DATABASE MANAGEMENT SYSTEMS

UNIT-I

Introduction-Database System Applications

- DBMS contains information about a particular enterprise

Collection of interrelated data
Set of programs to access the data

An environment that is both convenient and efficient
to use

- Database Applications:

Banking: all transactions

Airlines: reservations, schedules
Universities: registration, grades
Sales: customers, products, purchases

Online retailers: order tracking, customized
recommendations

Manufacturing: production, inventory, orders, supply
chain

Human resources: employee records, salaries, tax
deductions

Purpose of Database Systems

In the early days, database applications were built
directly on top of file systems

Drawbacks of using file systems to store data:

Data redundancy and inconsistency
Difficulty in accessing data
Data isolation — multiple files and formats

Integrity problems
Atomicity of updates

- Example: Transfer of funds from one account
to another should either complete or not
happen at all

Concurrent access by multiple users

— Example: Two people reading a balance and
updating it at the same time

Security problems

Files vs. DBMS

File is a collection of related records
Database is collection of related files into different groups

DISADVANTAGES OF FILE ADVANTAGES OF
SYSTEMS DBMS

1 Data v/s program problem: One set of programs
Different programs access different access all data
files

2 Data inconsistency problem Related data resides
As same data resides in many in same storage
different files across the programs location minimizing
data inconsistency increases data inconsistency

3 Data isolation problem As data resides in
As data is scattered in various files same storage location
and in different formats it is it is easy to write new
difficult to write new programs to programs to retrieve
retrieve appropriate data appropriate data

4 Security problem:Every user can Every user can access

acces all data only needed data

Integrity problem:Develop new consistent
range in exixting systems appropriate code
must be added in various application
program

Problem in accessing data:new appropriate
program has to be written each time

Atomicity problem:If system fails it must
ensure data are restored to consistent state

Data Redundancy:same information is
dupliacated in several files ,so higher
storage and access cost

Concurrency problem:Due to redundant
data if many users access same copy leads
to concurrency problem

Integrity
Solution:appropriate code
must be added in one
application program that
access all data at one time

DBMS consists of one or
more programs to extract
needed information

It ensures atomicity

One copy of data resides so
minimium storage and access
cost

Avoids concurrency problem
since data last changed
remains permanent

Levels of Abstraction

* Physical level: describes how a record (e.g., customer)
is stored.

- Logical level: describes data stored in database, and
the relationships among the data.

type customer = record

customer_id : string;

customer_name : string;

customer_street : string;

customer_city : string;

end;
* View level: application programs hide details of data

types. Views can also hide information (such as an
employee’s salary) for security purposes.

View of Data

An architecture for a database system

view |

view level

view 7

VIEW N

logical
level

physical
level

Instances and Schemas

Instance — the actual content of the database at a particular
point in time

— Analogous to the value of a variable

Similar to types and variables in programming languages
Schema — the logical structure of the database

— Example: The database consists of information about a
set of customers and accounts and the relationship
between them)

— Physical schema: database design at the physical level
— Logical schema: database design at the logical level

Example: University Database

 Conceptual schema:
- Students(sid: string, name: string, login: string,
age: integer, gpa:real)
- Courses(cid: string, cname:string, credits:integer)
- Enrolled(sid:string, cid:string, grade:string)
* Physical schema:
- Relations stored as unordered files.
- Index on first column of Students.
 External Schema (View):
- Course_info(cid:string,enrollment:integer)

Data Independence

* The ability to modify the schema in one level
without affecting the schema in next higher level is

called data independence.

- Logical data independence: The ability to
modify the logical schema without affecting the
schema in next higher level (external schema.)

- Physical Data Independence - the ability to

modify the physical schema without changing the
logical schema

10

Data Models

Underlying the structure of database is data
model.

[t is a collection of tools for describing

— Data ,Data relationships,Data semantics &
con31stency constraints

Data model types
Relational model

Entity-Relationship data model (mainly for
database design)

Object-based data models (Object-oriented and
Object-relational)

Semi structured data model (XML)

Other older models:

— Network model
— Hierarchical model

11

Relational Model

» Example of tabular data in the relational mggglk

/

customer—_id

clstomer_name

customer_street

customer—_city

account_number

192-83-7465
192-83-7465
677-89-9011
182-73-6091
321-12-3123
336-66-9999
019-28-3746

Johnson
Johnson
Hayes
Turner
Jones

Lindsay
Smith

12 Alma St.

12 Alma St.
3 Main St.

123 Putnam St.

100 Main St.
175 Park Ave.
72 North St.

Palo Alto
Palo Alto
Harrison
Stamford
Harrison
Pittsfield
Rye

A-101
A-201
A-102
A-305
A-217
A-222
A-201

12

A Sample Relational Database

custorer_id | cusfmrwr_rmmc’| customer_street | customer_city
192-83-7465 Johnson 12 Alma St. Palo Alto
677-89-0011 Haves 3 Main St. Harrison
182-75-6091 Turner 123 Putnam Ave. Stamford
321-12-3123 Jones 100 Main St. Harrison
336-66-9999 Lindsay 175 Park Ave. Pittstield
019-25-3746 Smith 72 North St. Rye

(a) The customer table

| account_number | balance |

A-101 500
MA-215 700
A-102 400
A-305 350
A-201 900
A-217 750
A-222 700

(b) The account table

| customer_id | account_number |

192-83-7465 A-101
192-83-7465 A-201
019-28-3746 A-215
677-89-9011 A-102
182-73-6091 A-305
321-12-3123 A-217
336-66-9999 A-222
019-28-3746 A-201

{c) The depositor table

Entity-Relationship Model

An entity is a thing or object in the real world that is distinguishable from

other objects.
P Rectangles represent entities

» Diamonds represent relationship among entities.

P Ellipse represent attributes

P Lines represent link of attributes to entities to relationships.

customer-name customer-street
customer-id customer-city

customer

depositor

account-number balance

account

Object based data models

It is based on object oriented programming language paradigm.
Inheritance,object identity and encapsulations

It can be seen as extending the E-R model with opps concepts.

Semi structured data models

Semi structured data models permit the specification of data where

individual data items of same type may have different set of attributes.

XML language is widely used to represent semi structured data

15

Database languages

2 types

Data definition language- to define the data in the
database

Data Manipulation language- to manipulate the data in
the database

16

Data Definition Language (DDL)

Specification notation for defining the database
schema

DDL is used to create the database, alter database and
delete database.

Example: create table account (
account_number char(10),

branch_name char(10),
balance integer)

DDL compiler generates a set of tables stored in a
data dictionary

Data dictionary contains metadata (i.e., data about
data)

— DDL is used by conceptual schema

— The internal DDL or also known as Data storage
and definition language specifies the storage
structure and access methods used

 DD1 commands are Create, Alter and Drop only.

17

Data values that are stored in database must satisfy certain consistency
constraints

Domain constraints(DC):A domain of possible values must be associated
with every attribute

Referential Integrity

Assertions:conditions that database must always satisfy

Authorization

18

Data Manipulation Language (DML)
Language for accessing and manipulating the data organized
by the appropriate data model

— DML also known as query language

— DML is used to retrieve data from database, insertions of
new data into database ,deletion or modification of
existing data.

Two classes of languages

— Procedural — user specifies what data is required and how
to get those data

— Declarative (nonprocedural) — user specifies what data is
required without specifying how to get those data

SQL is the most widely used query language

19

Database access from application programs

To access db, DML stmts need to be executed from host
lang.

2 ways- a)by providing appn prgm interface that can b
used to send DML and DDL stmts to database and retrieve
results. Ex:ODBC & JDBC

B)By extending host language syntax to embed DML calls
within the host lang prgm.

20

Overall Svstem Structure

nEive USErs
[tellers, agants
weh-users]

usEE

database
administrator

- histicated
applicatian —
users
programmers [analysts)
WTIE u==
query
tools

use

administration
lool=

compiler and

linkar E——— DML gueres

O interpreter

application
pragram
object code

|

DML compiler
and organizer

query evaluation

Engine:s

quUEry Proces=or

authorization

file manager
and integrity

manager

data dictionary

data

statistical data

__________-ﬂ"

tranzactian
Mmanager

iil.]"i:'EE manager

dizk storage

Data storage and Querying

 Storage management
* Query processing
 Transaction processing

Storage Management

Storage manager is a program module that provides
the interface between the low-level data stored in
the database and the application programs and
queries submitted to the system.

 The storage manager is responsible to the following

tasks:

— Interaction with the file manager

— Efficient storing, retrieving and updating of data
Storage mngr implements several data structures

— Data files

— Data dictionary

— Indices

23

Authorization and integrity mngr tests for
satisfaction of integrity constraints and checks the
authority of users to access the data

Transaction mngr ensures databse remains in
consistent state despite system failures and
concurrent transaction executions proceed without
conflicting

File mngr manages allocation of space on disk
storage and the data structures used to represent
data on disk

Buffer mngr which is responsible for fetching data
from disk storage into main memory and deciding
what data to cache in main memory

24

Query Processing

DDL interpreter interprets DDL stmts and records the
defninitions in data dictionary

relational algebra
expression

parser and
translator

1.Parsing and |[query]
translation

2.0ptimization @

3.Evaluation query
output

evaluation engine

execution plan

-

data statistics
about data

DML compiler

25

Transaction Management

» A transaction is a collection of operations that
performs a single logical function in a database
application

» Transaction-management component
ensures that the database remains in a
consistent (correct) state despite system
failures (e.g., power failures and operating
system crashes) and transaction failures.

» Concurrency-control manager controls the
interaction among the concurrent transactions,
to ensure the consistency of the database.

Database Users

Users are differentiated by the way they expect to interact with
the system

Application programmers —are computer professionals who
write appn prgms. They use RAD tools to construct forms and
reports with minimum programming effect.

Sophisticated users — interact with the system without
writing programs, instead they form their requests in a
database query language

Specialized users — write specialized database applications
that do not fit into the traditional data processing framework

Ex:Computer aided design systems, knowledgebase expert
systems.

Naive users — invoke one of the permanent application
programs that have been written previously

— Examples, people accessing database over the web, bank
tellers, clerical staff

27

Database Administrator

» Has central control of both data and programs to
access that data.
» Coordinates all the activities of the database system
o has a good understanding of the enterprise’s
information resources and needs.
» Database administrator's duties include:
o Storage structure and access method definition
o Schema and physical organization modification
o Granting users authority to access the database
o Backing up data
o Monitoring performance and responding to
changes

o Periodically backing up the database,either on
tapes or onto remote servers.

28

History of Database Systems
1950s and early 1960s:

First general purpose DBMS was designed by charles
bachman at general electric was called Integrated data
store. He is first to receive ACM’S turing award(1973).

— Data processing using magnetic tapes for storage

* Tapes provide only sequential access

— Punched cards for input

Late 1960s and 1970s:

In late 1960’s IBM developed information mangmt
system(IMS) DBMS used even today in major installations.

— Hard disks allow direct access to data

— Network and hierarchical data models in widespread
use

— In 1970 Edgar Codd defined new data representation
framework -relational data model.

— ACM’S turing award(1981).

29

History (cont.)

1980s:

— Research relational prototypes evolve into commercial
systems

* SQL becomes industry standard

— Parallel and distributed database systems

— Object-oriented database systems

1990s:

— Large decision support and data-mining applications
— Large multi-terabyte data warehouses

— Emergence of Web commerce
2000s:

— XML and XQuery standards

— Automated database administration

— Increasing use of highly parallel database systems
— Web-scale distributed data storage systems

30

Database Management Systems
(DBMS)

1960 FRERaRENEEN NSO
1970's | EENEREN
19%90's Object-onented Ohject-relational

1995+ Java XML CMDE Mobile
IMDB Embedded

31

Introduction to Database design and
ER diagrams

 The database designh can be divided into 6 steps.ER model is
relevent to first 3 steps

1.Requirement analysis

2.Conceptual database design

3.Logical database design

4.Schema refinement

5.Physical database design:.Ex:Indexes

6.Application and security design

32

Database Design

* Conceptual design: (ER Model is used at this stage.)

What are the entities and relationships in the
enterprise?

What information about these entities and
relationships should we store in the database?

What are the integrity constraints or business rules
that hold?

A database "schema’in the ER Model can be
represented pictorially (ER diagrams).

Can map an ER diagram into a relational schema.

33

ER Model Basics

Employees

- Entity: Real-world object distinguishable from other
objects. An entity is described (in DB) using a set of
attributes.

- Entity Set: A collection of similar entities. E.g., all
employees.

- All entities in an entity set have the same set of
attributes.

- Each entity set has a key.(minimal set of
attributes whose values uniquely identify entity
in set)

— Each attribute has a domain.

34

Attributes

An entity is represented by a set of attributes, that is
descriptive properties possessed by all members of an
entity set.

Example:

customer = (customer_id, customer_name,
customer_street, customer_city)

loan = (loan_number, amount)
Domain — the set of permitted values for each

attribute
Attribute types:
— Simple and composite attributes.
— Single-valued and multi-valued attributes
 Example: multivalued attribute: phone_numbers
— Derwved attributes
- Example: age, given date_of_birth

35

Composite Attributes

Composite hame address
Attributes
first_name middle_initial last_name street city state postal_code
Component
Attributes
street_number street_name apartment_number

36

ER Model Basics (Contd.)

=

I Super- subord
Employees’ Departments visor ate

- Relationship: Association among two or more entities.
E.g., Attishoo works in Pharmacy department.

* Relationship Set: Collection of similar relationships.
¢ {(el,...e2)|el€CE1l, e2€E2..... en€En}

37

Relationship Sets

« A relationship is an association among several

entities

Example:

Hayes depositor A-102
customer entity relationshipset account entity

A relationship set is a mathematical relation
among n > 2 entities, each taken from entity sets

(e, ey ...€) | ¢ € E;, e, € E,, ..., e, €

E,}

where (e, e,, ..., €,) is a relationship
— Example:

(Hayes, A-102) € depositor

38

Relationship Set borrower

L-17

1000

L-23

2000

L-15

1500

L-14

1500

321-12-3123 | Jones Main Harrison
019-28-3746 | Smith North | Rye
677-89-9011 | Hayes Main Harrison
555-55-5555 | Jackson | Dupont | Woodside
244-66-8800 | Curry North | Rye
963-96-3963 | Williams | Nassau | Princeton
335-57-7991 | Adams | Spring | Pittsfield

L-19

500

L-11

900

customer

L-16

1300

loan

39

Relationship Sets (Cont.)

An attribute can also be property of a relationship set.

For instance, the depositor relationship set between
entity sets customer and account may have the
attribute access-date

depositor(access_date)
account(account_number)
lcustomer(customer_name) 24 May 2005
3 June 2005 — A-101
Johnson [
‘ 21 June 2005 | A215
Smith
10 June 2005 | A-102
Hayes
17 June 2005 1 A-305
Turner H
28 May 2005 m ol
‘ 28 May 2005 —
24 June 2005 — A-217
23 May 2005

40

Degree of a Relationship Set

* Refers to number of entity sets that
participate in a relationship set.

 Relationship sets that involve two

entity sets are binary (or degree two).

 Relationship sets may involve more
than two entity sets.

41

Mapping Cardinalities

A B A B
b
1 b1 :
\ / @ b,
Z%) bz
as bg
a% bg
| ,
4 b4 2
5
(@) (b)
One to one One to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

Mapping Cardinalities

A B A B
1
a1 b
2%) by \><[:
Ay — = bz
(a3 bz
3 bO,
(14 bg
a
i 4 b4
(a) (b)
Many to one Many to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

43

Additional

features of the ER

model

Key Constraints

Consider Works_In:
An employee can
work in many
departments; a dept
can have many
employees.

In contrast, each
dept has at most
one manager,
according to the
key constraint on

Manages.

Sre | @

Employees - Manages Departments
[\
. 1' H 1!
: N | (
X
O
1-to-1 1-to Many Many-to-1 Many-to-Many

44

Participation Constraints

 Does every department have a manager?

- If so, this is a participation constraint. the
participation of Departments in Manages is said
to be total (vs. partial).

- Every Departments entity must appear in an
instance of the Manages relationship.

Employee

i
e

Departments

45

Weak Entities

A weak entity can be identified uniquely only by considering
the primary key of another (owner) entity.

 Restrictions
- Owner entity set and weak entity set must participate in a
one-to-many relationship set (one owner, many weak
entities).
- Weak entity set must have total participation in this
identifying relationship set.

Employees

46

Weak Entity Sets

 An entity set that does not have a primary key is
referred to as a weak entity set.

 The existence of a weak entity set depends on the
existence of a identifying entity set

— it must relate to the identifying entity set via
a total, one-to-many relationship set from the
identifying to the weak entity set
— Identifying relationship depicted using a
double diamond
 The discriminator (or partial key) of a weak
entity set is the set of attributes that

distinguishes among all the entities of a weak
entity set.

47

Weak Entity Sets (Cont.)

We depict a weak entity set by double rectangles.

We underline the discriminator of a weak entity set with a
dashed line.

payment_number - discriminator of the payment entity set

Primary key for payment - (loan_number,
payment_number)

’Uﬂy?ﬂt’;’!i‘ f_ﬂ'ﬂ te
paynier t_number paymen f_armount

loan_number

loan = oan_paymenty > payment

48

[SA ('is a’) Hierarchies

<+ If we declare A ISA B, Z

Employees

every A entity is also

considered to be a B
hourly _wages hours_worked

Sontract Emps

Hourly Emps

* Overlap constraints: Can Joe be an Hourly Emps as well as
a Contract_ Emps entity? (Allowed/disallowed)

« Covering constraints: Does every Employees entity also
have to be an Hourly Emps or a Contract_ Emps entity?

(Yes/no)
* Reasons for using ISA:
- To add descriptive attributes specific to a subclass.

- To identify entities that participate in a relationship.

49

Aggregation

Used when we have to @
model a relationship @
involving (entity sets

Employees

and) a relationship
set. ‘

- Aggregation allows
us to treat a
relationship set as
an entity set for

purposes of @ @
participation in —

(other)
relationships. Departments | ...;

»<| Aggregation vs. ternary relationship:

<+ Monitors is a distinct relationship, with a descriptive attribute.
<+ Also, can say that each sponsorship is monitored by at most
one employee.

50

Aggregation

m Consider the ternary relationship works_on, which
we saw earlier

B Suppose we want to record managers for tasks
performed by an employee at a branch

job

employee @ branch

nmanages

‘ manager \

51

Aggregation (Cont.)

Relationship sets works_on and manages represent
overlapping information

— Every manages relationship corresponds to a
works_on relationship

— However, some works_on relationships may not
correspond to any manages relationships

 So we can’t discard the works_on relationship
Eliminate this redundancy via aggregation
— Treat relationship as an abstract entity
— Allows relationships between relationships
— Abstraction of relationship into new entity

52

E-R Diagram With Aggregation

job

employee J\

chy

branch

manages

manager

53

Conceptual Design Using the ER Model

Design choices:

- Should a concept be modeled as an entity or an
attribute?

- Should a concept be modeled as an entity or a
relationship?

- Identifying relationships: Binary or ternary?
Aggregation?
Constraints in the ER Model:

—- A lot of data semantics can (and should) be
captured.

- But some constraints cannot be captured in ER
diagrams.

54

Entity vs. Attribute

Should address be an attribute of Employees or an
entity (connected to Employees by a relationship)?

Depends upon the use we want to make of address
information, and the semantics of the data:

* If we have several addresses per employee,
address must be an entity (since attributes
cannot be set-valued).

 If the structure (city, street, etc.) is important,
e.g., we want to retrieve employees in a given
city, address must be modeled as an entity (since
attribute values are atomic).

55

Entity vs. Attribute (Contd.)

* Works_In4 does not
allow an employee

to workin a @ o
department for Cname > - -
two or more period @ \ ‘

« Similar to the — _\De artments
problem of wanting Mpoyees P
to record several

addresses for an
employee: We want
to record several
values of the

descriptive (name)
attributes for each T ’@ .@ ’@
instance of this w ‘

relationship. Employees | Departments
Accomplished by

introducing new

entity set, Duration. Duration | —

56

Entity vs. Relationship

First ER diagram OK if
a manager gets a

budget for each dept.

What if a manager gets
a discretionary
budget that covers all

managed depts?
- Redundancy: @

dbudget stored for
each dept managed
by manager.

~- Misleading: Suggests
dbudget associated
with department-
mgr combination.

Employees

Employees

ISA

Csinced @budgeD
separate discretionary@ =

|

anages2><—

Departments

@

|

{

Departments

/

Managers dbudget

57

Binary vs. Ternary Relationships

If each policy is -

owned by just 1 (ssn)> ‘ -

S~
employee, and EmployeeS Dependents
each dependent

is tied to the Bad design L

. . Policies
covering policy,
first diagram is Cpalicyid >
inaccurate. Cname>
What are the @ !
additional Employees

constraints in

tlole 2nd 4@»

diagram?

Better design Policies

(éoliciid)

Binary vs. Ternary Relationships (Contd.)

 Previous example illustrated a case when two binary
relationships were better than one ternary
relationship.

 An example in the other direction: a ternary relation
Contracts relates entity sets Parts, Departments and
Suppliers, and has descriptive attribute qgty.

~- S “can-supply” P, D “needs” P, and D “deals-
with” S does not imply that D has agreed to buy P
from S.

- How do we record qty?

59

Aggregation v/s ternary relationship

* The choice between using @
aggregation or ternary @
relationship is mainly
determined by existence
of a relationship that ‘
relates relationship set to
entity set.

Employees

Departments

>4

The choice may also be guided by certain integrity constraints
that we want to express.

60

Aggregation v/s ternary relationship

@S

Employees

Projects |

LT G

Departments

 Using ternary relationship instead of aggregation

61

Conceptual design for large enterprises

 For large enterprise the design may require efforts of
more than one designer and span data and application
code used by number of user groups.

« ER diagrams for Conceptual design offers additional
advantage that high level design can be diagramatically
represented and easily understood by many people.

2 approaches:

 Usual approach: requirements of various user groups are
considered,any conflicting requirements are somehow
resolved and single set of global requirements is
generated at the end of requirements phase

- Alternative approach: is to develop separate conceptual
schemas for different user groups and then integrate
these conceptual schemas

62

Relational Database: Definitions

Relational database: a set of relations
Relation: made up of 2 parts:
Relation schema and relational instance.

Instance : a table, with rows and columns.
Set of tuples also called as records
#Rows = cardinality, #fields = degree / arity.

A domain is referred by domain name consisting of set
of associated values.

Schema : specifies name of relation, plus name and
type of each column.

 E.G. Students (sid: string, name: string, login:
string, age: integer, gpa: real).

Can think of a relation as a set of rows or tuples (i.e., all
rows are distinct).

63

Example Instance of Students Relation

sid |name login age | gpa
53666 |Jones |jones@cs 18 | 34
53688 |Smith |[smith@eecs 18 | 3.2
53650 |Smith |[smith@math | 19 | 3.8

+ Cardinality = 3, degree =5, all rows distinct

% Do all columns in a relation instance have to

be distinct?

64

Creating Relations in SQL

* Creates the Students relation.
Observe that the type of each
field is specified, and
enforced by the DBMS
whenever tuples are added or
modified.

* As another example, the
Enrolled table holds
information about courses that
students take.

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,
gpa: REAL)

CREATE TABLE Enrolled
(sid: CHAR(20),
cid: CHAR(20),
grade: CHAR(2))

65

Destroying and Altering Relations
DROP TABLE Students

* Destroys the relation Students. The schema information
and the tuples are deleted.

ALTER TABLE Students
ADD COLUMN firstYear: integer

+ The schema of Students is altered by adding
a new field; every tuple in the current
instance is extended with a null value in the
new field.

66

Adding and Deleting Tuples

* Caninsert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

+ Can delete all tuples satisfying some condition (e.g.,
name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

67

Integrity Constraints (ICs)

IC: condition that must be true for any instance of the
database; e.g., domain constraints.

— ICs are specified when schema is defined.
— ICs are checked when relations are modified.

A legal instance of a relation is one that satisfies all
specified ICs.

— DBMS should not allow illegal instances.

If the DBMS checks ICs, stored data is more faithful to real-
world meaning.

— Avoids data entry errors, too!

68

Primary Key Constraints

* A et of fields is a key for a relation if :

1. No two distinct tuples can have same values in all key
fields, and

2. This is not true for any subset of the key.
— Part 2 false? A superkey.

— If there’s >1 key for a relation, one of the keys is chosen
(by DBA) to be the primary key.

* E.g., sidis a key for Students. (What about name?) The set
{sid, gpa} is a superkey.

69

&

0

0

Primary and Candidate Keys in SQL

Possibly many candidate keys (specified using UNIQUE), one of
which is chosen as the primary key.

“For a given student and CREATE TABLE Enrolled
course, there is a single grade.” (studid CHAR(20)

vs. “Students can take only one cid CHAR(20),
course, and receive a single grade CHAR(2),

grade for that course; further, PRIMARY KEY (sid,cid))
no two students in a course

receive the same grade.” CREATE TABLE Enrolled
Used carelessly, an IC can (studidid CHAR(20)
prevent the storage of database cid CHAR(20),
instances that arise in practice! grade CHAR(2),

PRIMARY KEY (sid),
UNIQUE (cid, grade))

70

Foreign Keys, Referential Integrity

Foreign key : Set of fields in one relation that is used to refer’
to a tuple in another relation. (Must correspond to primary
key of the second relation.) Like a ‘logical pointer’.

CREATE TABLE Students(sid: CHAR(20), name:
CHAR(20),login:CHAR(10), age: INTEGER, gpa: REAL)

E.g. studid is a foreign key referring to Students:
— Enrolled(studid: string, cid: string, grade: string)

— If all foreign key constraints are enforced, referential
integrity is achieved, i.e., no dangling references.

71

Foreign Keys in SQL

* Only students listed in the Students relation should be allowed
to enroll for courses.

CREATE TABLE Enrolled
(sid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (stuid) REFERENCES Students(sid)

Enrolled

sid cid grade
53666 |Carnatic101 C —
53666 |Reggae203 B
53650 |Topologyll2 & A
53666 |Historyl05 B

—
L

Students

sid | name login age | gpa
>153666 |Jones jones@cs 18 | 34
53688 |Smith |smith@eecs 18 | 3.2
53650 Smith smith@math @ 19 | 3.8

72

General constraints

Current relational database systems support such general
constraints in 2 forms

Constraint table: It is associated with single table and
checked whenever that single table is modified

Assertions: include several tables and are checked
whenever any of these tables is modified.

Domain constraints: domains can have some constraints
called Domain constraints

Column constraints: the value in any column of any table
should be controlled by column constraints

User defined IC: it allows business rules to be specified
centrally to database, so that when certain action is

performed on a set of data, other actions are automatically

performed

73

Enforcing Referential Integrity

Consider Students and Enrolled; sid in Enrolled is a foreign
key that references Students.

What should be done if an Enrolled tuple with a non-existent
student id is inserted? (Reject it!)

What should be done if a Students tuple is deleted?
— Also delete all Enrolled tuples that refer to it.
- Disallow deletion of a Students tuple that is referred to.
—- Set sid in Enrolled tuples that refer to it to a default sid.

- (In SQL, also: Set sid in Enrolled tuples that refer to it to
a special value null, denoting ‘unknown’ or
“inapplicable’.)

Similar if primary key of Students tuple is updated.

74

Referential Integrity in SQL

* SQL/92 and SQL:1999 support
all 4 options on deletes and

updates. CREATE TABLE Enrolled
— Default is NO ACTION (sid CHAR(20)
(delete/update is rejected) cid CHAR(20) ’
— CASCADE (also delete all grade CH AR(’Z)
tuples that refer to deleted PRIMARY KEY (sid cid)
tuple) FOREIGN KEY (sid)
— SET NULL / SET DEFAULT REFERENCES Students

(sets foreign key value of

. ON DELETE CASCADE
referencing tuple)

ON UPDATE SET
DEFAULT)

75

Transactions and constraints

* In SQL a constraint is checked at the end of
every SQL statement that could lead to
viloation and if there is a violation,the
statement is rejected,this approach is
inflexible

 SQL allows a constraint to be in deferred or
immediate mode

* Syntax: set constraint constrainthame
Immediate/Deffered

76

The SQL Query Language

sid |name | login |age gpa
*
SELECT 53666

FROM Students S
WHERE S.age=13

Jones |jones@cs |18 |3.4
53688 |Smith |[smith@ee 18 |3.2

*To find just names and logins, replace the first line:

SELECT S.name, S.login

77

Querying Multiple Relations

What does the following query compdBLECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade="A"

Given the following instances sid (_:id grade
of Enrolled and Students: 53831 Carnaticl01 | C

sid | name login q0e 53831 |Reggae203 B
: & | &M 53650 |Topologyll2 | A
53606 Jones jones@cs 18 | 34 | 53666 Historyl05 | B

53688 'Smith |smith@eecs | 18 3.2
53650 Smith smith@math | 19 | 3.8

S.name | E.cid
we get: Smith | Topology112

78

Logical DB Design:

* Entity sets to tables:

G M e

Employees

ER to Relational

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))

79

Relationship Sets to Tables

T
Cname> /
ST | @ Pew [

Super- subord
Employees| — |Departments visor inate

Create table reportsTo(supervisor_ssn char(10), subordinate_ssn
char(10),

primary key(supervisor_ssn, subordinate_ssn),

foreign key(supervisor_ssn) references employees(ssn)
foreign key(subordinate_ssn) references employees(ssn))

80

Relationship Sets to Tables

* In translating a relationship

set to a relation, attributes of CREATE TABLE Works_In(
the relation must include: ssn CHAR(11),

— Keys for each participating did INTEGER,
entity set (as foreign keys). since DATE,

* This set of attributes PRIMARY KEY (ssn, did),
forms a superkey forthe =~ FOREIGN KEY (ssn)
relation. REFERENCES Employees,
FOREIGN KEY (did)

— All descriptive attributes.
REFERENCES Departments)

81

Review: Key Constraints

 Each dept has at
most one manager,

according to the key
constraint on budget
Manages.

Employees | < |Departments
M M

— e —
Translation to
relational model?

Y Y

1-to-1 1-to Many Many-to-1 Many-to-Many

82

Translating ER Diagrams with Key

Map relationship to a
table:

— Note that did is the
key now!

— Separate tables for
Employees and
Departments.

Since each
department has a
unigue manager, we
could instead combine
Manages and
Departments.

Constraints

CREATE TABLE Manages(

ssn CHAR(11),

did INTEGER,

since DATE,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees,

FOREIGN KEY (did) REFERENCES
Departments)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

83

Review: Participation Constraints

Does every department have a manager?

— If so, this is a participation constraint: the
participation of Departments in Manages is said to be
total (vs. partial).

Cesn >

* Every did value in Dep ts table must appear in a row
of th s table W on-null @!)

Employee

an ag es Departments

9é

84

Participation Constraints in SQL

 We can capture participation constraints involving one entity set in
a binary relationship, but little else (without resorting to CHECK
constraints).

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
ON DELETE NO ACTION)

85

Review: Weak Entities

* A weak entity can be identified uniquely only by considering the
primary key of another (owner) entity.

— Owner entity set and weak entity set must participate in a one-
to-many relationship set (1 owner, many weak entities).

— Weak entity set must have total participation in this identifying
relationship set.

Employees @ (_Dem

Translating Weak Entity Sets

 Weak entity set and identifying relationship set are
translated into a single table.

— When the owner entity is deleted, all owned weak
entities must also be deleted.

CREATE TABLE Dep_Policy (
pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,
ON DELETE CASCADE)

87

Review: ISA Hierarchies

< As in C++, or other
PLs, attributes are @

inherited. Employees

< If we declare A ISA B,

A entity is also oure momes ISA
every
considered to be a B \

entity. |

Hourly Emps Contract_Emps

* Overlap constraints: Can Joe be an Hourly _Emps as well as a
Contract_Emps entity? (Allowed/disallowed)

* Covering constraints: Does every Employees entity also have to
be an Hourly _Emps or a Contract_Emps entity? (Yes/no)

88

Translating ISA Hierarchies to Relations

* General approach:

— 3 relations: Employees, Hourly _Emps and Contract_Emps.

* Hourly_ Emps: Every employee is recorded in Employees. For
hourly emps, extra info recorded in Hourly _Emps (hourly wages,
hours_worked, ssn); must delete Hourly_Emps tuple if referenced
Employees tuple is deleted).

* Queries involving all employees easy, those involving just
Hourly _Emps require a join to get some attributes.
e Alternative: Just Hourly_Emps and Contract_Emps.

— Hourly Emps: ssn, name, lot, hourly wages, hours _worked.
-~ Each employee must be in one of these two subclasses.

89

Review: Binary vs. Ternary Relationships

What are the additional @ ‘

. . — \ /A\
constraints in the 2nd Employees |——— S~
diagram?

Bad design

Policies

(éolicgid)

e

Employees

e

Better design

Policies

policyid> 90

Binary vsCIIEeg%aTWB5§I@&|igigg?lps (Contd.)
* The key constraints

allow us to combine policyid INTEGER,

Purchaser with cost REAL,

Policies and ssn CHAR(11) NOT NULL,

Beneficiary with PRIMARY KEY (policyid).

Dependents. FOREIGN KEY (ssn) REFERENCES Employees,
* Participation ON DELETE CASCADE)

constraints lead t0 cRpATE TABLE Dependents (
NOT NULL pname CHAR(20),
constr.a\lnts: . . age INTEGER,
* What if P9I|C|es ?IS @ policyid INTEGER,
weak entity set? o\ IARY KEY (pname, policyid).
FOREIGN KEY (policyid) REFERENCES Policies,
ON DELETE CASCADE)

91

View Definition

A relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

A view is defined using the create view statement which has
the form

create view v as < query expression >

View is stored only as definition .When a reference is made to
a view its definition is scanned, base table is opened and view
is created on top of table.

If a view is used to only look at table data and nothing else
and view is called Read only view

If a view is used to only look at table data as well as
insert,update and delete table data is called Updatable view

92

Views and Security

Views can be used to present necessary information (or a
summary), while hiding details in underlying relation(s).

When data redundancy is to be kept minimum while
maintaining security.

— Given YoungStudents, but not Students or Enrolled,
we can find students s who have are enrolled, but not

the cid’s of the courses they are enrolled in.

CREATE VIEW YoungActiveStudents
(name, grade)
AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and
S.age<21

93

Example Queries

* A view consisting of branches and their customers

create view all _customer as
(select branch_name, customer_name
from depositor, account
where depositor.account_number =
account.account_number)
union
(select branch_name, customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number)

m Find all customers of the Perryridge branch

select customer_name
from all_customer
where branch_name ='Perryridge'

94

Processing of Views

e When a view is created

— the query expression is stored in the database along
with the view name

— the expression is substituted into any query using
the view

* Views definitions containing views

— One view may be used in the expression defining
another view

— A view relation v, is said to depend directly on a view
relation v, if v, is used in the expression defining v,

— A view relation v is said to be recursive if it depends
on itself.

95

Updatable views

A view is updatable if the following conditions are satisfied:
* From clause has only one database relation

* Select clause contains only attribute name of relation and does not have
any expressions, aggregates or distinct specification

* Any attribute not listed in select clause can be set to null
 Query does not have a groupby or having clause.

e [If user wants to insert records with help of a view then primary key column
and all the not null columns must be included in view

e User can update, delete records with help of view even if primary key
column and not null columns are excluded from view definition.

96

Update of a View

* Create a view of all loan data in the loan relation, hiding
the amount attribute

create view loan_branch as
select loan_number, branch_name
from loan

* Add a new tuple to loan_branch

insert into loan_branch
values ('L-37/, 'Perryridge’)

This insertion must be represented by the insertion of
the tuple

('L-37', 'Perryridge’, null)
into the loan relation

97

Views defined from multiple tables

If a view is created from multiple tables which were not created using
referencing clause

Insert,update or delete operation is not allowed

If a view is created from multiple tables which were created using
referencing clause

Insert operation is not allowed
Delete or modify operations do not affect master table
View can be used to modify columns of detail table included in view

Destroying a view

Syntax: Drop view view_name
Ex:drop view vi;

98

DATABASE MANAGEMENT SYSTEMS

UNIT-II

Formal Relational Query Languages

» Two mathematical Query Languages form the basis for “real”
languages (e.g. SQL), and for implementation:

o Relational Algebra: More operational, very useful
for representing execution plans.

o Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-
operational, declarative.)

Example Instances

e “Sailors” and “Reserves”
relations for our
examples.

 We'll use positional or
named field notation,
assume that names of
fields in query results are S2
‘inherited’ from names
of fields in query input
relations.

51

sid |bid day
22 101 |10/10/96
58 |103 |11/12/96
sid [sname |rating |age
22 |dustin 7 45.0
31 |lubber 8 55.5
58 |rusty 10 [35.0
sid [sname |rating |age
28 |yuppy 9 35.0
31 |lubber 8 55.5
44 | guppy 5 35.0
58 |rusty 10 [35.0

3

Relational Algebra

Basic operations:

— Selection (O) Selects a subset of rows from relation.

— Projection (T) Reletes unwanted columns from relation.

— Cross-product () Allows us to combine two relations.
- Set-diffepence () Tuplesinreln. 1, but not in reln. 2.
— Union () Tuplesinreln.1and in reln. 2.

Additional operations:

— Intersection, join, division, renaming

Projection

* Schema of result contains exactly the
fields in the projection list, with the
same names that they had in the (only)
input relation.

* Projection operator has to eliminate
duplicates! (Why??)

— Note: real systems typically don’t do
duplicate elimination unless the user
explicitly asks for it.

sname rating
yuppy 9
lubber |8
guppy |9
rusty 10
sname,rating

age

35.0

55.5

Tag a(S2)

(S

2)

Selection

Selects rows that satisfy selection
condition.

No duplicates in result! (Why?)

Schema of result identical to
schema of (only) input relation.

Result relation can be the input for
another relational algebra
operation! (Operator
composition.)

sid |sname |rating |age
28 |yuppy |9 35.0
58 |rusty 10 35.0
Jrati ng > 8(82)
sname |rating
yuppy |9
rusty |10

7T .
sname, rating

(O

rating>8

(S

2))

Set operations

» Union(U), Intersection(n), Set-Difference(-) are set operations
available in in relational algebra

» Union(RUS):

» Two relational instances are said to be union compatible if the
following conditions hold—

» they have same number of the fields and corresponding
fields

» taken in order from left to right,have the same domains

» Intersection(R N S):returns a relational instance containing all
tuples that occur in both R and S.

» Set-difference(R-S): returns a relational instance containing all
tuples that occur in R but not in S.

» Cross product(RXS): returns a relational instance whose
schema contains all fields of R followed by all fields of S

Union, Intersection, Set-Difference

S1NS2

* All of these operations take two input sid |sname rating age
relations, which must be union- -
compatible: 22 |dustin |7 45.0
_ Same number of fields. |1 |lubber /8 29
. . 58 |rusty |10 35.0
- hCorre:‘pondmg fields 44 |guppy |5 35.0
?Ve the same type. 78 yuppy o) 350
* What is the schema of result?
S1US2
sid |sname |rating age sid |sname rating |age
22 |dustin |7 45.0 31 |lubber |8 55.5
58 |rusty |10 35.0
S1-S2

Cross-Product

» Each row of S1 is paired with each row of R1.

» Result schema has one field per field of S1 and R1, with field names
‘inherited’ if possible.
Conflict: Both S1 and R1 have a field called sid.
S1 XR1

(sid) 'sname rating |age |(sid) |bid |day
22 |dustin 7 45.0 | 22 |101 [10/10/96
22 |dustin 7 45.0 | 58 103 |11/12/96
31 |lubber 8 55,5 | 22 101 |10/10/96
31 |lubber 8 55,5 | 58 103 |11/12/96

58 |rusty 10 [35.0 | 22 101 |10/10/96
58 |rusty 10 [35.0 | 58 103 |11/12/96
'Renaming opemtor(p): p (old name -> new name) or

p (position -> new name)

0 (C(1—>sidl, 5—>sid2), S1x R1)

Joins

* Condition Join: R o< - S — & - (R % S)
S, . . Rl
Slsid < RLsid
(sid) |sname |rating |age |(sid) |bid |day
22 dustin |7 45.0 |58 103 |11/12/96
31 lubber |8 55.5 |58 103 |11/12/96

Result schema same as that of cross-product.

Fewer tuples than cross-product, might be able to compute
more efficiently

Sometimes called a theta-join.

10

Equi-Join: A special case of condition join where the condition ¢

Joins

contains only equalities.

Slp< . Rl
sid
sid |sname |rating age |bid |day
22 dustin |7 45.0 [101 |10/10/96
58 rusty |10 35.0 (103 |11/12/96

Result schema similar to cross-product, but only one copy of fields for
which equality is specified.

Natural Join: Equijoin on all common fields.

If two relations have no attributes in common,natural join is simply

cross product.

11

Division
* Not supported as a primitive operator, but useful for expressing queries

like: Find sailors
who have reserved all boats.

. L_et:/l;a:ez{z ﬁ {Idy, haveonly<f| Id y: }

— i.e., A/B contains all x tuples (sailors) such that for every y tuple (boat)
in B, there is an xy tuple in A.

— Or: If the set of y values (boats) associated with an x value (sailor) in A
contains all y values in B, the x value is in A/B.

* Ingeneral, x and y cap be any lists of fields; y is the list of fields in B, and x
y is the list of fields of A.

12

pNo

Examples of Division A/B

p2

pNno

B1

p2

p4

SNoO

s1

s2

s3

sno |pno
sl |pl
sl |p2
sl |p3
sl |p4
s2 |pl
s2 |p2
s3 |p2
s4 |p2
s4 | p4
A

s4

A/B1

B2

SNoO

s1

s4

A/B2

SNoO

s1

A/B3

Relational Calculus

 Comes in two flavors: Tuple relational calculus (TRC) and
Domain relational calculus (DRC).

e Calculus has variables, constants, comparison ops, logical
connectives and quantifiers.

— TRC: Variables range over (i.e., get bound to) tuples.
— DRC: Variables range over domain elements (= field values).
— Both TRC and DRC are simple subsets of first-order logic.

* Expressions in the calculus are called formulas. An answer
tuple is essentially an assignment of constants to variables that
make the formula evaluate to true.

14

Tuple relational calculus

P A tuple rc query has the form {T|P(T)} where T is a
tuple variable and P(T) denotes a formula that
describes T.

» Find all sailors with rating above 7
» {S|S € Sailors N1 s.rating>7}

P Let Rel be a relation name, R & S be tuple variables,’a’
be an attribute of R and ‘b’ be attribute of S. Let op
denote operator.

P An atomic formula is one of the following
» R € Rel, R.a €S.b, R.a op constant or constant op R.a

15

Tuple relational calculus

» A formula is recursively defined to be one of the
following

-- any atomic formula

-- 1P,PN1Q,P V Q or P=>Q

-- 3R(P(R)) where R is tuple variable

-- forall R(P(R)) where R is tuple variable

P A variable is said to be free in formula if it does not
contain an occurence of quantifiers that bind it.

» Find the names and ages of sailors with rating above 7

» {P| 3S € Sailors(S.Rating >7 /1 P.name=S.Sname /1
P.age=S.age)

16

Queries

» Find the sailor name,boat id and reservation date for
each reservation

» {P|3R € Reserves 3S € Sailors (R.Sid=S.sid /1 P.bid=R.bid
1 P.day=R.day /1 P.sname=S.sname)

» Find the names of sailors who have reserved boat 103

P {P|3R € Reserves 3S € Sailors (R.Sid=S.sid /1 R.bid=103
1 P.sname=S.sname)

» Find the names of sailors who have reserved boat 103

» {P|3R € Reserves 3S € Sailors (R.Sid=S.sid /1
P.sname=S.sname J1 3B € Boats(B.bid=R.bid /1
B.color=‘red’))}

17

DRC Formulas

Atomic formula:
- (XL X2,...,XN) SRBAMBEX op constant
— op is one of <, >, —, S, Z, e

Formula:
— an atomic formula, or

] p’ p/\ q; V\Re\/egand q are formulas, or

_ 3 X (p(,XI%)e variable X is free in p(X), or
-V X (p(,XI)e)e variable X is free in p(X)

X VX

The use of quantifiers and is said to bind X.
— Avariable that is not bound is free.

18

Free and Bound Variables

The use of quantifiers andX in a¥oriula is said to bind X.
— A variable that is not bound is free.

Let us revisit the definition of a query:

{<x], X2,..., XN)| P (X1, X2,..., xn>}}

+ There is an important restriction: the variables x1,
..., Xn that appear to the left of |’ must be the only
free variables in the formula p(...).

Find all sailors with a rating above 7
(LNJT,A(LN,T,A) e Sailors AT>7|

* The condition <|’ N, T, A> Geﬁﬁjtl&rt?hat the domain variables |,
N, T and A are bound to fields of the same Sailors tuple.

e The term to the left of |’ (which should be

read as such th%ﬂ,Ny?tHh} every tuple that satisfies T>7 is in
the answer. <|, N T, A>

20

*Find sailors rated > 7 who have reserved boat #103
{<I, N,T,A>| <I, N,T,A> e Sailors AT>7 A
3 Ir,Br,D [<Ir,Br, D> c Reserves A lr=1 A Br=103”

* Wehaveused |r’ Br’asE\)hc(‘t_h:ar!éfor
JIr(3Br(3D(...))

* Note the use ofE| to find a tuple in Reserves that “joins with’ the Sailors tuple under
consideration.

* Find names of sailors who have reserved boat #103
<N>[IT,A|I,N.T,ASailors
HDD Ir103 D))eRese rves}

Find sailors rated > 7 who’ve reserved a red boat

{<I,N,T,A>| <I,N,T,A> e Sailors AT>7 A
3 1r,Br,D [<Ir,Br, D> c Reserves A lr=1 A

3B,BN,C((B,BN,C) e Boats n B=Br AnC="red'||

Observe how the parentheses control the scope of each quantifier’s binding.

Find names of sailors who’ve reserved a red boat

|<N>|IT,A\ILNT,AcSailors A

EI<{>I Br, D<eRe servesA<Br,BN, 'red'=<Boats

22

Find sailors who’ve reserved all boats

{<I,N, ,A>|<I,N, ,A>eSaiIors/\
Vv B,BN,C {—.[<B,BN,C> < Boats| v

(3 1Ir,Br,D [<Ir,Br, D) c Reserves A I =1r A BrzBmJl

*Find sailors who’ve reserved all boats (again!)

{<I,N,T,A>| <I,N,T,A> e Sailors A

\v4 <B,BN,C> e Boats
[EI <Ir, Br, D> e Reserves(l =Ir A Br= Bj]}

 To find sailors who’ve reserved all red boats:

..... C='red' v 3(Ir,Br,D) e Reserves(l =Ir A Br= Bm

Unsafe Queries, Expressive Power

It is possible to write syntactically correct calculus queries that have
an infinite number of answers! Such queries are called unsafe.
- e.g.,
{S | —[Se Sallors”
It is known that every query that can be expressed in relational

algebra can be expressed as a safe query in DRC / TRC; the converse is
also true.

Relational Completeness: Query language (e.g., SQL) can express
every query that is expressible in relational algebra/calculus.

25

Data Definition Language

Allows the specification of:

» The schema for each relation, including attribute

types.
» Integrity constraints

» Authorization information for each relation.

» Non-standard SQL extensions also allow
specification of
o The set of indices to be maintained for each relations.
o The physical storage structure of each relation on disk.

26

Create Table Construct

» An SQL relation is defined using the create table
command:

create tabler (A, D, A, D,, ..., A, D,
(mtegrlty constralntl)

(mtegrlty-constralntk))
° ris the name of the relation
o each A, is an attribute name in the schema of relation r
o D.is the data type of attribute A,
Example:

create table branch
branch_name char{lS
ranch_city char(30
assets integer)

27

Domain Types in SQL

char(n). Fixed length character string, with user-specified
length n.

varchar(n). Variable length character strings, with user-
specified maximum length n.

int. Integer (a finite subset of the integers that is machine-
dependent).

smallint. Small integer (a machine-dependent subset of
the integer domain type).

numeric(p,d). Fixed point number, with user-specified
precision of p digits, with n digits to the right of decimal
point.

float(n). Floating point number, with user-specified
precision of at least n digits.

Integrity Constraints on Tables

* not null
* primarykey (A, ..., A,)

Example: Declare branch_name as the primary key for
branch

create table branch
(branch_name char(15),
branch_city char(30) not null,
assets integer,
primary key (branch_name))

primary key declaration on an attribute automatically ensures not null
in SQL-92 onwards, needs to be explicitly stated in SQL-89

29

Basic Insertion and Deletion of Tuples

* Newly created table is empty
 Add a new tuple to account

insert into account
values ('A-9732', 'Perryridge’, 1200)

— Insertion fails if any integrity constraint is violated
* Delete all tuples from account
delete from account

30

Drop and Alter Table Constructs

» The drop table command deletes all information
about the dropped relation from the database.

» The alter table command is used to add attributes
to an existing relation:

alter tableradd A D

where A is the name of the attribute to be added
to relation r and D is the domain of A.

o All tuples in the relation are assigned null as the value
for the new attribute.

» The alter table command can also be used to drop
attributes of a relation:

alter table rdrop A

where A is the name of an attribute of relation r

> Dropping of attributes not supported by many
databases

31

Basic Query Structure
» A typical SQL query has the form:

select A, A,, ..., A
fromr,r,, ..., r,
where P

n

o A;represents an attribute
o R;represents a relation
o Pis a predicate.

» This query is equivalent to the relational algebra

expressio
T_[Al,Az,...,An (GP (rl X rz SREER rm))

» The result of an SQL query is a relation.

32

The select Clause

The select clause list the attributes desired in the result of a query
— corresponds to the projection operation of the relational algebra

Example: find the names of all branches in the loan relation:
select branch_name
from loan

In the relational algebra, the query would be:
Bpranch_name \/oan)

NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-
case letters.)

— E.g. Branch_Name = BRANCH_NAME = branch_name
— Some people use upper case wherever we use bold font.

33

The select Clause (Cont.)

SQL allows duplicates in relations as well as in query results.

To force the elimination of duplicates, insert the keyword distinct
after select.

Find the names of all branches in the loan
relations, and remove duplicates

select distinct branch_name
from loan

The keyword all specifies that duplicates not be removed.
select all branch_name
from loan

34

The select Clause (Cont.)

» An asterisk in the select clause denotes “all attributes”
select * from /oan

» The select clause can contain arithmetic expressions
involving the operation, +, —, *, and /, and operating on
constants or attributes of tuples.

»E.g.

select loan _number, branch_name, amount *
100 from loan

35

The where Clause

» The where clause specifies conditions that the result must
satisfy

o Corresponds to the selection predicate of the relational algebra.

» To find all loan number for loans made at the Perryridge
branch with loan amounts greater than $1200.

select loan _number

from loan

where branch_name = 'Perryridge' and amount >
1200

» Comparison results can be combined using the logical
connectives and, or, and not.

36

The from Clause

» The from clause lists the relations involved in the query

o Corresponds to the Cartesian product operation of the relational
algebra.

» Find the Cartesian product borrower X loan

select *
from borrower, loan

m Find the name, loan number and loan amount of all
customers having a loan at the Perryridge branch.

select customer_name, borrower.loan_number, amount
from borrower, loan
where borrower.loan_number = loan.loan_number and
branch_name = 'Perryridge’

37

The Rename Operation

» SQL allows renaming relations and attributes using the as
clause:

old-name as new-name

» E.g. Find the name, loan number and loan amount of all
customers; rename the column name loan_number as

loan_id.

select customer_name, borrower.loan_number as
loan_i1d, amount

from borrower, loan
where borrower.loan _number = loan.loan number

38

Tuple Variables
» Tuple variables are defined in the from clause via the use of the as clause.

» Find the customer names and their loan numbers and amount for all
customers having a loan at some branch.

select customer_name, T.loan number, S.amount
from borrower as T, loan as S
where T7T.loan number = S.loan_number

B Find the names of all branches that have greater assets
than some branch located in Brooklyn.

select distinct T.branch _name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = Brooklyn'

mKeyword as is optional and may be omitted
borrower as T = borrower T

B Some database such as Oracle require as to be
omitted 39

Example Instances

We will use these instances of
the Sailors and Reserves
relations in our examples.

51

If the key for the Reserves
relation contained only the
attributes sid and bid, how
would the semantics differ?

52

sid | bid day
R1 22 101 |10/10/96

58 103 11/12/96
sid [sname |rating |age
22 |dustin 4 45.0
31 |lubber 8 55.5
58 |rusty 10 35.0
sid |[sname |rating |age
28 |yuppy 9 35.0
31 |lubber 8 555
44 | guppy 5 35.0
58 |rusty 10 35.0

40

Find sailors who've reserved at least one boat

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

* Would adding oistinetto this query make a
difference?

 What is the effect of replacing S.sid by S.sname in
the secect clause? Would adding oistinet to this variant
of the query make a difference?

Expressions and Strings

SELECT S.age, agel=5.age-5, 2*5.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%DB’

P lllustrates use of arithmetic expressions and string pattern
matching: Find triples (of ages of sailors and two fields
defined by expressions) for sailors whose names begin and
end with B and contain at least three characters.

» asand = are two ways to name fields in result.

» uKe iS used for string matching. ~ ’ stands for any one
character and %’ stands for O or more arbitrary characters.

42

String Operations

P SQL includes a string-matching operator for comparisons on character strings.
The operator “like” uses patterns that are described using two special characters:

o percent (%). The % character matches any substring.
o underscore (_). The _ character matches any character.

» Find the names of all customers whose street
includes the substring “Main”.

select customer_name

from customer
where customer _street like '% Main%'

» Match the name “Main%”
like 'Main\%' escape '\
P SQL supports a variety of string operations such as

o concatenation (using “| |”)
o converting from upper to lower case (and vice versa)

o finding string length, extracting substrings, etc. i

p List irgf;qggicmgr}ebﬁ\e[?\!\ml%y aIPctl;[ynE!'?hSaving a

loan in Perryridge branch

select distinct customer_name
from borrower, loan
where borrower loan_number = loan.loan_number and

branch_name = 'Perryridge’
order by customer _name

» We may specify desc for descending order or asc for
ascending order, for each attribute; ascending order is the

default.
o Example: order by customer_name desc

44

Duplicates
* |In relations with duplicates, SQL can define how many
copies of tuples appear in the result.

* Multiset versions of some of the relational algebra
operators — given multiset relations r, and r,:

1. Gy(ry): If there are c, copies of tuple t, in ry, and t, satisfies
selections G, then there are c, copies of t; in Gy(ry).

2. IT,(r): For each copy of tuple t, in r,, there is a copy of
tuple II,(t,)inII,(r;) wherelIl,(t;) denotes the
projection of the single tuple t,.

3. r, xr,:If there are c, copies of tuple t, in r; and c, copies
of tuple t, in r,, there are ¢, x ¢, copies of the tuple t,. t, in
ry Xr,

45

Duplicates (Cont.)

» Example: Suppose multiset relations r, (A, B) and r, (C) are
as follows:

r;={(1, a) (2,a)} r,={(2),(3), (3)}

» Then I,(r,) would be {(a), (a)}, while I1,(r,) x r, would be
{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

» SQL duplicate semantics:

select A, A, ..., A
fromr,r, ..., r,
where P

is equivalent to the multiset version of the expression:

n

HAl,AZ,...,An (GP (rl XTI, XX))

Set Operations

» The set operations union, intersect, and except
operate on relations and correspond to the relational

algebra operations U, N, —.
» Each of the above operations automatically eliminates

duplicates; to retain all duplicates use the
corresponding multiset versions union all, intersect all

and except all.

Suppose a tuple occurs m times in r and n times in s,

then, it occurs:

c m +ntimesinrunionalls

o min(m,n) times in r intersect all s

o max(0, m—n) times in r except all s

47

Set Operations

* Find all customers who have a loan, an account, or both:

(select customer_name from depositor)
union
(select customer_name from borrower)

= Find all customers who have both a loan and an account.
(select customer_name from depositor)
intersect
(select customer_name from borrower)

= Find all customers who have an account but no loan.

(select customer_name from depositor)
except
(select customer_name from borrower)

48

Find sid’s of sailors who’ve reserved a red or a green

boat

» UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples (which are themselves
the result of SQL queries).

» If we replace OR by AND in
the first version, what do we
get?

» Also available: EXCEPT

(What do we get if we
replace UNION by EXCEPT?)

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND (B.color="red” OR B.color="green’)

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="red’

UNION

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green’

49

Find sid’s of sailors who’ve reserved a red and a green
boat

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

* INTERSECT: Can be used to Boats B2, Reserves R2 |
WHERE S.sid=R1.sid AND R1.bid=B1.bid

compute the intersection of AND s.sid=R2.sid AND R2.bid=B2.bid
any two union-compatible AND (Bl.color="red” AND B2.color=green’)

sets of tuples. o141
!O SELECT S.sid/\ Key field!
* Included in the SQL/92 FROM Sailors S, Boats B, Reserves R

standard. but some systems WHERE S.sid=R.sid AND R.bid=B.bid
’ AND B.color="red’

don’t support it. INTERSECT

SELECT S.sid
* Contr mmetry of th
Contrast Sy etry of the FROM Sailors S, Boats B, Reserves R

UNION and INTERSECT WHERE S.sid=R.sid AND R.bid=B.bid
gueries with how much the AND B.color="green’

other versions differ. 50

Nested Queries

Find names of sailors who’ve reserved boat #103:

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

» A very powerful feature of SQL: a wuere clause can itself contain an
SQL query! (Actually, so can rrom and navine clauses.)

» To find sailors who’ve not reserved #103, use noTIN.

» To understand semantics of nested queries, think of a nested loops
evaluation: For each Sailors tuple, check the qualification by
computing the subquery.

51

Nested Queries with Correlation

Find names of sailors who’ve reserved boat #103:
SELECT S.sname

FROM Sailors S

WHERE EXISTS (SELECT \
FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

» exisTs is another set comparison operator, like .

» If unicueis used, and * is replaced by R.bid, finds sailors with at most
one reservation for boat #103. (uniaue checks for duplicate tuples; *
denotes all attributes. Why do we have to replace * by R.bid?)

» lllustrates why, in general, subquery must be re-computed for each
Sailors tuple.

52

Aggregate Functions

* These functions operate on the multiset of values
of a column of a relation, and return a value

avg: average value

min: minimum value
max: maximum value
sum: sum of values
count: number of values

53

Aggregate Functions £Cont.)

» Find the average account balance at the Perryridge branch.

select avg (balance)
from account
where branch_name = 'Perryridge'

® Find the number of tuples in the customer relation.

select count (*)
from customer

B Find the number of depositors in the bank.

select count (distinct customer_name)
from depositor

54

Aggregate Functions — Group By

» Find the number of depositors for each branch.

select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number =
account.account_number
group by branch_name

Note: Attributes in select clause outside of aggregate functions must
appear in group by list

55

Aggregate Functions — Having Clause

» Find the names of all branches where the average account
balance is more than $1,200.

select branch_name, avg (balance)
from account
group by branch_name
having avg (balance) > 1200

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

56

Nested Subqueries
e SQL provides a mechanism for the nesting of
subqueries.

* Asubquery is a select-from-where expression
that is nested within another query.

A common use of subqueries is to perform tests
for set membership, set comparisons, and set
cardinality.

57

_ “In” Construct
» Find all customers who have both an account and a

loan at the bank.

select distinct customer_name
from borrower
where customer_name In (select customer _name
from depositor)

m Find all customers who have a loan at the bank but do
Nnot have an account at the bank

select distinct customer_name
from borrower
where customer_name not in (select customer_nam
from depositor)

58

Example Query

» Find all customers who have both an account and a
loan at the Perryridge branch

select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and
branch_name = 'Perryridge' and
(branch_name, customer_name) in
(select branch_name, customer_name
from depositor, account
where depositor.account_number =
account.account_number)

B Note: Above query can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

59

“Some” Construct

» Find all branches that have greater assets than some
branch located in Brooklyn.

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and
S.branch_city = '‘Brooklyn’

B Same query using > some clause

select branch_name
from branch
where assets > some
(select assets
from branch
where branch_city = '‘Brooklyn’)

60

“All” Construct
» Find the names of all branches that have greater

assets than all branches located in Brooklyn.

select branch_name
from branch
where assets > all
(select assets
from branch
where branch_city = 'Brooklyn')

61

“Exists” Construct

» Find all customers who have an account at all
branches located in Brooklyn.

select distinct S.customer_name

from depositor as S

where not exists (
(select branch_name
from branch
where branch_city = 'Brooklyn’)
except
(select R.branch_name
from depositor as T, account as R
where T.account_number = R.account_number and

S.customer_name = T.customer_name))

B Notethat X-Y=0 < XcVY

m Note: Cannot write this query using = all and its variants

62

Absence of Duplicate Tuples

» The unique construct tests whether a subquery has any
duplicate tuples in its result.

» Find all customers who have at most one account at the
Perryridge branch.

select T.customer_name

from depositor as T

where unique (

select R.customer_name

from account, depositor as R

where T.customer_name = R.customer_name and
R.account_number = account.account_number and
account.branch_name = 'Perryridge’)

63

Example Query

» Find all customers who have at least two accounts at the
Perryridge branch.

select distinct T.customer_name
from depositor as T
where not unique (
select R.customer_name
from account, depositor as R
where T.customer _name = R.customer_name and
R.account_number = account.account_number and
account.branch_name = 'Perryridge’)

e Variable from outer level is known as a correlation
variable

64

Modification of the Database — Deletion

» Delete all account tuples at the Perryridge branch

delete from account
where branch_name = 'Perryridge’

» Delete all accounts at every branch located in the
city ‘Needham'.

delete from account
where branch_name in (select branch_name
from branch
where branch_city = 'Needham)

65

Example Query

 Delete the record of all accounts with balances
below the average at the bank.

delete from account
where balance < (select avg (balance)
from account)

e Problem: as we delete tuples from deposit, the average balance changes
e Solution used in SQL.:
1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

66

Modification of the Database — Insertion

» Add a new tuple to account

insert into account
values ('A-9732', 'Perryridge’, 1200)

or equivalently

insert into account (branch_name, balance, account_number)
values ('Perryridge', 1200, 'A-9732')

» Add a new tuple to account with balance set to null

insert into account
values ('A-777','Perryridge’, null)

67

Modification of the Database — Insertion

* Provide as a gift for all loan customers of the Perryridge branch, a $200 savings
account. Let the loan number serve as the account number for the new savings
account

insert into account
select loan_number, branch_name, 200
from loan
where branch_name = "'Perryridge’
insert into depositor
select customer_name, loan_number
from loan, borrower
where branch_name = 'Perryridge’
and loan.account_number = borrower.account_number

* The select from where statement is evaluated fully before any of its results are
inserted into the relation

— Motivation: insertinto tablel select * from tablel

68

Modification of the Database — Updates

» Increase all accounts with balances over $10,000 by
6%, all other accounts receive 5%.

o Write two update statements:

update account
set balance = balance * 1.06
where balance > 10000

update account
set balance = balance * 1.05
where balance < 10000
o The order is important
o Can be done better using the case statement (next slide)

69

Case Statement for Conditional Updates

 Same query as before: Increase all accounts with

balances over $10,000 by 6%, all other accounts
receive 5%.

update account
set balance = case

when balance <= 10000 then
balance *1.05

else balance * 1.06
end

70

More on Set-Comparison Operators

 We’ve already seen i, existsand unique. Can also use nor i,

NOT EXISTS and NOT UNIQUE.
: > <, =2,
* Also available: op anv, 0p 2L, op i

* Find sailors whose rating is greater than that of some

saikorealled Horatio:
FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname="Horatio")

71

Rewriting INTERSECT Queries Using IN

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red’
AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid
AND B2.color="green’)

* Similarly, exceet queries re-written using notIn.

* To find names (not sid’s) of Sailors who’ve reserved both
red and green boats, just replace S.sid by S.sname in seLect
clause. (What about intersect query?)

12

Division in SQL

SELECT S.sname

(1) FROM Sailors S
WHERE NOT EXISTS

((SELECT B.bid

Find sailors who've reserved all boats.

e Let’s do it the hard way, FROM Boats B)
: EXCEPT
without excepr: (SELECT R.bid
(2) SELECT S.Sname FROM Reserves R
FROM Sailors S WHERE R.sid=S.sid))

WHERE NOT EXISTS (SELECT B.bid
FROM Boats B

Sailors S such that WHERE NOT EXISTS (SELECT R.bid
FROM Reserves R
there is no boat B without ... WHERE R bid=B.bid

a Reserves tuple showing S reserved B AND R.sid=S.sid))

73

T *x
Agg regate O pe raﬁ?g{[?;T g [)DISTINCT] A)
SUM ([DISTINCT] A)

AVG ([DISTINCT] A)

* Significant extension of MAX (A)
relational algebra. MIN (A)
SELECT COUNT (*) \ single column

FROM Sailors S SELECT S.sname

SELECT AVG (S.age) FROM Sailors S

FROM Sailors S WHERE S.rating= (IS:iIE)EhiTSMiAX(Séératmg)
WHERE S.rating=10 ailors 52)
SELECT COUNT (DISTINCT S.rating)
: SELECT AVG (DISTINCT S.age)
FROM Sailors S oM Sl &
WHERE S.sname="Bob’ allors

WHERE S.rating=10

74

Find name and age of the oldest sailor(s)

SELECT S.sname, MAX (S.age)

P The first query is illegal! FROM Sailors S
(We'll look into the reason a
bit later, when we discuss SELECT S.sname, S.age
GROUP BY.) FROM Sailors S
. _ WHERE S.age =
P The third query is (SELECT MAX (S2.age)
equivalent to the second FROM Sailors S2)
qguery, and is allowed in the
SQL/92 standard, but is not SELECT S.sname, S.age

FROM Sailors S

WHERE (SELECT MAX (52.age)
FROM Sailors S2)
= S.age

supported in some systems.

75

Motivation for Grouping

e So far, we've applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.

* Consider: Find the age of the youngest sailor for
each rating level.

— In general, we don’t know how many rating levels exist,
and what the rating values for these levels are!

— Suppose we know that rating values go from 1 to 10; we

can write 10 queries that loakHiReThisAIN (S.age)
Fori=1,2,...,10: FROM Sailors S
WHERE S.rating =i

76

Queries With GROUP BY and HAVING

SELECT [DISTINCT] target-list
FROM relation-list

WHERE qualification

GROUP BY grouping-list
HAVING group-qualification

* The target-list contains (i) attribute names (ii) terms with
aggregate operations (e.g., min (S.age)).

— The attribute list (i) must be a subset of grouping-list. Intuitively,
each answer tuple corresponds to a group, and these attributes
must have a single value per group. (A group is a set of tuples that
have the same value for all attributes in grouping-list.)

77

Find age of the youngest sailor with age 18, for each rating?with at
least 2 such sailors

SELECT S.rating, MIN (S.age)

FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (¥) >1

AS minage

rating | minage
Answer relation: 3 [255
/7 135.0
8 [255

Sailors instance:

sid | shame |rating |age
22 | dustin 7 145.0
29 | brutus 1 |(33.0
31 | lubber 8 |55.5
32 |andy 8 |[25.5
58 | rusty 10 {35.0
64 | horatio 7 135.0
71 | zorba 10 {16.0
74 | horatio 9 |35.0
85 |art 3 |255
95 | bob 3 [63.5
96 | frodo 3 [25.5

78

Find age of the youngest sailor with age 18, for each rating?with at
least 2 such sailors.

rating | age
7 145.0
1 [33.0
8 |55.5
8 [25.5
10 [35.0
7 135.0
10 |16.0
9 |35.0
3 255
3 |63.5
3 255

rating

age

1

33.0

25.5
63.5
25.5

45.0
35.0

rating | minage
3 |255
7 |35.0
8 |25.5

55.5
25.5

© 00 0N N[WwWw W Ww

35.0

=
o

35.0

79

Find age of the youngest sailor with age 182for each rating with at

least 2 such sailors and with every sailor under 60.

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

rating | age
7 [45.0
1 |33.0
8 |55.5
8 |25.5
10 |35.0
7 |35.0
10 |16.0
9 |35.0
3 |25.5
3 |63.5
3 |25.5

=)

rating | age
1 |33.0

rati‘a’g m":irifége
7 (850
[40.U
7 135.0
8 |55.5
8 125.5
9 135.0
10 [35.0

=)

What is the result of
changing EVERY to
ANY?

80

Find age of the youngest sailor with age 18, for each rating with at
least 2 sailors between 18 and 60.

SELECT S.rating, MIN (S.age)
FROM Sailors S

GROUP BY S.rating
HAVING COUNT (*) >1

AS minage

WHERE S.age >=18 AND S.age <= 60

Sailors instance:

rating | minage
Answer relation: 3 |255
/7 |135.0
8 255

sid | shame |rating |age
22 | dustin 7 145.0
29 | brutus 1 |(33.0
31 | lubber 8 |55.5
32 |andy 8 |25.5
58 | rusty 10 {35.0
64 | horatio 7 |35.0
71 | zorba 10 {16.0
74 | horatio 9 |35.0
85 |art 3 |255
95 | bob 3 |63.5
96 | frodo 3 [25.5

81

For each red boat, find the number of reservations for
this boat

SELECT B.bid, COUNT (*) AS scount

FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red’

GROUP BY B.bid

» Grouping over a join of three relations.

» What do we get if we remove B.color=‘red’ from the
wHere clause and add a Having clause with this condition?

» What if we drop Sailors and the condition involving
S.sid?

82

Find age of the youngest sailor with age > 18,
for each rating with at least 2 sailors (of any age)

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
FROM Sailors S2
WHERE S.rating=52.rating)

* Shows HavinG clause can also contain a subquery.

 Compare this with the query where we considered only
ratings with 2 sailors over 18!

 What if navin clause is replaced by:
— HAVING cOUNT(*) >1

83

Find those ratings for which the average age is the
minimum over all ratings

P Aggregate operations cannot be nested! \WRONG:

SELECT S.rating
FROM Sailors S

WHERE S.age = (SELECT MIN (AVG (52.age)) FROM Sailors S2)
% Correct solution (in SQL/92):

SELECT Temp.rating, Temp.avgage

FROM (SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S

GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)

84

Null Values

* Field values in a tuple are sometimes unknown (e.g., a
rating has not been assigned) or inapplicable (e.g., no
spouse’s name).

— SQL provides a special value null for such situations.

* The presence of null complicates many issues. E.g.:
— Special operators needed to check if value is/is not null.

— Is rating>8 true or false when rating is equal to null? What
about AND, OR and NOT connectives?

— We need a 3-valued logic (true, false and unknown).

— Meaning of constructs must be defined carefully. (e.g.,
WHERE clause eliminates rows that don’t evaluate to true.)

— New operators (in particular, outer joins) possible/needed.

85

Null Values and Three Valued Logic

* Any comparison with null returns unknown
— Example: 5 < null or null <>null or null=null

* Three-valued logic using the truth value unknown:

— OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

— AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

— NOT: (not unknown) = unknown

— “Pis unknown” evaluates to true if predicate P
evaluates to unknown

e Result of where clause predicate is treated as
false if it evaluates to unknown

86

Null Values

P It is possible for tuples to have a null value, denoted by
null, for some of their attributes

» null signifies an unknown value or that a value does not
exist.

» The predicate is null can be used to check for null values.

o Example: Find all loan number which appear in the loan
relation with null values for amount.

select loan _number
from loan
where amount is null

» The result of any arithmetic expression involving null is
null
o Example: 5 + null returns null

» However, aggregate functions simply ignore nulls

87

Null Values and Aggregates

 Total all loan amounts

select sum (amount)
from loan

— Above statement ignores null amounts
— Result is null if there is no non-null amount

e All aggregate operations except count(*)
ignore tuples with null values on the
aggregated attributes.

88

Joined Relations**

» Join operations take two relations and return as a result another
relation.

» These additional operations are typically used as subquery
expressions in the from clause

» Join condition — defines which tuples in the two relations match,
and what attributes are present in the result of the join.

» Join type — defines how tuples in each relation that do not match

any tuple in the other relation (based on the join condition) are
treated.

Join types Join Conditions

inner join natural

left outer join on < predicate>
right outer join using (A, A, ..., A,)
full outer join

Joined Relations — Datasets for Examples

B Relation borrower

» Relation loan

loan_number | branch_name | amount customer—_name | loan_number
L-170 Downtown | 3000 Jones L-170
[-230 Redwood 4000 Smith [-230
L-260 Perryridge 1700 Hayes L-155
loan borrower

B Note: borrower information missing for L-260 and loan
information missing for L-155

B Select S.sid, R.bid from Sailors S natural Ieftmm
outer join Reserves R 29 101

31 Null
58 103

90

Joined Relations — Examples

» loan inner join borrower on
loan.loan_number = borrower.loan_number

loan_number | branch_name | amount customer—_name | loan_number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230

B |oan left outer join borrower on
loan.loan_number = borrower.loan_number

loan_number | branch_name | amount customer_name | loan_number

L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
L-260 Perryridge 1700 null null

91

Relations — Examples

» loan naQJrgl ner join rower

loan_number | branch_name | amount customer_name

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

B |oan natural right outer join borrower

loan_number | branch_name | amount | customer—_name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-155 null null Hayes

| Find all customers who have either an account or a loan (but not both) at the bank.

select customer_name
from (depositor natural full outer join borrower)
where account_number is null or loan_number is null

92

Joined Relations — Examples

» Natural join can get into trouble if two relations have an attribute
with same name that should not affect the join condition

° e.g. an attribute such as remarks may be present in many tables

» Solution:

o Joan full outer join borrower using (loan_number)

loan_number

branch_name

amount

customer—_name

L-170
L-230
L-260
L-155

Downtown
Redwood
Perryridge
null

3000
4000
1700
null

Jones
Smith
null
Hayes

93

Derived Relations

SQL allows a subquery expression to be used in the from clause

Find the average account balance of those branches where the
average account balance is greater than $1200.

select branch_name, avg _balance
from (select branch_name, avg (balance)

from account

group by branch_name)

as branch_avg (branch_name, avg_balance)
where avg_balance > 1200

Note that we do not need to use the having clause, since we compute
the temporary (view) relation branch_avg in the from clause, and the
attributes of branch _avg can be used directly in the where clause.

94

Integrity Constraints (Review)

 An ICdescribes conditions that every legal instance of a relation must satisfy.
— Inserts/deletes/updates that violate IC’s are disallowed.

— Can be used to ensure application semantics (e.g., sid is a key), or prevent
inconsistencies (e.g., sname has to be a string, age must be < 200)

* Types of IC’s: Domain constraints, primary key constraints, foreign key
constraints, general constraints.

— Domain constraints: Field values must be of right type.
Always enforced.

— EX:Create domain ratingval integer default 1
check(value>=1 and value<=10)

— Rating ratingval

95

General Constraints

» Useful when more general ICs than CREATE TABLE
keys are involved. Sailors

P Can use queries to express (sid INTEGER
constraint. ’

sname CHAR(10),

P Constraints can be named. .
rating INTEGER,

CREATE TABLE Reserves age REAL,
(sname CHAR(10), PRIMARY KEY (sid),
bid INTEGER, CHECK (rating >="1
day DATE, ND rating <=10)

PRIMARY KEY (bid,day),
CONSTRAINT nolnterlakeRes
CHECK (‘Interlake” <>
(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))

96

Constraints Over Multiple Relations

CREATE TABLE Sailors
(sid INTEGER,

sname CHAR(10), Number of boats
¢ cv\;vokr‘]’\é? rd and rating INTEGER, plus number of
N age REAL, sailors is < 100
 If Sailors is empty, PRIMARY KEY (sid),
the number of CHECK
Boats tuples can ((SELECT COUNT (S.sid) FROM Sailors S)
be anything! + (SELECT COUNT (B.bid) FROM Boats B) <100)

» ASSERTION is the

right solution; not CREATE ASSERTION smallClub
associated with CHECK

either table. ((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) <100)

97

Triggers

* Trigger: procedure that starts automatically if
specified changes occur to the DBMS

* Three parts:
- Event (activates the trigger)
- Condition (tests whether the triggers should run)
- Action (what happens if the trigger runs)
- Types of triggers

- Row level triggers:triggering event should be defined to
occur for each modified record. For each row clause is used.

- Statement-level triggers: trigger is executed just once for
each(insert) statement. For each statement clause is used.

98

Examples

» Create Trigger init_count before insert on students /*event*/
Declare
Count Integer;
Begin
count:=0; [*action*/
End

Create Trigger incr_count after insert on students /*event*/
When(new.age<18) /*condition*/

For each row

Begin

count:=count+1; /*action*/

end

99

Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS
REFERENCING NEW TABLE NewsSailors
FOR EACH STATEMENT
INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

100

DATABASE MANAGEMENT SYSTEMS

UNIT-11I

INTRODUCTION TO SCHEMA REFINEMENT

Problems Caused by Redundancy

P Storing the same information redundantly, that is, in more
than one place within a database, can lead to several
problems:

» Redundant storage: Some information is stored repeatedly.

» Update anomalies: If one copy of such repeated data is
updated, an inconsistency is created unless all copies are
similarly updated.

» Insertion anomalies: It may not be possible to store some
information unless some other information is stored as well.

P Deletion anomalies: It may not be possible to delete some
information without losing some other information as well.

* Consider a relation obtained by translating a variant of the
Hourly Emps entity set

Ex: Hourly Emps(ssn, name, lot, rating, hourly wages,
hours worked)

* The key for Hourly Emps is ssn. In addition, suppose
that the hourly wages attribute

is determined by the rating attribute.

That is, for a given rating value, there is only one
permissible hourly wages value. This IC is an example of
a functional dependency.

* It leads to possible redundancy in the relation Hourly
Emps

Example: Constraints on Entity Set

* Consider relation obtained from Hourly Emps:

— Hourly_Emps (ssn, name, lot, rating, hrly _wages,
hrs_worked)

* Notation: We will denote this relation schema by
listing the attributes: SNLRWH

— This is really the set of attributes {S,N,L,R,W,H}.

-~ Sometimes, we will refer to all attributes of a relation by
using the relation name. (e.g., Hourly Emps for SNLRWH)

* Some FDs on Hourly Emps:
— ssnisthe key: S SNLRWH
— rating determines hmty_wages: R W

Example (Contd.)

Problems due to R—> W : 8 |10

— Update anomaly: Can |5 |7

we change W in just
the 1st tuple of SNLRWH?

Insertion anomaly: What if
we want to insert an
employee and don’t know
the hourly wage for his
rating?

Deletion anomaly: If we
delete all employees with
rating 5, we lose the
information about the wage
for rating 5!

Wages Hourly_Emps2

S N L R
\ 123-22-3666 |Attishoo |48 |8 |40
231-31-5368 |Smiley 22 |8 |30
131-24-3650 |Smethurst |35 |5 |30
434-26-3751 (Guldu 35 |5 |32
612-67-4134 |Madayan |35 8 |40
S N L R W H
123-22-3666 |Attishoo |48 |8 10 40
231-31-5368 |Smiley 22 |8 110 30
131-24-3650 |Smethurst |35 |5 |7 |30
434-26-3751 |Guldu 35 5 |7 |32
612-67-4134 |Madayan |35 |8 |10 40

hours

ssn name lot | rating Hourly worked
wages
123-22-3666
Attishoo | 48 8 10 40
231-31-5368)
Smiley 22 8 10 30
131-24-3650 | Smethurst
35 5 7 30
434-26-3751 Guldu
35) 7 32
612-67-4134 | Madayan
35 8 10 40

Decomposition

Redundancy is at the root of several problems associated with
relational schemas:

— redundant storage, insert/delete/update anomalies

Main refinement technique: decomposition (replacing ABCD with,
say, AB and BCD, or ACD and ABD).

Decomposition should be used judiciously:

— Is there reason to decompose a relation?
-~ What problems (if any) does the decomposition cause?

Use of Decompositions

Intuitively, redundancy arises when a relational schema
forces an association between attributes that is not natural.

Functional dependencies (ICs) can be used to identify such
situations and to suggest revetments to the schema.

The essential idea is that many problems arising from
redundancy can be addressed by replacing a relation with a
collection of smaller relations.

Each of the smaller relations contains a subset of the
attributes of the original relation.

We refer to this process as decomposition of the larger
relation into the smaller relations

» We can deal with the redundancy in Hourly Emps by
decomposing it into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked)
Wages(rating, hourly wages)

ratin | hourly
g wages

8 10

ssn name lot | rating | hours worked
123-22-3666
23-22 Attishoo 48 8 40
231-31-5368]
Smiley 22 3 30
131-24-3650 Smethurst
2 methurs 35 5 30
434-26-3751 Guldu
35 5 32
612-67-4134 Mad
2 adayan 13| 8 40

10

Problems Related todecomposition

Unless we are careful, decomposing a relation schema can
create more problems than it solves.

Two important questions must be asked repeatedly:
1. Do we need to decompose a relation?

2. What problems (if any) does a given decomposition
cause?

To help with the rst question, several normal forms have
been proposed for relations.

If a relation schema is in one of these normal forms, we
know that certain kinds of

problems cannot arise.

11

Functional Dependencies (FDs)

A functional dependency X — Y holds over relation
R if, for every allowable instance r of R:

Ty —t1 r t2 7ty (t1)=m (t2) implies 7y(t1)=
(t2)

— If t1.X=t2.X then tl1.Y=t2.Y

— i.e., given two tuples in r, if the X values agree, then the

Y values must a____

attributes.)
~FD:AB C (

al bl cl dl
al b2 c2 dl
a2 bl c3 dl

REASONING ABOUT FD’S

» Workers(ssn,name,lot,did,since)

» We know ssn-did holds and FD did->lot is given to
hold. Therefore FD ssn->lot holds

» We say that an FD f is implied by a given set F of FD’s
if f holds on every relation instance that satisfies all
dependencies in F.i.e f holds whenever all FD’s hold.

» Closure of set of FD’s:

» The set of all FD’s implied by a given set F of FD’s is
called closure of F denoted as F+.

» How can we infer or compute the closure of given set
F of FD’s. Sol:Armstrong axioms can be applied
repeatedly to infer all FD’s implied by set of F of FD’s

13

P We use X)Y,Z to denote sets of attributes over a
relation schema R

P Relexivity: If X subset of Y then X->Y
P Augmentation: [If X->Y then XZ->YZ for any Z
P Transitivity: If X->Y and Y->Z then X->Z

P Union:If X->Y ,X->Z then X->YZ
» Decomposition:If X->YZ then X->Y and X->Z

Constraints on a Relationship Set

Suppose that we have entity sets Parts, Suppliers, and
Departments, as well as a relationship set Contracts that
involves all of them.

We refer to the schema for Contracts as CQPSD. A contract
with contract id C species that a supplier S will supply some
qguantity Q of a part P to a department D.

We might have a policy that a department purchases at most
one part from any given supplier.

Thus, if there are several contracts between the same
supplier and department, we know that the same part must
be involved in all of them. This constraint is an FD, DS ! P.

15

* Consider relation schema ABC with FD’s
A->B and B->C.

Using reflexivity

X->Y where YCX,XCABCand Y C ABC
From transitivity we get A->C

From augmentation we get nontrivial
dependencies

AC->BC,AB->AC,AB->CB

16

Reasoning About FDs (Contd.)

» Couple of additional rules (that follow from AA):
. Union: 1fX Y and_X —Z, then x_)_>vz N
- Decomposition: If X YZ, then X Y and X /
» Example: Contracts(cid,sid,jid,did,pid,qty,value), and:
- Cisthe key: C —>CSIDPQV
- Project purchases each part using single contract:
P C
- Deptypurchases at most one part from a supplier: S

.S P — —
»IP—>C, C CSIDPQWimply JP CSIDPQV
»SD P implies SDJ P -

»SDJ JP, JP CSIDPQV imply SDJ CSIDPQV

17

Closure of a Set of FDs

The set of all FDs implied by a given set F of FDs is called the
closure of F and is denoted as F+.

An important question is how we can infer, or compute, the
closure of a given set F of FDs.

The following three rules, called Armstrong's Axioms, can be
applied repeatedly to infer all FDs implied by a set F of FDs.

We use X, Y, and Z to denote sets of attributes over a relation
schema R:

18

Attribute Closure

P If we just want to check whether a given
dependency, say, X = Y, is in the closure of a set
F of FDs, we can do so effciently without
computing F+.

» We first compute the attribute closure X+ with
respect to F, which is the set of attributes A such
that X - A can be inferred using the Armstrong
Axioms.

» The algorithm for computing the attribute
closure of a set X of attributes is

» closure = X;
repeat until there is no change: {
if there is an FD U = Vin F such that U subset of closure,
then set closure = closure union of V 19

NORMAL FORMS
The normal forms based on FDs are first normal form (1NF),

second normal form (2NF), third normal form (3NF), and
Boyce-Codd normal form (BCNF).

These forms have increasingly restrictive requirements:
Every relation in BCNF is also in 3NF, every relation in 3NF is
also in 2NF, and every relation in 2NF is in 1NF.

A relation is in first normal form if every field contains only
atomic values, that is, not lists or sets.

This requirement is implicit in our defition of the relational
model.

Although some of the newer database systems are relaxing
this requirement 2NF is mainly of historical interest.

3NF and BCNF are important from a database design
standpoint.

20

Normal Forms

Returning to the issue of schema refinement, the first question to
ask is whether any refinement is needed!

If a relation is in a certain normal form (BCNF, 3NF etc.), it is known
that certain kinds of problems are avoided/minimized. This can be
used to help us decide whether decomposing the relation will help.

Role of FDs in detecting redundancy:
— Consider a relation R with 3 attributes, ABC.
* No FDs hold: There is no redundancy here.

* Given A _ B: Several tuples could have the same A value,
H ’
and if so, they’ll all have the same B value!

21

First Normal Form

= 1NF (First Normal Form)

« arelation Ris in 1NF if and only if it has only

single-valued attributes (atomic values)
. EMP_PROI (SSN, PNO, HOURS, ENAME, PNAME, PLOCATION)

PLOCATION is not in INF (multi-valued attrib.)

« solution: decompose the relation

EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)
LOC (PNO, PLOCATION)

22

Second Normal Form

= 2NF (Second Normal Form)

« arelation Rin 2NF if and only if it is in 1NF and every
nonkey column depends on a key not a subset of a key

« all nonprime attributes of R must be fully functionally
dependent on a whole key(s) of the relation, not a part of
the key

e no violation: single-attribute key or no nonprime
attribute

23

Second Normal Form (Contd)

= 2NF (Second Normal Form)
« violation: part of a key — nonkey

EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)
SSN — ENAME

PNO - PNAME
« solution: decompose the relation

EMP_PROJ3 (SSN, PNO, HOURS)
EMP (SSN, ENAME)
PROJ (PNO, PNAME)

24

Third Normal Form

« arelation Rin 3NF if and only if it is in 2NF and
every nonkey column does not depend on
another nonkey column

 all nonprime attributes of R must be non-
transitively functionally dependent on a key of
the relation

25

Third Normal Form (Contd)

=" 3NF (Third Normal Form)
= violation: nonkey — nonkey

. SUPPLIER (SNAME, STREET, CITY, STATE, TAX)
SNAME — STREET, CITY, STATE
STATE — TAX (nonkey — nonkey)
SNAME — STATE — TAX (transitive FD)
e solution: decompose the relation
SUPPLIER2 (SNAME, STREET, CITY, STATE)
TAXINFO (STATE, TAX)

26

Boyce-Codd Normal Form (BCNF)

+ Reln R with FDs Fis in BCNF if, foralFX A ih "
— A < X (called a trivial FD), or
— X contains a key for R.

* In other words, R is in BCNF if the only non-trivial
FDs that hold over R are key constraints.

— No dependency in R that can be predicted ;-

X Y A

alone.
a
?

— If we are shown two tuples that agree up3§1 yl
the X value, we cannot infer the A value i||1?< y2

one tuple from the A value in the other.

27

I€f Avamrmamia valadkiam 1 i DORNIE #laa D F1inrlAas

Decomposition of a Relation Scheme

P Suppose that relation R contains attributes A1 ...
An. A decomposition of R consists of replacing R
by two or more relations such that:

- Each new relation scheme contains a subset of the

attributes of R (and no attributes that do not appear in
R), and

- Every attribute of R appears as an attribute of one of
the new relations.

P Intuitively, decomposing R means we will store
instances of the relation schemes produced by the
decomposition, instead of instances of R.

P E.g., Can decompose SNLRWH into SNLRH and

Example Decomposition

» Decompositions should be used only when
needed. N N
- SNLRWH has FDs S SNLRWH and R W

- Second FD causes violation of 3NF; W values repeatedly
associated with R values. Easiest way to fix this is to
create a relation RW to store these associations, and to
remove W from the main schema:

* i.e., we decompose SNLRWH into SNLRH and RW

» The information to be stored consists of SNLRWH
tuples. If we just store the projections of these
tuples onto SNLRH and RW, are there any
potential problems that we should be aware of?

Problems with Decompositions

* There are three potential problems to consider:

— Some queries become more expensive.
e e.g., How much did sailor Joe earn? (salary = W*H)
— @Given instances of the decomposed relations, we

may not be able to reconstruct the corresponding
instance of the original relation!

* Fortunately, not in the SNLRWH example.

— Checking some dependencies may require joining the
instances of the decomposed relations.
* Fortunately, not in the SNLRWH example.

30

e Tradeoff: Must consider these issues Vvs.

Lossless Join Decompositions

o Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every
instance r that satisfies F:

° 7C(x) [>(<"t Z3%
» Itis always true that r)7y (PP] 7Ty

In general, the other direction does not hold! If it does, the decomposition is
lossless-join.

» Definition extended to decomposition into 3 or more relations in a straightforward
way.

P It is essential that all decompositions used to deal with redundancy be lossless!

» Consider Hourly emps relation.It has attributes
SNLRWH and FD R->W causes a violation of 3NF.We
dealt this violation by decomposing into SNLRH and
RW.

» Since R is common to both decomposed relation and
R->W holds,this decomposition is lossles-join o

More on Lossless Join

» The decomposition of R into 1
and Y is lossless-join wrt F if |4
and omly ifthe closure of F 7

contains: —
o X Y X, or

o X Y Y

» In particular,if an fd X->Y holds
over relation Rand Xn Y is
empty, the decomposition of
R into R-Y and XY is lossless.

A B |C

2 |3

5 |6

2 |8
A B |C
1 12 |3
4 |5 |6
/7 |2 |8
1 |2 |8
7 |2 |3

» Imp observation is repeated

~N A P[>
N U1 N[O

N 01N D
oo WO

32

Dependency Preserving Decomposition

e Consider CSIDPQV, Ciskey, » Cand SD P
— Bcoz SD->P is not a key, it causes violation
— BCNF decomposition: £$JDQV and SDP
— Problem: Checking JP C requires a join!

* Dependency preserving decomposition (Intuitive):

— If Ris decomposed into X, Y and Z, and we enforce the
FDs that hold on X, on Y and on Z, then all FDs that
were giyen to hold on R must also hold.

— Projection of set of FDs F: If R is decomposed into X,
... projection of F onto X (denoted F,) is the set of EDs

[| V\ s P+ [A arcsssnm md PP\ finale 2lamd 11 A7 Aavna 2w V

Dependency Preserving Decompositions
(Contd.)

» Decomposition of Rinto X and Y is dependency

preserving if (F, union F,)* = F*

- i.e., if we consider only dependencies in the closure F* that
can be checked in X without considering Y, and in Y without
considering X, these imply all dependencies in F*.

» Important to cortsider F*, not F, in this definition:
- ABC, A B,B C,C A, decomﬁ))sed into AB and BC.
- Is this degendency preserving? Is C A preserved?????

» Dependency preserving does not imply lossless join:
- ABC, A B, decomposed into AB and BC.

» And vice-versa! (Example?) -

Decomposition into BCNF

» Consider relation R with FDs F. If X —Y violates

BCNF, decompose Rinto R -Y and XY.

- Repeated application of this idea will give us a collection
of relations that are in BCNF; lossless join
decomposition, and guararteed toterminate.”

- e.g., CSIDPQV, k&yC, JP C,SD P J S

. To deal with SD” P, decompose into SDP, CSIDQV.

- Todeal withJ S, decompose CSIDQYV into JS and
clDQV

P In general, several dependencies may cause
violation of BCNF. The order in which we deal
with”” them could lead to very different sets of
relationc!

35

BCNF and Dependency Preservation

* |[n general, there may not be a dependency

preserving decomposigon iInto BCNF.

%
- e.g.,, CSZ, CS Z, Z C
— Can’t decompose while preserving 1st FD; not in BCNF.

* Similarly, d_e)compos@)on of CSJDQX) into SDP, JS
and CJDQV is not dependency preserving (w.r.t.
the FDsJP C, SD P and J S).

— However, it is a lossless join decomposition.

— In this case, adding JPC to the collection of relations
gives us a dependency preserving decomposition.

Decomposition into 3NF

* Obviously, the algorithm for lossless join decomp
into BCNF can be used to obtain a lossless join
decomp into 3NF (typically, can stop earlier).

* To ensyre dependency preservation, one idea:
—If X Y isnot preserved, add relation XY.

— Problemsis that XY may violate B_KIF! e.g., consider the
addition of CJP to ‘preserve’ JP C. What if we also

have C?
* Refinement: Instead of the given set of FDs F, use a
minimal cover for F. .

SCHEMA REFINEMENT

Constraints on an Entity Set

Consider the Hourly Emps relation again. The constraint that
attribute ssn is a key can be expressed as an FD:

{ssn }-> { ssn, name, lot, rating, hourly wages, hours worked}

For brevity, we will write this FD as S -> SNLRWH, using a
single letter to denote each attribute

In addition, the constraint that the hourly wages attribute is
determined by the rating attribute is an

FD:R-> W.

Constraints on a Relationship Set

* The previous example illustrated how FDs can help to
rene the subjective decisions made during ER design,

* but one could argue that the best possible ER diagram
would have led to the same nal set of relations.

* Our next example shows how FD information can lead to
a set of relations that eliminates some redundancy

problems and is unlikely to be arrived at solely through
ER design.

ldentifying Attributes of Entities

* in particular, it shows that attributes can easily
be associated with the 'wrong' entity set
during ER design.

 The ER diagram shows a relationship set
called Works In that is similar to the Works In

<P =T

Employees W'I'fk‘ _In Departments

ldentifying Entity Sets

Let Reserves contain attributes S, B, and D as before, indicating
that sailor S has a reservation for boat B on day D.

In addition, let there be an attribute C denoting the credit card
to which the reservation is charged.

Suppose that every sailor uses a unique credit card for
reservations. This constraint is expressed by the FD S ->C. This
constraint indicates that in relation Reserves, we store the credit
card number for a sailor as often as we have reservations for
that

sailor, and we have redundancy and potential update anomalies.

Multivalued Dependencies

* Suppose that we have a relation with
attributes course, teacher, and book, which
we denote as CTB.

* The meaning of a tuple is that teacher T can
teach course C, and book B is a recommended
text for the course.

 There are no FDs; the key is CTB. However, the

recom mer | CHPRLTT S | feceafoer | Freen ki |

. FPhhw=sics 101 CareaT Mlechanics

|ndependE Fhv=ic=101 CareaeT1n COrprtice=s
Fhv=sic=101 BErown MMeclhhanicos
FHhv=sic=s101 RErowi C O tices
MNlachIol Careat MMlechhanics
MMlathJZo a1 NWertors
Mlath3Zol a1 LTS T =)

There are three points to note here:

» The relation schema CTB is in BCNF; thus we would not

consider decomposing it further if we looked only at the FDs
that hold over CTB.

» There is redundancy. The fact that Green can teach
Physics101 is recorded once per recommended text for the

course. Similarly, the fact that Optics is a text for Physics101 is
recorded once per potential teacher.

» The redundancy can be eliminated by decomposing CTB into
CT and CB.

P Let R be a relation schema and let X and Y be subsets of the
attributes of R. Intuitively,

» the multivalued dependency X !! Y is said to hold over R if, in
every legal

* The redundancy in this example is due to the constraint
that the texts for a course are independent of the
instructors, which cannot be epressed in terms of FDs.

* This constraint is an example of a multivalued
dependency, or MVD. Ideally, we should model this
situation using two binary relationship sets, Instructors
with attributes CT and Text with attributes CB.

* Because these are two essentially independent
relationships, modeling them with a single ternary
relationship set with attributes CTB is inappropriate.

Three of the additional rules involve only MVDs:

MVD Complementation: If X 2>V, then X > R - XY
MVD Augmentation: If X >— Yand W > Z, then

WX ->-> YZ

MVD Transitivity: If X 2> Yand Y 25— Z, then
X=>->(Z-Y).

Fourth Normal Form

R is said to be in fourth normal form (4NF) if for every MVD X
—>—->Y that holds over R, one of the following statements is true:

Y subset of X or XY =R, or
X is a superkey.

Join Dependencies

A join dependency is a further generalization of MVDs. A join
dependency (JD) e={ R1,..... Rn }is said to hold over a relation
R if R1,.... Rn is a lossless-join decomposition of R.

An MVD X ->-> Y over a relation R can be expressed as the join
dependency o= { XY,X(R-Y)}

As an example, in the CTB relation, the MVD C ->->T can be
expressed as the join dependency o={ CT, CB}

Unlike FDs and MVDs, there is no set of sound and complete
inference rules for JDs.

Fifth Normal Form

A relation schema R is said to be in fth normal form (5NF) if
for every JD =={ R1,.... Rn } that holds over R, one of the
following statements is true:

Ri = R for some i, or

The JD is implied by the set of those FDs over R in which the
left side is a key for R.

The following result, also due to Date and Fagin, identies
conditions|again, detected using only FD information|under
which we can safely ignore JD information.

If a relation schema is in 3NF and each of its keys consists of a
single attribute,it is also in 5NF.

Inclusion Dependencies

MVDs and JDs can be used to guide database design, as we
have seen, although they are less common than FDs and
harder to recognize and reason about.

In contrast, inclusion dependencies are very intuitive and
quite common. However, they typically have little influence on
database design

The main point to bear in mind is that we should not split
groups of attributes that participate in an inclusion
dependency.

Most inclusion dependencies in practice are key-based, that
is, involve only keys.

Recovery System

e Modifying the database without ensuring that the
transaction will commit may leave the database
in an inconsistent state.

* Consider transaction T, that transfers $50 from
account A to account B; goal is either to perform
all database modifications made by T, or none at

all.

e Several output operations may be required for T,
(to output A and B). A failure may occur after one
of these modifications have been made but before
all of them are made.

Recovery and Atomicity (Cont.)

To ensure atomicity despite failures, we first output
information describing the modifications to stable
storage without modifying the database itself.

We study two approaches:

— log-based recovery, and

— shadow-paging

We assume (initially) that transactions run serially,
that is, one after the other.

Recovery Algorithms
Recovery algorithms are techniques to ensure

database consistency and transaction atomicity and
durability despite failures

— Focus of this chapter
Recovery algorithms have two parts

1. Actions taken during normal transaction

processing to ensure enough information exists
to recover from failures

2. Actions taken after a failure to recover the
database contents to a state that ensures
atomicity, consistency and durability

Log-Based Recovery

A log is kept on stable storage.

— The log is a sequence of log records, and maintains a
record of update activities on the database.

When transaction T, starts, it registers itself by writing a
<T; start>log record

Before T; executes write(X), a log record <T;, X, V,, V,>is
written, where V, is the value of X before the write, and V,
is the value to be written to X.

— Log record notes that T, has performed a write on data
item X. X. had value V, before the write, and will have
value ‘,/2 atter the write.

When T, finishes it last statement, the log record <T;
commit> is written.

We assume for now that log records are written directly to
stable storage (that is, they are not buffered)

Two approaches using logs
— Deferred database modification
— Immediate database modification

Deferred Database Modification

The deferred database modification scheme
records all modifications to the log, but defers
all the writes to after partial commit.

Assume that transactions execute serially

Transaction starts by writing <T; start> record
to log.

A write(X) operation results in a log record <T;,,
X, V> being written, where V is the new value for
X

— Note: old value is not needed for this scheme

The write is not performed on X at this time,
but is deferred.

When T, partially commits, <T; commit> is
written to the log

Finally, the log records are read and used to
actually execute the previously deferred writes.

5

Deferred Database Modification (Cont.)

During recovery after a crash, a transaction needs
to be redone if and only if both <T; start> and<T,
commit> are there in the log.

Redoing a transaction T, (redoT,) sets the value of
all data items updated by the transaction to the
new values.

Crashes can occur while

— the transaction is executing the original
updates, or

— while recovery action is being taken
example transactionsT, and T, (T, executes before

T,):T, read (A) T, : read (C)
A:-A-50 C:-C- 100
Write (A) write (C)
read (B)

B:- B+ 50

write (B)

<tO start>
<t0,A,950>
<t0,B,2050>
<t0,commit>
<tl,start>
<tl,c,600>
<tl,commit>

Portion of log

Log database
<tO start>

<t0,A,950>
<t0,B,2050>
<t0,commit>
A=950
B=2050
<tl,start>
<tl,c,600>

<tl,commit>
C=600

Deferred Database Modification (Cont.)

e Below we show the log as it appears at three
instances of time.

<T, start> <T, start> <T, start>
<T,, A, 950> <T,, A, 950> <T,, A, 950>
<T,, B, 2050> <T,, B, 2060> <T,, B, 2050>
<T, commit> <T, commit>
<T, start> <T, start>
<T,, C, 600> <T,, C, 600>
<T; commit>

(a) (b) ()

 If log on stable storage at time of crash is as in case:
(a) No redo actions need to be taken

(b) redo(T,) must be performed since <T, commit> is
present

(c) redo(T,) must be performed followed by redo(T,) since
<T, commit> and <T; commit> are presentg

Immediate Database Modification
e The immediate database modification scheme
allows database updates of an uncommitted
transaction to be made as the writes are issued

— since undoing may be needed, update logs
must have both old value and new value

e Update log record must be written before
database item is written

— We assume that the log record is output
directly to stable storage

— Can be extended to postpone log record
output, so long as prior to execution of an
output(B) operation for a data block B, all log
records corresponding to items B must be
flushed to stable storage

Immediate Database Modification

e Output of updated blocks can take place at any time
before or after transaction commit

<to start>

<t0,A,1000,950>

<t0,B,2000,2050>

<t0 commit>

<tl start>

<tl start>

<t1,C,700,600>

<tl commit>

e Recovery procedure has two operations instead of one:

— undo(7T,) restores the value of all data items updated
by T, to their old values, going backwards from the last
log record for T,

— redo(T,) sets the value of all data items updated by T,
to the new values, going forward from the first log
record for T, 10

Immediate Database Modification (Cont.)

e Both operations must be idempotent

— That is, even if the operation is executed
multiple times the effect is the same as if
it is executed once

* Needed since operations may get re-
executed during recovery

e When recovering after failure:

— Transaction T; needs to be undone if the
log contains the record <T, start>, but does
not contain the record <T; commit>.

— Transaction T, needs to be redone if the log
contains both the record <T, start> and the
record <T,commit>.

e Undo operations are performed first, then
redo operations.

11

Immediate Database Modification Example

Log Write Output
<T, start>
<T,, A, 1000, 950>
T,, B, 2000, 2050

A =950

B =2050
<T, commit>
<T, start>
<T;, C, 700, 600>

Xy C =600
BB? BC
<T, commit>
A

 Note: By denotes block containing X.

12

Immediate DB Modification Recovery Example

Below we show the log as it appears at three
instances of time.

<T, start> <7, start> <T, start>
<71y, A, 1000, 950> <Ty, A, 1000, 950> <Ty, A, 1000, 950>
<Ty,, B, 2000, 2050= <T,, B, 2000, 2050> <T,, B, 2000, 2050>

<To, commit> <To, commit>
<T, start> <T, start>
<T,, C, 700, 600> <T,, C, 700, 600>

<T, commit>

@) (b) (©)
Recovery actions in each case above are:
(a) undo (T,): B is restored to 2000 and A to 1000.

(b) undo (T,) and redo (T,): C is restored to 700,
and then A and B are set to 950 and 2050
respectively.

(c) redo (T,) and redo (T,): A and B are set to 950
and 2050 respectively. Then Cis set to 600

13

Checkpoints

Problems in recovery procedure as discussed earlier

1. searching the entire log is time-consuming

2. we might unnecessarily redo transactions which
have already output their updates to the
database.

Streamline recovery procedure by periodically
performing checkpointing

1. Output all log records currently residing in main
memory onto stable storage.

2. Output all modified buffer blocks to the disk.

3. Write a log record < checkpoint> onto stable
storage.

14

Checkpoints (Cont.)

e During recovery we need to consider only the most
recent transaction T, that started before the
checkpoint, and transactions that started after T,.

1.

2.

Scan backwards from end of log to find the most
recent <checkpoint> record

Continue scanning backwards till a record <T;
start> is found.

. Need only consider the part of log following above

start record. Earlier part of log can be ignored
during recovery, and can be erased whenever
desired.

. For all transactions (starting from T, or later) with

no <T, commit>, execute undo(T,). (Done only in
case of immediate modification.)

. Scanning forward in the log, for all transactions

starting from T, or later with a <T; commit>,

[A
execute redo(T)). r

Example of Checkpoints

T, T X
Tl
T2
|_4|
T3
—
T
checkpoint system failure

T, can be ignored (updates already output to disk
due to checkpoint)

T, and T; redone.
T, undone

16

Recovery With Concurrent Transactions

We modify the log-based recovery schemes to allow
multiple transactions to execute concurrently.

— All transactions share a single disk buffer and
a single log

— A buffer block can have data items updated
by one or more transactions

1)Interaction with concurrency control

We assume concurrency control using strict
two-phase locking;

— i.e. the updates of uncommitted transactions
should not be visible to other transactions

e Otherwise how to perform undo if T1 updates A,
then T2 updates A and commits, and finally T1 has
to abort?

Logging is done as described earlier.

— Log records of different transactions may be
interspersed in the log. 17

Recovery With Concurrent Transactions

2)Transaction Rollback

We rollback a failed transaction ,Ti by using log
System scans log backward.
Scanning terminates when system finds<ti,start>
Ex:<Ti,A,10,20>

<Tj,A,20,30>
Backward scanning correct. result:10
Forward scanning incorrect. result:20

18

Recovery With Concurrent Transactions
 3)checkpoints
e The checkpointing technique and actions taken
on recovery have to be changed

— since several transactions may be active when a
checkpoint is performed.

e Checkpoints are performed as before, except that
the checkpoint log record is now of the form

< checkpoint L> where L is the list of transactions
active at the time of the checkpoint

— We assume no updates are in progress either
on biffer blocks or on log while the checkpoint
is carried out (will relax this later)

— A fuzzy checkpoint is a checkpoint where
transactions are allowed to perform updates
even while buffer blocks are being written out.

19

Recovery With Concurrent Transactions (Cont.)

* 4)restart recovery

e When the system recovers from a crash, it first
does the following:

1.Initialize undo-list and redo-list to empty

2.Scan the log backwards from the end,
stopping when the first <checkpoint L>
record is found.
For each record found during the backward
scan:

P if the record is <T,commit>, add T, to redo-
list
P if the record is <T; start>, then if T,is not

in redo-list, add Tl‘i to undo-list
3.For every T;in L, if T,is not in redo-list, add

T; to undo-list 20

Recovery With Concurrent Transactions (Cont.)
e At this point undo-list consists of incomplete
transactions which must be undone, and redo-list

consists of finished transactions that must be
redone.

e Recovery now continues as follows:

1. Scan log backwards from most recent record,

stopping when <T, start> records have been
encountered for every T, in undo-list.

B During the scan, perform undo for each log record
that belongs to a transaction in undo-list.

2. Locate the most recent <checkpoint L> record.

3. Scan log forwards from the <checkpoint L>
record till the end of the log.

B During the scan, perform redo for each log record
that belongs to a transaction on redo-list

21

Example of Recovery

e Go over the steps of the recovery algorithm on the
following log:
<T, start>
<Ty, A, 0, 10>
<T, commit>
<T, start> /* Scan at step 1 comes up to here */
<T;, B, 0, 10>
<T, start>
<T,, C, 0, 10>
<T,, C, 10, 20>
<checkpoint {T;, T,}>
<T, start>
<T;, A, 10, 20>
<T;, D, 0, 10>
<T; commit>

22

BUFFER MANAGEMENT

1.Log Record Buffering

Log record buffering: log records are buffered in
main memory, instead of of being output directly
to stable storage.

— Log records are output to stable storage when a
block of log records in the buffer is full, or a log
force operation is executed.

Log force is performed to commit a transaction by
forcing all its log records (including the commit
record) to stable storage.

Several log records can thus be output using a
single output operation, reducing the I/O cost.

23

Log Record Buffering (Cont.)

e The rules below must be followed if log records are
buffered:

— Log records are output to stable storage in the
order in which they are created.

— Transaction T,; enters the commit state only
when the log record
<T; commit> has been output to stable storage.

— Before a block of data in main memory is output
to the database, all log records pertaining to data
in that block must have been output to stable
storage.

e This rule is called the write-ahead logging or WAL rule

— Strictly speaking WAL only requires undo information
to be output

24

2.Database Buffering

e Database maintains an in-memory buffer of data
blocks

— When a new block is needed, if buffer is full an
existing block needs to be removed from buffer

— If the block chosen for removal has been updated,
it must be output to disk

e If a block with uncommitted updates is output to
disk, log records with undo information for the
updates are output to the log on stable storage first

— (Write ahead logging)

e No updates should be in progress on a block when it
is output to disk. Can be ensured as follows.

— Before writing a data item, transaction acquires
exclusive lock on block containing the data item

— Lock can be released once the write is completed.
e Such locks held for short duration are called latches.

— Before a block is output to disk, the system
acquires an exclusive latch on the block 55
e Ensures no update can be in progress on the block

3.0perating system role in buffer management

e Database buffer can be implemented either

— in an area of real main-memory reserved for
the database, or

— in virtual memory

e Implementing buffer in reserved main-memory
has drawbacks:

— Memory is partitioned before-hand between
database buffer and applications, limiting
flexibility.

— Needs may change, and although operating
system knows best how memory should be
divided up at any time, it cannot change the
partitioning of memory.

« Database buffers are generally implemented in
virtual memory in spite of some drawbacks:

— When operating system needs to evict a page
that has been modified, the page is written to
swap space on disk.

26

Buffer Management (Cont.)

— When database decides to write buffer page
to disk, buffer page may be in swap space,
and may have to be read from swap space
on disk and output to the database on
disk, resulting in extra I/0O!

e Known as dual paging problem.

— Ideally when OS needs to evict a page from
the buffer, it should pass control to
database, which in turn should

1.Output the page to database instead of
to swap space (making sure to output
log records first), if it is modified

2.Release the page from the buffer, for the
OS to use

Dual paging can thus be avoided, but
common operating systems do not
support such functionality. -

4.Failure with Loss of Nonvolatile Storage

e So far we assumed no loss of non-volatile
storage

e Technique similar to checkpointing used to
deal with loss of non-volatile storage

— Periodically dump the entire content of the
database to stable storage

— No transaction may be active during the
dump procedure; a procedure similar to
checkpointing must take place

e Output all log records currently residing in main
memory onto stable storage.

e Output all buffer blocks onto the disk.

e Copy the contents of the database to stable
storage.

e Output a record <dump> to log on stable storage.

28

Recovering from Failure of Non-Volatile Storage

e To recover from disk failure
— restore database from most recent dump.

— Consult the log and redo all transactions that
committed after the dump

e Can be extended to allow transactions to be
active during dump; known as fuzzy dump or
online dump

29

Advanced Recovery: Key Features

e Support for high-concurrency locking
techniques, such as those used for B*-tree
concurrency control, which release locks early

— Supports “logical undo”

e Recovery based on “repeating history’’, whereby
recovery executes exactly the same actions as
normal processing

— including redo of log records of incomplete
transactions, followed by subsequent undo

— Key benefits
e supports logical undo
e easier to understand/show correctness

30

Advanced Recovery: Logical Undo Logging

Operations like B*-tree insertions and deletions
release locks early.

— They cannot be undone by restoring old
values (physical undo), since once a lock is
released, other transactions may have
updated the B'-tree.

— Instead, insertions (resp. deletions) are
undone by executing a deletion (resp.
insertion) operation (known as logical undo).

For such operations, undo log records should
contain the undo operation to be executed

— Such logging is called logical undo logging, in
contrast to physical undo logging

 Operations are called logical operations

31

Advanced Recovery: Physical Redo

e Redo information is logged physically (that is, new
value for each write) even for operations with logical
undo

— Logical redo is very complicated since database
state on disk may not be “operation consistent”
when recovery starts

— Physical redo logging does not conflict with early
lock release

32

Advanced Recovery: Operation Logging

e Operation logging is done as follows:

1. When operation starts, log <T,;, O,, operation-
begin>. Here O, is a unique identifier of the
operation instance.

2.While operation is executing, normal log records
with physical redo and physical undo information
are logged.

3.When operation completes, <T;, O;, operation-
end, U> is logged, where U contains information
needed to perform a logical undo information.

Example: insert of (key, record-id) pair (K5, RID7) into
index 19
<T1, O1, operation-begin>
Physical redo of steps in insert
<T1, X, 10, K5>
<T1,Y, 45, RID7>
<T1, O1, operation-end, (delete 19, K5, RID7)> 33

Advanced Recovery: Operation Logging (Cont.)
e If crash/rollback occurs before operation

completes:

— the operation-end log record is not found,
and

— the physical undo information is used to
undo operation.

e If crash/rollback occurs after the operation
completes:

— the operation-end log record is found, and in
this case

— logical undo is performed using U; the
physical undo information for the operation
is ignored.

e Redo of operation (after crash) still uses
physical redo information. 34

Advanced Recovery: Txn Rollback

Rollback of transaction T, is done as follows:
e Scan the log backwards

1. If a log record <T;, X, V,, V,> is found, perform the
undo and log a special redo-only log record <T,;, X,
V1>0

2. If a <T;, O;, operation-end, U> record is found

 Rollback the operation logically using the undo
information U.

— Updates performed during roll back are logged
just like during normal operation execution.

— At the end of the operation rollback, instead

of logging an operation-end record, generate
a record

<T;, O,, operation-abort>.
e Skip all preceding log records for T; until the

[

record <T;, O, operation-begin> is found

35

Advanced Recovery: Txn Rollback (Cont.)

Scan the log backwards (cont.):
3. If a redo-only record is found ignore it

4.1If a <T;, O;, operation-abort> record is found:

P skip all preceding log records for T; until the record

<T;, O,, operation-begin> is found.
S. Stop the scan when the record <T;, start> is
found

6. Add a <T,, abort> record to the log

Some points to note:

Cases 3 and 4 above can occur only if the database
crashes while a transaction is being rolled back.

Skipping of log records as in case 4 is important to
prevent multiple rollback of the same operation.

36

Advanced Recovery: Txn Rollback Example

e Example with a complete and an incomplete operation

<T1, start>

<T1, O1, operation-begin>

<T1, X, 10, K5>

<T1,Y, 45, RID7>

<T1, O1, operation-end, (delete 19, K5, RID7)>
<T1, O2, operation-begin>

<T1, Z, 45, 70>
< T1 Rollback begins here

<T1, Z, 45> < redo-only log record during physical undo (of incomplete O2)

<Tl1,Y, .., ..> < Normal redo records for logical undo of O1

<T1, O1, operation-abort> < What if crash occurred immediately after this?

<T1, abort>

37

Advanced Recovery: Crash Recovery

The following actions are taken when recovering from
system crash
1. (Redo phase): Scan log forward from last < checkpoint
L> record till end of log
1. Repeat history by physically redoing all updates of
all transactions,

2. Create an undo-list during the scan as follows

e undo-list is set to L initially
e Whenever <T, start> is found T, is added to undo-
list
e Whenever <T; commit> or <T, abort> is found, T,
is deleted from undo-list
This brings database to state as of crash, with
committed as well as uncommitted transactions
having been redone.
Now undo-list contains transactions that are incomplete,
that is, have neither committed nor been fully rolled 38
back.

Advanced Recovery: Crash Recovery (Cont.)

Recovery from system crash (cont.)

2. (Undo phase): Scan log backwards, performing
undo on log records of transactions found in
undo-list.

— Log records of transactions being rolled back
are processed as described earlier, as they
are found
 Single shared scan for all transactions being undone

— When <T; start> is found for a transaction T;

in undo-list, write a <T, abort> log record.

— Stop scan when <T,; start> records have been
found for all T; in undo-list

« This undoes the effects of incomplete
transactions (those with neither commit nor
abort log records). Recovery is now complete.

39

Advanced Recovery: Checkpointing

Checkpointing is done as follows:

1. Output all log records in memory to stable
storage

2. Output to disk all modified buffer blocks

3. put to log on stable storage a < checkpoint L>
record.

Transactions are not allowed to perform any actions
while checkpointing is in progress.

Fuzzy checkpointing allows transactions to progress
while the most time consuming parts of
checkpointing are in progress

40

Advanced Recovery: Fuzzy Checkpointing

e Fuzzy checkpointing is done as follows:

1.
2.

3.
. Now permit transactions to proceed with their

H

last_checkpoint——1—]

Temporarily stop all updates by transactions

Write a <checkpoint L> log record and force log to
stable storage

Note list M of modified buffer blocks

actions

. Output to disk all modified buffer blocks in list M

? blocks should not be updated while being output

? Follow WAL: all log records pertaining to a block
must be output before the block is output

. Store a pointer to the checkpoint record in a fixed

position last_checkpoint on disk

— <checkpoint L>
N~_

—" <checkpoint L>

S Log 41

Advanced Rec: Fuzzy Checkpointing (Cont.)

e When recovering using a fuzzy checkpoint, start
scan from the checkpoint record pointed to by
last_checkpoint

— Log records before last _checkpoint have their
updates reflected in database on disk, and need
not be redone.

— Incomplete checkpoints, where system had
crashed while performing checkpoint, are
handled safely

42

ARIES

e ARIES is a state of the art recovery method

— Incorporates numerous optimizations to reduce
overheads during normal processing and to speed up
recovery

— The “advanced recovery algorithm” we studied earlier
is modeled after ARIES, but greatly simplified by
removing optimizations

e Unlike the advanced recovery algorithm, ARIES

1. Uses log sequence number (LSN) to identify log
records

e Stores LSNs in pages to identify what updates have
already been applied to a database page

2. Physiological redo

3. Dirty page table to avoid unnecessary redos during
recovery

4. Fuzzy checkpointing that only records information
about dirty pages, and does not require dirty pages to
be written out at checkpoint time

43

ARIES Optimizations

Physiological redo

— Affected page is physically identified, action
within page can be logical
e Used to reduce logging overheads

— e.g. when a record is deleted and all other records
have to be moved to fill hole

» Physiological redo can log just the record
deletion

» Physical redo would require logging of old and
new values for much of the page

e Requires page to be output to disk atomically

— Easy to achieve with hardware RAID, also supported
by some disk systems

— Incomplete page output can be detected by
checksum techniques,

» But extra actions are required for recovery
» Treated as a media failure

44

ARIES Data Structures

e ARIES uses several data structures

— Log sequence number (LSN) identifies each log
record
 Must be sequentially increasing

 Typically an offset from beginning of log file to allow fast
access

— Easily extended to handle multiple log files
— Page LSN
— Log records of several different types
— Dirty page table

45

ARIES Data Structures: Page LSN

e Each page contains a PageLSN which is the LSN of
the last log record whose effects are reflected on the
page

— To update a page:
e X-latch the page, and write the log record
 Update the page
e Record the LSN of the log record in PageLSN
e Unlock page
— To flush page to disk, must first S-latch page
e Thus page state on disk is operation consistent
— Required to support physiological redo
— PageLSN is used during recovery to prevent
repeated redo

e Thus ensuring idempotence

46

ARIES Data Structures: Log Record

e Each log record contains LSN of previous log record of
the same transaction

LSN | TransID | PrevLSN

Redolnfo

Undolnfo

— LSN in log record may be implicit

e Special redo-only log record called compensation log
record (CLR) used to log actions taken during recovery
that never need to be undone

— Serves the role of operation-abort log records used in
advanced recovery algorithm

— Has a field UndoNextLSN to note next (earlier) record
to be undone || g\

e Recordsin b

undone

TransID

UndoNextLSN

Redolnfo

etween wou

d have alrea

y been

e Required to avoid repeated undo of already
undone 1actlozns 3 4

43

!

ARIES Data Structures: DirtyPage Table

e DirtyPageTable
— List of pages in the buffer that have been updated

— Contains, for each such page

« PageLSN of the page

e RecLSN is an LSN such that log records before this LSN
have already been applied to the page version on disk

— Set to current end of log when a page is inserted into
dirty page table (just before being updated)

— Recorded in checkpoints, helps to minimize redo

Page LSNs work

on disk

<D é P6 P23 \

~ 16 19 Page PLSN RLSN
P1 16 25 P1L 25 17

'I;_')6 12 P6 16 15

__ e P23 19 18

P15 9 9

P23 11 Buffer Pool DirtyPage Table
~_ /

48

ARIES Data Structures: Checkpoint Log

e Checkpoint log record

— Contains:

 DirtyPageTable and list of active transactions

* For each active transaction, LastLSN, the LSN of the last
log record written by the transaction

— Fixed position on disk notes LSN of last
completed checkpoint log record

 Dirty pages are not written out at checkpoint time

* Instead, they are flushed out continuously, in the
background

e Checkpoint is thus very low overhead
— can be done frequently

49

ARIES Recovery Algorithm

ARIES recovery involves three passes
e Analysis pass: Determines
— Which transactions to undo

— Which pages were dirty (disk version not up to
date) at time of crash

— RedoLSN: LSN from which redo should start
e Redo pass:

— Repeats history, redoing all actions from RedoLSN

e RecLSN and PageLSNs are used to avoid redoing actions
already reflected on page

e Undo pass:

— Rolls back all incomplete transactions

 Transactions whose abort was complete earlier are not
undone

— Key idea: no need to undo these transactions: earlier
undo actions were logged, and are redone as required

50

Remote Backup Systems

e Remote backup systems provide high availability by
allowing transaction processing to continue even if
the primary site is destroyed.

primary ® backup

"
5 (3 reores ~ &8

51

Remote Backup Systems (Cont.)

Detection of failure: Backup site must detect when
primary site has failed

— to distinguish primary site failure from link failure
maintain several communication links between the
primary and the remote backup.

— Heart-beat messages
Transfer of control:

— To take over control backup site first perform
recovery using its copy of the database and all the
long records it has received from the primary.

e Thus, completed transactions are redone and
incomplete transactions are rolled back.

— When the backup site takes over processing it
becomes the new primary

— To transfer control back to old primary when it
recovers, old primary must receive redo logs from

the old backup and apply all updates locally. -

Remote Backup Systems (Cont.)

e Time to recover: To reduce delay in takeover,
backup site periodically proceses the redo log
records (in effect, performing recovery from
previous database state), performs a checkpoint,
and can then delete earlier parts of the log.

e Hot-Spare configuration permits very fast
takeover:

— Backup continually processes redo log record
as they arrive, applying the updates locally.

— When failure of the primary is detected the
backup rolls back incomplete transactions, and
is ready to process new transactions.

 Alternative to remote backup: distributed
database with replicated data

— Remote backup is faster and cheaper, but less

tolerant to failure c3

Remote Backup Systems (Cont.)

Ensure durability of updates by delaying
transaction commit until update is logged at
backup; avoid this delay by permitting lower
degrees of durability.

One-safe: commit as soon as transaction’s commit
log record is written at primary

— Problem: updates may not arrive at backup
before it takes over.

Two-very-safe: commit when transaction’s commit
log record is written at primary and backup

— Reduces availability since transactions cannot
commit if either site fails.

Two-safe: proceed as in two-very-safe if both
primary and backup are active. If only the primary
is active, the transaction commits as soon as is
commit log record is written at the primary.

— Better availability than two-very-safe; avoids
problem of lost transactions in one-safe. 54

DATABASE MANAGEMENT SYSTEMS

UNIT-V

Data on External Storage

Disks Can retrieve random page at fixed cost

— But reading several consecutive pages Is much cheaper
than reading them in random order

Tapes: Can only read pages in sequence
— Cheaper than disks; used for archival storage

File organization Method of arranging a file of records on
external storage.

— Record id (rid) is sufficient to physically locate record

— Indexes are data structures that allow us to find the
record ids of records with given values in index search
key fields

Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index layers
make calls to the buffer manager.

Alternative File Organizations

Many alternatives exist, each ideal for some situations, and not
so good in others:

- Heap (random order) files: Suitable when typical
access Is a file scan retrieving all records.

— Sorted Files: Best if records must be retrieved In
some order, or only a ‘range’ of records is needed.

~ Indexes: Data structures to organize records via trees
or hashing.

- Like sorted files, they speed up searches for a
subset of records, based on values in certain
(“search key”) fields

- Updates are much faster than in sorted files.

| _Indexes _
* An index on a file speeds up selections on the

search key fields for the index.

- Any subset of the fields of a relation can be
the search key for an index on the relation.

~ Search key Is not the same as key (minimal
set of fields that uniquely identify a record In
a relation).

* An index contains a collection of data entries,
and supports efficient retrieval of all data
entries k* with a given key value k

— Glven data entry k*, we can find record with
key k In at most one disk 1/O

Alternatives for Data Entry k* in Index
» In a data entry k* we can store:
o Data record with key value Kk, or
o <K, rid of data record with search key value k>, or
o <K, list of rids of data records with search key k>

» Choice of alternative for data entries Is orthogonal
to the indexing technique used to locate data entries
with a given key value k.

o Examples of indexing techniques: B+ trees, hash-
based structures

o Typically, index contains auxiliary information that
directs searches to the desired data entries

Alternatives for Data Entries (Contd.)
« Alternative 1:

— If this Is used, index structure is a file
organization for data records (instead of a Heap
file or sorted file).

— At most one index on a given collection of data
records can use Alternative 1. (Otherwise, data
records are duplicated, leading to redundant
storage and potential inconsistency.)

- If data records are very large, # of pages
containing data entries is high. Implies size of
auxiliary information in the index is also large,

typically.

Alternatives for Data Entries (Contd.)
 Alternatives 2 and 3:

— Data entries typically much smaller than data
records. So, better than Alternative 1 with large
data records, especially if search keys are small.
(Portion of index structure used to direct search,
which depends on size of data entries, IS much
smaller than with Alternative 1.)

— Alternative 3 more compact than Alternative 2,
but leads to variable sized data entries even if
search keys are of fixed length.

Index Classification

* Primary vs. secondary: If search key contains
primary key, then called primary index.
— Unique index: Search key contains a candidate

Key.

e Clustered vs. unclustered: If order of data records
is the same as, or close to’, order of data entries,
then called clustered index.

— Alternative 1 implies clustered; in practice,
clustered also implies Alternative 1 (since sorted

files are rare).
— A file can be clustered on at most one search key.

— Cost of retrieving data records through index
varies greatly based on whether index is clustered,

or not!

data records are stored in a Heap file.

Clustered vs. Unclustered Index
« Suppose that Alternative (2) is used for data entries, and that the

To build clustered index, first sort the Heap file (with some
free space on each page for future inserts).

— Overflow pages may be needed for inserts. (Thus, order of
data recs is "close to’, but not identical to, the sort order.)

Index entries

direct search for

CLUSTERED I | \

| Data entries
S AN
o o o o i

Data Records

(Index File)
(Data file)

|
]

Data entries

/]

W\

|

]

UONCLUSTERED

V

S\
;

Data Records

Hash-Based Indexes

» Good for equality selections.
* Index is a collection of buckets.

— Bucket = primary page plus zero or more
overflow pages.

— Buckets contain data entries.

» Hashing function h: h(r) = bucket in which
(data entry for) record r belongs. h looks at the
search key fields of r.

— No need for “index entries” in this scheme.

10

B+ Tree Indexes

Non-leaf l
Pages $ Ahdh $

— / ¢\ [\ /A A
Leaf .o - ceae - > .o -—> coo
Pages

(Sorted by search key)

+ Leaf pages contain data entries, and are chained (prev & next)
< Non-leaf pages have index entries; only used to direct searches:

index entry
[I

PO Kl Pl K2 P2 s o o Kum
| | | |

! ! ! ¢

Example B+ Tree

Root ™ Note how data entries
T171 In leaf level are sorted
Entries <= % Wes > 17

5 27 30

ﬁ\; 8* ﬂ* 16* é‘_\zkzi 24* ﬂ* 29* 7;‘* 34* 38* 39*

» Find 28*? 29*? All > 15* and < 30*
» Insert/delete: Find data entry in leaf, then change
It. Need to adjust parent sometimes.

o And change sometimes bubbles up the tree
12

B+ Tree: Most Widely Used Index

» Insert/delete at log - N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)

» Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The parameter
d is called the order of the tree.

» Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
("Sequence set")

13

B+ Trees In Practice

« Typical order: 100. Typical fill-factor: 67%.
- average fanout = 133

oTy

nical capacities:

Height 4: 1334 = 312,900,700 records

Height 3: 1333 = 2,352,637 records
 Can often hold top levels in buffer pool:

Level 1 = 1 page = 8 Kbytes

L evel 2 = 133 pages = 1 Mbyte

_evel 3 = 17,689 pages = 133 MBytes

14

Cost Model for Our Analysis
We ignore CPU costs, for simplicity:

- B: The number of data pages
- R: Number of records per page

- D: (Average) time to read or write
disk page

- Measuring number of page I/0O’s
ignores gains of pre-fetching a
sequence of pages; thus, even I/O cost
is only approximated.

- Average-case analysis; based on
several simplistic assumptions.

15

Comparing File Organizations

Heap files (random order; insert at eof)
Sorted files, sorted on <age, sal>

Clustered B+ tree file, Alternative (1), search key
<age, sal>

Heap file with unclustered B + tree index on
search key <age, sal>

Heap file with unclustered hash index on search
Key <age, sal>

16

Operations to Compare

Scan: Fetch all records from disk
Equality search

Range selection

Insert a record

Delete a record

17

Assumptions in Our Analysis
e Heap Files:

- Equality selection on key; exactly one
match.

 Sorted Files:
- Files compacted after deletions.
e Indexes:

— Alt (2), (3): data entry size = 10% size of
record

- Hash: No overflow buckets.

- 80% page occupancy => File size = 1.25
data size

- Tree: 67% occupancy (this is typical).
- Implies file size = 1.5 data size

18

Assumptions (contd.)

e Scans:

- Leaf levels of a tree-index are
chained.

- Index data-entries plus actual file
scanned for unclustered indexes.

« Range searches:

- We use tree indexes to restrict the
set of data records fetched, but
ignhore hash indexes.

19

Cost of Operations

(a) Scan (b) Equality |(c) Range (d) Insert |(e) Delete
(1) Heap |BD 0.5BD BD 2D Search
+D

(2) Sorted |BD Dlog 2B D(log2B + |Search |[Search
pgs with |+ BD +BD
match recs)

3) 1.5BD Dlog ¥ 1.5B |D(log F 1.5B |Search |[Search

Clustered + # pgs w. +D +D
match recs)

(4) Unclust. BD(R+0.15) |D(1 + D(log £ 0.15B |Search |Search

Tree index log F0.15B) |+ # pgsw. |+2D [+2D
match recs)

(5) Unclust. | BD(R+0.125) |2D BD Search |Search

Hash index + 2D + 2D

20

~ Comparision of 1/0O costs
» A heap file offers good storage efficiency,and

supports fast scanning and insertion of records

» A sorted file offers good storage efficiency,but
Insertion and deletion of records is slow.

» Searches are faster than in heap files

» A clustered file offers all advtgs of sorted file and
supports inserts and deletes efficiently.searches
are even faster than in sorted files.

» Unclusterd tree and hash indexes offer fast
searches,insertion and deletion but scans and
range searches with many matches are slow

» Hash indexes are little faster on equality searches

but doesnot on range searches y

Understanding the Workload

« For each query in the workload:
- Which relations does it access?
- Which attributes are retrieved?

- Which attributes are involved in selection/join
conditions? How selective are these
conditions likely to be?

» For each update in the workload:

- Which attributes are involved in selection/join
conditions? How selective are these
conditions likely to be?

- The type of update
(INSERT/DELETE/UPDATE), and the attributes
that are affected.

22

Choice of Indexes

 \What indexes should we create?

Which relations should have indexes? What
field(s) should be the search key? Should we
build several indexes?

 For each index, what kind of an index should it be?

Clustered? Hash/tree?

Tree based indexes are best alternatives in
sorted files over hash based indexes.

2 advtgs:

1.We can handle inserts and deletes of data
entries efficiently

2.finding the correct leaf page when searching
for record by search key is faster than binary
search for sorted files.

Disadv: insertions &deletions costly

23

Clustered index organization

« Attributes in WHERE clause are candidates for index keys.
— Exact match condition suggests hash index.
- Range query suggests tree index.

e Clustering is especially useful for range
queries; can also help on equality queries
if there are many duplicates.

« Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.

- Order of attributes is important for range
queries.

- Such indexes can sometimes enable index-
only strategies for important queries.

e For index-only strategies, clustering is not
important!

24

Examples of Clustered Indexes

« B+ tree ndex on E.age can be used to 9€Lri v E.dno
qualifying tuples. FROM Emp E
- How selective is the WHERE E.age>40
condition?

_ Is the index clustered? SELECT E.dno, COUNT (*)
FROM Emp E

- Consider the GROUP BY query. WHERE E.age>10
- If many tuples have E.age B»-rouprBY E.dno

10, using E.age index and
sorting the retrieved tuples
may be costly.

- Clustered E.dno index may

be better!
L) _ 4 dulicates: SELECT E.dno
quality queries and duplicates: FROM Emp E

- Clustering on E.hobby helpslyrre Ehobby=Stamps

Indexes with Composite Search Keys
» Composite Search Keys: Search on a
combination of fields. Examples of composite key

Equality query: Every field indexes using lexicographic order.
value is equal to a constant

value. E.g. wrt <sal,age>

index:
- age=20 and sal
=75
Range query: Some field 11.80 /11
value is not a constant. E.g.: 12,10 T
- age =20; or age=20 1220\ name age sal Ry
and sal > 10 13,75\ bob 12 10 13
» Data entries in index sorted by search <age, sal> cal 11 80 <age>
key to support range queries. _
Lexicographic order, or joe 12 20 N
Spatial order. 10.12/ sue 13 75 S 10
2012 Data records N 20
75.13 sorted by name 75
80,11) 80
<sal, age> <sal>
Data entries in index Data entries
sorted by <sal,age> sorted by <sal>

26

tradeoffs

A composite key index can support a broader
range of queries bcoz it matches more selection

conditions
Index only evaluation strategies are increased

Disadv:a composite index must be updated in
response to any operation(insert,delete or update)
that modifies any field in search key.

A composite index is also likely to be larger than
single attribute search key

For B+ tree index this increases no. of levels

27

Composite Search Kegs
» To retrieve Emp records with age=30 AND sal=4000, an

Index on <age,sal> would be better than an index on age or
an index on sal.

- Choice of index key orthogonal to
clustering etc.

» If condition is: 20<age<30 AND 3000<sal<5000:

- Clustered tree index on <age,sal> or
<sal,age> is best.

» If condition is: age=30 AND 3000<sal<5000:

- Clustered <age,sal> index much better
than <sal,age> index!

» Composite indexes are larger, updated more often.

28

Composite keys-Index-Only Plans

* A number of SELECT E.dno, COUNT(*)
queries can be <E.dno> |FROM Emp E
answered GROUP BY E.dno

without

retrieving any <g.dno,E.sal> |SELECT E.dno, MIN(E.sal)
tuples from one 7,0 ideys | FROM Emp E

or more of the GROUP BY E.dno

relations

Involved if a <E. age,E.sal> | SELECT AVG(E.sal)

suitable index Is °__ FROM Emp E

available. <E.sal, E.age> WHERE E.age=25 AND
E.sal BETWEEN 3000 AND 5000

Tree index!

29

Syntax

Creating index in sql

Create index Indexname on tablename
with structure=Btree,
key=(age,sal);

30

Summary

» Many alternative file organizations exist, each
appropriate in some situation.

» If selection queries are frequent, sorting the file or
building an index Is important.

- Hash-based indexes only good for
equality search.

- Sorted files and tree-based indexes
best for range search; also good for
equality search. (Files rarely kept
sorted iIn practice; B+ tree index is
better.)

» Index Is a collection of data entries plus a way to
quickly find entries with given key values.

31

Summary (Contd.)

» Data entries can be actual data records, <key, rid>
pairs, or <key, rid-list> pairs.
- Choice orthogonal to indexing
technique used to locate data entries
with a given key value.

» Can have several indexes on a given file of data
records, each with a different search key.

» Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and dense vs.
sparse. Differences have important consequences
for utility/performance.

32

Example B+ Tree

 Search begins at root, and key comparisons direct it
to a leaf (as In ISAM).

e Search for 5*, 15*, all data entries >= 24* ...

Root \

Introduction
As for any index, 3 alternatives for data entries k*:

— Data record with key value k

- <k, rid of data record with search
key value k>

- <k, list of rids of data records
with search key k>

Choice Is orthogonal to the indexing technique
used to locate data entries k*.

Tree-structured indexing techniques support
both range searches and equality searches.

ISAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

34

Range Searches

e Find all students with gpa > 3.0’

- If data is in sorted file, do binary
search to find first such student,
then scan to find others.

- Cost of binary search can be quite
high.

 Simple idea: Create an 'index’ file.
K1 K2 KN Index File

Page 1 Page 2 Page 3 Page N Data File

35

index entry
[|

"o | K| Pyl K2|P Km|Pm

 [ndex file may still be quite large. But we can apply
the idea repeatedly!

Non-leaf ‘L
Pages s
; :

= T\ I3 A A
Leaf .- .o .o R
Pages D D N A T

Overflow ------- > ,/',,,/’/
page

Primary pages

36

Comments on ISAM

» File creation: Leaf (data) pages allocated
sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

» Index entries: <search key value, page id>; they
“direct’ search for data entries, which are in leaf
pages.

p Search: Start at root; use key comparisons to go to
leaf. Cost log N ; F=#entries/index pg, N = #
leaf pgs

» Insert: Find leaf data entry belongs to, and put it
there. o

» Delete: Find and remove from leaf; if empty
overflow page, de-allocate.

Data
Pages

Index Pages

Overflow pages

37

Example ISAM Tree

 Each node can hold 2 entries; no need for next-
leaf-page’ pointers. (Why?)

Root ~—au

40

P

20

33

/

51

63

10*

15*

20*

27*

33*

37*

51*

55*

63*

97*

38

After Inserting 23*, 48*, 41*, 42* ...

Root ——=au

Index 14014
Pages / \

201 | 33 51| |63

/
Primary / v \ / V \
Leaf * *

10* | 15* 20*% | 27* 33* | 37* 40* | 46 51~ 95 63* | 97*

Pages \ \

))
Overflow 23* 48+ | 41*
Pages \

42*

. Then Deleting 42*, 51*, 97*

Root —au

40
20 33 51 63

/ L\

10*

15*%

20* 27* 33* | 37* 40*

46* 55* 63*

|]

23 48* 41*

40

Overflow pages,locking considerations
» Once ISAM file is created,inserts and deletes

affect on

ly contents of leaf pages.so as a result for

more number of insertions overflow pages

INCrease.

» Solution

:20% of pages sholud be left free when

Initially tree is created

» The fact

that only leaf pages can be modified has

advantage with respect to concurrent access.

» When a

page Is accessed it is typically locked by

the requestor to ensure that it is not concurrently

modifieo

by other users

» ADV:Since we know that indexlevel pages are
never modifiedwe can safely omit locking step.

41

Example B+ Tree

 Search begins at root, and key comparisons direct it
to a leaf (as In ISAM).

e Search for 5*, 15*, all data entries >= 24* ...

Root \

Inserting a Data Entry into a B+ Tree

Find correct leaf L.
Put data entry onto L.
- If L has enough space, done!
- Else, must split L (into L and a new node L2)
e Redistribute entries evenly, copy up middie key.

e Insert index entry pointing to L2 into parent of
L.

This can happen recursively

- To split index node, redistribute entries evenly,
but push up middle key. (Contrast with leaf
splits.)

Splits “grow” tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

43

Inserting 8* into Example B+ Tree

» Observe how
minimum
occupancy Is
guaranteed in
both leaf and
Index pg splits.

» Note difference
between copy-up
and push-up; be
sure you
understand the
reasons for this.

J—

Entry to be inserted in parent node.
(Note that 5 is copied up and

\ continues to appear in the leaf.)

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

appears once in the index. Contrast

this with a leaf split.)

5 -
K O\
2* 3* 5* 7* 8*
17 ej
5 13 24| 30
/ bo¥

44

Example B+ Tree After Inserting 8*

y,

24

30

y

T

* 3*

194

207

22*

24*

27*

29*

33*

34*

38*

39*

“* Notice that root was split, leading to increase in height.

% In this example, we can avoid split by re-distributing

entries; however, this is usually not done in practice.

45

Deleting a Data Entry from a B+ Tree
Start at root, find leaf L where entry belongs.
Remove the entry.

- If L is at least half-full, done!
- If L has only d-1 entries,

e Try to re-distribute, borrowing from
sibling (adjacent node with same parent
asL).

o If re-distribution fails, merge L and
sibling.
If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

Merge could propagate to root, decreasing height.

46

Example Tree After (Inserting 8*, Then) Deleting 19*
and 20* ...

/'

ROO\

17

5

|

¥ A

| \

27

30

y

¥~ A

T

13
/ | \\
* 3* ﬁ\s* 7*

8*

x
14*) 16*

227

24*

27*

29*

33*

34*

38*

39*

* Deleting 19* Is easy.

 Deleting 20* is done with re-distribution. Notice

now middle key Is copied up.

47

... And Then Deleting 24*

» Must merge.

» Observe toss’ of index

entry (on right), and
‘pull down’ of index
entry (below).

¥~

\

y

30

¥~

22*

* | 29*

33*

34*

38*

39*

Ro\

13

17

5
m /\

N

* 3* 5* 7* 8* 14*

16*

| 27

29*

33*

34*

38*

39*

48

