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UNIT - I



U n i t  - I

Unit - I

INTRODUCTION TO VERILOG:

 Verilog as HDL 

 Levels of design Description 

 Concurrency 

 Simulation and Synthesis 

 Functional Verification 

 System Tasks

 Programming Language Interface (PLI) 

 Module

 Simulation and Synthesis Tools 

 Test Benches.

LANGUAGE CONSTRUCTS AND CONVENTIONS: 

 Introduction, Keywords, Identifiers, White Space Characters,  Comments, 

 Numbers

 Strings 

 Logic Values

 Strengths

 Data Types

 Scalars and Vectors

 Parameters

 Operators.



P
r

e
p

a
r

e
d

 
B

y
 
D

.
 

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,
 
I

A
R

E
,

 
H

Y
D

.

Objectives and Outcomes

Objective: To make the student learn and understand 

 Acquire a basic knowledge of the Verilog HDL

 Language constructs and conventions in Verilog

 Basic Concepts of Verilog HDL like Data Types, System Tasks and 

Compiler Directives. 

Outcomes: The student will be able to

 Define basic terms in HDL

 Knows Syntax and lexical conventions 

 Remembers Data types, operators

 Remember testbenches for simulation and verification

U n i t  - I



P
r

e
p

a
r

e
d

 
B

y
 
D

.
 

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,
 
I

A
R

E
,

 
H

Y
D

.

VERILOG  AS  AN  HDL

 Verilog aimed at providing a functionally tested and a verified 

design description for the target FPGA or ASIC. 
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LEVELS  OF  DESIGN DESCRIPTION

Gate Level

Data Flow

Behavioral 
Level 

Circuit 
Level or 

switch level



Circuit Level or switch level

 At the circuit level, a switch is the basic element 

with which digital circuits are built.

 Switches can be combined to form inverters and other gates at 

the next higher level of abstraction. 



Gate Level

 At the next higher level of abstraction, 

design is carried out in terms of basic gates. 

 All the basic gates are available as ready modules 

called “Primitives”. 



Data Flow 

 Data flow is the next higher level of abstraction. 

 All possible operations on signals and variables are 

represented here in terms of assignments

y = (ab+cd)



Behavioral Level

 Behavioral level constitutes the highest level of design 

description; it is essentially at the system level itself. 

 With the assignment possibilities, looping constructs 

and conditional branching possible, the design 

description essentially looks like a “C” program.



Verilog Language Concepts

 Concurrency

 Simulation and Synthesis 

 Functional Verification 

 System Tasks

 Programming Language Interface (PLI)
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Concurrency

 In an electronic circuit all the units are to be active and 

functioning concurrently. The voltages and currents in the 

different elements in the circuit can change simultaneously. In 

turn the logic levels too can change. 

 Simulation of such a circuit in an HDL calls for concurrency 

of operation.

 All the activities scheduled at one time step are completed and 

then the simulator. 
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Simulation and Synthesis

 The design that is specified and entered as described earlier is 

simulated for functionality and fully debugged. 

 Translation of the debugged design into the corresponding   

hardware circuit (using an FPGA or an ASIC) is called 

“synthesis.”

 The circuits realized from them are essentially direct 

translations of functions into circuit elements. 
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Functional Verification 

 Testing is an essential ingredient of the VLSI design process as 

with any hardware circuit. 

 It has two dimensions to it – functional tests and timing tests.

 Testing or functional verification is carried out by setting up a 

“test bench” for the design. 
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System Tasks

 A number of system tasks are available in Verilog. 

 Though used in a design description, they are not part of it.

 Some tasks facilitate control and flow of the testing process. 

 A set of system functions add to the flexibility of test benches: 

They are of three categories:

 Functions that keep track of the progress of simulation time

 Functions to convert data or values of variables from one 

format to another

 Functions to generate random numbers with specific 

distributions.

 There are other numerous system tasks and functions
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Programming Language Interface (PLI)

 Programming Language Interface (PLI) is a way to provide 

Application Program Interface (API) to Verilog HDL. 

 Essentially it is a mechanism to invoke a C function from a 

Verilog code. 

 PLI is primarily used for doing the things which would not 

have been possible otherwise using Verilog syntax. 
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MODULE

 Any Verilog program begins with a keyword – called a 

“module.” 

 A module is the name given to any system considering it as a 

black box with input and output terminals as shown in Figure

 The terminals of the module are referred to as ‘ports’.
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Cont…

 The ports attached to a module can be of three types:

 input ports through which one gets entry into the module

 output ports through which one exits the module.

 inout ports: These represent ports through which one gets entry into the 

module or exits the module

 All the constructs in Verilog are centred on the module.
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MODULE SYNTAX

 module module_name (port_list);

Input, output, inout declaration

Intermediate variable declarations

Functional Description 

(gate / switch / data flow / Behv.)

endmodule
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SIMULATION AND SYNTHESIS TOOLS

 A variety of Software tools related to VLSI design is available.

 Two of them are 

- Modelsim and 

- Leonardo Spectrum of MentorGraphics. 

 Modelsim has been used to simulate the designs. 

 Leonardo Spectrum has been used to obtain the synthesized 

circuits
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TEST BENCH SYNTAX

 A test bench is HDL code that allows you to provide a 

documented, repeatable set of stimuli.

 module tb_module_name ;

Input, output, inout declaration 

Intermediate variable declarations

Stimulus (initial / always) 

endmodule
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LANGUAGE CONSTRUCTS  AND

CONVENTIONS IN VERILOG

 CASE SENSITIVITY

Verilog is a case-sensitive language like C

 KEYWORDS

 The keywords define the language constructs. A keyword 

signifies an activity to be carried out, initiated, or terminated

 All keywords in Verilog are in small letters
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IDENTIFIERS

 IDENTIFIERS

 Any program requires blocks of statements, signals, etc., to 

be identified with an attached nametag. Such nametags are 

identifiers 

 All characters of the alphabet or an underscore can be used 

as the first character. Subsequent characters can be of 

alphanumeric type, or the underscore (_), or the dollar ($) 

sign
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WHITE SPACE CHARACTERS , COMMENTS

 WHITE SPACE CHARACTERS

 Blanks (\b), tabs (\t), newlines (\n), and form feed form the 

white space characters in Verilog

 COMMENTS

 A single line comment begins with “//”

 multiline comments “/*” signifies the beginning of a 

comment and “*/” its end.
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NUMBERS,   STRINGS

 NUMBERS

Integer Numbers : the number is taken as 32 bits wide.

 25, 253, –253

 - 8 'h f 4

Real Numbers: Real numbers can be specified in decimal or 

scientific notation

4.3, 4.3e2

 STRINGS : A string is a sequence of characters enclosed 

within double quotes

 “This is a string”
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LOGIC VALUES

 1  signifies the 1 or high or true level

 0  signifies the 0 or low or false level.

 Two additional levels are also possible designated as x and z. 

 x represents an unknown or an uninitialized value. This corresponds to 

the don’t care case in logic circuits. 

 z represents / signifies a high impedance state
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STRENGTHS

Strength Name Strength Level Element Modelled
Declaration 

Abbreviation

Supply Drive 7 Power supply connections. supply

Strong Drive 6
Default gate & assign output 

strength.
strong

Pull Drive 5
Gate & assign output 

strength.
pull

Large Capacitor 4 Size of trireg net capacitor. large

Weak Capacitor 3
Gate & assign output 

strength.
weak

Medium 

Capacitor
2 Size of trireg net capacitor. medium

Small Capacitor 1 Size of trireg net capacitor. small

High Impedence 0 Not Applicable. highz
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Data Types

 The data handled in Verilog fall into two categories:

(i) Net data type

(ii) Variable data type

 The two types differ in the way they are used as well as with 

regard to their respective hardware structures.
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Net data type

 A net signifies a connection from one circuit unit to another, 

which carries the value of the signal it is connected to and 

transmits to the circuit blocks connected to it. 

 If the driving end of a net is left floating, the net goes to the 

high impedance state.

 Various nets supported in Verilog

WIRE / TRI WAND / TRIAND

WOR / TRIOR TRI1

TRI0 TRIREG  -- Infers a capacitance

SUPPLY1  -- For Vdd SUPPLY0  -- For  Vss
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DIFFERENCES BETWEEN WIRE AND TRI

 wire: It represents a simple wire doing an interconnection. 

Only one output is connected to a wire and is driven by that.

 tri: It represents a simple signal line as a wire. Unlike the wire, 

a tri can be driven by more than one signal outputs.
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Contention

WIRE

/TRI

0 1 X Z

0 0 X X 0

1 X 1 X 1

X X X X X

Z 0 1 X Z

WOR

/TRIO

R

0 1 X Z

0 0 1 X 0

1 1 1 1 1

X X 1 X X

Z 0 1 X Z

WAND

/TRIAN
D

0 1 X Z

0 0 0 0 0

1 0 1 X 1

X 0 X X X

Z 0 1 X Z

TRI1(0
)

0 1 X Z

0 0 X X 0

1 X 1 X 1

X X X X X

Z 0 1 X 1(0)
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Variable Data Type

 A variable is an abstraction for a storage device

 reg

 time 

 integer  

 real 

 Realtime

 MEMORY

 Reg [15:0] memory[511:0];

an array called “memory”; it has 512 locations. 

Each location is 16 bits wide
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Scalars and Vectors

 Entities representing single bits — whether the bit is stored, 

changed, or transferred — are called “scalars.” 

 Multiple lines carry signals in a cluster treated as a “vector.”

reg[2:0] b; 

reg[4:2] c; 

wire[-2:2] d ;

 All the above declarations are vectors.

 If range is not specifies it is treated as scalars
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Parameters, Operators.

PARAMETERS

All constants can be declared as parameters at the outset 

in a Verilog module

 parameter word_size = 16;

 parameter word_size = 16, mem_size = 256;

OPERATORS

 Unary: – for example, ~a.

 Binary: – for example, a&b.

 Ternary:  – for example,  a?b:c
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U n i t  - I I

Unit - II

GATE LEVEL MODELING: 

 Introduction 

 AND Gate Primitive

 Module Structure

 Other Gate Primitives 

 Illustrative Examples 

 Tri-State Gates 

 Array of Instances of Primitives

 Design of Flip – Flops with gate primitives

 Delays

 Strengths and Contention Resolution,

 Net Types 

 Design of Basic Circuits.

MODELING AT DATA FLOW LEVEL:

 Introduction

 Continuous Assignment Structures 

 Delays and Continuous Assignments 

 Assignment to Vectors, Operators.



GATE LEVEL MODELING

 All the basic gates are available as “Primitives” in Verilog.

U n i t  - I I



Verilog module for AOI logic

 module aoi_gate(o,a1,a2,b1,b2);

input a1,a2,b1,b2; output o;

wire o1,o2;

and g1(o1,a1,a2); 

and g2(o2,b1,b2);

nor g3(o,o1,o2);

endmodule

 module aoi_st;

reg a1,a2,b1,b2;

wire o;

initial

begin

a1 = 0; a2 = 0;  b1 = 0; b2 = 0;

#3 a1 = 1;    a2 = 1;   b1 = 1; b2 = 0;

end

initial #100 $stop;

initial $monitor($time , " o = %b , a1 = %b , a2 = %b , b1 = %b ,b2 = %b 
",o,a1,a2,b1,b2);

aoi_gate gg(o,a1,a2,b1,b2);

endmodule

U n i t  - I I



TRI-STATE GATES

 Four types of tri-state buffers are available in Verilog as 

primitives

U n i t  - I I



ARRAY OF INSTANCES OF PRIMITIVES

 and gate [7 : 4 ] (a, b, c);

 and gate [7] (a[3], b[3], c[3]), 

gate [6] (a[2], b[2], c[2]), 

gate [5] (a[1], b[1], c[1]), 

gate [4] (a[0], b[0], c[0]);

Syntax: and gate[mm : nn](a, b, c);

U n i t  - I I



DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES

 Simple Latch

module sbrbff(sb,rb,q,qb);

input sb,rb;

output q,qb;

nand(q,sb,qb);

nand(qb,rb,q);

endmodule

U n i t  - I I



RS Flip-Flop module

 module srff(s,r,q,qb);

input s,r;

output q,qb;

wire ss,rr;

not(ss,s),(rr,r);

nand(q,ss,qb);

nand(qb,rr,q);

endmodule

U n i t  - I I



A Clocked RS Flip-Flop module

 module srffcplev(cp,s,r,q,qb);

input cp,s,r;

output q,qb;

wire ss,rr;

nand (ss,s,cp),

(rr,r,cp),

(q,ss,qb),

(qb,rr,q);

endmodule

U n i t  - I I



D-Latch module

 module dlatch(en,d,q,qb);

input d,en;

output q,qb;

wire dd;

wire s,r;

not n1(dd,d);

nand (sb,d,en);

nand g2(rb,dd,en);

sbrbff ff(sb,rb,q,qb);

endmodule

U n i t  - I I



DELAYS

 Net Delay

wire #2 nn; 

// nn is declared as a net with a propagation delay of 2 

time steps

wire # (2, 1) nm;

//the positive (0 to 1) transition has a delay of 2 time steps

//The negative (1 to 0) transition has a delay of 1 time step

 Gate Delay

and #3 g( a, b, c);

and #(2, 1)  g(a, b, c);

U n i t  - I I



Delays with Tri-state Gates

U n i t  - I I



min, typical, max delays

 and #(2:3:4) g1(a0, a1, a2);

// min, typical, max delays

 and #(1:2:3, 2:4:6) g2(b0, b1, b2);

 bufif1 #(1:2:3, 2:4:6, 3:6:9) g3 (a0, b0, c0);

 wire #(1:2:3) a;

U n i t  - I I



STRENGTHS AND CONTENTION RESOLUTION

U n i t  - I I



Net Charges

 net can have a capacitor associated with it, which can store the 

signal level even after the

signal source dries up (i.e., tri-stated).

 Such nets are declared with the

 keyword trireg.

U n i t  - I I



Signal strength names and weights

U n i t  - I I



MODELING AT DATA FLOW LEVEL

 CONTINUOUS ASSIGNMENT STRUCTURES

assign c = a && b;

 Combining Assignment and Net Declarations

wire c;

assign c = a & b;

can be combined as

wire c = a & b;

 Continuous Assignments and Strengths

wire (pull1, strong0)g = ~g1;

U n i t  - I I



Data flow module for AOI

 module aoi2(g, a, b, c, d);

output g;

input a, b, c, d;

wire e, f, g1, g;

assign e = a && b, f = c && d, g1 = e||f, g=~g1;

endmodule

 module aoi3(g, a, b, c, d);

output g;

input a, b, c, d;

wire g;

wire e = a && b;

wire f = c && d;

wire g1 = e||f;

assign g = ~g1;

endmodule

U n i t  - I I



DELAYS AND CONCATENATION

DELAYS AND CONTINUOUS ASSIGNMENTS

 assign #2 c = a & b;

 wire #2 c;

 assign c = a & b;

CONCATENATION OF VECTORS

{a, b, c}

{a(7:4), b(2:0)}

{2{p}}  = {p, p}

{2{p}, q}  =  {p, p, q}

{a, 3 {2{b , c}, d}} = {a, b, c, b, c, d, b, c, b, c, d, b, c, b, c, d }

U n i t  - I I



OPERATORS

U n i t  - I I



Unary Operators

U n i t  - I I



Binary Operators

 Arithmetic operators and their symbols

 Binary logical operators and their symbols

 Relational operators and their symbols

U n i t  - I I



Cont..

 Equality operators and their symbols

U n i t  - I I



cont…

 Bit-wise logical operators and their symbols

 Shift type operators and their symbols

U n i t  - I I



Ternary operator

 A ? B : C

 assign y = w ? x : z;

 Assign d = (f == add) ? (a+b) : ((f = sub) ? (a-b) : 

((f==compl) ? ~a : ~b;

U n i t  - I I



Operator Priority

 The table brings out the order of precedence. The order of 

precedence decides the priority for sequence of execution and 

circuit realization in any assignment

 statement.

U n i t  - I I
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BEHAVIORAL MODELING

 BEHAVIORAL MODELING:

• Introduction

• Operations and Assignments

• Functional Bifurcation

• Initial Construct, Always Construct

• Assignments with Delays Wait Construct 

• Multiple Always Blocks 

• Designs at Behavioral Level

• Blocking and Non-Blocking Assignments

• The case statement

• Simulation Flow 

• if and if-else constructs

• assign–deassign construct, repeat construct, for loop, the disable construct, 

while loop, forever loop, parallel blocks, force-release construct, Event.

UNIT - III



BEHAVIORAL MODELING

 Behavioral level modeling constitutes design 

description at an abstract level.

 One can visualize the circuit in terms of its key 

modular functions and their behavior; it can be 

described at a functional level itself instead of 

getting bogged down with implementation details.

BEHAVIORAL MODELING



BEHAVIORAL MODELING
 The design description at the behavioral level is done 

through a sequence of assignments. 

 These are called ‘procedural assignments’ – in contrast to 

the continuous assignments at the data flow level.

 All the procedural assignments are executed sequentially 

in the same order as they appear in the design 

description.

OPERATIONS AND ASSIGNMENTS



BEHAVIORAL MODELING
• Design description at the behavioral level is done in 

terms of procedures of two types; 

• one involves functional description and interlinks of 

functional units. It is carried out through a series of 

blocks under an “always”. 

• The second concerns simulation – its starting point, 

steering the simulation flow, observing the process 

variables, and stopping of the simulation process; all 

these can be carried out under the “always” banner, an 

“initial” banner, or their combinations. 

FUNCTIONAL BIFURCATION



procedure-block structure

 A procedure-block of either type – initial or always 

– can have a structure shown in Figure



BEHAVIORAL MODELING

BEGIN – END CONSTRUCT

 If a procedural block has only one assignment to be 

carried out, it can be specified

 as  initial #2 a=0;

 More than one procedural assignment is to be carried out 

in an initial block. All such

 assignments are grouped together between “begin” and 

“end” declarations.

 Every begin declaration must have its associated end 

declaration. 

 begin – end constructs can be nested as many times as 

desired.



NESTED BEGIN – END BLOCKS



BEHAVIORAL MODELING

INITIAL CONSTRUCT

• A set of procedural assignments within an initial construct are 

executed only Once

• In any assignment statement the left-hand side has to be a storage 

type of element (and not a net). It can be a reg, integer, or real type 

of variable. The right-hand side can be a storage type of variable or 

a net.

 initial

 begin

 a = 1'b0;

 b = 1'b0;

 #2 a = 1'b1;

 #3 b = 1'b1;

 #100$stop;

 end
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MULTIPLE INITIAL BLOCKS

 module nil1;

 initial

 reg a, b;

 begin

 a = 1'b0; b = 1'b0;

 $display ($time, "display :  a = %b, b = %b", a, b);

 #2 a = 1'b1;

 end

 initial #100$stop;

 initial

 begin #2 b = 1'b1;

 end

 endmodule
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ALWAYS CONSTRUCT

 The always process signifies activities to be executed on 

an “always basis.” 

 Its essential characteristics are:

• Any behavioral level design description is done using an 

always block.

• The process has to be flagged off by an event or a 

change in a net or a reg. Otherwise it ends in a stalemate.

• The process can have one assignment statement or 

multiple assignment statements. 

• Normally the statements are executed sequentially in the 

order they appear.
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EVENT CONTROL

 The always block is executed repeatedly and endlessly. It 

is necessary to specify a condition or a set of conditions, 

which will steer the system to the execution of the block. 

Alternately such a flagging-off can be done by 

specifying an event preceded by the symbol “@”.

 @(negedge clk) :executes the following block at the negative edge of clk.

 @(posedge clk) : executes the following block at the positive edge of the 

clk.

 @clk : executes the following block at both the edges of clk.

 @(prt or clr) :

 @(posedge clk1 or negedge clk2) :

 @ (a or b or c) can also write as @ (a or b or c) @ (a, b, c) @ (a, b or 

c)
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EXAMPLE COUNTER

 module counterup(a,clk,N);

input clk;

input[3:0]N;

output[3:0]a;

reg[3:0]a;

initial a=4'b0000;

always@(negedge clk) a=(a==N)?4'b0000:a+1'b1;

 endmodule
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ASSIGNMENTS WITH DELAYS

 always #3 b = a;

 Values of a at the 3rd, 6th, 9th, etc., ns are sampled and assigned to 

b.

 Initial

 begin

 a = 1’b1;

 b = 1’b0;

 #1 a = 1’b0;

 #3 a = 1’b1;

 #1 a = 1’b0;

 #2 a = 1’b1;

 #3 a = 1’b0;

 end
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INTRA-ASSIGNMENT DELAYS

 The “intra-assignment” delay carries out the assignment 

in two parts. 

 An assignment with an intra-assignment has the form

 A = # dl expression;

 Here the expression is scheduled to be evaluated as soon 

as it is encountered.

 However, the result of the evaluation is assigned to the 

right-hand side quantity a after a delay specified by dl. 

 dl can be an integer or a constant expression

 always #2 a = a + 1;

 always #b a = a + 1;

 always #(b + c) a = a + 1;
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ZERO DELAY

 A delay of 0 ns does not really cause any delay. 

 However, it ensures that the assignment following is 

executed last in the concerned time slot.

 always 

 begin a = 1;

 #0 a = 0;

 end
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WAIT CONSTRUCT

 The wait construct makes the simulator wait for the 

specified expression to be true before proceeding with 

the following assignment or group of assignments. 

 Its syntax has the form

 wait (alpha) assignment1;

 alpha can be a variable, the value on a net, or an 

expression involving them.

 @clk a = b; assigns the value of b to a when clk changes;

 wait (clk) #2 a = b; the simulator waits for the clock to 

be high and then assigns b to a
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BLOCKING AND NONBLOCKING ASSIGNMENTS

 All assignment within an initial or an always block done

through an equality (“=”) operator. These are executed

sequentially. Such assignments block the execution of the

following lot of assignments at any time step. Hence they are

called “blocking assignments”.

 If the assignments are to be effected concurrently A facility

called the “nonblocking assignment” is available for such

situations. The symbol “<=” signifies a non-blocking

assignment. The main characteristic of a nonblocking

assignment is that its execution is concurrent



BEHAVIORAL MODELING

CONT…

 For all the non-blocking assignments in a block, the 

right-hand sides are evaluated first. Subsequently the 

specified assignments are scheduled.

 What will happen if the following statements are 

executed

 A <= B; // A, B will swapped

 B <= A ;

 And 

 A = B;

 B = A ; // A, B will have same value
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NONBLOCKING ASSIGNMENTS AND DELAYS

 The principle of Delays of the intra-assignment type operation is
similar to that with blocking assignments.

 always @(a or b)

 #3 c1 = a&b;

 which has a delay of 3 ns for the blocking assignment to c1. If a or b
changes, the always block is activated. Three ns later, (a&b) is
evaluated and assigned to c1. The event “(a or b)” will be checked
for change or trigger again. If a or b changes, all the activities are
frozen for 3 ns. If a or b changes in the interim period, the block is
not activated. Hence the module does not depict the desired output.

 always @(a or b)

 c2 = #3 a&b;

 The always block is activated if a or b changes. (a & b) is evaluated
immediately but assigned to c2 only after 3 ns. Only after the
delayed assignment to c2, the event (a or b) checked for change. If a
or b changes in the interim period, the block is not activated.
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 always @(a or b)

 #3 c3 <= a&b;

 The block is entered if the value of a or b changes but the 

evaluation of a&b and the assignment to c3 take place with a 

time delay of 3ns. If a or b changes in the interim period, the 

block is not activated.

 always @(a or b)

 c4 <= #3 a&b;

 represents the best alternative with time delay. The always block is activated if a or b 

changes. (a&b) is evaluated immediately and scheduled for assignment to c4 with a 

delay of 3 ns. Without waiting for the assignment to take effect (i.e., at the same time 

step as the entry to the block), control is returned to the event control operator. 

Further changes to a or b – if any – are again taken cognizance of.
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THE CASE STATEMENT

 simple construct for multiple branching in a module. The 

keywords case, endcase, and default are associated with 

the case construct. 

 Format of the case construct is

 Case (expression)

 Ref1 : statement1;

 Ref2 : statement2;

 Ref3 : statement3;

 .. .

 . . .

 default: statementd;

 endcase
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EXAMPLE

 module dec2_4beh(o,i);

 output[3:0]o;

 input[1:0]i;

 reg[3:0]o;

 always@(i)

 begin

 case(i)

 2'b00:o=4'h0;

 2'b01:o=4'h1;

 2'b10:o=4'h2;

 2'b11:o=4'h4;

 default:     begin $display ("error");

 o=4'h0;

end
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CASEX AND   CASEZ

 The case statement executes a multiway branching where 

every bit of the case expression contributes to the 

branching decision. The statement has two variants 

where some of the bits of the case expression can be 

selectively treated as don’t cares – that is, ignored. 

 Casez allows z to be treated as a don’t care. “?” character 

also can be used in place of z. 

 casex treats x or z as a don’t care.
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SIMULATION FLOW

 In Verilog the parallel processing is structured through 

the following [IEEE]:

 Simulation time: Simulation is carried out in simulation time. 

 At every simulation step a number of active events are sequentially carried 

out.

 The simulator maintains an event queue – called the “Stratified Event 

Queue” – with an active segment at its top. The top most event in the active 

segment of the queue is taken up for execution next.

 The active event can be of an update type or evaluation type. The evaluation 

event can be for evaluation of variables, values on nets, expressions, etc. 

Refreshing the queue and rearranging it constitutes the update event.

 Any updating can call for a subsequent evaluation and vice versa.

 Only after all the active events in a time step are executed, the simulation 

advances to the next time step. 

 Completion of the sequence of operations above at any time step signifies 

the parallel nature of the HDL.
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STRATIFIED EVENT QUEUE

 The events being carried out at any instant give rise to other events –

inherent in

 the execution process. All such events can be grouped into the following 5 

types:

  Active events –

  Inactive events – The inactive events are the events lined up for 

execution immediately after the execution of the active events. Events 

specified with zero delay are all inactive events.

  Blocking Assignment Events – Operations and processes carried out at 

previous time steps with results to be updated at the current time step are of 

this category.

  Monitor Events – The Monitor events at the current time step –

$monitor and $strobe – are to be processed after the processing of the active 

events, inactive events, and nonblocking assignment events.

  Future events – Events scheduled to occur at some future simulation 

time are the future events.



FLOWCHART FOR THE SIMULATION FLOW.
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IF AND IF-ELSE CONSTRUCTS

 The if construct checks a specific condition and decides 
execution based on the result.

 assignment1;

 if (condition) assignment2;

 assignment3;

 Use of the if–else construct.

 assignment1;

 if(condition)

 begin // Alternative 1

 assignment2;

 end

 else

 begin //alternative 2

 assignment3;

 end

 assignment4;
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EXAMPLE

 module demux(a,b,s);

 output [3:0]a;

 input b, [1:0]s;

 reg[3:0]a;

 always@(b or s)

 begin if(s==2'b00)

 begin a[2'b0]=b;

a[3:1]=3'bZZZ; end

 else if(s==2'b01)

 begin a[2'd1]=b;

{a[3],a[2],a[0]}=3'bZZZ; end

 else if(s==2'b10)

 begin a[2'd2]=b;

{a[3],a[1],a[0]}=3'bZZZ; end
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ASSIGN–DEASSIGN CONSTRUCT

 The assign – deassign constructs allow continuous assignments 

within a behavioral block.

 always@(posedge clk) a = b;

 At the positive edge of clk the value of b is assigned to a, and a 

remains frozen at that value until the next positive edge of clk. 

Changes in b in the interval are ignored.

 As an alternative, consider the block

 always@(posedge clk) assign c = d;

 Here at the positive edge of clk, c is assigned the value of d in a 

continuous manner; subsequent changes in d are directly reflected as 

changes in variable c:
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 Always

 Begin

 @(posedge clk) assign c = d;

 @(negedge clk) deassign c;

 end

 The above block signifies two activities:

 1. At the positive edge of clk, c is assigned the value of d in a 

continuous manner.

 2. At the following negative edge of clk, the continuous assignment 

to c is removed; subsequent changes to d are not passed on to c; it is 

as though c is electrically disconnected from d.



BEHAVIORAL MODELING

REPEAT CONSTRUCT

 The repeat construct is used to repeat a specified block a specified 

number of times.

 …

 repeat (a)

 begin

 assignment1;

 assignment2;

 …

 end

…

 The quantity a can be a number or an expression evaluated to a 

number.

 The following block is executed “a” times. If “a” evaluates to 0 or x 

or z, the block is not executed.
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FOR LOOP

 The for loop in Verilog is quite similar to the for loop in C

 It has four parts; the sequence of execution is as follows:

 1. Execute assignment1.

 2. Evaluate expression.

 3. If the expression evaluates to the true state (1), carry out 

statement. Go to step 5.

 4. If expression evaluates to the false state (0), exit the loop.

 5. Execute assignment2. Go to step 2

 . . . .

 for(assignment1; expression; assignment 2)

 statement;

 . . .
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THE DISABLE CONSTRUCT

 To break out of a block or loop. The disable statement 

terminates a named block or task. Control is transferred 

to the statement immediately following the block

 The disable construct is functionally similar to the break in 

C

 always@(posedge en)

 begin:OR_gate

 b=1'b0;

 for(i=0;i<=3;i=i+1)

 if(a[i]==1'b1)

 begin b=1'b1;

 disable OR_gate;

 end

 end
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WHILE LOOP

 The Boolean expression is evaluated. If it is true, the

statement s are executed and expression evaluated and

checked. If the expression evaluates to false, the loop is

terminated and the following statement is taken for

execution

 while(|a)

 begin

 b=1'b1;

 @(posedge clk)

 a=a-1'b1;

 end

 b=1'b0;
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FOREVER LOOP

 Repeated execution of a block in an endless manner is 

best done with the forever loop (compare with repeat 

where the repetition is for a fixed number of times).

 always @(posedge en)

 forever#2 clk=~clk;
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PARALLEL BLOCKS

 All the procedural assignments within a begin–end block are 

executed sequentially. The fork–join block is an alternate one where 

all the assignments are carried out concurrently (The non-blocking 

assignments too can be used for the purpose.). One can use a fork-

join block within a begin–end block or vice versa.
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FORCE–RELEASE CONSTRUCT

 When debugging a design with a number of instantiations, one may 

be stuck with an unexpected behavior in a localized area. Tracing 

the paths of individual signals and debugging the design may prove 

to be too tedious or difficult. 

 In such cases suspect blocks may be isolated, tested, and debugged 

and status quo ante established. The force–release construct is for 

such a localized isolation for a limited period.

 force a = 1'b0;

 forces the variable a to take the value 0.

 force b = c&d;

 forces the variable b to the value obtained by evaluating the expression 

c&d.
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EVENT

 The keyword event allows an abstract event to be declared. The 

event is not a data type with any specific values; it is not a variable 

(reg) or a net. It signifies a change that can be used as a trigger to 

communicate between modules or to synchronize events in different 

modules.

 The operator “” signifies the triggering. Subsequently, another 

activity can be started in the module by the event change.

 . . .

 event change;

 . . .

 always

 . . .

 . . .  change;

 . . .

 .always@change

. . .
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The MOS transistor is the basic element around which a

VLSI is built. Designers familiar with logic gates and their

configurations at the circuit level may choose to do their

designs using MOS transistors.

Verilog has the provision to do the design description at the

switch level using such MOS transistors, which is the theme

of the present chapter.

Switch level modeling forms the basic level of modeling

digital circuits. The switches are available as primitives in

Verilog

INTRODUCTION



Different switch primitives are available in Verilog

nmos switch primitives

nmos (out, in, control);

pmos switch primitives

pmos (out, in, control);

BASIC SWITCH PRIMITIVES



 nmos and pmos represent switches of low impedance in the

on-state. rnmos and rpmos represent the resistive

counterparts of these respectively.

rnmos (output1, input1, control1);

rpmos (output2, input2, control2);

 It inserts a definite resistance between the input 

and the output signals but retains the signal value

 The rpmos and rnmos switches function as 

unidirectional switches; the signal flow is from the 

input to the output side.

Resistive Switches



 Output-side strength levels for different input-side 

strength values of rnmos, rpmos, and rcmos switches

strength levels



 A MOS transistor functions as a resistive element when in
the active state. Realization of resistance in this form takes
less silicon area in the IC as compared to a resistance
realized directly. pullup and pulldown represent such
resistive elements.

 pullup (x);

Here net x is pulled up to the supply1 through a resistance.

 pulldown(y);

pulls y down to the supply0 level through a resistance. 

The pullup and pulldown primitives can be used as loads for 
switches or to connect the unused input ports to VCC or GND, 
respectively.

pullup and pulldown



 A CMOS switch is formed by connecting a PMOS and an 

NMOS switch in parallel – the input leads are connected 

together on the one side and the output leads are connected 

together on the other side.

 The CMOS switch is instantiated as shown below.

cmos csw (out, in, N_control, P_control );

CMOS SWITCH



 Verilog has a set of primitives for bi-directional switches as well.

They connect the nets on either side when ON and isolate them

when OFF. The signal flow can be in either direction

 tran and rtran

The tran gate is a bi-directional gate of two 

ports. When instantiated, it connects the two ports 

directly. 

tran (s1, s2);

connects the signal lines s1 and s2. 

Either line can be input, inout or output. 

rtran is the resistive counterpart of tran.

BI-DIRECTIONAL GATES



tranif1 and rtranif1

 tranif1 is a bi-directional switch turned ON/OFF through a

control line(c). It is in the ON-state when the control signal

is at 1 (high) state

tranif1 (s1, s2, c );

tranif0 and rtranif0

 tranif0 and rtranif0 are again bi-directional 

switches. The switch is OFF if the control line is in 

the 1 state, and it is ON when the control line is in 

the 0 state.

tranif0 (s1, s2, c);

Cont…



 nmos g1 (out, in, ctrl );

has no delay associated with it. The instantiation

 nmos (delay1) g2 (out, in, ctrl );

has delay1 as the delay for the output to rise, fall, and turn OFF.

 nmos (delay_r, delay_f) g3 (out, in, ctrl );

has delay_r as the rise-time for the output. delay_f is the fall-time for the  

output. The turn-off time is zero. 

 nmos (delay_r, delay_f, delay_o) g4 (out, in, ctrl );

has delay_r as the rise-time for the output. delay_f is the fall-time for the 

output delay_o is the time to turn OFF when the control signal ctrl goes 

from 0 to 1.

TIME DELAYS WITH SWITCH PRIMITIVES



 Delays can be assigned to the other uni-directional gates in a 

similar manner.

 Bi-directional switches do not delay transmission – their 

rise- and fall-times are zero. They can have only turn-on and 

turn-off delays associated with them. 

 tran has no delay associated with it.

 tranif1 (delay_r, delay_f) g5 (out, in, ctrl );

When control changes from 0 to 1, the switch turns on with a delay of delay_r. 

When control changes from 1 to 0, the switch turns off with a delay of delay_f.

 transif1 (delay0) g2 (out, in, ctrl );

represents an instantiation with delay0 as the delay for the switch to turn on when 

control changes from 0 to 1, with the same delay for it to turn off when control 

changes from 1 to 0

Cont…



nmos (strong1, strong0) (delay_r, delay_f, delay_o ) gg (s1, 

s2, ctrl) ;

rnmos, pmos, and rpmos switches too can be instantiated in the general form in

the same manner. The general instantiation for the bi-directional gates too can be

done similarly.

STRENGTH CONTENTION WITH TRIREG NETS

 nets declared as trireg can have capacitive storage. Such

storage can be assigned one of three strengths – large,

medium, or small.

 Driving such a net from different sources can lead to

contention

INSTANTIATIONS WITH STRENGTHS AND DELAYS



 Constants signifying timing values, ranges of variables, 

wires, etc., can be specified in terms of assigned names. 

Such assigned names are called parameters. 

 Two types of parameters are of use in modules

 Parameters related to timings, time delays, rise and fall times, etc., 

are technology-specific and used during simulation. Parameter values 

can be assigned or overridden with the keyword “specparam” 

preceding the assignments.

 Parameters related to design, bus width, and register size are of a 

different category. They are related to the size or dimension of a 

specific design; they are technology-independent. Assignment or 

overriding is with assignments following the keyword “defparam”.

PARAMETERS



 Verilog has the provision to specify and check delays associated

with total paths – from any input to any output of a module. Such

paths and delays are at the chip or system level. They are referred

to as “module path delays.”

 Specify Blocks

Module paths are specified and values assigned to their delays 

through specify blocks. They are used to specify rise time, fall 

time, path delays pulse widths.

specify

specparam rise_time = 5, fall_time = 6;

(a =>b) = (rise_time, fall_time);

(c => d) = (6, 7);

endspecify

PATH DELAYS



 Module paths can be specified in different ways inside a 

specify block. The simplest has the form A*>B

 Here “A” is the source and “B” the destination. 

specify

(a,b*>s)=1;

(a,b*>ca)=2;

endspecify

Module Paths



 The pin to pin path of a signal may change depending on the 

value of another signal; in turn the number of circuit 

elements in the alternate path may differ.

specify

if(f==2'b00)(a=>d)=1;

if(f >2'b00)(a=>d)=2;

(b,cci*>co)=1;

endspecify

Conditional Pin-to-Pin Delays



 Module parameters are associated with size of bus, register,

memory, ALU, and so on. They can be specified within the

concerned module but their value can be altered during

instantiation. The alterations can be brought about through

assignments made with defparam. Such defparam

assignments can appear anywhere in a module.

MODULE PARAMETERS



 A “$” sign preceding a word or a word group signifies a system task or a 
system function

 Output Tasks

$monitor and $display

 Display Tasks

The $display task, whenever encountered, displays the arguments in the 
desired format; and the display advances to a new line. $write task carries 
out the desired display but does not advance to the new line

$strobe Task

 When a variable or a set of variables is sampled and its value displayed, 
the $strobe task can be used; it senses the value of the specified 

variables and displays them.

SYSTEM TASKS AND FUNCTIONS



$monitor Task

 $monitor task is activated and displays the arguments specified 
whenever any of the arguments changes

 $stop and $finish Tasks

The $stop task suspends simulation.

$finish stops simulation, closes the simulation environment, and 

reverts to the operating system.

$random Function

 One can start with a seed number (optional) and generate a 
random number repeatedly. Such random number sequences can 
be fruitfully used for testing.



 To carry out any file-based task, the file has to be opened, reading,

writing, etc., completed and the file closed. The keywords for all file-

based tasks start with the letter f to distinguish them from the other tasks

 All the system tasks to output information can be used to output to a file.

$display, $strobe, $monitor, etc., are of this category. The respective 

keywords to output to the file are $fdisplay, $fstrobe, $fmonitor.

 The first field of the task statement is an argument – the file descriptor. 

The subsequent fields are identical to the corresponding nonfile tasks.

FILE-BASED TASKS AND FUNCTIONS



 They allow for macros, inclusion of files, and timescale-

related parameters for simulation. All compiler directives 

are preceded by the ‘`’.

 `define Directive

The `define directive is used to define and associate the desired 

text with the macro name

`define add 2'b00

Time-Related Tasks

 The `timescale compiler directive allows the time scale to be specified 

for the design. The `timescale directive has two components

 `timescale 1 ms/100 μs

COMPILER DIRECTIVES



 A Verilog design will normally have a module or 

two at the apex level. A number of modules and 

UDPs will be instantiated within it.
 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad);

HIERARCHICAL ACCESS



 The primitives available in Verilog are all of the gate or 

switch types. Verilog has the provision for the user to define 

primitives – called “user defined primitive (UDP)” and use 

them. 

 A UDP can be defined anywhere in a source text and 

instantiated in any of the modules. Their definition is in the 

form of a table in a specific format.

 UDPs are basically of two types – combinational and 

sequential. A combinational UDP is used to define a 

combinational scalar function and a sequential UDP for a 

sequential function

USER-DEFINED PRIMITIVES (UDP)



 A combinational UDP accepts a set of scalar inputs and gives a scalar 
output. An inout declaration is not supported by a UDP. 

 The UDP definition is on par with that of a module; that is, it is defined 
independently like a module and can be used in any other mo

primitive udp_and (out, in1, in2);

output out;
input in1, in2;

table
// In1 In2 Out

0 0: 0;

0 1: 0;

1 0: 0;

1 1: 1;

endtable
endprimitivedule

Combinational UDPs



 Any sequential circuit has a set of possible states. When it is in one of 

the specified states, the next state to be taken is described as a function 

of the input logic variables and the present state A sequential UDP can 

accommodate all these.

primitive dff_pos(q,din,clk,clr);

output q;

input din,clk,clr;

reg q;

table

 // din clk clr qp qn Whatever be the present

0 (01) 0: ?: 0; // state of the output, at the

1 (01) 0: ?: 1; // positive edge of clk input

? (10) 0: ?: -; // value is latched and

endtable

endprimitive

Sequential UDPs



Digital Design  using    

Verilog
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Sequential Circuit 

Description

 This chapter concentrates on:

 Using Verilog constructs for description of sequential circuits

 Discussion of using gate level and assignments and procedural statements for 

describing memory elements.
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 In digital circuits, storage of  data is done either by feedback, or by gate capacitances 
that are refreshed frequently.

Sequential Models
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Sequential Models
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Feedback Model
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Feedback Model
 Basic Feedback

S

R

Q

Feedback Line

A two-state (one-bit)

Memory element
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Capacitive Model

Sequential
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Model
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Capacitive Model

 Capacitive Storage

D

C

Q

When c becomes 1 the value of  D is 

saved in the input gate of  the inverter 

and when c becomes 0 this value will 

be saved until the next time that c 

becomes 1 again.

The complement 

of  the stored data
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Implicit Model

Sequential
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Implicit

Model
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Implicit Model

 An SR-Latch Notation

1S

1R

Q

C1

Feedback and capacitive models

are technology dependent and

have the problem of  being too 

detailed and too slow to simulate.

Verilog offers language constructs that 

are technology independent and allow 

much more efficient simulation of  

circuits with a large number of  storage 

elements.
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Basic Memory
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Gate Level Primitives

 Cross-Coupled NOR Latch

s

r
q

g1

g2

q_b

latch
1-bit Storage

Element
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Gate Level Primitives

`timescale 1ns/100ps

module latch (input s, r, output q, q_b );
nor #(4) 

g1 ( q_b, s, q ),

g2 ( q, r, q_b );

endmodule

 SR-Latch Verilog Code

q and q_b outputs are 

initially X and remain at 

this ambiguous state for 

as long as s and r

remain 0.

Simultaneous assertion of  

both inputs results in loss 

of  memory.

Base of  most static 

memory components
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Gate Level Primitives

 All NAND Clocked SR-Latch

_s

_r
q_b

g1

g2

q

latch_p

s

c

r
g4

g3

Clock Input

Control Gates
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Gate Level Primitives
`timescale 1ns/100ps

module latch_p #(parameter tplh=3, tphl=5) 

(input s, r, c, output q, q_b );

wire _s, _r;

nand #(tplh,tphl) 

g1 ( _s, s, c ),

g2 ( _r, r, c ),

g3 ( q, _s, q_b ),

g4 ( q_b, _r, q );    

endmodule

 All NAND Clocked Latch

Delay values can be

controlled when the latch

is instantiated.

Set and Reset inputs to the 

cross_coupled core of  this 

memory element
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Gate Level Primitives

 SR Latch Simulation This delay is due to a fall of  3ns 

and a rise of  5 ns in the NAND 

gates of  the circuit.
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Gate Level Primitives

 Master-Slave D Flip-Flop

latch

d

c
~c

qm

qm_b~d

master_slave

q

q_b

latch

Master Slave
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`timescale 1ns/100ps

module master_slave (input d, c, output q, q_b );

wire qm, qm_b;

defparam master.tplh=4, master.tphl=4,    

slave.tplh=4, slave.tphl=4;

latch_p

master ( d, ~d, c, qm, qm_b ),

slave  ( qm, qm_b, ~c, q, q_b );

endmodule

Gate Level Primitives

 Master-Slave D Flip-Flop Verilog Code

Hierarchical Naming
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User Defined 

Sequential Primitives

 Verilog provides language constructs for defining sequential UDPs:

 Faster Simulation of  memory elements 

 Correspondence to specific component libraries



146

User Defined Sequential 

Primitives
primitive latch( q, s, r, c );

output q;

reg q;

input s, r, c;

initial q=1'b0;

table

//    s r c   q   q+ ;

//    ------:---:----;

? ? 0 : ? : - ;

0 0 1 : ? : - ;

0 1 1 : ? : 0  ;

1 0 1 : ? : 1  ;

endtable

endprimitive

 Sequential UDP Defining a Latch

Table defining the latch 

output
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primitive latch( q, s, r, c );

.............

.............

table

//    s r c   q   q+ ;

//    ------:---:----;

? ? 0 : ? : - ;

0 0 1 : ? : - ;

0 1 1 : ? : 0  ;

1 0 1 : ? : 1  ;

endtable

endprimitive

User Defined Sequential 

Primitives

 Sequential UDP Defining a Latch

Column for specifying 

present state

Signifies “any value”

Signifies “no change”
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Memory Elements Using 

Assignments

 Master-Slave Using Two Feedback Blocks

d

c

qm

master_slave

q

~c

When a block’s

clock input is 0, 

it puts its output back

to itself  (feedback),

and when its clock is

1 it puts its data input

into its output.
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`timescale 1ns/100ps

module master_slave_p #(parameter delay=3) 

(input d, c, output q);

wire qm;

assign #(delay) qm =  c ? d : qm;

assign #(delay) q  = ~c ? qm : q;

endmodule

Memory Elements Using 

Assignments

 Assign Statements Implementing Logic Feedback

The feedback of  qm

output back to its input

Complementary Clocks:

Implements master-slave

flip-flop

Each assign statement

implements a latch
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Behavioral Memory 

Elements
 Behavioral Coding:

 A more abstract and easier way of  writing Verilog code for a latch or 

flip-flop.

 The storage of  data and its sensitivity to its clock and other control inputs will be 

implied in the way model is written.
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Behavioral

Memory

Elements
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Latch

Modeling

Latch Modeling
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Latch Modeling
`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b );

always @( c or d )

if ( c )

begin

#4 q = d;

#3 q_b = ~d;

end

endmodule

 A D-Type Latch Verilog Code

While c is 1

changes on d directly affect q

and q_b outputs.

A Storage unit

Level Sensitive to c :

A Latch

After 4ns d input is read and 

assigned to q output.

After another wait of  3ns, d is 

read again and ~d is assigned 

to q_b output.

If  d changes between the time 

it is read for q and q_b

erroneous results happen.
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Latch Modeling
`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b );

always @( c or d )

if ( c )

begin

q   <= #4  d;

q_b <= #3 ~d;

end    

endmodule

 Latch Model Using Nonblocking Assignments

Corrects the timing 

problem of  blocking 

assignments.

Non-blocking assignments

With intra-statement delay 

controls
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Latch Modeling

 Testing Latch with Nonblocking Assignments

Storing a 1

at time 30

Storing a 0

at time 50
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Behavioral

Memory

Elements

Latch

Modeling

Flip-flop

Modeling

Flip-flop
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Other
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Modeling Styles

Flip-flop

Modeling

Flip-flop Modeling
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Flip-flop Modeling

`timescale 1ns/100ps

module d_ff (input d, clk, output reg q, q_b );

always @( posedge clk )

begin

q   <= #4  d;

q_b <= #3 ~d;

end

endmodule

 Positive Edge Trigger Flip-Flop

A basic edge trigger

flip-flop model at the 

behavioral level

Sensitive to the 

positive edge of  the clock

Assignments to q and q_b

are reached immediately after 

the flow in always block begins.

With each clock edge, 

the entire procedural block is 

executed once from begin to 

end.

The actual assignments of  

values are delayed.
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Flip-flop Modeling

 Simulation of  a Positive Edge Flip-FlopAt 60ns, on the positive edge of

clock, the value of  d is read and

scheduled into q and q_b for times 

64ns and 63ns respectively.

During the time clk is 1 (from 60ns to 

80ns exclusive of  60 and inclusive of  

80), changes on d do not affect the 

state of  flip-flop
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Behavioral

Memory

Elements

Latch

Modeling

Flip-flop

Modeling

Flip-flop

with Set-Reset

Control

Other

Storage Element

Modeling Styles

Flip-flop

with Set-Reset

Control

Flip-flop with Set-Reset Control
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Flip-flop With Set-Reset 

Control
`timescale 1ns/100ps

module d_ff_sr_Synch (input d, s, r, clk, output reg q, q_b );
always @(posedge clk) begin 

if( s ) begin
q <= #4 1'b1;
q_b <= #3 1'b0;

end else if( r ) begin
q <= #4 1'b0;
q_b <= #3 1'b1;

end else begin
q <= #4 d;
q_b <= #3 ~d;

end
end

endmodule

 D Type Flip-Flop with Synchronous Control
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module d_ff_sr_Synch (input d, s, r, clk, 

output reg q, q_b );

always @(posedge clk) begin 

if( s ) begin

.................

end else if( r ) begin

................. 

end else begin

................. 

end

end

endmodule

Flip-flop With Set-Reset 

Control

 D Type Flip-Flop with Synchronous Control (Continued)

The flow into always block

is only initiated by the posedge of  

clk

These if-statements with 

s and r conditions are only 

examined after the positive 

edge of  the clock

Synchronous s and r control inputs
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Flip-flop With Set-Reset 

Control
.................. 

if( s ) begin

q <= #4 1'b1;

q_b <= #3 1'b0;

end else if( r ) begin

q <= #4 1'b0;

q_b <= #3 1'b1;

end else begin

q <= #4 d;

q_b <= #3 ~d;

end

.................. 

 D Type Flip-Flop with Synchronous Control (Continued)

These if-statements with 

s and r conditions are only 

examined after the positive 

edge of  the clock
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Flip-flop With Set-Reset 

Control
`timescale 1ns/100ps

module d_ff_sr_Asynch (input d, s, r, clk, output reg q, q_b );
always @( posedge clk, posedge s, posedge r ) 
begin

if( s ) begin
q <= #4 1'b1;
q_b <= #3 1'b0;

end else if( r ) begin
q <= #4 1'b0;
q_b <= #3 1'b1;

end else begin
q <= #4 d;
q_b <= #3 ~d;

end
end      

endmodule

 D-type Flip-Flop with Asynchronous Control
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Asynchronous 

set and reset inputs

module d_ff_sr_Asynch (input d, s, r, clk, 

output reg q, q_b );

always @( posedge clk, posedge s, posedge r ) begin

if( s ) begin

....................

end else if( r ) begin

....................

end else begin

....................

end

end      

endmodule

The sensitivity list of  the always

block

Flip-flop With Set-Reset 

Control

 D-type Flip-Flop with Asynchronous Control (Continued)



167

Flip-flop With Set-Reset 

Control
....................

if( s ) begin

q   <= #4 1'b1;

q_b <= #3 1'b0;

end else if( r ) begin

q   <= #4 1'b0;

q_b <= #3 1'b1;

end else begin

q   <= #4  d;

q_b <= #3 ~d;

end

....................

 D-type Flip-Flop with Asynchronous Control (Continued)

This flip-flop is sensitive to the 

edge of  clock, but to the levels 

of s and r .
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Flip-flop With Set-Reset 

Control

 Comparing Synchronous and Asynchronous Flip-Flop Controls

Before 120 ns, changes to q is 

triggered by the clock and

q_Synch and q_Asynch are the 

same.

s and r become active and cause 

changes to the flip-flop output.

q_Asynch changes occur 

independent of  the clock when s

or r becomes activeq_Synch will waits for the edge of  

the clock to set or reset
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Other Storage Element 

Modeling Styles
`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b );

always begin

wait ( c );

#4 q <= d;

#3 q_b <= ~d;

end   

endmodule

 Latch Using wait, a Potentially Dangerous Model

A latch using a wait

statement instead of  an 

event control statement

Blocks the flow of  procedural 

block when c is 0.

If  c becomes 1 and remains at 

this value, the body of  the always 

statement repeats itself  every 7 

ns.

If  the delay control statements are 

omitted, then the looping of  the 

always block happens in zero time, 

causing an infinite loop in simulation.
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Flip-flop Timing

Flip-flop

Timing

Setup

Time
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Width

And

Period
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Setup Time

Flip-flop

Timing

Setup

Time

Hold

Time

Width

And

Period

Setup

Time
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Setup Time
 Setup Time

 The Minimum necessary time that a data input requires to setup before it is 

clocked into a flip-flop.

 Verilog construct for checking the setup time: $setup task

 The $setup task:

 Takes flip-flop data input, active clock edge and the setup time as its parameters.

 Is used within a specify block.
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`timescale 1ns/100ps

module d_ff ( input d, clk, s, r, output reg q, q_b );

specify

$setup ( d, posedge clk, 5 );

endspecify

always @( posedge clk or posedge s or posedge r )

begin

..............

end

endmodule

Setup Time

 Flip-Flop with Setup Time

Positive edge trigger flip-flop and 

Asynchronous set and reset 

controls

$setup task within a specify block

Continuously checks timing

distance between changes on d

and the positive edge of  clk.

If  this distance is less than 5ns,

a violation message will be issued.
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Setup Time
...........................

always @( posedge clk or posedge s or posedge r )

begin

if( s ) begin

q <= #4 1'b1;

q_b <= #3 1'b0;

end else if( r ) begin

q <= #4 1'b0;

q_b <= #3 1'b1;

end else begin

q <= #4 d;

q_b <= #3 ~d;

end

end    

endmodule

 Flip-Flop with Setup Time (Continued)
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Setup Time

 Setup Time Violation

The d input changes at 57ns and 

the data is clocked into the flip-

flop at 60ns,

only 3ns after d.

The simulation run reports the 

violation.
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Hold Time

Flip-flop

Timing

Setup

Time

Hold

Time

Width

And

Period

Hold

Time
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Hold Time
 Hold Time

 The Minimum necessary time a flip-flop data input must stay stable (holds its 

value) after it is clocked.

 Verilog construct for checking the setup time: $hold task

 The $setup task:

 Takes flip-flop data input, active clock edge and the required hold time as its 

parameters.

 Is used within a specify block.
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`timescale 1ns/100ps

module d_ff ( input d, clk, s, r, output reg q, q_b);

specify

$hold ( posedge clk, d, 3 );

endspecify

always @( posedge clk or posedge s or posedge r ) 

begin

..............................................

end

endmodule

Flip-flop with hold time of  3ns.

Hold Time

 Flip-Flop with Hold Time
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Hold Time

 Hold Time Violation

The clock samples the d value of  1 

at 20ns. At 22ns, d changes.

This violates the minimum required 

hold time of  3ns.
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Hold Time

 The Verilog $setuphold task combines setup and hold timing checks.

 Example:  

 $setuphold (posedge clk,  d,  5,  3)
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Width And Period

Flip-flop
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Width And Period

 Verilog $width and $period check for minimum pulse width and period.

 Pulse Width: Checks the time from a specified edge of  a reference signal to its 

opposite edge.

 Period: Checks the time from a specified edge of  a reference signal to the same edge.
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Width And Period
specify

$setuphold ( posedge clk, d, 5, 3 );

$width  (posedge r, 4);

$width  (posedge s, 4);

$period (negedge clk, 43);

endspecify

always @( posedge clk or posedge s or posedge r ) 

if( s ) q <= #4 1'b1;

else if( r ) q <= #4 1'b0;

else q <= #4 d;

................................

 Setup, Hold, Width, and Period Checks (Continued)
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Controllers

Component

Description

Data

Components
ControllersControllers
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Controllers

 Controller Outline

Decisions 

Based on : Inputs , 

Outputs , State

Issue Control Signal

Set Next State

Go to Next State
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Controllers

 Controller:

 Is wired into data part to control its flow of  data.

 The inputs to controller determine its next states and outputs.

 Monitors its inputs and makes decisions as to when and what output signals to 

assert.

 Keeps the history of  circuit data by switching to appropriate states.

 Two examples to illustrate the features of  Verilog for describing state machines:

 Synchronizer

 Sequence Detector



189

Controllers

Controllers

Synchronizer
Sequence

Detector
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Synchronizer

Controllers

Synthesizer
Sequence

Detector
Synchronizer
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Synchronizer

 Synchronizing adata

Clk

adata

synched
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Synchronizer

`timescale 1ns/100ps

module Synchronizer (input clk, adata, 
output reg synched);

always @(posedge clk) 
if (adata == 0) synched <= 0; 
else synched <= 1;

endmodule

 A Simple Synchronization Circuit

If  a 1 is Detected on 

adata on the rising 

edge of  clock, synched

becomes 1 and 

remains 1

for at least one 

clock period 
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Sequence Detector

Controllers

Synthesizer
Sequence

Detector

Sequence

Detector
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Sequence Detector

 State Machine Description

Searches on

it’s a input

for the 

110 Sequence

When the sequence 

is detected, the w 

Output becomes 1 and 

stays 1 for a complete 

clock cycle

If 110 is detected 

on a, then w gets 

1, else w gets 0.

clk

a w
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Sequence Detector

 Sequence Detector State Machine

Initia

l 

State

01

1

1

0

0

1

0
reset

S0
0 0 10

S1 S2 S3

States are named:

s0 , s1 , s2 , s3

The State in which the 

110 sequence is 

detected.

It Takes at least 

3 clock periods to get 

to the s3 state

A Moore Machine

Sequence Detector
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Sequence Detector

module Detector110 (input a, clk, reset, output w);
parameter [1:0] s0=2'b00, s1=2'b01, s2=2'b10, s3=2'b11;
reg [1:0] current;

always @(posedge clk) begin
if (reset) current = s0;
else 

case (current)
s0: if (a) current <= s1; else current <= s0;
s1: if (a) current <= s2; else current <= s0;
s2: if (a) current <= s2; else current <= s3;
s3: if (a) current <= s1; else current <= s0;
endcase

end

assign w = (current == s3) ? 1 : 0;

endmodule

 Verilog Code for 110 Detector
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State Machine

Coding

Moore Machines Mealy Machines

Huffman 

Coding Style

A More Modular 

Style

A ROM Based 

Controller

State Machine Coding
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State Machine
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Moore Machines
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Moore Machines

 Moore Machine :

 A state machine in which all outputs are carefully synchronized with the circuit 

clock.

 In the state diagram form, each state of  the machine specifies its outputs

independent of  circuit inputs.

 In Verilog code of  a state machine, only circuit state variables participate in the 

output expression of  the circuit.
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State Machine

Coding

Moore Machines Mealy Machines

Huffman 

Coding Style

A More Modular 

Style

A ROM Based 

Controller

Mealy Machines

Mealy Machines
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Mealy Machines

 Mealy Machine :

 Is different from a Moore machine in that its output depends on its current state 

and inputs while in that state.

 State transitions and clocking and resetting the machine are no different from 

those of  a Moore machine. The same coding techniques are used.


