
DATABASE MANAGEMENT SYSTEMS

UNIT-I

1

Introduction-Database System Applications

• DBMS contains information about a particular enterprise

– Collection of interrelated data

– Set of programs to access the data

– An environment that is both convenient and efficient
to use

• Database Applications:

– Banking: all transactions

– Airlines: reservations, schedules

– Universities: registration, grades

– Sales: customers, products, purchases

– Online retailers: order tracking, customized
recommendations

– Manufacturing: production, inventory, orders, supply
chain

– Human resources: employee records, salaries, tax
deductions

2

Purpose of Database Systems

• In the early days, database applications were built

directly on top of file systems

• Drawbacks of using file systems to store data:

– Data redundancy and inconsistency

– Difficulty in accessing data

– Data isolation — multiple files and formats

– Integrity problems

– Atomicity of updates

• Example: Transfer of funds from one account
to another should either complete or not
happen at all

– Concurrent access by multiple users

– Example: Two people reading a balance and
updating it at the same time

– Security problems

3

Files vs. DBMS

DISADVANTAGES OF FILE

SYSTEMS

ADVANTAGES OF

DBMS

1 Data v/s program problem:

Different programs access different

files

One set of programs

access all data

2 Data inconsistency problem

As same data resides in many

different files across the programs

data inconsistency increases

Related data resides

in same storage

location minimizing

data inconsistency

3 Data isolation problem

As data is scattered in various files

and in different formats it is

difficult to write new programs to

retrieve appropriate data

As data resides in

same storage location

it is easy to write new

programs to retrieve

appropriate data

4 Security problem:Every user can

acces all data

Every user can access

only needed data
4

File is a collection of related records

Database is collection of related files into different groups

5 Integrity problem:Develop new consistent
range in exixting systems appropriate code
must be added in various application
program

Integrity
Solution:appropriate code
must be added in one
application program that
access all data at one time

6 Problem in accessing data:new appropriate
program has to be written each time

DBMS consists of one or
more programs to extract
needed information

7 Atomicity problem:If system fails it must
ensure data are restored to consistent state

It ensures atomicity

8 Data Redundancy:same information is
dupliacated in several files ,so higher
storage and access cost

One copy of data resides so
minimium storage and access
cost

9 Concurrency problem:Due to redundant
data if many users access same copy leads
to concurrency problem

Avoids concurrency problem
since data last changed
remains permanent

5

Levels of Abstraction

• Physical level: describes how a record (e.g., customer)

is stored.

• Logical level: describes data stored in database, and

the relationships among the data.

type customer = record

customer_id : string;

customer_name : string;

customer_street : string;

customer_city : string;

end;

• View level: application programs hide details of data

types. Views can also hide information (such as an

employee’s salary) for security purposes.

6

View of Data

7

An architecture for a database system

Instances and Schemas

• Instance – the actual content of the database at a particular
point in time

– Analogous to the value of a variable

• Similar to types and variables in programming languages

• Schema – the logical structure of the database

– Example: The database consists of information about a

set of customers and accounts and the relationship

between them)

– Physical schema: database design at the physical level

– Logical schema: database design at the logical level

8

Example: University Database

• Conceptual schema:

– Students(sid: string, name: string, login: string,

age: integer, gpa:real)

– Courses(cid: string, cname:string, credits:integer)

– Enrolled(sid:string, cid:string, grade:string)

• Physical schema:

– Relations stored as unordered files.

– Index on first column of Students.

• External Schema (View):

– Course_info(cid:string,enrollment:integer)

9

Data Independence
• The ability to modify the schema in one level

without affecting the schema in next higher level is

called data independence.

• Logical data independence: The ability to
modify the logical schema without affecting the
schema in next higher level (external schema.)

• Physical Data Independence – the ability to
modify the physical schema without changing the
logical schema

.

10

Data Models

• Underlying the structure of database is data
model.

• It is a collection of tools for describing
– Data ,Data relationships,Data semantics &

consistency constraints
Data model types

• Relational model

• Entity-Relationship data model (mainly for
database design)

• Object-based data models (Object-oriented and
Object-relational)

• Semi structured data model (XML)

• Other older models:
– Network model
– Hierarchical model

11

Relational Model

Example of tabular data in the relational model

12

Attributes

A Sample Relational Database

13

Entity-Relationship Model
An entity is a thing or object in the real world that is distinguishable from

other objects.

 Rectangles represent entities

 Diamonds represent relationship among entities.

 Ellipse represent attributes

 Lines represent link of attributes to entities to relationships.

Example of schema in the entity-relationship model

Object based data models

• It is based on object oriented programming language paradigm.

• Inheritance,object identity and encapsulations

• It can be seen as extending the E-R model with opps concepts.

• Semi structured data models

• Semi structured data models permit the specification of data where
individual data items of same type may have different set of attributes.

• XML language is widely used to represent semi structured data

15

Database languages

• 2 types

• Data definition language- to define the data in the

database

• Data Manipulation language- to manipulate the data in

the database

16

Data Definition Language (DDL)

• Specification notation for defining the database
schema

• DDL is used to create the database, alter database and
delete database.

Example: create table account (
account_number char(10),

branch_name char(10),

balance integer)

• DDL compiler generates a set of tables stored in a
data dictionary

• Data dictionary contains metadata (i.e., data about
data)

– DDL is used by conceptual schema

– The internal DDL or also known as Data storage
and definition language specifies the storage
structure and access methods used

• DDl commands are Create, Alter and Drop only.

17

• Data values that are stored in database must satisfy certain consistency
constraints

• Domain constraints(DC):A domain of possible values must be associated
with every attribute

• Referential Integrity

• Assertions:conditions that database must always satisfy

• Authorization

18

Data Manipulation Language (DML)
• Language for accessing and manipulating the data organized

by the appropriate data model

– DML also known as query language

– DML is used to retrieve data from database, insertions of

new data into database ,deletion or modification of

existing data.

• Two classes of languages

– Procedural – user specifies what data is required and how

to get those data

– Declarative (nonprocedural) – user specifies what data is

required without specifying how to get those data

• SQL is the most widely used query language

19

Database access from application programs

• To access db, DML stmts need to be executed from host

lang.

• 2 ways- a)by providing appn prgm interface that can b

used to send DML and DDL stmts to database and retrieve

results. Ex:ODBC & JDBC

• B)By extending host language syntax to embed DML calls

within the host lang prgm.

20

Overall System Structure

21

Data storage and Querying

• Storage management

• Query processing

• Transaction processing

22

Storage Management

• Storage manager is a program module that provides

the interface between the low-level data stored in

the database and the application programs and

queries submitted to the system.

• The storage manager is responsible to the following

tasks:

– Interaction with the file manager

– Efficient storing, retrieving and updating of data

• Storage mngr implements several data structures

– Data files

– Data dictionary

– Indices

23

• Authorization and integrity mngr tests for

satisfaction of integrity constraints and checks the

authority of users to access the data

• Transaction mngr ensures databse remains in

consistent state despite system failures and

concurrent transaction executions proceed without

conflicting

• File mngr manages allocation of space on disk

storage and the data structures used to represent

data on disk

• Buffer mngr which is responsible for fetching data

from disk storage into main memory and deciding

what data to cache in main memory

24

Query Processing

1.Parsing and

translation

2.Optimization

3.Evaluation

25

DML compiler

DDL interpreter interprets DDL stmts and records the

defninitions in data dictionary

Transaction Management

 A transaction is a collection of operations that

performs a single logical function in a database

application

 Transaction-management component

ensures that the database remains in a

consistent (correct) state despite system

failures (e.g., power failures and operating

system crashes) and transaction failures.

 Concurrency-control manager controls the

interaction among the concurrent transactions,

to ensure the consistency of the database.

26

Database Users

Users are differentiated by the way they expect to interact with

the system

• Application programmers –are computer professionals who

write appn prgms. They use RAD tools to construct forms and

reports with minimum programming effect.

• Sophisticated users – interact with the system without

writing programs, instead they form their requests in a

database query language

• Specialized users – write specialized database applications

that do not fit into the traditional data processing framework

• Ex:Computer aided design systems, knowledgebase expert

systems.

• Naïve users – invoke one of the permanent application

programs that have been written previously

– Examples, people accessing database over the web, bank

tellers, clerical staff

27

Database Administrator

 Has central control of both data and programs to
access that data.

 Coordinates all the activities of the database system

◦ has a good understanding of the enterprise’s
information resources and needs.

 Database administrator's duties include:

◦ Storage structure and access method definition

◦ Schema and physical organization modification

◦ Granting users authority to access the database

◦ Backing up data

◦ Monitoring performance and responding to
changes

◦ Periodically backing up the database,either on
tapes or onto remote servers.

28

History of Database Systems
• 1950s and early 1960s:

• First general purpose DBMS was designed by charles

bachman at general electric was called Integrated data

store. He is first to receive ACM’S turing award(1973).

– Data processing using magnetic tapes for storage

• Tapes provide only sequential access

– Punched cards for input

• Late 1960s and 1970s:

• In late 1960’s IBM developed information mangmt

system(IMS) DBMS used even today in major installations.

– Hard disks allow direct access to data

– Network and hierarchical data models in widespread

use

– In 1970 Edgar Codd defined new data representation

framework -relational data model.

– ACM’S turing award(1981).
29

History (cont.)

• 1980s:

– Research relational prototypes evolve into commercial
systems

• SQL becomes industry standard
– Parallel and distributed database systems

– Object-oriented database systems

• 1990s:

– Large decision support and data-mining applications

– Large multi-terabyte data warehouses

– Emergence of Web commerce

• 2000s:

– XML and XQuery standards

– Automated database administration

– Increasing use of highly parallel database systems

– Web-scale distributed data storage systems

30

31

Introduction to Database design and
ER diagrams

• The database design can be divided into 6 steps.ER model is
relevent to first 3 steps

1.Requirement analysis

2.Conceptual database design

3.Logical database design

4.Schema refinement

5.Physical database design:.Ex:Indexes

6.Application and security design

32

Database Design

• Conceptual design: (ER Model is used at this stage.)

– What are the entities and relationships in the

enterprise?

– What information about these entities and

relationships should we store in the database?

– What are the integrity constraints or business rules

that hold?

– A database `schema’ in the ER Model can be

represented pictorially (ER diagrams).

– Can map an ER diagram into a relational schema.

33

ER Model Basics

• Entity: Real-world object distinguishable from other
objects. An entity is described (in DB) using a set of
attributes.

• Entity Set: A collection of similar entities. E.g., all
employees.

– All entities in an entity set have the same set of
attributes.

– Each entity set has a key.(minimal set of
attributes whose values uniquely identify entity
in set)

– Each attribute has a domain.

34

Employees

ssn
name

lot

Attributes
• An entity is represented by a set of attributes, that is

descriptive properties possessed by all members of an
entity set.

• Domain – the set of permitted values for each
attribute

• Attribute types:

– Simple and composite attributes.

– Single-valued and multi-valued attributes

• Example: multivalued attribute: phone_numbers

– Derived attributes

• Example: age, given date_of_birth

35

Example:

customer = (customer_id, customer_name,
customer_street, customer_city)

loan = (loan_number, amount)

Composite Attributes

36

ER Model Basics (Contd.)

• Relationship: Association among two or more entities.

E.g., Attishoo works in Pharmacy department.

• Relationship Set: Collection of similar relationships.

• {(e1,…e2)|e1ЄE1, e2ЄE2….. enЄEn}

37

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Employees

subord

inate

super-

visor

ssn

Relationship Sets

• A relationship is an association among several

entities

Example:

Hayes depositor A-102

customer entity relationshipset account entity

• A relationship set is a mathematical relation

among n  2 entities, each taken from entity sets

{(e1, e2, … en) | e1  E1, e2  E2, …, en 

En}

where (e1, e2, …, en) is a relationship

– Example:

(Hayes, A-102)  depositor

38

Relationship Set borrower

39

Relationship Sets (Cont.)

• An attribute can also be property of a relationship set.

• For instance, the depositor relationship set between
entity sets customer and account may have the
attribute access-date

40

Degree of a Relationship Set

• Refers to number of entity sets that
participate in a relationship set.

• Relationship sets that involve two
entity sets are binary (or degree two).

• Relationship sets may involve more
than two entity sets.

41

Mapping Cardinalities

42

One to one One to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

Mapping Cardinalities

43

Many to one Many to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

Key Constraints

• Consider Works_In:

An employee can

work in many

departments; a dept

can have many

employees.

• In contrast, each

dept has at most

one manager,

according to the

key constraint on

Manages.

44

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Additional

features of the ER

model

Participation Constraints

• Does every department have a manager?

– If so, this is a participation constraint: the
participation of Departments in Manages is said
to be total (vs. partial).

• Every Departments entity must appear in an
instance of the Manages relationship.

45

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Weak Entities

• A weak entity can be identified uniquely only by considering
the primary key of another (owner) entity.

• Restrictions

– Owner entity set and weak entity set must participate in a
one-to-many relationship set (one owner, many weak
entities).

– Weak entity set must have total participation in this
identifying relationship set.

46

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Weak Entity Sets

• An entity set that does not have a primary key is

referred to as a weak entity set.

• The existence of a weak entity set depends on the

existence of a identifying entity set

– it must relate to the identifying entity set via

a total, one-to-many relationship set from the

identifying to the weak entity set

– Identifying relationship depicted using a

double diamond

• The discriminator (or partial key) of a weak

entity set is the set of attributes that

distinguishes among all the entities of a weak

entity set.

47

Weak Entity Sets (Cont.)

• We depict a weak entity set by double rectangles.

• We underline the discriminator of a weak entity set with a
dashed line.

• payment_number – discriminator of the payment entity set

• Primary key for payment – (loan_number,
payment_number)

48

ISA (`is a’) Hierarchies

• Overlap constraints: Can Joe be an Hourly_Emps as well as
a Contract_Emps entity? (Allowed/disallowed)

• Covering constraints: Does every Employees entity also
have to be an Hourly_Emps or a Contract_Emps entity?
(Yes/no)

• Reasons for using ISA:

– To add descriptive attributes specific to a subclass.

– To identify entities that participate in a relationship.

49

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

 If we declare A ISA B,

every A entity is also

considered to be a B

entity.

Aggregation

• Used when we have to

model a relationship

involving (entity sets

and) a relationship

set.

– Aggregation allows

us to treat a

relationship set as

an entity set for

purposes of

participation in

(other)

relationships.

50

 Aggregation vs. ternary relationship:

 Monitors is a distinct relationship, with a descriptive attribute.

 Also, can say that each sponsorship is monitored by at most

one employee.

budget
didpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

Aggregation

51

 Consider the ternary relationship works_on, which

we saw earlier

 Suppose we want to record managers for tasks

performed by an employee at a branch

Aggregation (Cont.)

• Relationship sets works_on and manages represent

overlapping information

– Every manages relationship corresponds to a

works_on relationship

– However, some works_on relationships may not

correspond to any manages relationships

• So we can’t discard the works_on relationship

• Eliminate this redundancy via aggregation

– Treat relationship as an abstract entity

– Allows relationships between relationships

– Abstraction of relationship into new entity

52

E-R Diagram With Aggregation

53

Conceptual Design Using the ER Model

• Design choices:

– Should a concept be modeled as an entity or an

attribute?

– Should a concept be modeled as an entity or a

relationship?

– Identifying relationships: Binary or ternary?

Aggregation?

• Constraints in the ER Model:

– A lot of data semantics can (and should) be

captured.

– But some constraints cannot be captured in ER

diagrams.

54

Entity vs. Attribute

• Should address be an attribute of Employees or an

entity (connected to Employees by a relationship)?

• Depends upon the use we want to make of address

information, and the semantics of the data:

• If we have several addresses per employee,

address must be an entity (since attributes

cannot be set-valued).

• If the structure (city, street, etc.) is important,

e.g., we want to retrieve employees in a given

city, address must be modeled as an entity (since

attribute values are atomic).

55

Entity vs. Attribute (Contd.)

• Works_In4 does not
allow an employee
to work in a
department for
two or more periods.

• Similar to the
problem of wanting
to record several
addresses for an
employee: We want
to record several
values of the
descriptive
attributes for each
instance of this
relationship.
Accomplished by
introducing new
entity set, Duration.

56

name

Employees

ssn lot

Works_In4

from to

dname

budgetdid

Departments

dname

budgetdid
name

Departments

ssn lot

Employees Works_In4

Durationfrom to

Entity vs. Relationship

• First ER diagram OK if
a manager gets a
separate discretionary
budget for each dept.

• What if a manager gets
a discretionary
budget that covers all
managed depts?

– Redundancy:
dbudget stored for
each dept managed
by manager.

– Misleading: Suggests
dbudget associated
with department-
mgr combination.

57

Manages2

name dname

budgetdid

Employees Departments

ssn lot

dbudgetsince

dname

budgetdid

DepartmentsManages2

Employees

name
ssn lot

since

Managers dbudget

ISA

Binary vs. Ternary Relationships

• If each policy is

owned by just 1

employee, and

each dependent

is tied to the

covering policy,

first diagram is

inaccurate.

• What are the

additional

constraints in

the 2nd

diagram?

58

agepname

DependentsCovers

name

Employees

ssn lot

Policies

policyid cost

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Bad design

Better design

Binary vs. Ternary Relationships (Contd.)

• Previous example illustrated a case when two binary
relationships were better than one ternary
relationship.

• An example in the other direction: a ternary relation
Contracts relates entity sets Parts, Departments and
Suppliers, and has descriptive attribute qty.

– S “can-supply” P, D “needs” P, and D “deals-
with” S does not imply that D has agreed to buy P
from S.

– How do we record qty?

59

Aggregation v/s ternary relationship

• The choice between using
aggregation or ternary
relationship is mainly
determined by existence
of a relationship that
relates relationship set to
entity set.

60



budget
didpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

The choice may also be guided by certain integrity constraints

that we want to express.

Aggregation v/s ternary relationship

• Using ternary relationship instead of aggregation

61

budget
didpid

started_on

pbudget

dname

DepartmentsProjects Sponsors

Employees

lot
name

ssn

.

Conceptual design for large enterprises
• For large enterprise the design may require efforts of

more than one designer and span data and application

code used by number of user groups.

• ER diagrams for Conceptual design offers additional

advantage that high level design can be diagramatically

represented and easily understood by many people.

2 approaches:

• Usual approach: requirements of various user groups are

considered,any conflicting requirements are somehow

resolved and single set of global requirements is

generated at the end of requirements phase

• Alternative approach: is to develop separate conceptual

schemas for different user groups and then integrate

these conceptual schemas

62

Relational Database: Definitions

• Relational database: a set of relations

• Relation: made up of 2 parts:

• Relation schema and relational instance.

– Instance : a table, with rows and columns.

– Set of tuples also called as records

– #Rows = cardinality, #fields = degree / arity.

– A domain is referred by domain name consisting of set
of associated values.

– Schema : specifies name of relation, plus name and
type of each column.

• E.G. Students (sid: string, name: string, login:
string, age: integer, gpa: real).

• Can think of a relation as a set of rows or tuples (i.e., all
rows are distinct).

63

Example Instance of Students Relation

64

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

 Cardinality = 3, degree = 5, all rows distinct

 Do all columns in a relation instance have to
be distinct?

Creating Relations in SQL

• Creates the Students relation.
Observe that the type of each
field is specified, and
enforced by the DBMS
whenever tuples are added or
modified.

• As another example, the
Enrolled table holds
information about courses that
students take.

65

CREATE TABLE Students

(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),

age: INTEGER,
gpa: REAL)

CREATE TABLE Enrolled

(sid: CHAR(20),
cid: CHAR(20),
grade: CHAR(2))

Destroying and Altering Relations

• Destroys the relation Students. The schema information
and the tuples are deleted.

66

DROP TABLE Students

 The schema of Students is altered by adding

a new field; every tuple in the current

instance is extended with a null value in the

new field.

ALTER TABLE Students
ADD COLUMN firstYear: integer

Adding and Deleting Tuples

• Can insert a single tuple using:

67

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

 Can delete all tuples satisfying some condition (e.g.,
name = Smith):

DELETE

FROM Students S
WHERE S.name = ‘Smith’

Integrity Constraints (ICs)
• IC: condition that must be true for any instance of the

database; e.g., domain constraints.

– ICs are specified when schema is defined.

– ICs are checked when relations are modified.

• A legal instance of a relation is one that satisfies all
specified ICs.

– DBMS should not allow illegal instances.

• If the DBMS checks ICs, stored data is more faithful to real-
world meaning.

– Avoids data entry errors, too!

68

Primary Key Constraints

• A set of fields is a key for a relation if :

1. No two distinct tuples can have same values in all key
fields, and

2. This is not true for any subset of the key.

– Part 2 false? A superkey.

– If there’s >1 key for a relation, one of the keys is chosen
(by DBA) to be the primary key.

• E.g., sid is a key for Students. (What about name?) The set
{sid, gpa} is a superkey.

69

Primary and Candidate Keys in SQL
• Possibly many candidate keys (specified using UNIQUE), one of

which is chosen as the primary key.

70

CREATE TABLE Enrolled

(studid CHAR(20)

cid CHAR(20),

grade CHAR(2),

PRIMARY KEY (sid,cid))

 “For a given student and

course, there is a single grade.”

vs. “Students can take only one

course, and receive a single

grade for that course; further,

no two students in a course

receive the same grade.”

 Used carelessly, an IC can

prevent the storage of database

instances that arise in practice!

CREATE TABLE Enrolled

(studidid CHAR(20)

cid CHAR(20),

grade CHAR(2),

PRIMARY KEY (sid),

UNIQUE (cid, grade))

Foreign Keys, Referential Integrity
• Foreign key : Set of fields in one relation that is used to `refer’

to a tuple in another relation. (Must correspond to primary
key of the second relation.) Like a `logical pointer’.

• CREATE TABLE Students(sid: CHAR(20), name:

CHAR(20),login:CHAR(10), age: INTEGER, gpa: REAL)

•

• E.g. studid is a foreign key referring to Students:

– Enrolled(studid: string, cid: string, grade: string)

– If all foreign key constraints are enforced, referential
integrity is achieved, i.e., no dangling references.

71

Foreign Keys in SQL

• Only students listed in the Students relation should be allowed
to enroll for courses.

72

CREATE TABLE Enrolled
(sid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (stuid) REFERENCES Students(sid)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 Carnatic101 C

53666 Reggae203 B

53650 Topology112 A

53666 History105 B

Enrolled Students

General constraints
• Current relational database systems support such general

constraints in 2 forms

• Constraint table: It is associated with single table and

checked whenever that single table is modified

• Assertions: include several tables and are checked

whenever any of these tables is modified.

• Domain constraints: domains can have some constraints

called Domain constraints

• Column constraints: the value in any column of any table

should be controlled by column constraints

• User defined IC: it allows business rules to be specified

centrally to database, so that when certain action is

performed on a set of data, other actions are automatically

performed

73

Enforcing Referential Integrity

• Consider Students and Enrolled; sid in Enrolled is a foreign
key that references Students.

• What should be done if an Enrolled tuple with a non-existent
student id is inserted? (Reject it!)

• What should be done if a Students tuple is deleted?

– Also delete all Enrolled tuples that refer to it.

– Disallow deletion of a Students tuple that is referred to.

– Set sid in Enrolled tuples that refer to it to a default sid.

– (In SQL, also: Set sid in Enrolled tuples that refer to it to
a special value null, denoting `unknown’ or
`inapplicable’.)

• Similar if primary key of Students tuple is updated.

74

Referential Integrity in SQL

• SQL/92 and SQL:1999 support
all 4 options on deletes and
updates.

– Default is NO ACTION
(delete/update is rejected)

– CASCADE (also delete all
tuples that refer to deleted
tuple)

– SET NULL / SET DEFAULT
(sets foreign key value of
referencing tuple)

75

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)

REFERENCES Students
ON DELETE CASCADE

ON UPDATE SET

DEFAULT)

Transactions and constraints

• In SQL a constraint is checked at the end of
every SQL statement that could lead to
viloation and if there is a violation,the
statement is rejected,this approach is
inflexible

• SQL allows a constraint to be in deferred or
immediate mode

• Syntax: set constraint constraintname
Immediate/Deffered

76

The SQL Query Language

77

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

Querying Multiple Relations

• What does the following query compute?

78

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid

Smith Topology112

sid cid grade

53831 Carnatic101 C

53831 Reggae203 B

53650 Topology112 A

53666 History105 B

Given the following instances
of Enrolled and Students:

we get:

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

Logical DB Design: ER to Relational

• Entity sets to tables:

79

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))

Employees

ssn
name

lot

Relationship Sets to Tables

Create table reportsTo(supervisor_ssn char(10), subordinate_ssn
char(10),

primary key(supervisor_ssn, subordinate_ssn),

foreign key(supervisor_ssn) references employees(ssn)

foreign key(subordinate_ssn) references employees(ssn))

80

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Employees

subord

inate

super-

visor

ssn

Relationship Sets to Tables

• In translating a relationship
set to a relation, attributes of
the relation must include:

– Keys for each participating
entity set (as foreign keys).

• This set of attributes
forms a superkey for the
relation.

– All descriptive attributes.

81

CREATE TABLE Works_In(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)

REFERENCES Departments)

Review: Key Constraints

• Each dept has at
most one manager,
according to the key
constraint on
Manages.

82

Translation to
relational model?

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Translating ER Diagrams with Key
Constraints

• Map relationship to a
table:

– Note that did is the
key now!

– Separate tables for
Employees and
Departments.

• Since each
department has a
unique manager, we
could instead combine
Manages and
Departments.

83

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES

Departments)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

Review: Participation Constraints

• Does every department have a manager?

– If so, this is a participation constraint: the
participation of Departments in Manages is said to be
total (vs. partial).

• Every did value in Departments table must appear in a row
of the Manages table (with a non-null ssn value!)

84

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Participation Constraints in SQL

• We can capture participation constraints involving one entity set in
a binary relationship, but little else (without resorting to CHECK
constraints).

85

CREATE TABLE Dept_Mgr(
did INTEGER,

dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

Review: Weak Entities
• A weak entity can be identified uniquely only by considering the

primary key of another (owner) entity.

– Owner entity set and weak entity set must participate in a one-
to-many relationship set (1 owner, many weak entities).

– Weak entity set must have total participation in this identifying
relationship set.

86

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Translating Weak Entity Sets
• Weak entity set and identifying relationship set are

translated into a single table.

– When the owner entity is deleted, all owned weak
entities must also be deleted.

87

CREATE TABLE Dep_Policy (
pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

Review: ISA Hierarchies

• Overlap constraints: Can Joe be an Hourly_Emps as well as a
Contract_Emps entity? (Allowed/disallowed)

• Covering constraints: Does every Employees entity also have to
be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

88

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

 As in C++, or other
PLs, attributes are
inherited.

 If we declare A ISA B,
every A entity is also
considered to be a B
entity.

Translating ISA Hierarchies to Relations
• General approach:

– 3 relations: Employees, Hourly_Emps and Contract_Emps.

• Hourly_Emps: Every employee is recorded in Employees. For
hourly emps, extra info recorded in Hourly_Emps (hourly_wages,
hours_worked, ssn); must delete Hourly_Emps tuple if referenced
Employees tuple is deleted).

• Queries involving all employees easy, those involving just
Hourly_Emps require a join to get some attributes.

• Alternative: Just Hourly_Emps and Contract_Emps.

– Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked.

– Each employee must be in one of these two subclasses.

89

Review: Binary vs. Ternary Relationships

• What are the additional
constraints in the 2nd
diagram?

90

agepname

Dependents

Covers

name

Employees

ssn lot

Policies

policyid cost

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Bad design

Better design

Binary vs. Ternary Relationships (Contd.)
• The key constraints

allow us to combine
Purchaser with
Policies and
Beneficiary with
Dependents.

• Participation
constraints lead to
NOT NULL
constraints.

• What if Policies is a
weak entity set?

91

CREATE TABLE Policies (
policyid INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policyid).
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

CREATE TABLE Dependents (
pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid).
FOREIGN KEY (policyid) REFERENCES Policies,

ON DELETE CASCADE)

View Definition
• A relation that is not of the conceptual model but is made

visible to a user as a “virtual relation” is called a view.

• A view is defined using the create view statement which has
the form

create view v as < query expression >

View is stored only as definition .When a reference is made to
a view its definition is scanned, base table is opened and view
is created on top of table.

• If a view is used to only look at table data and nothing else
and view is called Read only view

• If a view is used to only look at table data as well as
insert,update and delete table data is called Updatable view

92

Views and Security
• Views can be used to present necessary information (or a

summary), while hiding details in underlying relation(s).

• When data redundancy is to be kept minimum while
maintaining security.

– Given YoungStudents, but not Students or Enrolled,
we can find students s who have are enrolled, but not

the cid’s of the courses they are enrolled in.

93

CREATE VIEW YoungActiveStudents
(name, grade)

AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and

S.age<21

Example Queries
• A view consisting of branches and their customers

94

 Find all customers of the Perryridge branch

create view all_customer as

(select branch_name, customer_name

from depositor, account

where depositor.account_number =

account.account_number)

union

(select branch_name, customer_name

from borrower, loan

where borrower.loan_number = loan.loan_number)

select customer_name

from all_customer

where branch_name = 'Perryridge'

Processing of Views
• When a view is created

– the query expression is stored in the database along
with the view name

– the expression is substituted into any query using
the view

• Views definitions containing views
– One view may be used in the expression defining

another view
– A view relation v1 is said to depend directly on a view

relation v2 if v2 is used in the expression defining v1

– A view relation v is said to be recursive if it depends
on itself.

95

Updatable views
A view is updatable if the following conditions are satisfied:

• From clause has only one database relation

• Select clause contains only attribute name of relation and does not have
any expressions, aggregates or distinct specification

• Any attribute not listed in select clause can be set to null

• Query does not have a groupby or having clause.

• If user wants to insert records with help of a view then primary key column
and all the not null columns must be included in view

• User can update, delete records with help of view even if primary key
column and not null columns are excluded from view definition.

96

Update of a View
• Create a view of all loan data in the loan relation, hiding

the amount attribute

create view loan_branch as
select loan_number, branch_name
from loan

• Add a new tuple to loan_branch

insert into loan_branch
values ('L-37‘, 'Perryridge‘)

This insertion must be represented by the insertion of
the tuple

('L-37', 'Perryridge', null)

into the loan relation

97

Views defined from multiple tables
• If a view is created from multiple tables which were not created using

referencing clause

• Insert,update or delete operation is not allowed

• If a view is created from multiple tables which were created using
referencing clause

• Insert operation is not allowed

• Delete or modify operations do not affect master table

• View can be used to modify columns of detail table included in view

• Destroying a view

• Syntax: Drop view view_name

• Ex:drop view v1;

98

DATABASE MANAGEMENT SYSTEMS

UNIT-II

1

Formal Relational Query Languages

 Two mathematical Query Languages form the basis for “real”
languages (e.g. SQL), and for implementation:

◦ Relational Algebra: More operational, very useful
for representing execution plans.

◦ Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-
operational, declarative.)

2

Example Instances

• “Sailors” and “Reserves”
relations for our
examples.

• We’ll use positional or
named field notation,
assume that names of
fields in query results are
`inherited’ from names
of fields in query input
relations.

3

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

S1

S2

Relational Algebra

• Basic operations:

– Selection () Selects a subset of rows from relation.

– Projection () Deletes unwanted columns from relation.

– Cross-product () Allows us to combine two relations.

– Set-difference () Tuples in reln. 1, but not in reln. 2.

– Union () Tuples in reln. 1 and in reln. 2.
• Additional operations:

– Intersection, join, division, renaming

4









Projection

• Schema of result contains exactly the
fields in the projection list, with the
same names that they had in the (only)
input relation.

• Projection operator has to eliminate
duplicates! (Why??)
– Note: real systems typically don’t do

duplicate elimination unless the user
explicitly asks for it.

5

sname rating

yuppy 9

lubber 8
guppy 5
rusty 10


sname rating

S
,

()2

age

35.0
55.5

age S()2

Selection

• Selects rows that satisfy selection
condition.

• No duplicates in result! (Why?)

• Schema of result identical to
schema of (only) input relation.

• Result relation can be the input for
another relational algebra
operation! (Operator
composition.)

6


rating

S
8

2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating

yuppy 9

rusty 10

 
sname rating rating

S
,

(())
8

2

Set operations
 Union(U), Intersection(∩), Set-Difference(-) are set operations

available in in relational algebra

 Union(RUS):

 Two relational instances are said to be union compatible if the
following conditions hold—

 they have same number of the fields and corresponding
fields

 taken in order from left to right,have the same domains

 Intersection(R ∩ S):returns a relational instance containing all
tuples that occur in both R and S.

 Set-difference(R-S): returns a relational instance containing all
tuples that occur in R but not in S.

 Cross product(RXS): returns a relational instance whose
schema contains all fields of R followed by all fields of S

7

Union, Intersection, Set-Difference
• All of these operations take two input

relations, which must be union-
compatible:

– Same number of fields.

– `Corresponding’ fields
have the same type.

• What is the schema of result?

8

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

S S1 2

S S1 2

sid sname rating age

22 dustin 7 45.0

S S1 2

Cross-Product
 Each row of S1 is paired with each row of R1.

 Result schema has one field per field of S1 and R1, with field names
`inherited’ if possible.
Conflict: Both S1 and R1 have a field called sid.
S1 X R1

9

 ((,),)C sid sid S R1 1 5 2 1 1  

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Renaming operator(ρ): ρ (old name -> new name) or

ρ (position -> new name)

Joins
• Condition Join:

• Result schema same as that of cross-product.

• Fewer tuples than cross-product, might be able to compute
more efficiently

• Sometimes called a theta-join.

10

R c S c R S   ()

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S R
S sid R sid

1 1
1 1


. .

Joins

• Equi-Join: A special case of condition join where the condition c
contains only equalities.

• Result schema similar to cross-product, but only one copy of fields for
which equality is specified.

• Natural Join: Equijoin on all common fields.

• If two relations have no attributes in common,natural join is simply
cross product.

11

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1

Division
• Not supported as a primitive operator, but useful for expressing queries

like: Find sailors
who have reserved all boats.

• Let A have 2 fields, x and y; B have only field y:

– A/B =

– i.e., A/B contains all x tuples (sailors) such that for every y tuple (boat)
in B, there is an xy tuple in A.

– Or: If the set of y values (boats) associated with an x value (sailor) in A
contains all y values in B, the x value is in A/B.

• In general, x and y can be any lists of fields; y is the list of fields in B, and x
y is the list of fields of A.

12

 x x y A y B| ,   



Examples of Division A/B

13

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2

s4 p2

s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

Relational Calculus

• Comes in two flavors: Tuple relational calculus (TRC) and
Domain relational calculus (DRC).

• Calculus has variables, constants, comparison ops, logical
connectives and quantifiers.

– TRC: Variables range over (i.e., get bound to) tuples.

– DRC: Variables range over domain elements (= field values).

– Both TRC and DRC are simple subsets of first-order logic.

• Expressions in the calculus are called formulas. An answer
tuple is essentially an assignment of constants to variables that
make the formula evaluate to true.

14

Tuple relational calculus
A tuple rc query has the form {T|P(T)} where T is a

tuple variable and P(T) denotes a formula that
describes T.

 Find all sailors with rating above 7
 {S|S € Sailors Л s.rating>7}

 Let Rel be a relation name, R & S be tuple variables,’a’
be an attribute of R and ‘b’ be attribute of S. Let op
denote operator.

An atomic formula is one of the following
R € Rel, R.a € S.b, R.a op constant or constant op R.a

15

Tuple relational calculus
A formula is recursively defined to be one of the

following
-- any atomic formula
-- ┐P,PЛQ,P V Q or P=>Q
-- эR(P(R)) where R is tuple variable
-- forall R(P(R)) where R is tuple variable

A variable is said to be free in formula if it does not
contain an occurence of quantifiers that bind it.

 Find the names and ages of sailors with rating above 7
 {P| эS є Sailors(S.Rating >7 Л P.name=S.Sname Л

P.age=S.age)

16

Queries
 Find the sailor name,boat id and reservation date for

each reservation
 {P|эR є Reserves эS є Sailors (R.Sid=S.sid Л P.bid=R.bid

Л P.day=R.day Л P.sname=S.sname)

 Find the names of sailors who have reserved boat 103
 {P|эR є Reserves эS є Sailors (R.Sid=S.sid Л R.bid=103

Л P.sname=S.sname)
 Find the names of sailors who have reserved boat 103
 {P|эR є Reserves эS є Sailors (R.Sid=S.sid Л

P.sname=S.sname Л эB є Boats(B.bid=R.bid Л
B.color=‘red’))}

17

DRC Formulas

• Atomic formula:

– , or X op Y, or X op constant

– op is one of

• Formula:

– an atomic formula, or

– , where p and q are formulas, or

– , where variable X is free in p(X), or

– , where variable X is free in p(X)

• The use of quantifiers and is said to bind X.

– A variable that is not bound is free.

18

x x xn Rname1 2, ,..., 
     , , , , ,

  p p q p q, ,
X p X(())
X p X(())

 X  X

Free and Bound Variables

• The use of quantifiers and in a formula is said to bind X.

– A variable that is not bound is free.
• Let us revisit the definition of a query:

19

 X  X

x x xn p x x xn1 2 1 2, ,..., | , ,...,






























 There is an important restriction: the variables x1,

..., xn that appear to the left of `|’ must be the only

free variables in the formula p(...).

Find all sailors with a rating above 7

• The condition ensures that the domain variables I,
N, T and A are bound to fields of the same Sailors tuple.

• The term to the left of `|’ (which should be

read as such that) says that every tuple that satisfies T>7 is in
the answer.

20

I N T A I N T A Sailors T, , , | , , ,   
















7

I N T A Sailors, , , 

I N T A, , ,

I N T A, , ,

•Find sailors rated > 7 who have reserved boat #103

• We have used as a shorthand for

• Note the use of to find a tuple in Reserves that `joins with’ the Sailors tuple under
consideration.

• Find names of sailors who have reserved boat #103
•

21

I N T A I N T A Sailors T, , , | , , ,    





7

     






















Ir Br D Ir Br D serves Ir I Br, , , , Re 103

  Ir Br D, , . . .

     Ir Br D . . .











 SailorsATNIATIN ,,,,,|

























 servesDIrD Re),103,

Find sailors rated > 7 who’ve reserved a red boat

• Observe how the parentheses control the scope of each quantifier’s binding.

• Find names of sailors who’ve reserved a red boat

22

I N T A I N T A Sailors T, , , | , , ,    





7

    





Ir Br D Ir Br D serves Ir I, , , , Re

     






























B BN C B BN C Boats B Br C red, , , , ' '









 SailorsATNIATIN ,,,,,|









 BoatsredBNBrservesDBrI '',,Re,,

є

Find sailors who’ve reserved all boats

23

I N T A I N T A Sailors, , , | , , ,  






   






















B BN C B BN C Boats, , , ,

     












































Ir Br D Ir Br D serves I Ir Br B, , , , Re

•Find sailors who’ve reserved all boats (again!)

• To find sailors who’ve reserved all red boats:

24

I N T A I N T A Sailors, , , | , , ,  






 B BN C Boats, ,

    



































Ir Br D serves I Ir Br B, , Re

C red Ir Br D serves I Ir Br B      



































' ' , , Re.....

Unsafe Queries, Expressive Power

• It is possible to write syntactically correct calculus queries that have
an infinite number of answers! Such queries are called unsafe.

– e.g.,

• It is known that every query that can be expressed in relational
algebra can be expressed as a safe query in DRC / TRC; the converse is
also true.

• Relational Completeness: Query language (e.g., SQL) can express
every query that is expressible in relational algebra/calculus.

25

S S Sailors|  





























Data Definition Language

 The schema for each relation, including attribute
types.

 Integrity constraints

 Authorization information for each relation.

 Non-standard SQL extensions also allow
specification of
◦ The set of indices to be maintained for each relations.
◦ The physical storage structure of each relation on disk.

26

Allows the specification of:

Create Table Construct

An SQL relation is defined using the create table
command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

◦ r is the name of the relation
◦ each Ai is an attribute name in the schema of relation r
◦ Di is the data type of attribute Ai
Example:

create table branch
(branch_name char(15),
branch_city char(30),
assets integer)

27

Domain Types in SQL
• char(n). Fixed length character string, with user-specified

length n.

• varchar(n). Variable length character strings, with user-
specified maximum length n.

• int. Integer (a finite subset of the integers that is machine-
dependent).

• smallint. Small integer (a machine-dependent subset of
the integer domain type).

• numeric(p,d). Fixed point number, with user-specified
precision of p digits, with n digits to the right of decimal
point.

• float(n). Floating point number, with user-specified
precision of at least n digits.

28

Integrity Constraints on Tables

• not null

• primary key (A1, ..., An)

29

Example: Declare branch_name as the primary key for

branch

.

create table branch

(branch_name char(15),

branch_citychar(30) not null,

assets integer,

primary key (branch_name))

primary key declaration on an attribute automatically ensures not null

in SQL-92 onwards, needs to be explicitly stated in SQL-89

Basic Insertion and Deletion of Tuples

• Newly created table is empty

• Add a new tuple to account

insert into account
values ('A-9732', 'Perryridge', 1200)

– Insertion fails if any integrity constraint is violated

• Delete all tuples from account

delete from account

30

Drop and Alter Table Constructs
The drop table command deletes all information

about the dropped relation from the database.
The alter table command is used to add attributes

to an existing relation:
alter table r add A D

where A is the name of the attribute to be added
to relation r and D is the domain of A.
◦ All tuples in the relation are assigned null as the value

for the new attribute.

The alter table command can also be used to drop
attributes of a relation:

alter table r drop A

where A is the name of an attribute of relation r
◦ Dropping of attributes not supported by many

databases 31

Basic Query Structure
A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

◦ Ai represents an attribute
◦ Ri represents a relation
◦ P is a predicate.

This query is equivalent to the relational algebra
expression.

The result of an SQL query is a relation.

32

))((
21,,, 21 mPAAA

rrr
n

  

The select Clause
• The select clause list the attributes desired in the result of a query

– corresponds to the projection operation of the relational algebra

• Example: find the names of all branches in the loan relation:

select branch_name

from loan

• In the relational algebra, the query would be:

branch_name (loan)

• NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-
case letters.)

– E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name

– Some people use upper case wherever we use bold font.

33

The select Clause (Cont.)
• SQL allows duplicates in relations as well as in query results.

• To force the elimination of duplicates, insert the keyword distinct
after select.

• Find the names of all branches in the loan
relations, and remove duplicates

select distinct branch_name
from loan

• The keyword all specifies that duplicates not be removed.
select all branch_name

from loan

34

The select Clause (Cont.)
 An asterisk in the select clause denotes “all attributes”

select * from loan

 The select clause can contain arithmetic expressions
involving the operation, +, –, , and /, and operating on
constants or attributes of tuples.

 E.g.:

select loan_number, branch_name, amount 
100 from loan

35

The where Clause
 The where clause specifies conditions that the result must

satisfy
◦ Corresponds to the selection predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge
branch with loan amounts greater than $1200.

select loan_number
from loan
where branch_name = 'Perryridge' and amount >

1200

 Comparison results can be combined using the logical
connectives and, or, and not.

36

The from Clause
 The from clause lists the relations involved in the query
◦ Corresponds to the Cartesian product operation of the relational

algebra.

 Find the Cartesian product borrower X loan
select 
from borrower, loan

37

 Find the name, loan number and loan amount of all

customers having a loan at the Perryridge branch.

select customer_name, borrower.loan_number, amount

from borrower, loan

where borrower.loan_number = loan.loan_number and

branch_name = 'Perryridge'

The Rename Operation
 SQL allows renaming relations and attributes using the as

clause:
old-name as new-name

 E.g. Find the name, loan number and loan amount of all
customers; rename the column name loan_number as
loan_id.

38

select customer_name, borrower.loan_number as

loan_id, amount

from borrower, loan

where borrower.loan_number = loan.loan_number

Tuple Variables
 Tuple variables are defined in the from clause via the use of the as clause.

 Find the customer names and their loan numbers and amount for all
customers having a loan at some branch.

39

 Find the names of all branches that have greater assets

than some branch located in Brooklyn.

select distinct T.branch_name

from branch as T, branch as S

where T.assets > S.assets and S.branch_city = 'Brooklyn'

Keyword as is optional and may be omitted

borrower as T ≡ borrower T

 Some database such as Oracle require as to be

omitted

select customer_name, T.loan_number, S.amount
from borrower as T, loan as S
where T.loan_number = S.loan_number

Example Instances

• We will use these instances of
the Sailors and Reserves
relations in our examples.

• If the key for the Reserves
relation contained only the
attributes sid and bid, how
would the semantics differ?

40

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

S1

S2

Find sailors who’ve reserved at least one boat

• Would adding DISTINCT to this query make a
difference?

• What is the effect of replacing S.sid by S.sname in
the SELECT clause? Would adding DISTINCT to this variant
of the query make a difference?

41

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Expressions and Strings

 Illustrates use of arithmetic expressions and string pattern
matching: Find triples (of ages of sailors and two fields
defined by expressions) for sailors whose names begin and
end with B and contain at least three characters.

 AS and = are two ways to name fields in result.

 LIKE is used for string matching. `_’ stands for any one
character and `%’ stands for 0 or more arbitrary characters.

42

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

String Operations
 SQL includes a string-matching operator for comparisons on character strings.

The operator “like” uses patterns that are described using two special characters:

◦ percent (%). The % character matches any substring.

◦ underscore (_). The _ character matches any character.

 Find the names of all customers whose street
includes the substring “Main”.

select customer_name
from customer
where customer_street like '% Main%'

 Match the name “Main%”

like 'Main\%' escape '\'

 SQL supports a variety of string operations such as

◦ concatenation (using “||”)

◦ converting from upper to lower case (and vice versa)

◦ finding string length, extracting substrings, etc.
43

Ordering the Display of Tuples
 List in alphabetic order the names of all customers having a

loan in Perryridge branch

select distinct customer_name
from borrower, loan
where borrower loan_number = loan.loan_number and

branch_name = 'Perryridge'
order by customer_name

 We may specify desc for descending order or asc for
ascending order, for each attribute; ascending order is the
default.
◦ Example: order by customer_name desc

44

Duplicates
• In relations with duplicates, SQL can define how many

copies of tuples appear in the result.

• Multiset versions of some of the relational algebra
operators – given multiset relations r1 and r2:

1.  (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies

selections ,, then there are c1 copies of t1 in  (r1).

2. A (r): For each copy of tuple t1 in r1, there is a copy of
tuple A (t1) in A (r1) where A (t1) denotes the
projection of the single tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies
of tuple t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in
r1 x r2

45

Duplicates (Cont.)
 Example: Suppose multiset relations r1 (A, B) and r2 (C) are

as follows:
r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

 Then B(r1) would be {(a), (a)}, while B(r1) x r2 would be
{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

 SQL duplicate semantics:
select A1,, A2, ..., An

from r1, r2, ..., rm

where P
is equivalent to the multiset version of the expression:

46

))((
21,,, 21 mPAAA

rrr
n

  

Set Operations
The set operations union, intersect, and except

operate on relations and correspond to the relational
algebra operations 

Each of the above operations automatically eliminates
duplicates; to retain all duplicates use the
corresponding multiset versions union all, intersect all
and except all.

Suppose a tuple occurs m times in r and n times in s,
then, it occurs:
◦ m + n times in r union all s
◦ min(m,n) times in r intersect all s
◦ max(0, m – n) times in r except all s

47

Set Operations
• Find all customers who have a loan, an account, or both:

48

(select customer_name from depositor)
except
(select customer_name from borrower)

(select customer_name from depositor)

intersect

(select customer_name from borrower)

 Find all customers who have an account but no loan.

(select customer_name from depositor)

union

(select customer_name from borrower)

 Find all customers who have both a loan and an account.

Find sid’s of sailors who’ve reserved a red or a green
boat

 UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples (which are themselves
the result of SQL queries).

 If we replace OR by AND in
the first version, what do we
get?

 Also available: EXCEPT
(What do we get if we
replace UNION by EXCEPT?)

49

SELECT S.sid

FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
UNION

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Find sid’s of sailors who’ve reserved a red and a green
boat

• INTERSECT: Can be used to
compute the intersection of
any two union-compatible
sets of tuples.

• Included in the SQL/92
standard, but some systems
don’t support it.

• Contrast symmetry of the
UNION and INTERSECT
queries with how much the
other versions differ. 50

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Key field!

Nested Queries

 A very powerful feature of SQL: a WHERE clause can itself contain an
SQL query! (Actually, so can FROM and HAVING clauses.)

 To find sailors who’ve not reserved #103, use NOT IN.

 To understand semantics of nested queries, think of a nested loops
evaluation: For each Sailors tuple, check the qualification by
computing the subquery.

51

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Nested Queries with Correlation

 EXISTS is another set comparison operator, like IN.

 If UNIQUE is used, and * is replaced by R.bid, finds sailors with at most
one reservation for boat #103. (UNIQUE checks for duplicate tuples; *
denotes all attributes. Why do we have to replace * by R.bid?)

 Illustrates why, in general, subquery must be re-computed for each
Sailors tuple.

52

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103:

Aggregate Functions

• These functions operate on the multiset of values
of a column of a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

53

Aggregate Functions (Cont.)
 Find the average account balance at the Perryridge branch.

54

 Find the number of depositors in the bank.

 Find the number of tuples in the customer relation.

select avg (balance)

from account

where branch_name = 'Perryridge'

select count (*)

from customer

select count (distinct customer_name)

from depositor

Aggregate Functions – Group By
 Find the number of depositors for each branch.

55

Note: Attributes in select clause outside of aggregate functions must

appear in group by list

select branch_name, count (distinct customer_name)

from depositor, account

where depositor.account_number =

account.account_number

group by branch_name

Aggregate Functions – Having Clause

 Find the names of all branches where the average account
balance is more than $1,200.

56

Note: predicates in the having clause are applied after the

formation of groups whereas predicates in the where

clause are applied before forming groups

select branch_name, avg (balance)

from account

group by branch_name

having avg (balance) > 1200

Nested Subqueries
• SQL provides a mechanism for the nesting of

subqueries.

• A subquery is a select-from-where expression
that is nested within another query.

• A common use of subqueries is to perform tests
for set membership, set comparisons, and set
cardinality.

57

“In” Construct
 Find all customers who have both an account and a

loan at the bank.

58

 Find all customers who have a loan at the bank but do

not have an account at the bank

select distinct customer_name

from borrower

where customer_name not in (select customer_name

from depositor)

select distinct customer_name

from borrower

where customer_name in (select customer_name

from depositor)

Example Query
 Find all customers who have both an account and a

loan at the Perryridge branch

59

 Note: Above query can be written in a much simpler manner. The

formulation above is simply to illustrate SQL features.

select distinct customer_name

from borrower, loan

where borrower.loan_number = loan.loan_number and

branch_name = 'Perryridge' and

(branch_name, customer_name) in

(select branch_name, customer_name

from depositor, account

where depositor.account_number =

account.account_number)

“Some” Construct
 Find all branches that have greater assets than some

branch located in Brooklyn.

60

 Same query using > some clause

select branch_name

from branch

where assets > some

(select assets

from branch

where branch_city = 'Brooklyn')

select distinct T.branch_name

from branch as T, branch as S

where T.assets > S.assets and

S.branch_city = 'Brooklyn'

“All” Construct
 Find the names of all branches that have greater

assets than all branches located in Brooklyn.

61

select branch_name

from branch

where assets > all

(select assets

from branch

where branch_city = 'Brooklyn')

“Exists” Construct
 Find all customers who have an account at all

branches located in Brooklyn.

62

select distinct S.customer_name

from depositor as S

where not exists (

(select branch_name

from branch

where branch_city = 'Brooklyn')

except

(select R.branch_name

from depositor as T, account as R

where T.account_number = R.account_number and

S.customer_name = T.customer_name))

 Note that X – Y = Ø  X Y

 Note: Cannot write this query using = all and its variants

Absence of Duplicate Tuples
 The unique construct tests whether a subquery has any

duplicate tuples in its result.
 Find all customers who have at most one account at the

Perryridge branch.
select T.customer_name

from depositor as T
where unique (

select R.customer_name
from account, depositor as R
where T.customer_name = R.customer_name and

R.account_number = account.account_number and
account.branch_name = 'Perryridge')

63

Example Query
 Find all customers who have at least two accounts at the

Perryridge branch.

64

select distinct T.customer_name

from depositor as T

where not unique (

select R.customer_name

from account, depositor as R

where T.customer_name = R.customer_name and

R.account_number = account.account_number and

account.branch_name = 'Perryridge')

• Variable from outer level is known as a correlation

variable

Modification of the Database – Deletion

Delete all account tuples at the Perryridge branch

delete from account
where branch_name = 'Perryridge'

Delete all accounts at every branch located in the
city ‘Needham’.

delete from account
where branch_name in (select branch_name

from branch
where branch_city = 'Needham')

65

Example Query
• Delete the record of all accounts with balances

below the average at the bank.

66

delete from account

where balance < (select avg (balance)

from account)

 Problem: as we delete tuples from deposit, the average balance changes

 Solution used in SQL:

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

Modification of the Database – Insertion
 Add a new tuple to account

insert into account
values ('A-9732', 'Perryridge', 1200)

or equivalently

insert into account (branch_name, balance, account_number)
values ('Perryridge', 1200, 'A-9732')

 Add a new tuple to account with balance set to null

insert into account
values ('A-777','Perryridge', null)

67

Modification of the Database – Insertion
• Provide as a gift for all loan customers of the Perryridge branch, a $200 savings

account. Let the loan number serve as the account number for the new savings
account

insert into account
select loan_number, branch_name, 200
from loan
where branch_name = 'Perryridge'

insert into depositor
select customer_name, loan_number
from loan, borrower
where branch_name = 'Perryridge'

and loan.account_number = borrower.account_number

• The select from where statement is evaluated fully before any of its results are
inserted into the relation

– Motivation: insert into table1 select * from table1

68

Modification of the Database – Updates
 Increase all accounts with balances over $10,000 by

6%, all other accounts receive 5%.
◦ Write two update statements:

update account
set balance = balance  1.06
where balance > 10000

update account
set balance = balance  1.05
where balance  10000

◦ The order is important
◦ Can be done better using the case statement (next slide)

69

Case Statement for Conditional Updates

• Same query as before: Increase all accounts with
balances over $10,000 by 6%, all other accounts
receive 5%.

update account
set balance = case

when balance <= 10000 then
balance *1.05

else balance * 1.06
end

70

More on Set-Comparison Operators

• We’ve already seen IN, EXISTS and UNIQUE. Can also use NOT IN,

NOT EXISTS and NOT UNIQUE.

• Also available: op ANY, op ALL, op IN

• Find sailors whose rating is greater than that of some
sailor called Horatio:

71

     , , , , ,

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Rewriting INTERSECT Queries Using IN

• Similarly, EXCEPT queries re-written using NOT IN.

• To find names (not sid’s) of Sailors who’ve reserved both
red and green boats, just replace S.sid by S.sname in SELECT

clause. (What about INTERSECT query?)
72

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’

AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid

AND B2.color=‘green’)

Division in SQL

• Let’s do it the hard way,
without EXCEPT:

73

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS

((SELECT B.bid
FROM Boats B)

EXCEPT

(SELECT R.bid
FROM Reserves R
WHERE R.sid=S.sid))

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without ...

a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.
(1)

(2)

Aggregate Operators

• Significant extension of
relational algebra.

74

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Find name and age of the oldest sailor(s)

The first query is illegal!
(We’ll look into the reason a
bit later, when we discuss
GROUP BY.)

The third query is
equivalent to the second
query, and is allowed in the
SQL/92 standard, but is not
supported in some systems.

75

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =

(SELECT MAX (S2.age)
FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)

FROM Sailors S2)
= S.age

Motivation for Grouping

• So far, we’ve applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.

• Consider: Find the age of the youngest sailor for
each rating level.

– In general, we don’t know how many rating levels exist,
and what the rating values for these levels are!

– Suppose we know that rating values go from 1 to 10; we
can write 10 queries that look like this (!):

76

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Queries With GROUP BY and HAVING

• The target-list contains (i) attribute names (ii) terms with
aggregate operations (e.g., MIN (S.age)).

– The attribute list (i) must be a subset of grouping-list. Intuitively,
each answer tuple corresponds to a group, and these attributes
must have a single value per group. (A group is a set of tuples that
have the same value for all attributes in grouping-list.)

77

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Find age of the youngest sailor with age 18, for each rating with at
least 2 such sailors

rating minage

3 25.5

7 35.0

8 25.5

78

SELECT S.rating, MIN (S.age)
AS minage

FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Answer relation:



Sailors instance:

Find age of the youngest sailor with age 18, for each rating with at
least 2 such sailors.

rating minage

3 25.5

7 35.0

8 25.5

79

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5



rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

Find age of the youngest sailor with age 18, for each rating with at
least 2 such sailors and with every sailor under 60.

rating minage

7 35.0

8 25.5

80

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5



rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

What is the result of

changing EVERY to

ANY?

Find age of the youngest sailor with age 18, for each rating with at
least 2 sailors between 18 and 60.

rating minage

3 25.5

7 35.0

8 25.5

81

SELECT S.rating, MIN (S.age)
AS minage

FROM Sailors S
WHERE S.age >= 18 AND S.age <= 60
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Answer relation:



Sailors instance:

For each red boat, find the number of reservations for
this boat

 Grouping over a join of three relations.
 What do we get if we remove B.color=‘red’ from the

WHERE clause and add a HAVING clause with this condition?
 What if we drop Sailors and the condition involving

S.sid?

82

SELECT B.bid, COUNT (*) AS scount
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Find age of the youngest sailor with age > 18,
for each rating with at least 2 sailors (of any age)

• Shows HAVING clause can also contain a subquery.
• Compare this with the query where we considered only

ratings with 2 sailors over 18!
• What if HAVING clause is replaced by:

– HAVING COUNT(*) >1

83

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating=S2.rating)

Find those ratings for which the average age is the
minimum over all ratings

 Aggregate operations cannot be nested! WRONG:

84

SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage

FROM Sailors S
GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)

 Correct solution (in SQL/92):

Null Values
• Field values in a tuple are sometimes unknown (e.g., a

rating has not been assigned) or inapplicable (e.g., no
spouse’s name).
– SQL provides a special value null for such situations.

• The presence of null complicates many issues. E.g.:
– Special operators needed to check if value is/is not null.

– Is rating>8 true or false when rating is equal to null? What
about AND, OR and NOT connectives?

– We need a 3-valued logic (true, false and unknown).

– Meaning of constructs must be defined carefully. (e.g.,
WHERE clause eliminates rows that don’t evaluate to true.)

– New operators (in particular, outer joins) possible/needed.
85

Null Values and Three Valued Logic
• Any comparison with null returns unknown

– Example: 5 < null or null <> null or null = null

• Three-valued logic using the truth value unknown:
– OR: (unknown or true) = true,

(unknown or false) = unknown
(unknown or unknown) = unknown

– AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

– NOT: (not unknown) = unknown

– “P is unknown” evaluates to true if predicate P
evaluates to unknown

• Result of where clause predicate is treated as
false if it evaluates to unknown 86

Null Values
 It is possible for tuples to have a null value, denoted by

null, for some of their attributes

 null signifies an unknown value or that a value does not
exist.

 The predicate is null can be used to check for null values.
◦ Example: Find all loan number which appear in the loan

relation with null values for amount.

select loan_number
from loan
where amount is null

 The result of any arithmetic expression involving null is
null
◦ Example: 5 + null returns null

 However, aggregate functions simply ignore nulls

87

Null Values and Aggregates
• Total all loan amounts

select sum (amount)
from loan

– Above statement ignores null amounts

– Result is null if there is no non-null amount

• All aggregate operations except count(*)
ignore tuples with null values on the
aggregated attributes.

88

Joined Relations**
 Join operations take two relations and return as a result another

relation.

 These additional operations are typically used as subquery
expressions in the from clause

 Join condition – defines which tuples in the two relations match,
and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not match
any tuple in the other relation (based on the join condition) are
treated.

89

Joined Relations – Datasets for Examples

 Relation loan

90

 Relation borrower

 Note: borrower information missing for L-260 and loan

information missing for L-155

 Select S.sid, R.bid from Sailors S natural left

outer join Reserves R
Sid Bid

22 101

31 Null

58 103

Joined Relations – Examples
 loan inner join borrower on

loan.loan_number = borrower.loan_number

91

 loan left outer join borrower on

loan.loan_number = borrower.loan_number

Joined Relations – Examples
 loan natural inner join borrower

92

 loan natural right outer join borrower

 Find all customers who have either an account or a loan (but not both) at the bank.

select customer_name

from (depositor natural full outer join borrower)

where account_number is null or loan_number is null

Joined Relations – Examples
 Natural join can get into trouble if two relations have an attribute

with same name that should not affect the join condition

◦ e.g. an attribute such as remarks may be present in many tables

 Solution:

◦ loan full outer join borrower using (loan_number)

93

Derived Relations
• SQL allows a subquery expression to be used in the from clause

• Find the average account balance of those branches where the
average account balance is greater than $1200.

select branch_name, avg_balance
from (select branch_name, avg (balance)

from account
group by branch_name)
as branch_avg (branch_name, avg_balance)

where avg_balance > 1200

Note that we do not need to use the having clause, since we compute
the temporary (view) relation branch_avg in the from clause, and the
attributes of branch_avg can be used directly in the where clause.

94

Integrity Constraints (Review)

• An IC describes conditions that every legal instance of a relation must satisfy.

– Inserts/deletes/updates that violate IC’s are disallowed.

– Can be used to ensure application semantics (e.g., sid is a key), or prevent
inconsistencies (e.g., sname has to be a string, age must be < 200)

• Types of IC’s: Domain constraints, primary key constraints, foreign key
constraints, general constraints.

– Domain constraints: Field values must be of right type.
Always enforced.

– EX:Create domain ratingval integer default 1
check(value>=1 and value<=10)

– Rating ratingval

95

General Constraints
 Useful when more general ICs than

keys are involved.
 Can use queries to express

constraint.
 Constraints can be named.

96

CREATE TABLE

Sailors
(sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10)

CREATE TABLE Reserves
(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))

Constraints Over Multiple Relations

 Awkward and
wrong!

 If Sailors is empty,
the number of
Boats tuples can
be anything!

 ASSERTION is the
right solution; not
associated with
either table.

97

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

Triggers
• Trigger: procedure that starts automatically if

specified changes occur to the DBMS

• Three parts:

• Event (activates the trigger)

• Condition (tests whether the triggers should run)

• Action (what happens if the trigger runs)

• Types of triggers

• Row level triggers:triggering event should be defined to
occur for each modified record. For each row clause is used.

• Statement-level triggers: trigger is executed just once for
each(insert) statement. For each statement clause is used.

98

Examples
 Create Trigger init_count before insert on students /*event*/

Declare
Count Integer;
Begin
count:=0; /*action*/

End

Create Trigger incr_count after insert on students /*event*/
When(new.age<18) /*condition*/
For each row
Begin
count:=count+1; /*action*/
end

99

Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate

AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors

FOR EACH STATEMENT

INSERT

INTO YoungSailors(sid, name, age, rating)

SELECT sid, name, age, rating

FROM NewSailors N

WHERE N.age <= 18

100

DATABASE MANAGEMENT SYSTEMS

UNIT-III

1

INTRODUCTION TO SCHEMA REFINEMENT

Problems Caused by Redundancy

 Storing the same information redundantly, that is, in more
than one place within a database, can lead to several
problems:

 Redundant storage: Some information is stored repeatedly.

 Update anomalies: If one copy of such repeated data is
updated, an inconsistency is created unless all copies are
similarly updated.

 Insertion anomalies: It may not be possible to store some
information unless some other information is stored as well.

 Deletion anomalies: It may not be possible to delete some
information without losing some other information as well.

2

• Consider a relation obtained by translating a variant of the
Hourly Emps entity set

Ex: Hourly Emps(ssn, name, lot, rating, hourly wages,

hours worked)

• The key for Hourly Emps is ssn. In addition, suppose
that the hourly wages attribute

is determined by the rating attribute.

That is, for a given rating value, there is only one
permissible hourly wages value. This IC is an example of
a functional dependency.

• It leads to possible redundancy in the relation Hourly
Emps

3

Example: Constraints on Entity Set

• Consider relation obtained from Hourly_Emps:
– Hourly_Emps (ssn, name, lot, rating, hrly_wages,

hrs_worked)

• Notation: We will denote this relation schema by
listing the attributes: SNLRWH
– This is really the set of attributes {S,N,L,R,W,H}.
– Sometimes, we will refer to all attributes of a relation by

using the relation name. (e.g., Hourly_Emps for SNLRWH)

• Some FDs on Hourly_Emps:
– ssn is the key: S SNLRWH
– rating determines hrly_wages: R W

4

 

Example (Contd.)

• Problems due to R W :

– Update anomaly: Can
we change W in just
the 1st tuple of SNLRWH?

– Insertion anomaly: What if
we want to insert an
employee and don’t know
the hourly wage for his
rating?

– Deletion anomaly: If we
delete all employees with
rating 5, we lose the
information about the wage
for rating 5!

5



S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7

Hourly_Emps2Wages

6

ssn name lot rating
Hourly

wages

hours

worked

123-22-3666
Attishoo 48 8 10 40

231-31-5368
Smiley 22 8 10 30

131-24-3650 Smethurst
35 5 7 30

434-26-3751 Guldu
35 5 7 32

612-67-4134 Madayan
35 8 10 40

Decomposition
• Redundancy is at the root of several problems associated with

relational schemas:

– redundant storage, insert/delete/update anomalies

• Main refinement technique: decomposition (replacing ABCD with,
say, AB and BCD, or ACD and ABD).

• Decomposition should be used judiciously:

– Is there reason to decompose a relation?

– What problems (if any) does the decomposition cause?

7

Use of Decompositions
• Intuitively, redundancy arises when a relational schema

forces an association between attributes that is not natural.

• Functional dependencies (ICs) can be used to identify such
situations and to suggest revetments to the schema.

• The essential idea is that many problems arising from
redundancy can be addressed by replacing a relation with a
collection of smaller relations.

• Each of the smaller relations contains a subset of the
attributes of the original relation.

• We refer to this process as decomposition of the larger
relation into the smaller relations

8

 We can deal with the redundancy in Hourly Emps by
decomposing it into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked)
Wages(rating, hourly wages)

ratin

g

hourly

wages

8 10

5 7

9

ssn name lot rating hours worked

123-22-3666
Attishoo 48 8 40

231-31-5368
Smiley 22 8 30

131-24-3650 Smethurst
35 5 30

434-26-3751 Guldu
35 5 32

612-67-4134 Madayan
35 8 40

10

Problems Related todecomposition
• Unless we are careful, decomposing a relation schema can

create more problems than it solves.

• Two important questions must be asked repeatedly:

• 1. Do we need to decompose a relation?

• 2. What problems (if any) does a given decomposition
cause?

• To help with the rst question, several normal forms have
been proposed for relations.

• If a relation schema is in one of these normal forms, we
know that certain kinds of

problems cannot arise.

11

Functional Dependencies (FDs)

• A functional dependency X Y holds over relation
R if, for every allowable instance r of R:

– t1 r, t2 r, (t1) = (t2) implies (t1) =
(t2)

– If t1.X=t2.X then t1.Y=t2.Y

– i.e., given two tuples in r, if the X values agree, then the
Y values must also agree. (X and Y are sets of
attributes.)

– FD: AB C (a1,b1,c2,d1) will not satisfy

12



 

 X  X
 YY

 A B C D

a1 b1 c1 d1

a1 b1 c1 d1

a1 b2 c2 d1

a2 b1 c3 d1

REASONING ABOUT FD’S
 Workers(ssn,name,lot,did,since)

 We know ssn-did holds and FD did->lot is given to
hold. Therefore FD ssn->lot holds

 We say that an FD f is implied by a given set F of FD’s
if f holds on every relation instance that satisfies all
dependencies in F.i.e f holds whenever all FD’s hold.

 Closure of set of FD’s:

 The set of all FD’s implied by a given set F of FD’s is
called closure of F denoted as F+.

 How can we infer or compute the closure of given set
F of FD’s. Sol:Armstrong axioms can be applied
repeatedly to infer all FD’s implied by set of F of FD’s

13

We use X,Y,Z to denote sets of attributes over a
relation schema R

Relexivity: If X subset of Y then X->Y

Augmentation: If X->Y then XZ->YZ for any Z

Transitivity: If X->Y and Y-> Z then X->Z

Union:If X->Y ,X->Z then X->YZ

Decomposition:If X->YZ then X->Y and X->Z

14

Constraints on a Relationship Set

• Suppose that we have entity sets Parts, Suppliers, and
Departments, as well as a relationship set Contracts that
involves all of them.

• We refer to the schema for Contracts as CQPSD. A contract
with contract id C species that a supplier S will supply some
quantity Q of a part P to a department D.

• We might have a policy that a department purchases at most
one part from any given supplier.

• Thus, if there are several contracts between the same
supplier and department, we know that the same part must
be involved in all of them. This constraint is an FD, DS ! P.

15

• Consider relation schema ABC with FD’s

A->B and B->C.

Using reflexivity

X->Y where Y C X,X C ABC and Y C ABC

From transitivity we get A->C

From augmentation we get nontrivial
dependencies

AC->BC,AB->AC,AB->CB

16

Reasoning About FDs (Contd.)
Couple of additional rules (that follow from AA):
◦ Union: If X Y and X Z, then X YZ
◦ Decomposition: If X YZ, then X Y and X Z

Example: Contracts(cid,sid,jid,did,pid,qty,value), and:
◦ C is the key: C CSJDPQV
◦ Project purchases each part using single contract:
◦ JP C
◦ Dept purchases at most one part from a supplier: S
◦ SD P

 JP C, C CSJDPQV imply JP CSJDPQV

 SD P implies SDJ JP

 SDJ JP, JP CSJDPQV imply SDJ CSJDPQV
17

  
  






  

 

  

Closure of a Set of FDs
• The set of all FDs implied by a given set F of FDs is called the

closure of F and is denoted as F+.

• An important question is how we can infer, or compute, the
closure of a given set F of FDs.

• The following three rules, called Armstrong's Axioms, can be
applied repeatedly to infer all FDs implied by a set F of FDs.

• We use X, Y, and Z to denote sets of attributes over a relation
schema R:

18

Attribute Closure
 If we just want to check whether a given

dependency, say, X → Y, is in the closure of a set
F of FDs, we can do so effciently without
computing F+.

We first compute the attribute closure X+ with
respect to F, which is the set of attributes A such
that X → A can be inferred using the Armstrong
Axioms.

The algorithm for computing the attribute
closure of a set X of attributes is

 closure = X;

repeat until there is no change: {

if there is an FD U → V in F such that U subset of closure,

then set closure = closure union of V

}

19

NORMAL FORMS
• The normal forms based on FDs are first normal form (1NF),

second normal form (2NF), third normal form (3NF), and
Boyce-Codd normal form (BCNF).

• These forms have increasingly restrictive requirements:
Every relation in BCNF is also in 3NF, every relation in 3NF is
also in 2NF, and every relation in 2NF is in 1NF.

• A relation is in first normal form if every field contains only
atomic values, that is, not lists or sets.

• This requirement is implicit in our defition of the relational
model.

• Although some of the newer database systems are relaxing
this requirement 2NF is mainly of historical interest.

• 3NF and BCNF are important from a database design
standpoint.

20

Normal Forms
• Returning to the issue of schema refinement, the first question to

ask is whether any refinement is needed!

• If a relation is in a certain normal form (BCNF, 3NF etc.), it is known
that certain kinds of problems are avoided/minimized. This can be
used to help us decide whether decomposing the relation will help.

• Role of FDs in detecting redundancy:

– Consider a relation R with 3 attributes, ABC.

• No FDs hold: There is no redundancy here.

• Given A B: Several tuples could have the same A value,
and if so, they’ll all have the same B value!

21



First Normal Form

 1NF (First Normal Form)

• a relation R is in 1NF if and only if it has only
single-valued attributes (atomic values)

• EMP_PROJ (SSN, PNO, HOURS, ENAME, PNAME, PLOCATION)

PLOCATION is not in 1NF (multi-valued attrib.)

• solution: decompose the relation
EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)

LOC (PNO, PLOCATION)

22

Second Normal Form

 2NF (Second Normal Form)
• a relation R in 2NF if and only if it is in 1NF and every

nonkey column depends on a key not a subset of a key

• all nonprime attributes of R must be fully functionally
dependent on a whole key(s) of the relation, not a part of
the key

• no violation: single-attribute key or no nonprime
attribute

23

Second Normal Form (Contd)

 2NF (Second Normal Form)

• violation: part of a key  nonkey

EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)

SSN  ENAME

PNO  PNAME

• solution: decompose the relation

EMP_PROJ3 (SSN, PNO, HOURS)

EMP (SSN, ENAME)

PROJ (PNO, PNAME)

24

Third Normal Form

• a relation R in 3NF if and only if it is in 2NF and
every nonkey column does not depend on
another nonkey column

• all nonprime attributes of R must be non-
transitively functionally dependent on a key of
the relation

25

Third Normal Form (Contd)

 3NF (Third Normal Form)
 violation: nonkey nonkey

• SUPPLIER (SNAME, STREET, CITY, STATE, TAX)

SNAME  STREET, CITY, STATE

STATE  TAX (nonkey nonkey)

SNAME STATE  TAX (transitive FD)

• solution: decompose the relation

SUPPLIER2 (SNAME, STREET, CITY, STATE)

TAXINFO (STATE, TAX)

26

Boyce-Codd Normal Form (BCNF)

• Reln R with FDs F is in BCNF if, for all X A in

– A X (called a trivial FD), or

– X contains a key for R.

• In other words, R is in BCNF if the only non-trivial
FDs that hold over R are key constraints.

– No dependency in R that can be predicted using FDs
alone.

– If we are shown two tuples that agree upon
the X value, we cannot infer the A value in
one tuple from the A value in the other.

– If example relation is in BCNF, the 2 tuples
27

F



X Y A

x y1 a

x y2 ?

Decomposition of a Relation Scheme

Suppose that relation R contains attributes A1 ...
An. A decomposition of R consists of replacing R
by two or more relations such that:
◦ Each new relation scheme contains a subset of the

attributes of R (and no attributes that do not appear in
R), and

◦ Every attribute of R appears as an attribute of one of
the new relations.

 Intuitively, decomposing R means we will store
instances of the relation schemes produced by the
decomposition, instead of instances of R.

E.g., Can decompose SNLRWH into SNLRH and
RW.

28

Example Decomposition

Decompositions should be used only when
needed.
◦ SNLRWH has FDs S SNLRWH and R W
◦ Second FD causes violation of 3NF; W values repeatedly

associated with R values. Easiest way to fix this is to
create a relation RW to store these associations, and to
remove W from the main schema:
 i.e., we decompose SNLRWH into SNLRH and RW

The information to be stored consists of SNLRWH
tuples. If we just store the projections of these
tuples onto SNLRH and RW, are there any
potential problems that we should be aware of?29

 

Problems with Decompositions

• There are three potential problems to consider:

– Some queries become more expensive.

• e.g., How much did sailor Joe earn? (salary = W*H)

– Given instances of the decomposed relations, we
may not be able to reconstruct the corresponding
instance of the original relation!

• Fortunately, not in the SNLRWH example.

– Checking some dependencies may require joining the
instances of the decomposed relations.

• Fortunately, not in the SNLRWH example.

• Tradeoff: Must consider these issues vs.
redundancy.

30

Lossless Join Decompositions
◦ Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every

instance r that satisfies F:
◦ (r) (r) = r

 It is always true that r (r) (r)
◦ In general, the other direction does not hold! If it does, the decomposition is

lossless-join.

 Definition extended to decomposition into 3 or more relations in a straightforward
way.

 It is essential that all decompositions used to deal with redundancy be lossless!

Consider Hourly emps relation.It has attributes
SNLRWH and FD R->W causes a violation of 3NF.We
dealt this violation by decomposing into SNLRH and
RW.

 Since R is common to both decomposed relation and

R->W holds,this decomposition is lossles-join 31

 X

 Y 
 X


Y

More on Lossless Join

The decomposition of R into X
and Y is lossless-join wrt F if
and only if the closure of F
contains:
◦ X Y X, or

◦ X Y Y

 In particular,if an fd X->Y holds
over relation R and X∩ Y is
empty, the decomposition of
R into R-Y and XY is lossless.

 Imp observation is repeated
decompositions

32







A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8

Dependency Preserving Decomposition

• Consider CSJDPQV, C is key, JP C and SD P.

– Bcoz SD->P is not a key,it causes violation

– BCNF decomposition: CSJDQV and SDP

– Problem: Checking JP C requires a join!

• Dependency preserving decomposition (Intuitive):

– If R is decomposed into X, Y and Z, and we enforce the
FDs that hold on X, on Y and on Z, then all FDs that
were given to hold on R must also hold.

– Projection of set of FDs F: If R is decomposed into X,
... projection of F onto X (denoted FX) is the set of FDs
U V in F+ (closure of F) such that U, V are in X.

33

 





Dependency Preserving Decompositions
(Contd.)

Decomposition of R into X and Y is dependency
preserving if (FX union FY)

+ = F +

◦ i.e., if we consider only dependencies in the closure F + that
can be checked in X without considering Y, and in Y without
considering X, these imply all dependencies in F +.

 Important to consider F +, not F, in this definition:
◦ ABC, A B, B C, C A, decomposed into AB and BC.

◦ Is this dependency preserving? Is C A preserved?????

Dependency preserving does not imply lossless join:
◦ ABC, A B, decomposed into AB and BC.

And vice-versa! (Example?) 34

  




Decomposition into BCNF

Consider relation R with FDs F. If X Y violates
BCNF, decompose R into R - Y and XY.
◦ Repeated application of this idea will give us a collection

of relations that are in BCNF; lossless join
decomposition, and guaranteed to terminate.

◦ e.g., CSJDPQV, key C, JP C, SD P, J S
◦ To deal with SD P, decompose into SDP, CSJDQV.
◦ To deal with J S, decompose CSJDQV into JS and

CJDQV

 In general, several dependencies may cause
violation of BCNF. The order in which we ``deal
with’’ them could lead to very different sets of
relations!

35



 




BCNF and Dependency Preservation

• In general, there may not be a dependency
preserving decomposition into BCNF.

– e.g., CSZ, CS Z, Z C

– Can’t decompose while preserving 1st FD; not in BCNF.

• Similarly, decomposition of CSJDQV into SDP, JS
and CJDQV is not dependency preserving (w.r.t.
the FDs JP C, SD P and J S).

– However, it is a lossless join decomposition.

– In this case, adding JPC to the collection of relations
gives us a dependency preserving decomposition.

• JPC tuples stored only for checking FD! (Redundancy!)

36

 

  

Decomposition into 3NF

• Obviously, the algorithm for lossless join decomp
into BCNF can be used to obtain a lossless join
decomp into 3NF (typically, can stop earlier).

• To ensure dependency preservation, one idea:

– If X Y is not preserved, add relation XY.

– Problem is that XY may violate 3NF! e.g., consider the
addition of CJP to `preserve’ JP C. What if we also
have J C ?

• Refinement: Instead of the given set of FDs F, use a
minimal cover for F. 37







SCHEMA REFINEMENT

Constraints on an Entity Set
• Consider the Hourly Emps relation again. The constraint that

attribute ssn is a key can be expressed as an FD:

• { ssn }-> { ssn, name, lot, rating, hourly wages, hours worked}

• For brevity, we will write this FD as S -> SNLRWH, using a
single letter to denote each attribute

• In addition, the constraint that the hourly wages attribute is
determined by the rating attribute is an

FD: R -> W.

38

Constraints on a Relationship Set

• The previous example illustrated how FDs can help to
rene the subjective decisions made during ER design,

• but one could argue that the best possible ER diagram
would have led to the same nal set of relations.

• Our next example shows how FD information can lead to
a set of relations that eliminates some redundancy
problems and is unlikely to be arrived at solely through
ER design.

39

Identifying Attributes of Entities
• in particular, it shows that attributes can easily

be associated with the `wrong' entity set
during ER design.

• The ER diagram shows a relationship set
called Works In that is similar to the Works In
relationship set

• Using the key constraint, we can translate this
ER diagram into two relations:

• Workers(ssn, name, lot, did, since)

40

Identifying Entity Sets
• Let Reserves contain attributes S, B, and D as before, indicating

that sailor S has a reservation for boat B on day D.

• In addition, let there be an attribute C denoting the credit card
to which the reservation is charged.

• Suppose that every sailor uses a unique credit card for
reservations. This constraint is expressed by the FD S -> C. This
constraint indicates that in relation Reserves, we store the credit
card number for a sailor as often as we have reservations for
that

• sailor, and we have redundancy and potential update anomalies.

41

Multivalued Dependencies
• Suppose that we have a relation with

attributes course, teacher, and book, which
we denote as CTB.

• The meaning of a tuple is that teacher T can
teach course C, and book B is a recommended
text for the course.

• There are no FDs; the key is CTB. However, the
recommended texts for a course are
independent of the instructor.

42

There are three points to note here:
 The relation schema CTB is in BCNF; thus we would not

consider decomposing it further if we looked only at the FDs
that hold over CTB.

 There is redundancy. The fact that Green can teach
Physics101 is recorded once per recommended text for the
course. Similarly, the fact that Optics is a text for Physics101 is
recorded once per potential teacher.

 The redundancy can be eliminated by decomposing CTB into
CT and CB.

 Let R be a relation schema and let X and Y be subsets of the
attributes of R. Intuitively,

 the multivalued dependency X !! Y is said to hold over R if, in
every legal

43

• The redundancy in this example is due to the constraint
that the texts for a course are independent of the
instructors, which cannot be epressed in terms of FDs.

• This constraint is an example of a multivalued
dependency, or MVD. Ideally, we should model this
situation using two binary relationship sets, Instructors
with attributes CT and Text with attributes CB.

• Because these are two essentially independent
relationships, modeling them with a single ternary
relationship set with attributes CTB is inappropriate.

44

• Three of the additional rules involve only MVDs:

• MVD Complementation: If X →→Y, then X →→ R − XY

• MVD Augmentation: If X →→ Y and W > Z, then

WX →→ YZ.

• MVD Transitivity: If X →→ Y and Y →→ Z, then

X →→ (Z − Y).

• Fourth Normal Form

• R is said to be in fourth normal form (4NF) if for every MVD X
→→Y that holds over R, one of the following statements is true:

• Y subset of X or XY = R, or

• X is a superkey.

45

Join Dependencies
• A join dependency is a further generalization of MVDs. A join

dependency (JD) ∞{ R1,….. Rn } is said to hold over a relation
R if R1,…. Rn is a lossless-join decomposition of R.

• An MVD X ->-> Y over a relation R can be expressed as the join
dependency ∞ { XY,X(R−Y)}

• As an example, in the CTB relation, the MVD C ->->T can be
expressed as the join dependency ∞{ CT, CB}

• Unlike FDs and MVDs, there is no set of sound and complete
inference rules for JDs.

46

Fifth Normal Form
• A relation schema R is said to be in fth normal form (5NF) if

for every JD ∞{ R1,…. Rn } that holds over R, one of the
following statements is true:

• Ri = R for some i, or

• The JD is implied by the set of those FDs over R in which the
left side is a key for R.

• The following result, also due to Date and Fagin, identies
conditions|again, detected using only FD information|under
which we can safely ignore JD information.

• If a relation schema is in 3NF and each of its keys consists of a
single attribute,it is also in 5NF.

47

Inclusion Dependencies
• MVDs and JDs can be used to guide database design, as we

have seen, although they are less common than FDs and
harder to recognize and reason about.

• In contrast, inclusion dependencies are very intuitive and
quite common. However, they typically have little influence on
database design

• The main point to bear in mind is that we should not split
groups of attributes that participate in an inclusion
dependency.

• Most inclusion dependencies in practice are key-based, that
is, involve only keys.

48

Recovery System

• Modifying the database without ensuring that the

transaction will commit may leave the database

in an inconsistent state.

• Consider transaction Ti that transfers $50 from

account A to account B; goal is either to perform

all database modifications made by Ti or none at

all.

• Several output operations may be required for Ti

(to output A and B). A failure may occur after one

of these modifications have been made but before

all of them are made.

1

Recovery and Atomicity (Cont.)

• To ensure atomicity despite failures, we first output

information describing the modifications to stable

storage without modifying the database itself.

• We study two approaches:

– log-based recovery, and

– shadow-paging

• We assume (initially) that transactions run serially,

that is, one after the other.

2

Recovery Algorithms
• Recovery algorithms are techniques to ensure

database consistency and transaction atomicity and

durability despite failures

– Focus of this chapter

• Recovery algorithms have two parts

1. Actions taken during normal transaction

processing to ensure enough information exists

to recover from failures

2. Actions taken after a failure to recover the

database contents to a state that ensures

atomicity, consistency and durability

3

Log-Based Recovery

• A log is kept on stable storage.

– The log is a sequence of log records, and maintains a
record of update activities on the database.

• When transaction Ti starts, it registers itself by writing a
<Ti start>log record

• Before Ti executes write(X), a log record <Ti, X, V1, V2> is
written, where V1 is the value of X before the write, and V2

is the value to be written to X.

– Log record notes that Ti has performed a write on data
item Xj Xj had value V1 before the write, and will have
value V2 after the write.

• When Ti finishes it last statement, the log record <Ti

commit> is written.

• We assume for now that log records are written directly to
stable storage (that is, they are not buffered)

• Two approaches using logs

– Deferred database modification

– Immediate database modification

4

Deferred Database Modification

• The deferred database modification scheme

records all modifications to the log, but defers

all the writes to after partial commit.

• Assume that transactions execute serially

• Transaction starts by writing <Ti start> record

to log.

• A write(X) operation results in a log record <Ti,

X, V> being written, where V is the new value for

X

– Note: old value is not needed for this scheme

• The write is not performed on X at this time,

but is deferred.

• When Ti partially commits, <Ti commit> is

written to the log

• Finally, the log records are read and used to

actually execute the previously deferred writes.
5

Deferred Database Modification (Cont.)

• During recovery after a crash, a transaction needs

to be redone if and only if both <Ti start> and<Ti

commit> are there in the log.

• Redoing a transaction Ti (redoTi) sets the value of

all data items updated by the transaction to the

new values.

• Crashes can occur while

– the transaction is executing the original

updates, or

– while recovery action is being taken

• example transactionsT0 and T1 (T0 executes before

T1):T0: read (A) T1 : read (C)

A: - A - 50 C:-C- 100

Write (A) write (C)

read (B)

B:- B + 50

write (B)
6

<t0 start>

<t0,A,950>

<t0,B,2050>

<t0,commit>

<t1,start>

<t1,c,600>

<t1,commit>

Portion of log

Log database

<t0 start>

<t0,A,950>

<t0,B,2050>

<t0,commit>

A=950

B=2050

<t1,start>

<t1,c,600>

<t1,commit>

C=600
7

Deferred Database Modification (Cont.)

• Below we show the log as it appears at three
instances of time.

• If log on stable storage at time of crash is as in case:
(a) No redo actions need to be taken

(b) redo(T0) must be performed since <T0 commit> is
present

(c) redo(T0) must be performed followed by redo(T1) since
<T0 commit> and <Ti commit> are present 8

Immediate Database Modification

• The immediate database modification scheme

allows database updates of an uncommitted

transaction to be made as the writes are issued

– since undoing may be needed, update logs

must have both old value and new value

• Update log record must be written before

database item is written

– We assume that the log record is output

directly to stable storage

– Can be extended to postpone log record

output, so long as prior to execution of an

output(B) operation for a data block B, all log

records corresponding to items B must be

flushed to stable storage

9

Immediate Database Modification

• Output of updated blocks can take place at any time

before or after transaction commit

<to start>

<t0,A,1000,950>

<t0,B,2000,2050>

<t0 commit>

<t1 start>

<t1 start>

<t1,C,700,600>

<t1 commit>

• Recovery procedure has two operations instead of one:

– undo(Ti) restores the value of all data items updated

by Ti to their old values, going backwards from the last

log record for Ti

– redo(Ti) sets the value of all data items updated by Ti

to the new values, going forward from the first log

record for Ti 10

Immediate Database Modification (Cont.)

• Both operations must be idempotent

– That is, even if the operation is executed
multiple times the effect is the same as if
it is executed once

• Needed since operations may get re-
executed during recovery

• When recovering after failure:

– Transaction Ti needs to be undone if the
log contains the record <Ti start>, but does
not contain the record <Ti commit>.

– Transaction Ti needs to be redone if the log
contains both the record <Ti start> and the
record <Ti commit>.

• Undo operations are performed first, then
redo operations.

11

Immediate Database Modification Example

Log Write Output

<T0 start>

<T0, A, 1000, 950>
To, B, 2000, 2050

A = 950
B = 2050

<T0 commit>

<T1 start>
<T1, C, 700, 600>

C = 600

BB, BC

<T1 commit>
BA

• Note: BX denotes block containing X.

x1

12

Immediate DB Modification Recovery Example

Below we show the log as it appears at three

instances of time.

Recovery actions in each case above are:
(a) undo (T0): B is restored to 2000 and A to 1000.

(b) undo (T1) and redo (T0): C is restored to 700,

and then A and B are set to 950 and 2050

respectively.

(c) redo (T0) and redo (T1): A and B are set to 950
and 2050 respectively. Then C is set to 600

13

Checkpoints

• Problems in recovery procedure as discussed earlier

:

1. searching the entire log is time-consuming

2. we might unnecessarily redo transactions which

have already output their updates to the

database.

• Streamline recovery procedure by periodically

performing checkpointing

1. Output all log records currently residing in main

memory onto stable storage.

2. Output all modified buffer blocks to the disk.

3. Write a log record < checkpoint> onto stable

storage.

14

Checkpoints (Cont.)

• During recovery we need to consider only the most

recent transaction Ti that started before the

checkpoint, and transactions that started after Ti.

1. Scan backwards from end of log to find the most

recent <checkpoint> record

2. Continue scanning backwards till a record <Ti

start> is found.

3. Need only consider the part of log following above

start record. Earlier part of log can be ignored

during recovery, and can be erased whenever

desired.

4. For all transactions (starting from Ti or later) with

no <Ti commit>, execute undo(Ti). (Done only in

case of immediate modification.)

5. Scanning forward in the log, for all transactions

starting from Ti or later with a <Ti commit>,

execute redo(Ti). 15

Example of Checkpoints

• T1 can be ignored (updates already output to disk

due to checkpoint)

• T2 and T3 redone.

• T4 undone

Tc
Tf

T1

T2

T3

T4

checkpoint system failure

16

Recovery With Concurrent Transactions

• We modify the log-based recovery schemes to allow
multiple transactions to execute concurrently.

– All transactions share a single disk buffer and
a single log

– A buffer block can have data items updated
by one or more transactions

1)Interaction with concurrency control

• We assume concurrency control using strict
two-phase locking;

– i.e. the updates of uncommitted transactions
should not be visible to other transactions
• Otherwise how to perform undo if T1 updates A,

then T2 updates A and commits, and finally T1 has
to abort?

• Logging is done as described earlier.

– Log records of different transactions may be
interspersed in the log. 17

Recovery With Concurrent Transactions

• 2)Transaction Rollback

• We rollback a failed transaction ,Ti by using log

• System scans log backward.

• Scanning terminates when system finds<ti,start>

• Ex:<Ti,A,10,20>

• <Tj,A,20,30>

• Backward scanning correct. result:10

• Forward scanning incorrect. result:20

18

Recovery With Concurrent Transactions

• 3)checkpoints

• The checkpointing technique and actions taken
on recovery have to be changed

– since several transactions may be active when a
checkpoint is performed.

• Checkpoints are performed as before, except that
the checkpoint log record is now of the form

< checkpoint L> where L is the list of transactions
active at the time of the checkpoint

– We assume no updates are in progress either
on biffer blocks or on log while the checkpoint
is carried out (will relax this later)

– A fuzzy checkpoint is a checkpoint where
transactions are allowed to perform updates
even while buffer blocks are being written out.

19

Recovery With Concurrent Transactions (Cont.)

• 4)restart recovery

• When the system recovers from a crash, it first
does the following:

1.Initialize undo-list and redo-list to empty

2.Scan the log backwards from the end,
stopping when the first <checkpoint L>
record is found.
For each record found during the backward
scan:

 if the record is <Ti commit>, add Ti to redo-
list

 if the record is <Ti start>, then if Ti is not
in redo-list, add Ti to undo-list

3.For every Ti in L, if Ti is not in redo-list, add
Ti to undo-list 20

Recovery With Concurrent Transactions (Cont.)
• At this point undo-list consists of incomplete

transactions which must be undone, and redo-list

consists of finished transactions that must be

redone.

• Recovery now continues as follows:

1. Scan log backwards from most recent record,

stopping when <Ti start> records have been

encountered for every Ti in undo-list.

 During the scan, perform undo for each log record

that belongs to a transaction in undo-list.

2. Locate the most recent <checkpoint L> record.

3. Scan log forwards from the <checkpoint L>

record till the end of the log.

 During the scan, perform redo for each log record

that belongs to a transaction on redo-list

21

Example of Recovery

• Go over the steps of the recovery algorithm on the
following log:

<T0 start>

<T0, A, 0, 10>

<T0 commit>

<T1 start> /* Scan at step 1 comes up to here */

<T1, B, 0, 10>

<T2 start>

<T2, C, 0, 10>

<T2, C, 10, 20>

<checkpoint {T1, T2}>

<T3 start>

<T3, A, 10, 20>

<T3, D, 0, 10>

<T3 commit>

22

BUFFER MANAGEMENT

• 1.Log Record Buffering

• Log record buffering: log records are buffered in

main memory, instead of of being output directly

to stable storage.

– Log records are output to stable storage when a

block of log records in the buffer is full, or a log

force operation is executed.

• Log force is performed to commit a transaction by

forcing all its log records (including the commit

record) to stable storage.

• Several log records can thus be output using a

single output operation, reducing the I/O cost.

23

Log Record Buffering (Cont.)

• The rules below must be followed if log records are

buffered:

– Log records are output to stable storage in the

order in which they are created.

– Transaction Ti enters the commit state only

when the log record

<Ti commit> has been output to stable storage.

– Before a block of data in main memory is output

to the database, all log records pertaining to data

in that block must have been output to stable

storage.

• This rule is called the write-ahead logging or WAL rule

– Strictly speaking WAL only requires undo information

to be output

24

2.Database Buffering

• Database maintains an in-memory buffer of data
blocks

– When a new block is needed, if buffer is full an
existing block needs to be removed from buffer

– If the block chosen for removal has been updated,
it must be output to disk

• If a block with uncommitted updates is output to
disk, log records with undo information for the
updates are output to the log on stable storage first

– (Write ahead logging)

• No updates should be in progress on a block when it
is output to disk. Can be ensured as follows.

– Before writing a data item, transaction acquires
exclusive lock on block containing the data item

– Lock can be released once the write is completed.
• Such locks held for short duration are called latches.

– Before a block is output to disk, the system
acquires an exclusive latch on the block
• Ensures no update can be in progress on the block

25

3.Operating system role in buffer management

• Database buffer can be implemented either

– in an area of real main-memory reserved for
the database, or

– in virtual memory

• Implementing buffer in reserved main-memory
has drawbacks:

– Memory is partitioned before-hand between
database buffer and applications, limiting
flexibility.

– Needs may change, and although operating
system knows best how memory should be
divided up at any time, it cannot change the
partitioning of memory.

• Database buffers are generally implemented in
virtual memory in spite of some drawbacks:

– When operating system needs to evict a page
that has been modified, the page is written to
swap space on disk.

26

Buffer Management (Cont.)

– When database decides to write buffer page
to disk, buffer page may be in swap space,
and may have to be read from swap space
on disk and output to the database on
disk, resulting in extra I/O!

• Known as dual paging problem.

– Ideally when OS needs to evict a page from
the buffer, it should pass control to
database, which in turn should

1.Output the page to database instead of
to swap space (making sure to output
log records first), if it is modified

2.Release the page from the buffer, for the
OS to use

Dual paging can thus be avoided, but
common operating systems do not
support such functionality. 27

4.Failure with Loss of Nonvolatile Storage

• So far we assumed no loss of non-volatile
storage

• Technique similar to checkpointing used to
deal with loss of non-volatile storage

– Periodically dump the entire content of the
database to stable storage

– No transaction may be active during the
dump procedure; a procedure similar to
checkpointing must take place

• Output all log records currently residing in main
memory onto stable storage.

• Output all buffer blocks onto the disk.

• Copy the contents of the database to stable
storage.

• Output a record <dump> to log on stable storage.

28

Recovering from Failure of Non-Volatile Storage

• To recover from disk failure

– restore database from most recent dump.

– Consult the log and redo all transactions that

committed after the dump

• Can be extended to allow transactions to be

active during dump; known as fuzzy dump or

online dump

29

Advanced Recovery: Key Features

• Support for high-concurrency locking

techniques, such as those used for B+-tree

concurrency control, which release locks early

– Supports “logical undo”

• Recovery based on “repeating history”, whereby

recovery executes exactly the same actions as

normal processing

– including redo of log records of incomplete

transactions, followed by subsequent undo

– Key benefits

• supports logical undo

• easier to understand/show correctness

30

Advanced Recovery: Logical Undo Logging

• Operations like B+-tree insertions and deletions
release locks early.

– They cannot be undone by restoring old
values (physical undo), since once a lock is
released, other transactions may have
updated the B+-tree.

– Instead, insertions (resp. deletions) are
undone by executing a deletion (resp.
insertion) operation (known as logical undo).

• For such operations, undo log records should
contain the undo operation to be executed

– Such logging is called logical undo logging, in
contrast to physical undo logging

• Operations are called logical operations

31

Advanced Recovery: Physical Redo

• Redo information is logged physically (that is, new

value for each write) even for operations with logical

undo

– Logical redo is very complicated since database

state on disk may not be “operation consistent”

when recovery starts

– Physical redo logging does not conflict with early

lock release

32

Advanced Recovery: Operation Logging

• Operation logging is done as follows:

1.When operation starts, log <Ti, Oj, operation-

begin>. Here Oj is a unique identifier of the

operation instance.

2.While operation is executing, normal log records

with physical redo and physical undo information

are logged.

3.When operation completes, <Ti, Oj, operation-

end, U> is logged, where U contains information

needed to perform a logical undo information.

Example: insert of (key, record-id) pair (K5, RID7) into

index I9

<T1, O1, operation-begin>

….

<T1, X, 10, K5>

<T1, Y, 45, RID7>

<T1, O1, operation-end, (delete I9, K5, RID7)>

Physical redo of steps in insert

33

Advanced Recovery: Operation Logging (Cont.)
• If crash/rollback occurs before operation

completes:

– the operation-end log record is not found,

and

– the physical undo information is used to

undo operation.

• If crash/rollback occurs after the operation

completes:

– the operation-end log record is found, and in

this case

– logical undo is performed using U; the

physical undo information for the operation

is ignored.

• Redo of operation (after crash) still uses

physical redo information. 34

Advanced Recovery: Txn Rollback

Rollback of transaction Ti is done as follows:

• Scan the log backwards

1. If a log record <Ti, X, V1, V2> is found, perform the

undo and log a special redo-only log record <Ti, X,

V1>.

2. If a <Ti, Oj, operation-end, U> record is found

• Rollback the operation logically using the undo

information U.

– Updates performed during roll back are logged

just like during normal operation execution.

– At the end of the operation rollback, instead

of logging an operation-end record, generate

a record

<Ti, Oj, operation-abort>.

• Skip all preceding log records for Ti until the

record <Ti, Oj operation-begin> is found

35

Advanced Recovery: Txn Rollback (Cont.)

• Scan the log backwards (cont.):

3. If a redo-only record is found ignore it

4. If a <Ti, Oj, operation-abort> record is found:

 skip all preceding log records for Ti until the record

<Ti, Oj, operation-begin> is found.

5. Stop the scan when the record <Ti, start> is

found

6. Add a <Ti, abort> record to the log

Some points to note:

• Cases 3 and 4 above can occur only if the database

crashes while a transaction is being rolled back.

• Skipping of log records as in case 4 is important to

prevent multiple rollback of the same operation.

36

Advanced Recovery: Txn Rollback Example

• Example with a complete and an incomplete operation

<T1, start>

<T1, O1, operation-begin>

….

<T1, X, 10, K5>

<T1, Y, 45, RID7>

<T1, O1, operation-end, (delete I9, K5, RID7)>

<T1, O2, operation-begin>

<T1, Z, 45, 70>

 T1 Rollback begins here

<T1, Z, 45>  redo-only log record during physical undo (of incomplete O2)

<T1, Y, .., ..>  Normal redo records for logical undo of O1

…

<T1, O1, operation-abort>  What if crash occurred immediately after this?

<T1, abort>

37

Advanced Recovery: Crash Recovery

The following actions are taken when recovering from

system crash

1. (Redo phase): Scan log forward from last < checkpoint

L> record till end of log

1. Repeat history by physically redoing all updates of

all transactions,

2. Create an undo-list during the scan as follows

• undo-list is set to L initially

• Whenever <Ti start> is found Ti is added to undo-

list

• Whenever <Ti commit> or <Ti abort> is found, Ti

is deleted from undo-list

This brings database to state as of crash, with

committed as well as uncommitted transactions

having been redone.

Now undo-list contains transactions that are incomplete,

that is, have neither committed nor been fully rolled

back.

38

Advanced Recovery: Crash Recovery (Cont.)

Recovery from system crash (cont.)

2. (Undo phase): Scan log backwards, performing

undo on log records of transactions found in

undo-list.

– Log records of transactions being rolled back

are processed as described earlier, as they

are found

• Single shared scan for all transactions being undone

– When <Ti start> is found for a transaction Ti

in undo-list, write a <Ti abort> log record.

– Stop scan when <Ti start> records have been

found for all Ti in undo-list

• This undoes the effects of incomplete

transactions (those with neither commit nor

abort log records). Recovery is now complete.

39

Advanced Recovery: Checkpointing

• Checkpointing is done as follows:

1. Output all log records in memory to stable

storage

2. Output to disk all modified buffer blocks

3. put to log on stable storage a < checkpoint L>

record.

Transactions are not allowed to perform any actions

while checkpointing is in progress.

• Fuzzy checkpointing allows transactions to progress

while the most time consuming parts of

checkpointing are in progress

40

Advanced Recovery: Fuzzy Checkpointing

• Fuzzy checkpointing is done as follows:

1. Temporarily stop all updates by transactions

2. Write a <checkpoint L> log record and force log to
stable storage

3. Note list M of modified buffer blocks

4. Now permit transactions to proceed with their
actions

5. Output to disk all modified buffer blocks in list M

 blocks should not be updated while being output

 Follow WAL: all log records pertaining to a block
must be output before the block is output

6. Store a pointer to the checkpoint record in a fixed
position last_checkpoint on disk

……

<checkpoint L>

…..

<checkpoint L>

…..

Log

last_checkpoint

41

Advanced Rec: Fuzzy Checkpointing (Cont.)

• When recovering using a fuzzy checkpoint, start

scan from the checkpoint record pointed to by

last_checkpoint

– Log records before last_checkpoint have their

updates reflected in database on disk, and need

not be redone.

– Incomplete checkpoints, where system had

crashed while performing checkpoint, are

handled safely

42

ARIES

• ARIES is a state of the art recovery method

– Incorporates numerous optimizations to reduce
overheads during normal processing and to speed up
recovery

– The “advanced recovery algorithm” we studied earlier
is modeled after ARIES, but greatly simplified by
removing optimizations

• Unlike the advanced recovery algorithm, ARIES

1. Uses log sequence number (LSN) to identify log
records

• Stores LSNs in pages to identify what updates have
already been applied to a database page

2. Physiological redo

3. Dirty page table to avoid unnecessary redos during
recovery

4. Fuzzy checkpointing that only records information
about dirty pages, and does not require dirty pages to
be written out at checkpoint time

43

ARIES Optimizations

• Physiological redo

– Affected page is physically identified, action
within page can be logical
• Used to reduce logging overheads

– e.g. when a record is deleted and all other records
have to be moved to fill hole

» Physiological redo can log just the record
deletion

» Physical redo would require logging of old and
new values for much of the page

• Requires page to be output to disk atomically

– Easy to achieve with hardware RAID, also supported
by some disk systems

– Incomplete page output can be detected by
checksum techniques,

» But extra actions are required for recovery

» Treated as a media failure

44

ARIES Data Structures

• ARIES uses several data structures

– Log sequence number (LSN) identifies each log

record

• Must be sequentially increasing

• Typically an offset from beginning of log file to allow fast

access

– Easily extended to handle multiple log files

– Page LSN

– Log records of several different types

– Dirty page table

45

ARIES Data Structures: Page LSN

• Each page contains a PageLSN which is the LSN of

the last log record whose effects are reflected on the

page

– To update a page:

• X-latch the page, and write the log record

• Update the page

• Record the LSN of the log record in PageLSN

• Unlock page

– To flush page to disk, must first S-latch page

• Thus page state on disk is operation consistent

– Required to support physiological redo

– PageLSN is used during recovery to prevent

repeated redo

• Thus ensuring idempotence

46

ARIES Data Structures: Log Record

• Each log record contains LSN of previous log record of

the same transaction

– LSN in log record may be implicit

• Special redo-only log record called compensation log

record (CLR) used to log actions taken during recovery

that never need to be undone

– Serves the role of operation-abort log records used in

advanced recovery algorithm

– Has a field UndoNextLSN to note next (earlier) record

to be undone

• Records in between would have already been

undone

• Required to avoid repeated undo of already

undone actions

LSN TransID PrevLSN RedoInfo UndoInfo

LSN TransID UndoNextLSN RedoInfo

1 2 3 4 4' 3' 2' 1'
47

ARIES Data Structures: DirtyPage Table

• DirtyPageTable

– List of pages in the buffer that have been updated

– Contains, for each such page

• PageLSN of the page

• RecLSN is an LSN such that log records before this LSN

have already been applied to the page version on disk

– Set to current end of log when a page is inserted into

dirty page table (just before being updated)

– Recorded in checkpoints, helps to minimize redo

work

Page PLSN RLSN

P1 25 17

P6 16 15

P23 19 18

25

P1

16

P6

19

P23

DirtyPage Table
9

P15

Buffer Pool

P1 16
…

P6 12
..

P15 9
..

P23 11

Page LSNs

on disk

48

ARIES Data Structures: Checkpoint Log

• Checkpoint log record

– Contains:

• DirtyPageTable and list of active transactions

• For each active transaction, LastLSN, the LSN of the last

log record written by the transaction

– Fixed position on disk notes LSN of last

completed checkpoint log record

• Dirty pages are not written out at checkpoint time

• Instead, they are flushed out continuously, in the

background

• Checkpoint is thus very low overhead

– can be done frequently

49

ARIES Recovery Algorithm

ARIES recovery involves three passes

• Analysis pass: Determines

– Which transactions to undo

– Which pages were dirty (disk version not up to

date) at time of crash

– RedoLSN: LSN from which redo should start

• Redo pass:

– Repeats history, redoing all actions from RedoLSN

• RecLSN and PageLSNs are used to avoid redoing actions

already reflected on page

• Undo pass:

– Rolls back all incomplete transactions

• Transactions whose abort was complete earlier are not

undone

– Key idea: no need to undo these transactions: earlier

undo actions were logged, and are redone as required

50

Remote Backup Systems

• Remote backup systems provide high availability by

allowing transaction processing to continue even if

the primary site is destroyed.

51

Remote Backup Systems (Cont.)

• Detection of failure: Backup site must detect when

primary site has failed

– to distinguish primary site failure from link failure

maintain several communication links between the

primary and the remote backup.

– Heart-beat messages

• Transfer of control:

– To take over control backup site first perform

recovery using its copy of the database and all the

long records it has received from the primary.

• Thus, completed transactions are redone and

incomplete transactions are rolled back.

– When the backup site takes over processing it

becomes the new primary

– To transfer control back to old primary when it

recovers, old primary must receive redo logs from

the old backup and apply all updates locally.
52

Remote Backup Systems (Cont.)

• Time to recover: To reduce delay in takeover,

backup site periodically proceses the redo log

records (in effect, performing recovery from

previous database state), performs a checkpoint,

and can then delete earlier parts of the log.

• Hot-Spare configuration permits very fast

takeover:

– Backup continually processes redo log record

as they arrive, applying the updates locally.

– When failure of the primary is detected the

backup rolls back incomplete transactions, and

is ready to process new transactions.

• Alternative to remote backup: distributed

database with replicated data

– Remote backup is faster and cheaper, but less

tolerant to failure
53

Remote Backup Systems (Cont.)

• Ensure durability of updates by delaying
transaction commit until update is logged at
backup; avoid this delay by permitting lower
degrees of durability.

• One-safe: commit as soon as transaction’s commit
log record is written at primary

– Problem: updates may not arrive at backup
before it takes over.

• Two-very-safe: commit when transaction’s commit
log record is written at primary and backup

– Reduces availability since transactions cannot
commit if either site fails.

• Two-safe: proceed as in two-very-safe if both
primary and backup are active. If only the primary
is active, the transaction commits as soon as is
commit log record is written at the primary.

– Better availability than two-very-safe; avoids
problem of lost transactions in one-safe. 54

DATABASE MANAGEMENT SYSTEMS

UNIT-V

1

Data on External Storage
• Disks: Can retrieve random page at fixed cost

– But reading several consecutive pages is much cheaper
than reading them in random order

• Tapes: Can only read pages in sequence

– Cheaper than disks; used for archival storage

• File organization: Method of arranging a file of records on
external storage.

– Record id (rid) is sufficient to physically locate record

– Indexes are data structures that allow us to find the
record ids of records with given values in index search
key fields

• Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index layers
make calls to the buffer manager.

2

Alternative File Organizations

Many alternatives exist, each ideal for some situations, and not

so good in others:

– Heap (random order) files: Suitable when typical

access is a file scan retrieving all records.

– Sorted Files: Best if records must be retrieved in

some order, or only a `range’ of records is needed.

– Indexes: Data structures to organize records via trees

or hashing.

• Like sorted files, they speed up searches for a

subset of records, based on values in certain

(“search key”) fields

• Updates are much faster than in sorted files.

3

Indexes
• An index on a file speeds up selections on the

search key fields for the index.

– Any subset of the fields of a relation can be
the search key for an index on the relation.

– Search key is not the same as key (minimal
set of fields that uniquely identify a record in
a relation).

• An index contains a collection of data entries,
and supports efficient retrieval of all data
entries k* with a given key value k.

– Given data entry k*, we can find record with
key k in at most one disk I/O

4

Alternatives for Data Entry k* in Index
 In a data entry k* we can store:

◦ Data record with key value k, or

◦ <k, rid of data record with search key value k>, or

◦ <k, list of rids of data records with search key k>

 Choice of alternative for data entries is orthogonal
to the indexing technique used to locate data entries
with a given key value k.

◦ Examples of indexing techniques: B+ trees, hash-
based structures

◦ Typically, index contains auxiliary information that
directs searches to the desired data entries

5

Alternatives for Data Entries (Contd.)
• Alternative 1:

– If this is used, index structure is a file
organization for data records (instead of a Heap
file or sorted file).

– At most one index on a given collection of data
records can use Alternative 1. (Otherwise, data
records are duplicated, leading to redundant
storage and potential inconsistency.)

– If data records are very large, # of pages
containing data entries is high. Implies size of
auxiliary information in the index is also large,
typically.

6

Alternatives for Data Entries (Contd.)
• Alternatives 2 and 3:

– Data entries typically much smaller than data

records. So, better than Alternative 1 with large

data records, especially if search keys are small.

(Portion of index structure used to direct search,

which depends on size of data entries, is much

smaller than with Alternative 1.)

– Alternative 3 more compact than Alternative 2,

but leads to variable sized data entries even if

search keys are of fixed length.

7

Index Classification
• Primary vs. secondary: If search key contains

primary key, then called primary index.

– Unique index: Search key contains a candidate

key.

• Clustered vs. unclustered: If order of data records

is the same as, or `close to’, order of data entries,

then called clustered index.

– Alternative 1 implies clustered; in practice,

clustered also implies Alternative 1 (since sorted

files are rare).

– A file can be clustered on at most one search key.

– Cost of retrieving data records through index

varies greatly based on whether index is clustered

or not!
8

Clustered vs. Unclustered Index

• Suppose that Alternative (2) is used for data entries, and that the

data records are stored in a Heap file.

– To build clustered index, first sort the Heap file (with some

free space on each page for future inserts).

– Overflow pages may be needed for inserts. (Thus, order of

data recs is `close to’, but not identical to, the sort order.)

9

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Hash-Based Indexes

• Good for equality selections.

• Index is a collection of buckets.

– Bucket = primary page plus zero or more

overflow pages.

– Buckets contain data entries.

• Hashing function h: h(r) = bucket in which

(data entry for) record r belongs. h looks at the

search key fields of r.

– No need for “index entries” in this scheme.

10

B+ Tree Indexes

11

 Leaf pages contain data entries, and are chained (prev & next)
 Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages

(Sorted by search key)

Leaf

Example B+ Tree

 Find 28*? 29*? All > 15* and < 30*

 Insert/delete: Find data entry in leaf, then change
it. Need to adjust parent sometimes.

◦ And change sometimes bubbles up the tree
12

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries

in leaf level are sorted

B+ Tree: Most Widely Used Index

 Insert/delete at log F N cost; keep tree height-

balanced. (F = fanout, N = # leaf pages)

Minimum 50% occupancy (except for root). Each

node contains d <= m <= 2d entries. The parameter

d is called the order of the tree.

 Supports equality and range-searches efficiently.

13

Index Entries

Data Entries

("Sequence set")

(Direct search)

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.

– average fanout = 133

• Typical capacities:

– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:

– Level 1 = 1 page = 8 Kbytes

– Level 2 = 133 pages = 1 Mbyte

– Level 3 = 17,689 pages = 133 MBytes

14

Cost Model for Our Analysis
We ignore CPU costs, for simplicity:

– B: The number of data pages

– R: Number of records per page

– D: (Average) time to read or write
disk page

– Measuring number of page I/O’s
ignores gains of pre-fetching a
sequence of pages; thus, even I/O cost
is only approximated.

– Average-case analysis; based on
several simplistic assumptions.

15

Comparing File Organizations

• Heap files (random order; insert at eof)

• Sorted files, sorted on <age, sal>

• Clustered B+ tree file, Alternative (1), search key

<age, sal>

• Heap file with unclustered B + tree index on

search key <age, sal>

• Heap file with unclustered hash index on search

key <age, sal>

16

Operations to Compare

• Scan: Fetch all records from disk

• Equality search

• Range selection

• Insert a record

• Delete a record

17

Assumptions in Our Analysis

• Heap Files:

– Equality selection on key; exactly one

match.

• Sorted Files:

– Files compacted after deletions.

• Indexes:

– Alt (2), (3): data entry size = 10% size of

record

– Hash: No overflow buckets.

• 80% page occupancy => File size = 1.25

data size

– Tree: 67% occupancy (this is typical).

• Implies file size = 1.5 data size

18

Assumptions (contd.)

• Scans:

–Leaf levels of a tree-index are
chained.

– Index data-entries plus actual file
scanned for unclustered indexes.

• Range searches:

–We use tree indexes to restrict the
set of data records fetched, but
ignore hash indexes.

19

Cost of Operations

20

 (a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) Heap BD 0.5BD BD 2D Search
+D

(2) Sorted BD Dlog 2B D(log 2 B +
pgs with
match recs)

Search
+ BD

Search
+BD

(3)
Clustered

1.5BD Dlog F 1.5B D(log F 1.5B
+ # pgs w.
match recs)

Search
+ D

Search
+D

(4) Unclust.
Tree index

BD(R+0.15) D(1 +
log F 0.15B)

D(log F 0.15B
+ # pgs w.
match recs)

Search
+ 2D

Search
+ 2D

(5) Unclust.
Hash index

BD(R+0.125) 2D BD Search
+ 2D

Search
+ 2D

Comparision of I/O costs
A heap file offers good storage efficiency,and

supports fast scanning and insertion of records

A sorted file offers good storage efficiency,but

insertion and deletion of records is slow.

 Searches are faster than in heap files

A clustered file offers all advtgs of sorted file and

supports inserts and deletes efficiently.searches

are even faster than in sorted files.

Unclusterd tree and hash indexes offer fast

searches,insertion and deletion but scans and

range searches with many matches are slow

Hash indexes are little faster on equality searches

but doesnot on range searches
21

Understanding the Workload

• For each query in the workload:

– Which relations does it access?

– Which attributes are retrieved?

– Which attributes are involved in selection/join
conditions? How selective are these
conditions likely to be?

• For each update in the workload:

– Which attributes are involved in selection/join
conditions? How selective are these
conditions likely to be?

– The type of update
(INSERT/DELETE/UPDATE), and the attributes
that are affected.

22

Choice of Indexes
• What indexes should we create?

– Which relations should have indexes? What
field(s) should be the search key? Should we
build several indexes?

• For each index, what kind of an index should it be?

– Clustered? Hash/tree?

– Tree based indexes are best alternatives in
sorted files over hash based indexes.

– 2 advtgs:

– 1.We can handle inserts and deletes of data
entries efficiently

– 2.finding the correct leaf page when searching
for record by search key is faster than binary
search for sorted files.

– Disadv: insertions &deletions costly

23

Clustered index organization

• Attributes in WHERE clause are candidates for index keys.

– Exact match condition suggests hash index.

– Range query suggests tree index.

• Clustering is especially useful for range
queries; can also help on equality queries
if there are many duplicates.

• Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.

– Order of attributes is important for range
queries.

– Such indexes can sometimes enable index-
only strategies for important queries.

• For index-only strategies, clustering is not
important!

24

Examples of Clustered Indexes
• B+ tree ndex on E.age can be used to get

qualifying tuples.

– How selective is the
condition?

– Is the index clustered?

• Consider the GROUP BY query.

– If many tuples have E.age >
10, using E.age index and
sorting the retrieved tuples
may be costly.

– Clustered E.dno index may
be better!

• Equality queries and duplicates:

– Clustering on E.hobby helps!
25

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

Indexes with Composite Search Keys
 Composite Search Keys: Search on a

combination of fields.

◦ Equality query: Every field
value is equal to a constant
value. E.g. wrt <sal,age>
index:

 age=20 and sal
=75

◦ Range query: Some field
value is not a constant. E.g.:

 age =20; or age=20
and sal > 10

 Data entries in index sorted by search
key to support range queries.

◦ Lexicographic order, or
◦ Spatial order.

26

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

tradeoffs

• A composite key index can support a broader

range of queries bcoz it matches more selection

conditions

• Index only evaluation strategies are increased

• Disadv:a composite index must be updated in

response to any operation(insert,delete or update)

that modifies any field in search key.

• A composite index is also likely to be larger than

single attribute search key

• For B+ tree index this increases no. of levels

27

Composite Search Keys
 To retrieve Emp records with age=30 AND sal=4000, an

index on <age,sal> would be better than an index on age or
an index on sal.

◦ Choice of index key orthogonal to
clustering etc.

 If condition is: 20<age<30 AND 3000<sal<5000:

◦ Clustered tree index on <age,sal> or
<sal,age> is best.

 If condition is: age=30 AND 3000<sal<5000:

◦ Clustered <age,sal> index much better
than <sal,age> index!

 Composite indexes are larger, updated more often.

28

Composite keys-Index-Only Plans

• A number of

queries can be

answered

without

retrieving any

tuples from one

or more of the

relations

involved if a

suitable index is

available.

29

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>

Tree index!

<E. age,E.sal>
or

<E.sal, E.age>

Tree index!

Creating index in sql

Syntax

Create index indexname on tablename

with structure=Btree,

key=(age,sal);

30

Summary

 Many alternative file organizations exist, each
appropriate in some situation.

 If selection queries are frequent, sorting the file or
building an index is important.
◦ Hash-based indexes only good for

equality search.
◦ Sorted files and tree-based indexes

best for range search; also good for
equality search. (Files rarely kept
sorted in practice; B+ tree index is
better.)

 Index is a collection of data entries plus a way to
quickly find entries with given key values.

31

Summary (Contd.)

 Data entries can be actual data records, <key, rid>
pairs, or <key, rid-list> pairs.
◦ Choice orthogonal to indexing

technique used to locate data entries
with a given key value.

 Can have several indexes on a given file of data
records, each with a different search key.

 Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and dense vs.
sparse. Differences have important consequences
for utility/performance.

32

Example B+ Tree

• Search begins at root, and key comparisons direct it

to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

33

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Introduction
• As for any index, 3 alternatives for data entries k*:

– Data record with key value k

– <k, rid of data record with search
key value k>

– <k, list of rids of data records
with search key k>

• Choice is orthogonal to the indexing technique

used to locate data entries k*.

• Tree-structured indexing techniques support

both range searches and equality searches.

• ISAM: static structure; B+ tree: dynamic,

adjusts gracefully under inserts and deletes.

34

Range Searches

• ``Find all students with gpa > 3.0’’

– If data is in sorted file, do binary
search to find first such student,
then scan to find others.

– Cost of binary search can be quite
high.

• Simple idea: Create an `index’ file.

35

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

ISAM

• Index file may still be quite large. But we can apply

the idea repeatedly!

36

P
0

K
1 P

1
K 2 P

2
K

m
P m

index entry

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

Comments on ISAM

 File creation: Leaf (data) pages allocated
sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

 Index entries: <search key value, page id>; they
`direct’ search for data entries, which are in leaf
pages.

 Search: Start at root; use key comparisons to go to
leaf. Cost log F N ; F = # entries/index pg, N = #
leaf pgs

 Insert: Find leaf data entry belongs to, and put it
there.

 Delete: Find and remove from leaf; if empty
overflow page, de-allocate.

37



Data

Pages

Index Pages

Overflow pages

Example ISAM Tree

• Each node can hold 2 entries; no need for `next-

leaf-page’ pointers. (Why?)

38

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

After Inserting 23*, 48*, 41*, 42* ...

39

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

... Then Deleting 42*, 51*, 97*

40

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Overflow pages,locking considerations
Once ISAM file is created,inserts and deletes

affect only contents of leaf pages.so as a result for
more number of insertions overflow pages
increase.

 Solution:20% of pages sholud be left free when
initially tree is created

The fact that only leaf pages can be modified has
advantage with respect to concurrent access.

When a page is accessed it is typically locked by
the requestor to ensure that it is not concurrently
modified by other users

ADV:Since we know that indexlevel pages are
never modifiedwe can safely omit locking step.

41

Example B+ Tree

• Search begins at root, and key comparisons direct it

to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

42

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Inserting a Data Entry into a B+ Tree
• Find correct leaf L.

• Put data entry onto L.

– If L has enough space, done!

– Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of
L.

• This can happen recursively

– To split index node, redistribute entries evenly,
but push up middle key. (Contrast with leaf
splits.)

• Splits “grow” tree; root split increases height.

– Tree growth: gets wider or one level taller at top.

43

Inserting 8* into Example B+ Tree

 Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

 Note difference
between copy-up
and push-up; be
sure you
understand the
reasons for this.

44

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

Example B+ Tree After Inserting 8*

45

 Notice that root was split, leading to increase in height.

 In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Deleting a Data Entry from a B+ Tree
• Start at root, find leaf L where entry belongs.

• Remove the entry.

– If L is at least half-full, done!

– If L has only d-1 entries,

• Try to re-distribute, borrowing from
sibling (adjacent node with same parent
as L).

• If re-distribution fails, merge L and
sibling.

• If merge occurred, must delete entry (pointing to L or

sibling) from parent of L.

• Merge could propagate to root, decreasing height.
46

Example Tree After (Inserting 8*, Then) Deleting 19*
and 20* ...

• Deleting 19* is easy.

• Deleting 20* is done with re-distribution. Notice

how middle key is copied up.
47

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

... And Then Deleting 24*

Must merge.

Observe `toss’ of index

entry (on right), and

`pull down’ of index

entry (below).

48

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root

30135 17

