@ Path of length 2

Graphs - Definitions
* Cycle

— A graph contains no cycles if there is no path
— P = <Vy,Vy,..., V> such that Vvy=V,

® (i <i,c,f,g,i>
@4 @ Is acycle
— —@

~ @Graphs - pefinitions
* Spanning Tree

— A spanning tree is a set of |V|-1 edges that
connect aII the vertlces of a graph

4@ &?-@ The red path connects
@ @ all vertices,

8 so it’s a spanning tree

rTap NS - Definitions

— Generally there is more than one spanning tree

Minimum Spanning

— Ifacost Cij is associated with edge eij — (Vi1vj)

then the minimum spanning tree is the set of edges Espan such that

C=X(c;|Ve;eEspan)

iISsa minimum

~ Other ST’s can be formed ..

(b) & T'@ - Replace 2 with 7
@I @ @ * Replace 4 with 11
‘: : : 9 Thered _tree IS the

Min ST

hS = Kruskal’s Algorithm

* Calculate tge mm mum spanning tree
Put all the vertices into single node trees by themselves
— Put all the edges in a priority queue
— Repeat until we’ve constructed a spanning tree
* Extract cheapest edge

e Ifit forms a cycle, ignore it
else add it to the forest of trees
(it will join two trees into a larger tree)

— Return the spanning tree

, Calculate%[nanghs - Kruskal’s Algorithm

um spanning tree
— Put all the vertices into single node trees by themselves
— Put all the edges in a priority queue
— Repeat until we’ve constructed a spanning tree

* Extract cheapest edge <

e Ifit forms a cycle, ignore it
else add it to the forest of trees
(it will join two trees into a larger tree)

— Return the spanning tree

Note that this algorithm makes no attempt
*to be clever
* to make any sophisticated choice of the next edge

* it just tries the cheap€st onet!

rore A RNSss.KruskalsAlgacithng iniGe o,
double **costs) {

Forest T;
Queue q;

T = cmrllnltlal Fores't: single vertex trees

ConsEdgeQueue(g,
for (i=0;i<(n-1) ;i+
do {
e = ExtractCheapestEdge(q)
} while (!'Cycle(e, T));
AddEdge(T, e);
}

return T;

}

i P Queue of edges

rord2MANNSssKruskalsAlgaeithrg inGe o,
double **costs) {
We need n-1 edges
to fully connect (span)
T = C n vertices

ConsEdgeQueue(g, costs);
for (1i=0;i<(n-1) ;i++) {
do {
e = ExtractCheapestEdge(q)
} while (!'Cycle(e, T));
AddEdge(T, e);
}

return T;

}

9

rordAMANNSss.Kruskal'sAlgotithng iniGe o,
double **costs) {
Forest T;
Queue q;
Edge e;
T = ConsForest(g)

q = ConsEdg [o costs) -
for (i=0‘ Try the cheapest edge

do {
e = ExtractCheapestEdge(gq)
} while ('Cycle(e, T));

AddEdge (Until we find one that doesn’t
} form a cycle

...and add it to the forest

Kruskal’s Algorithm

* Pf&@iityb&u&hl'ﬂpanningTree(Graph g, int n,
. double ** t
— We already know ghoutthis!! ouble Theosts) A

Queue q;
Edge e;

T =2C F t .

_ onsForest(g) add to
q = ConsEdgeQueue(g, s ¥{ 3

for (i=0;i< (n-1) ;i++) aheap here

oo ! Extract f
e = ExtractCheapestEdge(:#%);ﬁ:acIiom
} while ('Cycle(e, T)); a heap nere

AddEdge(T, e)
}

return T;

}

Kruskal’s Algorithm

* @&I&d&tﬁﬁﬂﬁﬁbanningTree(Graph g, int n,
double **costs) {
Forest T;
Queue q;
Edge e;
T = ConsForest(g)
q = ConsEdgeQueue(g, costs);
for(1i=0;i<(n-1) ;i++) {
do {

} while (!'Cycle(e, we detect a
AddEdge(T, e); cycle?

e = ExtractCheapestﬁggj(But how do

}

return T;

}

Kruskal’s Algorithm

* Cycle detection
— Uses a Union-find structure

— For which we need to understand a partition of
a set

 Partition

— A set of sets of elements of a set

* Every element belongs to one of the si'h ~~*-
P; are subsets of S

* No element belongs to more than one sup-set

All s; belong to one of the P;
— Formally:

+Set, S ={5 } None of the P,
o have common elements
e Partition(S) = £ P. & wnere Pi = {Si}

. Sis the union of all the P,
o Vi< Yy 9 < 1 J

Kruskal’s Algorithm

 Partition

— The elements of each set of a partition
 are related by an equivalence relation

* equivalence relationsare X~X

— reflexive ifx~yandy~z then x ~z
— transitive if X ~y, then y ~ X
— symmetric

— The sets of a partition are equivalence classes

* Each element of the set is related to every other
element

Kruskal’s Algorithm

 Partitions

— In the MST algorithm,
the connected vertices form equivalence
classes
e “Being connected” is the equivalence relation

— Initially, each vertex is in a class by itself

— As edges are added,
more vertices become related
and the equivalence classes grow

— Until finally all the vertices are in a single
equivalence class

Kruskal’s Algorithm

* Representatives

— One vertex in each class may be chosen as the
representative of that class

— We arrange the vertices in lists that lead to the
representative

 Thisis the union—findﬁﬁrmmL>

* Cycle determination

Kruskal’s Algorithm

* Cycle determination

— If two vertices have the same representative,
they’re already connected and adding a further
connection between them is pointless

— Procedure:

* For each end-point of the edge that you’re going to
add

 follow the lists and find its representative

* if the two representatives are equal,
then the edge will form a cycle

Kruskal’s Algorithm in operation

All the vertices are in
single element trees

® @ @
@
® @:0

Each vertex is its
own representative

Kruskal’s Algorithm in operation

All the vertices are in
single element trees

© ©@-@
@ 0. ®

&—1—@ @ _
Add it to the forest,

The cheapest edge joining h and g into a
is h-g 2-element tree

Kruskal’s Algorithm in operation

The cheapest edge
is h-g

© ©@-@
@ 0. ®

(= 1—)-2-
™~

Add it to the forest, Choose g as its

joining h and g into a representative
2-element tree

Kruskal’s Algorithm in operation

The next cheapest edge
is C-I

Add it to the forest,
joining € and | into a

@ @ 2-element tree

Choose C as its
representative

Our forest now has 2 two-element trees
and 5 single vertex ones

Kruskal’s Algorithm in operation
The next cheapest edge

is a-b

Add it to the forest,

@ @ @ joining aand b into a
a 2-element tree

@& ©
®— 1 —@- E-@ Choose b as its

representative

Our forest now has 3 two-element trees
and 4 single vertex ones

Kruskal’s Algorithm in operation

The next cheapest edge
is C-f

Add it to the forest,
merging two
2-element trees

® @ Choose the rep of one
1 . as its representative

Kruskal’s Algorithm in operation

The next cheapest edge

is g-I

foRt d?@g
@ /@fi) S
=1 —G) 21

TherepofgiscC

Therep of lis also C

. g-1 forms a cycle

It’s clearly not needed!

Kruskal’s Algorithm in operation

The next cheapest edge
is c-d

8 7 <(d)
4@ E& Therepofdis d

TherepofCisC

9
OIS ﬁf N1 &

8 776 10

@1_@.¥ . C-d joins two

trees, so we add it

.. and keep C as the representative

Kruskal’s Algorithm in operation

The next cheapest edge

is -l

o ma

4 Therep of I is C

Therep ofhis C

@ \ 0
.8 | - 6 10
: h 1 gy 2 . h-1 forms a cycle,

SO we skip it

Kruskal’s Algorithm in operation

The next cheapest edge
is a-h

C%F,ar

Sl

14@

10

Therep of ais b

Therep of his C

. a-h joins two trees,

and we add it

Kruskal’s Algorithm in operation

The next cheapest edge
is b-C

4
4
5 | ?/@E %
h— 1—g) 2—f

@ ; 2& ?-@9

But b-C forms a cycle

O

10

So add d-e instead

... and we now have a spanning tree

Greedy Algorithms

At no stage did we attempt to “look ahead”

We simply made the naive choice
— Choose the cheapest edge!

MST is an example of a greedy algorithm

Greedy algorithms
— Take the “best” choice at each step
— Don’t look ahead and try alternatives

— Don’t work in many situations
* Try playing chess with a greedy approach!

— Are often difficult to prove

Proving Greedy Algorithms

e MST Proof

— “Proof by contradiction” is usually the best
approach!

— Note that

e any edge creating a cycle is not needed
.Each edge must join two sub-trees

— Suppose that the next cheapest edge, e,, would
jointrees T, and T,

— Suppose that instead of e, we choose e, - a more
expensive edge, which joins T, and T,

— But we still need to join T, to T, or some other tree

MST - Time complexity

* Steps
— Initialise forest O(|V|)
— Sort edges O(|E|log|E]|)

* Check edge for cycles O(|V]) x
* Number of edges O(|V|) O(|V|?)

— Total O(
V|+[E[log|E[+[V]*)
— Since |E[= O(|V[?) O([V[*log|V])

— Thus we would class MST as O(n¢log n)
for a graph with n vertices

MST - Time complexity

° Steps Here’s the
“professionals read textbooks”

— Initialise f theme recurring again!

— Sort edge

* Check edge for cycles O(|V]|

* Number of edges VI|?)

— Total \ / O(
[V|+|E[log|E|+]V]*) AT,

—Since [E| = O([V[*) ~___0Of4V|*log|V])

-_— o -

— Thus we would class MST as O(n¢log n)
for a graph with n vertices

UNIT-IV

BACKTRACKING

Tackling Difficult Combinatorial Problems

There are two principal approaches to tackling
difficult combinatorial problems (NP-hard

problems):

Use a strategy that guarantees solving the
problem exactly but doesn’t guarantee to find a

solution in polynomial time

Use an approximation algorithm that can find an
approximate (sub-optimal) solution in polynomial
time

Exact Solution Strategies

exhaustive search (brute force)
— useful only for small instances

dynamic programming
— applicable to some problems (e.g., the knapsack problem)

backtracking
— eliminates some unnecessary cases from consideration

— vyields solutions in reasonable time for many instances but worst
case is still exponential

branch-and-bound
— further refines the backtracking idea for optimization problems

Backtracking

Construct the state-space tree

D nodes: partial solutions
O edges: choices in extending partial solutions

Explore the state space tree using depth-first
search

“Prune” nonpromising nodes

O dfs stops exploring subtrees rooted at nodes that cannot lead to
a solution and backtracks to such a node’s parent to continue
the search

Example: n-Queens Problem

Place n queens on an n-by-n chess board so that
no two of them are in the same row, column, or

diagonal L 5> 3 4

-€4—— queenl

-4— queen 2

-4—— queen 3

A W DN R

€4—— queen4

State-Space Iree ot the 4-Queens
Problem

n-Queens Problem

Algorithm NQueens(k,n)

{
for i=1 ton do
{
if place(k,i) then
{
x[k]=i;
if (k = n) then write (x[1:n]);
else NQueens(k+1, n);
}
}
NQueens(k-1,n);
i= x[k-1]+1;

}

n-Queens Problem

Algorithm place(k,i)
// To place a new queen in the chessboard

// Returns true if a queen can be placed in kth row and ith column, otherwise
false.

// X[]is a global array whose first (k-1) values have been set
// Abs(r) returns the absolute value of r
{
forj=1tok-1do
if ((x[j] =1i) or (Abs (j-k))) then
return false;
return true;

}

Hamiltonian Circuit

Hamiltonian Path: is a path in an undirected
graph which visits each vertex exactly once

Hamiltonian circuit: is a cycle in an undirected
graph which visits each vertex exactly once and
also returns to the starting vertex.

Determininiwhether such paths and cycles
exists is the hamiltonian path problem.

Hamiltonian paths and cycles are named after
William Rowan Hamilton

State Space Tree of Hamiltonian Circuit
Problem

SUBSET-SUM PROBLEM

Let S={s,,.....,5,} be a set of positive integers,
then we have to find a subset whose sum is equal
to given positive integer ‘d’.

Sort the elements of the set in ascending order.

S={1,2,5,6,8} d=9
2 solutions: {1,2,6}and {1,8}

Steps:

oW nNnoe

Subset — Sum Problem

The root of the tree represents the starting point, with no
decisions about the given elements.

Its left and right children represent, inclusion and exclusion of s1
in the set being sought

Going to the left from a node of the first level corresponds to
inclusion of s2, while going to right corresponds to exclusion

A path from the root to a node at the jth level of the tree
indicates which of the first i numbers have been included in the
subsets represented by that nodeWe record the value of s/, the
sum of these numbers’in the node.

If s” =d, we have a solution to the problem and stop. If all the
solutions need to be found, continue by backtracking to the
node’s parent.

If s” is not equal to d, we can terminate the node as
nonpromising if either of the two equalities holds.

s'+si+1 >d (the sum s’ too large)
n

s+ > sj<d(thesums’toosmall)
j=i+1

State Space Tree of Subset — Sum Problem

S={3,5,6,7} andd=15

X Witfy w/o 7 X X X X
14+7>15 9+7>15 3+7<15 11+7>14 5+7<15
X

solution
8<15

No. of Nodes in the state space tree is 1+2+22+.. . +2" =21 -]

Pseudocode: Backtracking

ALGORITHM Backtrack(X[1.i])

[IGives a template of a generic backtracking algorithm

[Input: X|1..i] specifies first i promising components of a solution

//Output: All the tuples representing the problem’s solutions

if X[1..i]1s a solution write X[1..]

else //see Problem 8 in the exercises

for each element x € §; ,; consistent with X[1..i] and the constraints do

X[i+1]«x
Backtrack(X[1.i +1])

BRANCH AND BOUND

Branch-and-Bound

* Branch and bound (BB) is a general algorithm
for finding optimal solutions of various
optimization problems, especially in discrete
and combinatorial optimization.

* |t consists of a systematic enumeration of all
candidate solutions, where large subsets of
fruitless candidates are discarded, by using
upper and lower estimated bounds of the
guantity being optimized.

Branch-and-Bound

* |n the standard terminology of optimization
problems, a feasible solution is a point in the
problem’s search space that satisfies all the
problem’s constraints

* An optimal solution is a feasible solution with
the best value of the objective function

156

Branch-and-Bound

* 3 Reasons for terminating a search path at the
current node in a state-space tree of a branch-
and-bound algorithm:

1. The value of the node’s bound is not better than the value of the best
solution seen so far.

2. The node represents no feasible solutions because the constraints of the
problem are already violated.

3. The subset of feasible solutions represented by the node consists of a
single point—in this case we compare the value of the objective function
for this feasible solution with that of the best solution seen so far and
update the latter with the former if the new solution is better.

157

Branch-and-Bound

 An enhancement of backtracking
* Applicable to optimization problems

* For each node (partial solution) of a state-space
tree, computes a bound on the value of the
objective function for all descendants of the
node (extensions of the partial solution)

Uses the bound for:

— ruling out certain nodes as “nonpromising” to prune the tree —if a node’s bound is
not better than the best solution seen so far

— guiding the search through state-space

Example: Assignment Problem

Select one element in each row of the cost matrix C so that:
* 1O twoO sgleet_ed_ el_ements are in the same column
* the sum is minimized

Example

Jobl Job2 Job3 Job4
Persona 9 2 / 8
Person b

6 4 3 !
Person ¢ 5 3 1 8
Persond 7 6 9 4

Lower bound: Any solution to this problem will have total cost
atleast: 2+3+1+4 (or5+2+1+4)

Example: First two levels of the state-space tree

0
Start
th = 2+3+1+4=10

/ LS

a—1 a— 2 a— 3 a— 4
th = 9+3+1+4=17 = 2+3+1+4=10 fb =7+4+5+4=20 th = 8+3+1+6=18

Figure 11.5 Levels 0 and 1 of the state-space tree for the instance of

the assignment problem being solved with the best-first branch-and-bound
algorithm. The number above a node shows the order in which the node
was generated. A node’s fields indicate the job number assigned to person
¢ and the lower bound value, 16, for this node.

a—1

b =17

Example (cont.)

5/6

a— 2

b =10

b—> 1

Sy

a—3

b = 20

a—4

b =13

bh—3

b—4

b =14

b =17

b =18

Figure 11.6 Levels 0, 1, and 2 of the state-space tree for the instance of the
assignment problem being solved with the best-first branch-and-bound algorithm

Example: Complete state-space

1/2\ 3

a—2

a—1
b =17

0

Start

=10

=10

fb
)(/
5

6 \7

a—3

b = 20

b—4

b =17

b—1 —>3
b =13 b =14
/ \ '
8 9
o—> 3 c— 4
d— 4 d— 3
cost= 13 cost= 25
solution inferior solution

X

X

Figure 11.7 Complete state-space tree for the instance of the assignment

problem solved with the best-first branch-and-bound algorithm

Person a —job 2
Person b —job 1
Person c—job 3
Persond —job 4

Solution:

KNAPSACK PROBLEM

* N items of known weights wi and values vi,
1=1,2,....n

* Knapsack capacity W =10
* |tem Weight Value Value/Weight

1 4 $40 10
2 7 $42
3 5 $25 5
4 3 512

State space tree of knapsack

(f}FQ}tﬂk%l11

_ ub=100
with 1 w/o 1
1 2
ub=/76 =
with 2 w/0 2 UO6Q<
4 inferior to node 8
_ ub=70
X with 3 w/o 3
not feasible 5 6
_ ub=69 ub=64
Wlth 4 W/O 4 inferi(% to node 8
7 8
ub=65

X
not feasible

Optimal Solution

Traveling Salesman Problem

For each city i, 1 <= i <=n, find the sum of the
distances from city i to the two nearest cities.

Compute the sum s of these n numbers
Divide the result by 2

If all the distances are integers, round up the
result to the nearest integer

lb=[s/2]

Example: fraveling Salesman
Problem

a b a, ¢
h =14
X
bis not before ¢
5 & 7
a b, c a,b,d a b, e
b =186 b =16 b =19
X
ih=] of
node 11
8 9 10 11
a b, e d, a b, c e a-b:idic a b, d, e,
{e, a) (d, a) (e, a) {c, a)
fi=idd =1 I =24 I =186
first tour better tour inferior tour

optimal tour

4
a, d a, e
Ih =18 b =19
X X
Ih==1 of b= of
node 11 node 11

UNIT -V

NP PROBLEMS

& APPROXIMATION
ALGORITHMS

P, NP and NP-Complete Problems

Problem Types: Optimization and
Decision

Optimization problem: find a solution that maximizes or
minimizes some objective function

Decision problem: answer yes/no to a question

Many problems have decision and optimization versions.

E.g.: traveling salesman problem
optimization: find Hamiltonian cycle of minimum length
decision: find Hamiltonian cycle of length <m

Decision problems are more convenient for formal
investigation of their complexity.

Class P

P: the class of decision problems that are solvable in
O(p(n)) time, where p(n) is a polynomial of problem’s
Input size n

Examples:
searching

element uniqueness

graph connectivity

graph acyclicity

primality testing

Class NP

NP (nondeterministic polynomial): class of decision
problems whose proposed solutions can be verified in
polynomial time = solvable by a nondeterministic
polynomial algorithm

A nondeterministic polynomial algorithm is an abstract
two-stage procedure that:

generates a random string purported to solve the
problem

checks whether this solution is correct in polynomial
time

By definition, it solves the problem if it’s capable of
generating and verifying a solution on one of its tries

Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive
normal form (CNF) satisfiable, i.e., are there
values of its variables that makes it true?

This problem is in NP. Nondeterministic algorithm:
Guess truth assignment

Substitute the values into the CNF formula to
see if it evaluates to true

Example:(A| " B|C)&A|B)&("B|D|E)& (7D | 7E)
Truth assignments:
ABCDE
00000O0

11111

Checking phase: O(n)

What problems are in NP?

Hamiltonian circuit existence

Partition problem: Is it possible to partition a
set of n integers into two disjoint subsets with
the same sum?

Decision versions of TSP, knapsack problem,
graph coloring, and many other combinatorial
optimization problems. (Few exceptions
include: MST, shortest paths)

All the problems in P can also be solved in this
manner (but no guessing is necessary), so we

NP-Complete Problems

A decision problem D is NP-complete if it’s as hard as any
problem in NP, i.e.,
* Disin NP

 every problem in NP is polynomial-time reducible to D

NP problems

P-complete

/N
'\ problem

Cook’s theorem (1971): CNF-sat is NP-complete

NP-Complete Problems (cont.)

Other NP-complete problems obtained through
polynomial-

NP problems

time reductions fror ~NP-complete
problem

P = NP ? Dilemma Revisited

P = NP would imply that every problem in NP, including all NP-
complete problems, could be solved in polynomial time

If a2 polynomial-time algorithm for just one NP-complete problem
is discovered, then every problem in NP can be solved in
polynomial time, i.e., P = NP

NP problems

P-complete

/N
.\ problem

Most but not all researchers
subset of NP

pelieve that P # NP, i.e. P is a proper

