
Digital Design

Using

Verilog

Prepared BY

D. Khalandar Basha

Assoc Prof., IARE

Adopted from

T. R. Padmanabhan and B. Bala Tripura Sundari,

Design through Verilog HDL –Wiley, 2009.

UNIT - I

U n i t - I

Unit - I

INTRODUCTION TO VERILOG:

 Verilog as HDL

 Levels of design Description

 Concurrency

 Simulation and Synthesis

 Functional Verification

 System Tasks

 Programming Language Interface (PLI)

 Module

 Simulation and Synthesis Tools

 Test Benches.

LANGUAGE CONSTRUCTS AND CONVENTIONS:

 Introduction, Keywords, Identifiers, White Space Characters, Comments,

 Numbers

 Strings

 Logic Values

 Strengths

 Data Types

 Scalars and Vectors

 Parameters

 Operators.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Objectives and Outcomes

Objective: To make the student learn and understand

 Acquire a basic knowledge of the Verilog HDL

 Language constructs and conventions in Verilog

 Basic Concepts of Verilog HDL like Data Types, System Tasks and

Compiler Directives.

Outcomes: The student will be able to

 Define basic terms in HDL

 Knows Syntax and lexical conventions

 Remembers Data types, operators

 Remember testbenches for simulation and verification

U n i t - I

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

VERILOG AS AN HDL

 Verilog aimed at providing a functionally tested and a verified

design description for the target FPGA or ASIC.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

LEVELS OF DESIGN DESCRIPTION

Gate Level

Data Flow

Behavioral
Level

Circuit
Level or

switch level

Circuit Level or switch level

 At the circuit level, a switch is the basic element

with which digital circuits are built.

 Switches can be combined to form inverters and other gates at

the next higher level of abstraction.

Gate Level

 At the next higher level of abstraction,

design is carried out in terms of basic gates.

 All the basic gates are available as ready modules

called “Primitives”.

Data Flow

 Data flow is the next higher level of abstraction.

 All possible operations on signals and variables are

represented here in terms of assignments

y = (ab+cd)

Behavioral Level

 Behavioral level constitutes the highest level of design

description; it is essentially at the system level itself.

 With the assignment possibilities, looping constructs

and conditional branching possible, the design

description essentially looks like a “C” program.

Verilog Language Concepts

 Concurrency

 Simulation and Synthesis

 Functional Verification

 System Tasks

 Programming Language Interface (PLI)

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Concurrency

 In an electronic circuit all the units are to be active and

functioning concurrently. The voltages and currents in the

different elements in the circuit can change simultaneously. In

turn the logic levels too can change.

 Simulation of such a circuit in an HDL calls for concurrency

of operation.

 All the activities scheduled at one time step are completed and

then the simulator.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Simulation and Synthesis

 The design that is specified and entered as described earlier is

simulated for functionality and fully debugged.

 Translation of the debugged design into the corresponding

hardware circuit (using an FPGA or an ASIC) is called

“synthesis.”

 The circuits realized from them are essentially direct

translations of functions into circuit elements.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Functional Verification

 Testing is an essential ingredient of the VLSI design process as

with any hardware circuit.

 It has two dimensions to it – functional tests and timing tests.

 Testing or functional verification is carried out by setting up a

“test bench” for the design.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

System Tasks

 A number of system tasks are available in Verilog.

 Though used in a design description, they are not part of it.

 Some tasks facilitate control and flow of the testing process.

 A set of system functions add to the flexibility of test benches:

They are of three categories:

 Functions that keep track of the progress of simulation time

 Functions to convert data or values of variables from one

format to another

 Functions to generate random numbers with specific

distributions.

 There are other numerous system tasks and functions

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Programming Language Interface (PLI)

 Programming Language Interface (PLI) is a way to provide

Application Program Interface (API) to Verilog HDL.

 Essentially it is a mechanism to invoke a C function from a

Verilog code.

 PLI is primarily used for doing the things which would not

have been possible otherwise using Verilog syntax.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

MODULE

 Any Verilog program begins with a keyword – called a

“module.”

 A module is the name given to any system considering it as a

black box with input and output terminals as shown in Figure

 The terminals of the module are referred to as ‘ports’.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Cont…

 The ports attached to a module can be of three types:

 input ports through which one gets entry into the module

 output ports through which one exits the module.

 inout ports: These represent ports through which one gets entry into the

module or exits the module

 All the constructs in Verilog are centred on the module.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

MODULE SYNTAX

 module module_name (port_list);

Input, output, inout declaration

Intermediate variable declarations

Functional Description

(gate / switch / data flow / Behv.)

endmodule

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

SIMULATION AND SYNTHESIS TOOLS

 A variety of Software tools related to VLSI design is available.

 Two of them are

- Modelsim and

- Leonardo Spectrum of MentorGraphics.

 Modelsim has been used to simulate the designs.

 Leonardo Spectrum has been used to obtain the synthesized

circuits

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

TEST BENCH SYNTAX

 A test bench is HDL code that allows you to provide a

documented, repeatable set of stimuli.

 module tb_module_name ;

Input, output, inout declaration

Intermediate variable declarations

Stimulus (initial / always)

endmodule

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

LANGUAGE CONSTRUCTS AND

CONVENTIONS IN VERILOG

 CASE SENSITIVITY

Verilog is a case-sensitive language like C

 KEYWORDS

 The keywords define the language constructs. A keyword

signifies an activity to be carried out, initiated, or terminated

 All keywords in Verilog are in small letters

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

IDENTIFIERS

 IDENTIFIERS

 Any program requires blocks of statements, signals, etc., to

be identified with an attached nametag. Such nametags are

identifiers

 All characters of the alphabet or an underscore can be used

as the first character. Subsequent characters can be of

alphanumeric type, or the underscore (_), or the dollar ($)

sign

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

WHITE SPACE CHARACTERS , COMMENTS

 WHITE SPACE CHARACTERS

 Blanks (\b), tabs (\t), newlines (\n), and form feed form the

white space characters in Verilog

 COMMENTS

 A single line comment begins with “//”

 multiline comments “/*” signifies the beginning of a

comment and “*/” its end.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

NUMBERS, STRINGS

 NUMBERS

Integer Numbers : the number is taken as 32 bits wide.

 25, 253, –253

 - 8 'h f 4

Real Numbers: Real numbers can be specified in decimal or

scientific notation

4.3, 4.3e2

 STRINGS : A string is a sequence of characters enclosed

within double quotes

 “This is a string”

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

LOGIC VALUES

 1 signifies the 1 or high or true level

 0 signifies the 0 or low or false level.

 Two additional levels are also possible designated as x and z.

 x represents an unknown or an uninitialized value. This corresponds to

the don’t care case in logic circuits.

 z represents / signifies a high impedance state

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

STRENGTHS

Strength Name Strength Level Element Modelled
Declaration

Abbreviation

Supply Drive 7 Power supply connections. supply

Strong Drive 6
Default gate & assign output

strength.
strong

Pull Drive 5
Gate & assign output

strength.
pull

Large Capacitor 4 Size of trireg net capacitor. large

Weak Capacitor 3
Gate & assign output

strength.
weak

Medium

Capacitor
2 Size of trireg net capacitor. medium

Small Capacitor 1 Size of trireg net capacitor. small

High Impedence 0 Not Applicable. highz

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Data Types

 The data handled in Verilog fall into two categories:

(i) Net data type

(ii) Variable data type

 The two types differ in the way they are used as well as with

regard to their respective hardware structures.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Net data type

 A net signifies a connection from one circuit unit to another,

which carries the value of the signal it is connected to and

transmits to the circuit blocks connected to it.

 If the driving end of a net is left floating, the net goes to the

high impedance state.

 Various nets supported in Verilog

WIRE / TRI WAND / TRIAND

WOR / TRIOR TRI1

TRI0 TRIREG -- Infers a capacitance

SUPPLY1 -- For Vdd SUPPLY0 -- For Vss

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

DIFFERENCES BETWEEN WIRE AND TRI

 wire: It represents a simple wire doing an interconnection.

Only one output is connected to a wire and is driven by that.

 tri: It represents a simple signal line as a wire. Unlike the wire,

a tri can be driven by more than one signal outputs.

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Contention

WIRE

/TRI

0 1 X Z

0 0 X X 0

1 X 1 X 1

X X X X X

Z 0 1 X Z

WOR

/TRIO

R

0 1 X Z

0 0 1 X 0

1 1 1 1 1

X X 1 X X

Z 0 1 X Z

WAND

/TRIAN
D

0 1 X Z

0 0 0 0 0

1 0 1 X 1

X 0 X X X

Z 0 1 X Z

TRI1(0
)

0 1 X Z

0 0 X X 0

1 X 1 X 1

X X X X X

Z 0 1 X 1(0)

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Variable Data Type

 A variable is an abstraction for a storage device

 reg

 time

 integer

 real

 Realtime

 MEMORY

 Reg [15:0] memory[511:0];

an array called “memory”; it has 512 locations.

Each location is 16 bits wide

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Scalars and Vectors

 Entities representing single bits — whether the bit is stored,

changed, or transferred — are called “scalars.”

 Multiple lines carry signals in a cluster treated as a “vector.”

reg[2:0] b;

reg[4:2] c;

wire[-2:2] d ;

 All the above declarations are vectors.

 If range is not specifies it is treated as scalars

P
r

e
p

a
r

e
d

B

y

D

.

K
h

a
l

a
n

d
a

r
B

a
s

h
a

,

I

A
R

E
,

H

Y
D

.

Parameters, Operators.

PARAMETERS

All constants can be declared as parameters at the outset

in a Verilog module

 parameter word_size = 16;

 parameter word_size = 16, mem_size = 256;

OPERATORS

 Unary: – for example, ~a.

 Binary: – for example, a&b.

 Ternary: – for example, a?b:c

Digital Design

Through

Verilog

Prepared BY

D. Khalandar Basha

Assoc Prof., IARE

Adopted from

T. R. Padmanabhan and B. Bala Tripura Sundari,

Design through Verilog HDL –Wiley, 2009.

U n i t - I I

Unit - II

GATE LEVEL MODELING:

 Introduction

 AND Gate Primitive

 Module Structure

 Other Gate Primitives

 Illustrative Examples

 Tri-State Gates

 Array of Instances of Primitives

 Design of Flip – Flops with gate primitives

 Delays

 Strengths and Contention Resolution,

 Net Types

 Design of Basic Circuits.

MODELING AT DATA FLOW LEVEL:

 Introduction

 Continuous Assignment Structures

 Delays and Continuous Assignments

 Assignment to Vectors, Operators.

GATE LEVEL MODELING

 All the basic gates are available as “Primitives” in Verilog.

U n i t - I I

Verilog module for AOI logic

 module aoi_gate(o,a1,a2,b1,b2);

input a1,a2,b1,b2; output o;

wire o1,o2;

and g1(o1,a1,a2);

and g2(o2,b1,b2);

nor g3(o,o1,o2);

endmodule

 module aoi_st;

reg a1,a2,b1,b2;

wire o;

initial

begin

a1 = 0; a2 = 0; b1 = 0; b2 = 0;

#3 a1 = 1; a2 = 1; b1 = 1; b2 = 0;

end

initial #100 $stop;

initial $monitor($time , " o = %b , a1 = %b , a2 = %b , b1 = %b ,b2 = %b
",o,a1,a2,b1,b2);

aoi_gate gg(o,a1,a2,b1,b2);

endmodule

U n i t - I I

TRI-STATE GATES

 Four types of tri-state buffers are available in Verilog as

primitives

U n i t - I I

ARRAY OF INSTANCES OF PRIMITIVES

 and gate [7 : 4] (a, b, c);

 and gate [7] (a[3], b[3], c[3]),

gate [6] (a[2], b[2], c[2]),

gate [5] (a[1], b[1], c[1]),

gate [4] (a[0], b[0], c[0]);

Syntax: and gate[mm : nn](a, b, c);

U n i t - I I

DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES

 Simple Latch

module sbrbff(sb,rb,q,qb);

input sb,rb;

output q,qb;

nand(q,sb,qb);

nand(qb,rb,q);

endmodule

U n i t - I I

RS Flip-Flop module

 module srff(s,r,q,qb);

input s,r;

output q,qb;

wire ss,rr;

not(ss,s),(rr,r);

nand(q,ss,qb);

nand(qb,rr,q);

endmodule

U n i t - I I

A Clocked RS Flip-Flop module

 module srffcplev(cp,s,r,q,qb);

input cp,s,r;

output q,qb;

wire ss,rr;

nand (ss,s,cp),

(rr,r,cp),

(q,ss,qb),

(qb,rr,q);

endmodule

U n i t - I I

D-Latch module

 module dlatch(en,d,q,qb);

input d,en;

output q,qb;

wire dd;

wire s,r;

not n1(dd,d);

nand (sb,d,en);

nand g2(rb,dd,en);

sbrbff ff(sb,rb,q,qb);

endmodule

U n i t - I I

DELAYS

 Net Delay

wire #2 nn;

// nn is declared as a net with a propagation delay of 2

time steps

wire # (2, 1) nm;

//the positive (0 to 1) transition has a delay of 2 time steps

//The negative (1 to 0) transition has a delay of 1 time step

 Gate Delay

and #3 g(a, b, c);

and #(2, 1) g(a, b, c);

U n i t - I I

Delays with Tri-state Gates

U n i t - I I

min, typical, max delays

 and #(2:3:4) g1(a0, a1, a2);

// min, typical, max delays

 and #(1:2:3, 2:4:6) g2(b0, b1, b2);

 bufif1 #(1:2:3, 2:4:6, 3:6:9) g3 (a0, b0, c0);

 wire #(1:2:3) a;

U n i t - I I

STRENGTHS AND CONTENTION RESOLUTION

U n i t - I I

Net Charges

 net can have a capacitor associated with it, which can store the

signal level even after the

signal source dries up (i.e., tri-stated).

 Such nets are declared with the

 keyword trireg.

U n i t - I I

Signal strength names and weights

U n i t - I I

MODELING AT DATA FLOW LEVEL

 CONTINUOUS ASSIGNMENT STRUCTURES

assign c = a && b;

 Combining Assignment and Net Declarations

wire c;

assign c = a & b;

can be combined as

wire c = a & b;

 Continuous Assignments and Strengths

wire (pull1, strong0)g = ~g1;

U n i t - I I

Data flow module for AOI

 module aoi2(g, a, b, c, d);

output g;

input a, b, c, d;

wire e, f, g1, g;

assign e = a && b, f = c && d, g1 = e||f, g=~g1;

endmodule

 module aoi3(g, a, b, c, d);

output g;

input a, b, c, d;

wire g;

wire e = a && b;

wire f = c && d;

wire g1 = e||f;

assign g = ~g1;

endmodule

U n i t - I I

DELAYS AND CONCATENATION

DELAYS AND CONTINUOUS ASSIGNMENTS

 assign #2 c = a & b;

 wire #2 c;

 assign c = a & b;

CONCATENATION OF VECTORS

{a, b, c}

{a(7:4), b(2:0)}

{2{p}} = {p, p}

{2{p}, q} = {p, p, q}

{a, 3 {2{b , c}, d}} = {a, b, c, b, c, d, b, c, b, c, d, b, c, b, c, d }

U n i t - I I

OPERATORS

U n i t - I I

Unary Operators

U n i t - I I

Binary Operators

 Arithmetic operators and their symbols

 Binary logical operators and their symbols

 Relational operators and their symbols

U n i t - I I

Cont..

 Equality operators and their symbols

U n i t - I I

cont…

 Bit-wise logical operators and their symbols

 Shift type operators and their symbols

U n i t - I I

Ternary operator

 A ? B : C

 assign y = w ? x : z;

 Assign d = (f == add) ? (a+b) : ((f = sub) ? (a-b) :

((f==compl) ? ~a : ~b;

U n i t - I I

Operator Priority

 The table brings out the order of precedence. The order of

precedence decides the priority for sequence of execution and

circuit realization in any assignment

 statement.

U n i t - I I

Digital Design

Using

Verilog

Prepared by

D. Khalandar Basha

Assoc Prof., IARE

Adopted from

T. R. Padmanabhan and B. Bala Tripura

Sundari, Design through Verilog HDL –Wiley,

2009.

BEHAVIORAL MODELING

 BEHAVIORAL MODELING:

• Introduction

• Operations and Assignments

• Functional Bifurcation

• Initial Construct, Always Construct

• Assignments with Delays Wait Construct

• Multiple Always Blocks

• Designs at Behavioral Level

• Blocking and Non-Blocking Assignments

• The case statement

• Simulation Flow

• if and if-else constructs

• assign–deassign construct, repeat construct, for loop, the disable construct,

while loop, forever loop, parallel blocks, force-release construct, Event.

UNIT - III

BEHAVIORAL MODELING

 Behavioral level modeling constitutes design

description at an abstract level.

 One can visualize the circuit in terms of its key

modular functions and their behavior; it can be

described at a functional level itself instead of

getting bogged down with implementation details.

BEHAVIORAL MODELING

BEHAVIORAL MODELING
 The design description at the behavioral level is done

through a sequence of assignments.

 These are called ‘procedural assignments’ – in contrast to

the continuous assignments at the data flow level.

 All the procedural assignments are executed sequentially

in the same order as they appear in the design

description.

OPERATIONS AND ASSIGNMENTS

BEHAVIORAL MODELING
• Design description at the behavioral level is done in

terms of procedures of two types;

• one involves functional description and interlinks of

functional units. It is carried out through a series of

blocks under an “always”.

• The second concerns simulation – its starting point,

steering the simulation flow, observing the process

variables, and stopping of the simulation process; all

these can be carried out under the “always” banner, an

“initial” banner, or their combinations.

FUNCTIONAL BIFURCATION

procedure-block structure

 A procedure-block of either type – initial or always

– can have a structure shown in Figure

BEHAVIORAL MODELING

BEGIN – END CONSTRUCT

 If a procedural block has only one assignment to be

carried out, it can be specified

 as initial #2 a=0;

 More than one procedural assignment is to be carried out

in an initial block. All such

 assignments are grouped together between “begin” and

“end” declarations.

 Every begin declaration must have its associated end

declaration.

 begin – end constructs can be nested as many times as

desired.

NESTED BEGIN – END BLOCKS

BEHAVIORAL MODELING

INITIAL CONSTRUCT

• A set of procedural assignments within an initial construct are

executed only Once

• In any assignment statement the left-hand side has to be a storage

type of element (and not a net). It can be a reg, integer, or real type

of variable. The right-hand side can be a storage type of variable or

a net.

 initial

 begin

 a = 1'b0;

 b = 1'b0;

 #2 a = 1'b1;

 #3 b = 1'b1;

 #100$stop;

 end

BEHAVIORAL MODELING

MULTIPLE INITIAL BLOCKS

 module nil1;

 initial

 reg a, b;

 begin

 a = 1'b0; b = 1'b0;

 $display ($time, "display : a = %b, b = %b", a, b);

 #2 a = 1'b1;

 end

 initial #100$stop;

 initial

 begin #2 b = 1'b1;

 end

 endmodule

BEHAVIORAL MODELING

ALWAYS CONSTRUCT

 The always process signifies activities to be executed on

an “always basis.”

 Its essential characteristics are:

• Any behavioral level design description is done using an

always block.

• The process has to be flagged off by an event or a

change in a net or a reg. Otherwise it ends in a stalemate.

• The process can have one assignment statement or

multiple assignment statements.

• Normally the statements are executed sequentially in the

order they appear.

BEHAVIORAL MODELING

EVENT CONTROL

 The always block is executed repeatedly and endlessly. It

is necessary to specify a condition or a set of conditions,

which will steer the system to the execution of the block.

Alternately such a flagging-off can be done by

specifying an event preceded by the symbol “@”.

 @(negedge clk) :executes the following block at the negative edge of clk.

 @(posedge clk) : executes the following block at the positive edge of the

clk.

 @clk : executes the following block at both the edges of clk.

 @(prt or clr) :

 @(posedge clk1 or negedge clk2) :

 @ (a or b or c) can also write as @ (a or b or c) @ (a, b, c) @ (a, b or

c)

BEHAVIORAL MODELING

EXAMPLE COUNTER

 module counterup(a,clk,N);

input clk;

input[3:0]N;

output[3:0]a;

reg[3:0]a;

initial a=4'b0000;

always@(negedge clk) a=(a==N)?4'b0000:a+1'b1;

 endmodule

BEHAVIORAL MODELING

ASSIGNMENTS WITH DELAYS

 always #3 b = a;

 Values of a at the 3rd, 6th, 9th, etc., ns are sampled and assigned to

b.

 Initial

 begin

 a = 1’b1;

 b = 1’b0;

 #1 a = 1’b0;

 #3 a = 1’b1;

 #1 a = 1’b0;

 #2 a = 1’b1;

 #3 a = 1’b0;

 end

BEHAVIORAL MODELING

INTRA-ASSIGNMENT DELAYS

 The “intra-assignment” delay carries out the assignment

in two parts.

 An assignment with an intra-assignment has the form

 A = # dl expression;

 Here the expression is scheduled to be evaluated as soon

as it is encountered.

 However, the result of the evaluation is assigned to the

right-hand side quantity a after a delay specified by dl.

 dl can be an integer or a constant expression

 always #2 a = a + 1;

 always #b a = a + 1;

 always #(b + c) a = a + 1;

BEHAVIORAL MODELING

ZERO DELAY

 A delay of 0 ns does not really cause any delay.

 However, it ensures that the assignment following is

executed last in the concerned time slot.

 always

 begin a = 1;

 #0 a = 0;

 end

BEHAVIORAL MODELING

WAIT CONSTRUCT

 The wait construct makes the simulator wait for the

specified expression to be true before proceeding with

the following assignment or group of assignments.

 Its syntax has the form

 wait (alpha) assignment1;

 alpha can be a variable, the value on a net, or an

expression involving them.

 @clk a = b; assigns the value of b to a when clk changes;

 wait (clk) #2 a = b; the simulator waits for the clock to

be high and then assigns b to a

BEHAVIORAL MODELING

BLOCKING AND NONBLOCKING ASSIGNMENTS

 All assignment within an initial or an always block done

through an equality (“=”) operator. These are executed

sequentially. Such assignments block the execution of the

following lot of assignments at any time step. Hence they are

called “blocking assignments”.

 If the assignments are to be effected concurrently A facility

called the “nonblocking assignment” is available for such

situations. The symbol “<=” signifies a non-blocking

assignment. The main characteristic of a nonblocking

assignment is that its execution is concurrent

BEHAVIORAL MODELING

CONT…

 For all the non-blocking assignments in a block, the

right-hand sides are evaluated first. Subsequently the

specified assignments are scheduled.

 What will happen if the following statements are

executed

 A <= B; // A, B will swapped

 B <= A ;

 And

 A = B;

 B = A ; // A, B will have same value

BEHAVIORAL MODELING

NONBLOCKING ASSIGNMENTS AND DELAYS

 The principle of Delays of the intra-assignment type operation is
similar to that with blocking assignments.

 always @(a or b)

 #3 c1 = a&b;

 which has a delay of 3 ns for the blocking assignment to c1. If a or b
changes, the always block is activated. Three ns later, (a&b) is
evaluated and assigned to c1. The event “(a or b)” will be checked
for change or trigger again. If a or b changes, all the activities are
frozen for 3 ns. If a or b changes in the interim period, the block is
not activated. Hence the module does not depict the desired output.

 always @(a or b)

 c2 = #3 a&b;

 The always block is activated if a or b changes. (a & b) is evaluated
immediately but assigned to c2 only after 3 ns. Only after the
delayed assignment to c2, the event (a or b) checked for change. If a
or b changes in the interim period, the block is not activated.

BEHAVIORAL MODELING

 always @(a or b)

 #3 c3 <= a&b;

 The block is entered if the value of a or b changes but the

evaluation of a&b and the assignment to c3 take place with a

time delay of 3ns. If a or b changes in the interim period, the

block is not activated.

 always @(a or b)

 c4 <= #3 a&b;

 represents the best alternative with time delay. The always block is activated if a or b

changes. (a&b) is evaluated immediately and scheduled for assignment to c4 with a

delay of 3 ns. Without waiting for the assignment to take effect (i.e., at the same time

step as the entry to the block), control is returned to the event control operator.

Further changes to a or b – if any – are again taken cognizance of.

BEHAVIORAL MODELING

THE CASE STATEMENT

 simple construct for multiple branching in a module. The

keywords case, endcase, and default are associated with

the case construct.

 Format of the case construct is

 Case (expression)

 Ref1 : statement1;

 Ref2 : statement2;

 Ref3 : statement3;

 .. .

 . . .

 default: statementd;

 endcase

BEHAVIORAL MODELING

EXAMPLE

 module dec2_4beh(o,i);

 output[3:0]o;

 input[1:0]i;

 reg[3:0]o;

 always@(i)

 begin

 case(i)

 2'b00:o=4'h0;

 2'b01:o=4'h1;

 2'b10:o=4'h2;

 2'b11:o=4'h4;

 default: begin $display ("error");

 o=4'h0;

end

BEHAVIORAL MODELING

CASEX AND CASEZ

 The case statement executes a multiway branching where

every bit of the case expression contributes to the

branching decision. The statement has two variants

where some of the bits of the case expression can be

selectively treated as don’t cares – that is, ignored.

 Casez allows z to be treated as a don’t care. “?” character

also can be used in place of z.

 casex treats x or z as a don’t care.

BEHAVIORAL MODELING

SIMULATION FLOW

 In Verilog the parallel processing is structured through

the following [IEEE]:

 Simulation time: Simulation is carried out in simulation time.

 At every simulation step a number of active events are sequentially carried

out.

 The simulator maintains an event queue – called the “Stratified Event

Queue” – with an active segment at its top. The top most event in the active

segment of the queue is taken up for execution next.

 The active event can be of an update type or evaluation type. The evaluation

event can be for evaluation of variables, values on nets, expressions, etc.

Refreshing the queue and rearranging it constitutes the update event.

 Any updating can call for a subsequent evaluation and vice versa.

 Only after all the active events in a time step are executed, the simulation

advances to the next time step.

 Completion of the sequence of operations above at any time step signifies

the parallel nature of the HDL.

BEHAVIORAL MODELING

STRATIFIED EVENT QUEUE

 The events being carried out at any instant give rise to other events –

inherent in

 the execution process. All such events can be grouped into the following 5

types:

 Active events –

 Inactive events – The inactive events are the events lined up for

execution immediately after the execution of the active events. Events

specified with zero delay are all inactive events.

 Blocking Assignment Events – Operations and processes carried out at

previous time steps with results to be updated at the current time step are of

this category.

 Monitor Events – The Monitor events at the current time step –

$monitor and $strobe – are to be processed after the processing of the active

events, inactive events, and nonblocking assignment events.

 Future events – Events scheduled to occur at some future simulation

time are the future events.

FLOWCHART FOR THE SIMULATION FLOW.

BEHAVIORAL MODELING

IF AND IF-ELSE CONSTRUCTS

 The if construct checks a specific condition and decides
execution based on the result.

 assignment1;

 if (condition) assignment2;

 assignment3;

 Use of the if–else construct.

 assignment1;

 if(condition)

 begin // Alternative 1

 assignment2;

 end

 else

 begin //alternative 2

 assignment3;

 end

 assignment4;

BEHAVIORAL MODELING

EXAMPLE

 module demux(a,b,s);

 output [3:0]a;

 input b, [1:0]s;

 reg[3:0]a;

 always@(b or s)

 begin if(s==2'b00)

 begin a[2'b0]=b;

a[3:1]=3'bZZZ; end

 else if(s==2'b01)

 begin a[2'd1]=b;

{a[3],a[2],a[0]}=3'bZZZ; end

 else if(s==2'b10)

 begin a[2'd2]=b;

{a[3],a[1],a[0]}=3'bZZZ; end

BEHAVIORAL MODELING

ASSIGN–DEASSIGN CONSTRUCT

 The assign – deassign constructs allow continuous assignments

within a behavioral block.

 always@(posedge clk) a = b;

 At the positive edge of clk the value of b is assigned to a, and a

remains frozen at that value until the next positive edge of clk.

Changes in b in the interval are ignored.

 As an alternative, consider the block

 always@(posedge clk) assign c = d;

 Here at the positive edge of clk, c is assigned the value of d in a

continuous manner; subsequent changes in d are directly reflected as

changes in variable c:

BEHAVIORAL MODELING

 Always

 Begin

 @(posedge clk) assign c = d;

 @(negedge clk) deassign c;

 end

 The above block signifies two activities:

 1. At the positive edge of clk, c is assigned the value of d in a

continuous manner.

 2. At the following negative edge of clk, the continuous assignment

to c is removed; subsequent changes to d are not passed on to c; it is

as though c is electrically disconnected from d.

BEHAVIORAL MODELING

REPEAT CONSTRUCT

 The repeat construct is used to repeat a specified block a specified

number of times.

 …

 repeat (a)

 begin

 assignment1;

 assignment2;

 …

 end

…

 The quantity a can be a number or an expression evaluated to a

number.

 The following block is executed “a” times. If “a” evaluates to 0 or x

or z, the block is not executed.

BEHAVIORAL MODELING

FOR LOOP

 The for loop in Verilog is quite similar to the for loop in C

 It has four parts; the sequence of execution is as follows:

 1. Execute assignment1.

 2. Evaluate expression.

 3. If the expression evaluates to the true state (1), carry out

statement. Go to step 5.

 4. If expression evaluates to the false state (0), exit the loop.

 5. Execute assignment2. Go to step 2

 for(assignment1; expression; assignment 2)

 statement;

 . . .

BEHAVIORAL MODELING

THE DISABLE CONSTRUCT

 To break out of a block or loop. The disable statement

terminates a named block or task. Control is transferred

to the statement immediately following the block

 The disable construct is functionally similar to the break in

C

 always@(posedge en)

 begin:OR_gate

 b=1'b0;

 for(i=0;i<=3;i=i+1)

 if(a[i]==1'b1)

 begin b=1'b1;

 disable OR_gate;

 end

 end

BEHAVIORAL MODELING

WHILE LOOP

 The Boolean expression is evaluated. If it is true, the

statement s are executed and expression evaluated and

checked. If the expression evaluates to false, the loop is

terminated and the following statement is taken for

execution

 while(|a)

 begin

 b=1'b1;

 @(posedge clk)

 a=a-1'b1;

 end

 b=1'b0;

BEHAVIORAL MODELING

FOREVER LOOP

 Repeated execution of a block in an endless manner is

best done with the forever loop (compare with repeat

where the repetition is for a fixed number of times).

 always @(posedge en)

 forever#2 clk=~clk;

BEHAVIORAL MODELING

PARALLEL BLOCKS

 All the procedural assignments within a begin–end block are

executed sequentially. The fork–join block is an alternate one where

all the assignments are carried out concurrently (The non-blocking

assignments too can be used for the purpose.). One can use a fork-

join block within a begin–end block or vice versa.

BEHAVIORAL MODELING

FORCE–RELEASE CONSTRUCT

 When debugging a design with a number of instantiations, one may

be stuck with an unexpected behavior in a localized area. Tracing

the paths of individual signals and debugging the design may prove

to be too tedious or difficult.

 In such cases suspect blocks may be isolated, tested, and debugged

and status quo ante established. The force–release construct is for

such a localized isolation for a limited period.

 force a = 1'b0;

 forces the variable a to take the value 0.

 force b = c&d;

 forces the variable b to the value obtained by evaluating the expression

c&d.

BEHAVIORAL MODELING

EVENT

 The keyword event allows an abstract event to be declared. The

event is not a data type with any specific values; it is not a variable

(reg) or a net. It signifies a change that can be used as a trigger to

communicate between modules or to synchronize events in different

modules.

 The operator “” signifies the triggering. Subsequently, another

activity can be started in the module by the event change.

 . . .

 event change;

 . . .

 always

 . . .

 . . . change;

 . . .

 .always@change

. . .

Prepared BY

D. Khalandar Basha

Assoc Prof., IARE

DIGITAL DESIGN

USING VERILOG

SWITCH LEVEL MODELING

 Basic Transistor Switches, CMOS Switch, Bi –

directional Gates, Time Delays with Switch

Primitives, Instantiations with Strengths and Delays,

Strength Contention with Trireg Nets

SYSTEM TASKS, FUNCTIONS, AND COMPILER

DIRECTIVES:

 Parameters, Path Delays, Module Parameters,

System Tasks and Functions, File – Based Tasks and

Functions, Compiler Directives, Hierarchical

Access, User-defined Primitives (UDP).

UNIT - IV

The MOS transistor is the basic element around which a

VLSI is built. Designers familiar with logic gates and their

configurations at the circuit level may choose to do their

designs using MOS transistors.

Verilog has the provision to do the design description at the

switch level using such MOS transistors, which is the theme

of the present chapter.

Switch level modeling forms the basic level of modeling

digital circuits. The switches are available as primitives in

Verilog

INTRODUCTION

Different switch primitives are available in Verilog

nmos switch primitives

nmos (out, in, control);

pmos switch primitives

pmos (out, in, control);

BASIC SWITCH PRIMITIVES

 nmos and pmos represent switches of low impedance in the

on-state. rnmos and rpmos represent the resistive

counterparts of these respectively.

rnmos (output1, input1, control1);

rpmos (output2, input2, control2);

 It inserts a definite resistance between the input

and the output signals but retains the signal value

 The rpmos and rnmos switches function as

unidirectional switches; the signal flow is from the

input to the output side.

Resistive Switches

 Output-side strength levels for different input-side

strength values of rnmos, rpmos, and rcmos switches

strength levels

 A MOS transistor functions as a resistive element when in
the active state. Realization of resistance in this form takes
less silicon area in the IC as compared to a resistance
realized directly. pullup and pulldown represent such
resistive elements.

 pullup (x);

Here net x is pulled up to the supply1 through a resistance.

 pulldown(y);

pulls y down to the supply0 level through a resistance.

The pullup and pulldown primitives can be used as loads for
switches or to connect the unused input ports to VCC or GND,
respectively.

pullup and pulldown

 A CMOS switch is formed by connecting a PMOS and an

NMOS switch in parallel – the input leads are connected

together on the one side and the output leads are connected

together on the other side.

 The CMOS switch is instantiated as shown below.

cmos csw (out, in, N_control, P_control);

CMOS SWITCH

 Verilog has a set of primitives for bi-directional switches as well.

They connect the nets on either side when ON and isolate them

when OFF. The signal flow can be in either direction

 tran and rtran

The tran gate is a bi-directional gate of two

ports. When instantiated, it connects the two ports

directly.

tran (s1, s2);

connects the signal lines s1 and s2.

Either line can be input, inout or output.

rtran is the resistive counterpart of tran.

BI-DIRECTIONAL GATES

tranif1 and rtranif1

 tranif1 is a bi-directional switch turned ON/OFF through a

control line(c). It is in the ON-state when the control signal

is at 1 (high) state

tranif1 (s1, s2, c);

tranif0 and rtranif0

 tranif0 and rtranif0 are again bi-directional

switches. The switch is OFF if the control line is in

the 1 state, and it is ON when the control line is in

the 0 state.

tranif0 (s1, s2, c);

Cont…

 nmos g1 (out, in, ctrl);

has no delay associated with it. The instantiation

 nmos (delay1) g2 (out, in, ctrl);

has delay1 as the delay for the output to rise, fall, and turn OFF.

 nmos (delay_r, delay_f) g3 (out, in, ctrl);

has delay_r as the rise-time for the output. delay_f is the fall-time for the

output. The turn-off time is zero.

 nmos (delay_r, delay_f, delay_o) g4 (out, in, ctrl);

has delay_r as the rise-time for the output. delay_f is the fall-time for the

output delay_o is the time to turn OFF when the control signal ctrl goes

from 0 to 1.

TIME DELAYS WITH SWITCH PRIMITIVES

 Delays can be assigned to the other uni-directional gates in a

similar manner.

 Bi-directional switches do not delay transmission – their

rise- and fall-times are zero. They can have only turn-on and

turn-off delays associated with them.

 tran has no delay associated with it.

 tranif1 (delay_r, delay_f) g5 (out, in, ctrl);

When control changes from 0 to 1, the switch turns on with a delay of delay_r.

When control changes from 1 to 0, the switch turns off with a delay of delay_f.

 transif1 (delay0) g2 (out, in, ctrl);

represents an instantiation with delay0 as the delay for the switch to turn on when

control changes from 0 to 1, with the same delay for it to turn off when control

changes from 1 to 0

Cont…

nmos (strong1, strong0) (delay_r, delay_f, delay_o) gg (s1,

s2, ctrl) ;

rnmos, pmos, and rpmos switches too can be instantiated in the general form in

the same manner. The general instantiation for the bi-directional gates too can be

done similarly.

STRENGTH CONTENTION WITH TRIREG NETS

 nets declared as trireg can have capacitive storage. Such

storage can be assigned one of three strengths – large,

medium, or small.

 Driving such a net from different sources can lead to

contention

INSTANTIATIONS WITH STRENGTHS AND DELAYS

 Constants signifying timing values, ranges of variables,

wires, etc., can be specified in terms of assigned names.

Such assigned names are called parameters.

 Two types of parameters are of use in modules

 Parameters related to timings, time delays, rise and fall times, etc.,

are technology-specific and used during simulation. Parameter values

can be assigned or overridden with the keyword “specparam”

preceding the assignments.

 Parameters related to design, bus width, and register size are of a

different category. They are related to the size or dimension of a

specific design; they are technology-independent. Assignment or

overriding is with assignments following the keyword “defparam”.

PARAMETERS

 Verilog has the provision to specify and check delays associated

with total paths – from any input to any output of a module. Such

paths and delays are at the chip or system level. They are referred

to as “module path delays.”

 Specify Blocks

Module paths are specified and values assigned to their delays

through specify blocks. They are used to specify rise time, fall

time, path delays pulse widths.

specify

specparam rise_time = 5, fall_time = 6;

(a =>b) = (rise_time, fall_time);

(c => d) = (6, 7);

endspecify

PATH DELAYS

 Module paths can be specified in different ways inside a

specify block. The simplest has the form A*>B

 Here “A” is the source and “B” the destination.

specify

(a,b*>s)=1;

(a,b*>ca)=2;

endspecify

Module Paths

 The pin to pin path of a signal may change depending on the

value of another signal; in turn the number of circuit

elements in the alternate path may differ.

specify

if(f==2'b00)(a=>d)=1;

if(f >2'b00)(a=>d)=2;

(b,cci*>co)=1;

endspecify

Conditional Pin-to-Pin Delays

 Module parameters are associated with size of bus, register,

memory, ALU, and so on. They can be specified within the

concerned module but their value can be altered during

instantiation. The alterations can be brought about through

assignments made with defparam. Such defparam

assignments can appear anywhere in a module.

MODULE PARAMETERS

 A “$” sign preceding a word or a word group signifies a system task or a
system function

 Output Tasks

$monitor and $display

 Display Tasks

The $display task, whenever encountered, displays the arguments in the
desired format; and the display advances to a new line. $write task carries
out the desired display but does not advance to the new line

$strobe Task

 When a variable or a set of variables is sampled and its value displayed,
the $strobe task can be used; it senses the value of the specified

variables and displays them.

SYSTEM TASKS AND FUNCTIONS

$monitor Task

 $monitor task is activated and displays the arguments specified
whenever any of the arguments changes

 $stop and $finish Tasks

The $stop task suspends simulation.

$finish stops simulation, closes the simulation environment, and

reverts to the operating system.

$random Function

 One can start with a seed number (optional) and generate a
random number repeatedly. Such random number sequences can
be fruitfully used for testing.

 To carry out any file-based task, the file has to be opened, reading,

writing, etc., completed and the file closed. The keywords for all file-

based tasks start with the letter f to distinguish them from the other tasks

 All the system tasks to output information can be used to output to a file.

$display, $strobe, $monitor, etc., are of this category. The respective

keywords to output to the file are $fdisplay, $fstrobe, $fmonitor.

 The first field of the task statement is an argument – the file descriptor.

The subsequent fields are identical to the corresponding nonfile tasks.

FILE-BASED TASKS AND FUNCTIONS

 They allow for macros, inclusion of files, and timescale-

related parameters for simulation. All compiler directives

are preceded by the ‘`’.

 `define Directive

The `define directive is used to define and associate the desired

text with the macro name

`define add 2'b00

Time-Related Tasks

 The `timescale compiler directive allows the time scale to be specified

for the design. The `timescale directive has two components

 `timescale 1 ms/100 μs

COMPILER DIRECTIVES

 A Verilog design will normally have a module or

two at the apex level. A number of modules and

UDPs will be instantiated within it.
 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad);

HIERARCHICAL ACCESS

 The primitives available in Verilog are all of the gate or

switch types. Verilog has the provision for the user to define

primitives – called “user defined primitive (UDP)” and use

them.

 A UDP can be defined anywhere in a source text and

instantiated in any of the modules. Their definition is in the

form of a table in a specific format.

 UDPs are basically of two types – combinational and

sequential. A combinational UDP is used to define a

combinational scalar function and a sequential UDP for a

sequential function

USER-DEFINED PRIMITIVES (UDP)

 A combinational UDP accepts a set of scalar inputs and gives a scalar
output. An inout declaration is not supported by a UDP.

 The UDP definition is on par with that of a module; that is, it is defined
independently like a module and can be used in any other mo

primitive udp_and (out, in1, in2);

output out;
input in1, in2;

table
// In1 In2 Out

0 0: 0;

0 1: 0;

1 0: 0;

1 1: 1;

endtable
endprimitivedule

Combinational UDPs

 Any sequential circuit has a set of possible states. When it is in one of

the specified states, the next state to be taken is described as a function

of the input logic variables and the present state A sequential UDP can

accommodate all these.

primitive dff_pos(q,din,clk,clr);

output q;

input din,clk,clr;

reg q;

table

 // din clk clr qp qn Whatever be the present

0 (01) 0: ?: 0; // state of the output, at the

1 (01) 0: ?: 1; // positive edge of clk input

? (10) 0: ?: -; // value is latched and

endtable

endprimitive

Sequential UDPs

Digital Design using

Verilog

126

Sequential Circuit

Description

 This chapter concentrates on:

 Using Verilog constructs for description of sequential circuits

 Discussion of using gate level and assignments and procedural statements for

describing memory elements.

127

 In digital circuits, storage of data is done either by feedback, or by gate capacitances
that are refreshed frequently.

Sequential Models

128

Sequential Models

Sequential

Models

Feedback

Model

Capacitive

Model

Implicit

Model

129

Feedback Model

Sequential

Models

Feedback

Model

Capacitive

Model

Implicit

Model

Feedback

Model

130

Feedback Model
 Basic Feedback

S

R

Q

Feedback Line

A two-state (one-bit)

Memory element

131

Capacitive Model

Sequential

Models

Feedback

Model

Capacitive

Model

Implicit

Model

Capacitive

Model

132

Capacitive Model

 Capacitive Storage

D

C

Q

When c becomes 1 the value of D is

saved in the input gate of the inverter

and when c becomes 0 this value will

be saved until the next time that c

becomes 1 again.

The complement

of the stored data

133

Implicit Model

Sequential

Models

Feedback

Model

Capacitive

Model

Implicit

Model

Implicit

Model

134

Implicit Model

 An SR-Latch Notation

1S

1R

Q

C1

Feedback and capacitive models

are technology dependent and

have the problem of being too

detailed and too slow to simulate.

Verilog offers language constructs that

are technology independent and allow

much more efficient simulation of

circuits with a large number of storage

elements.

135

Basic Memory

Components

Gate Level Primitives
User Defined

Sequential Primitives

Memory Elements

Using Assignments

Behavioral

Memory Elements

Flip-flop Timing
Memory Vectors

and Arrays

Basic Memory Components

136

Basic Memory

Components

Gate Level Primitives
User Defined

Sequential Primitives

Memory Elements

Using Assignments

Behavioral

Memory Elements

Flip-flop Timing
Memory Vectors

and Arrays

Gate Level Primitives

Gate Level Primitives

137

Gate Level Primitives

 Cross-Coupled NOR Latch

s

r
q

g1

g2

q_b

latch
1-bit Storage

Element

138

Gate Level Primitives

`timescale 1ns/100ps

module latch (input s, r, output q, q_b);
nor #(4)

g1 (q_b, s, q),

g2 (q, r, q_b);

endmodule

 SR-Latch Verilog Code

q and q_b outputs are

initially X and remain at

this ambiguous state for

as long as s and r

remain 0.

Simultaneous assertion of

both inputs results in loss

of memory.

Base of most static

memory components

139

Gate Level Primitives

 All NAND Clocked SR-Latch

_s

_r
q_b

g1

g2

q

latch_p

s

c

r
g4

g3

Clock Input

Control Gates

140

Gate Level Primitives
`timescale 1ns/100ps

module latch_p #(parameter tplh=3, tphl=5)

(input s, r, c, output q, q_b);

wire _s, _r;

nand #(tplh,tphl)

g1 (_s, s, c),

g2 (_r, r, c),

g3 (q, _s, q_b),

g4 (q_b, _r, q);

endmodule

 All NAND Clocked Latch

Delay values can be

controlled when the latch

is instantiated.

Set and Reset inputs to the

cross_coupled core of this

memory element

141

Gate Level Primitives

 SR Latch Simulation This delay is due to a fall of 3ns

and a rise of 5 ns in the NAND

gates of the circuit.

142

Gate Level Primitives

 Master-Slave D Flip-Flop

latch

d

c
~c

qm

qm_b~d

master_slave

q

q_b

latch

Master Slave

143

`timescale 1ns/100ps

module master_slave (input d, c, output q, q_b);

wire qm, qm_b;

defparam master.tplh=4, master.tphl=4,

slave.tplh=4, slave.tphl=4;

latch_p

master (d, ~d, c, qm, qm_b),

slave (qm, qm_b, ~c, q, q_b);

endmodule

Gate Level Primitives

 Master-Slave D Flip-Flop Verilog Code

Hierarchical Naming

144

Basic Memory

Components

Gate Level Primitives
User Defined

Sequential Primitives

Memory Elements

Using Assignments

Behavioral

Memory Elements

Flip-flop Timing
Memory Vectors

and Arrays

User Defined

Sequential Primitives

User Defined

Sequential Primitives

145

User Defined

Sequential Primitives

 Verilog provides language constructs for defining sequential UDPs:

 Faster Simulation of memory elements

 Correspondence to specific component libraries

146

User Defined Sequential

Primitives
primitive latch(q, s, r, c);

output q;

reg q;

input s, r, c;

initial q=1'b0;

table

// s r c q q+ ;

// ------:---:----;

? ? 0 : ? : - ;

0 0 1 : ? : - ;

0 1 1 : ? : 0 ;

1 0 1 : ? : 1 ;

endtable

endprimitive

 Sequential UDP Defining a Latch

Table defining the latch

output

147

primitive latch(q, s, r, c);

.............

.............

table

// s r c q q+ ;

// ------:---:----;

? ? 0 : ? : - ;

0 0 1 : ? : - ;

0 1 1 : ? : 0 ;

1 0 1 : ? : 1 ;

endtable

endprimitive

User Defined Sequential

Primitives

 Sequential UDP Defining a Latch

Column for specifying

present state

Signifies “any value”

Signifies “no change”

148

Basic Memory

Components

Gate Level Primitives
User Defined

Sequential Primitives

Memory Elements

Using Assignments

Behavioral

Memory Elements

Flip-flop Timing
Memory Vectors

and Arrays

Memory Elements Using

Assignments

Memory Elements

Using Assignments

149

Memory Elements Using

Assignments

 Master-Slave Using Two Feedback Blocks

d

c

qm

master_slave

q

~c

When a block’s

clock input is 0,

it puts its output back

to itself (feedback),

and when its clock is

1 it puts its data input

into its output.

150

`timescale 1ns/100ps

module master_slave_p #(parameter delay=3)

(input d, c, output q);

wire qm;

assign #(delay) qm = c ? d : qm;

assign #(delay) q = ~c ? qm : q;

endmodule

Memory Elements Using

Assignments

 Assign Statements Implementing Logic Feedback

The feedback of qm

output back to its input

Complementary Clocks:

Implements master-slave

flip-flop

Each assign statement

implements a latch

151

Basic Memory

Components

Gate Level Primitives
User Defined

Sequential Primitives

Memory Elements

Using Assignments

Behavioral

Memory Elements

Flip-flop Timing
Memory Vectors

and Arrays

Behavioral Memory Elements

Behavioral

Memory Elements

152

Behavioral Memory

Elements
 Behavioral Coding:

 A more abstract and easier way of writing Verilog code for a latch or

flip-flop.

 The storage of data and its sensitivity to its clock and other control inputs will be

implied in the way model is written.

153

Behavioral

Memory

Elements

Latch

Modeling

Flip-flop

Modeling

Flip-flop

with Set-Reset

Control

Other

Storage Element

Modeling Styles

Behavioral Memory Elements

154

Behavioral

Memory

Elements

Latch

Modeling

Flip-flop

Modeling

Flip-flop

with Set-Reset

Control

Other

Storage Element

Modeling Styles

Latch

Modeling

Latch Modeling

155

Latch Modeling
`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b);

always @(c or d)

if (c)

begin

#4 q = d;

#3 q_b = ~d;

end

endmodule

 A D-Type Latch Verilog Code

While c is 1

changes on d directly affect q

and q_b outputs.

A Storage unit

Level Sensitive to c :

A Latch

After 4ns d input is read and

assigned to q output.

After another wait of 3ns, d is

read again and ~d is assigned

to q_b output.

If d changes between the time

it is read for q and q_b

erroneous results happen.

156

Latch Modeling
`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b);

always @(c or d)

if (c)

begin

q <= #4 d;

q_b <= #3 ~d;

end

endmodule

 Latch Model Using Nonblocking Assignments

Corrects the timing

problem of blocking

assignments.

Non-blocking assignments

With intra-statement delay

controls

157

Latch Modeling

 Testing Latch with Nonblocking Assignments

Storing a 1

at time 30

Storing a 0

at time 50

158

Behavioral

Memory

Elements

Latch

Modeling

Flip-flop

Modeling

Flip-flop

with Set-Reset

Control

Other

Storage Element

Modeling Styles

Flip-flop

Modeling

Flip-flop Modeling

159

Flip-flop Modeling

`timescale 1ns/100ps

module d_ff (input d, clk, output reg q, q_b);

always @(posedge clk)

begin

q <= #4 d;

q_b <= #3 ~d;

end

endmodule

 Positive Edge Trigger Flip-Flop

A basic edge trigger

flip-flop model at the

behavioral level

Sensitive to the

positive edge of the clock

Assignments to q and q_b

are reached immediately after

the flow in always block begins.

With each clock edge,

the entire procedural block is

executed once from begin to

end.

The actual assignments of

values are delayed.

160

Flip-flop Modeling

 Simulation of a Positive Edge Flip-FlopAt 60ns, on the positive edge of

clock, the value of d is read and

scheduled into q and q_b for times

64ns and 63ns respectively.

During the time clk is 1 (from 60ns to

80ns exclusive of 60 and inclusive of

80), changes on d do not affect the

state of flip-flop

161

Behavioral

Memory

Elements

Latch

Modeling

Flip-flop

Modeling

Flip-flop

with Set-Reset

Control

Other

Storage Element

Modeling Styles

Flip-flop

with Set-Reset

Control

Flip-flop with Set-Reset Control

162

Flip-flop With Set-Reset

Control
`timescale 1ns/100ps

module d_ff_sr_Synch (input d, s, r, clk, output reg q, q_b);
always @(posedge clk) begin

if(s) begin
q <= #4 1'b1;
q_b <= #3 1'b0;

end else if(r) begin
q <= #4 1'b0;
q_b <= #3 1'b1;

end else begin
q <= #4 d;
q_b <= #3 ~d;

end
end

endmodule

 D Type Flip-Flop with Synchronous Control

163

module d_ff_sr_Synch (input d, s, r, clk,

output reg q, q_b);

always @(posedge clk) begin

if(s) begin

.................

end else if(r) begin

.................

end else begin

.................

end

end

endmodule

Flip-flop With Set-Reset

Control

 D Type Flip-Flop with Synchronous Control (Continued)

The flow into always block

is only initiated by the posedge of

clk

These if-statements with

s and r conditions are only

examined after the positive

edge of the clock

Synchronous s and r control inputs

164

Flip-flop With Set-Reset

Control
..................

if(s) begin

q <= #4 1'b1;

q_b <= #3 1'b0;

end else if(r) begin

q <= #4 1'b0;

q_b <= #3 1'b1;

end else begin

q <= #4 d;

q_b <= #3 ~d;

end

..................

 D Type Flip-Flop with Synchronous Control (Continued)

These if-statements with

s and r conditions are only

examined after the positive

edge of the clock

165

Flip-flop With Set-Reset

Control
`timescale 1ns/100ps

module d_ff_sr_Asynch (input d, s, r, clk, output reg q, q_b);
always @(posedge clk, posedge s, posedge r)
begin

if(s) begin
q <= #4 1'b1;
q_b <= #3 1'b0;

end else if(r) begin
q <= #4 1'b0;
q_b <= #3 1'b1;

end else begin
q <= #4 d;
q_b <= #3 ~d;

end
end

endmodule

 D-type Flip-Flop with Asynchronous Control

166

Asynchronous

set and reset inputs

module d_ff_sr_Asynch (input d, s, r, clk,

output reg q, q_b);

always @(posedge clk, posedge s, posedge r) begin

if(s) begin

....................

end else if(r) begin

....................

end else begin

....................

end

end

endmodule

The sensitivity list of the always

block

Flip-flop With Set-Reset

Control

 D-type Flip-Flop with Asynchronous Control (Continued)

167

Flip-flop With Set-Reset

Control
....................

if(s) begin

q <= #4 1'b1;

q_b <= #3 1'b0;

end else if(r) begin

q <= #4 1'b0;

q_b <= #3 1'b1;

end else begin

q <= #4 d;

q_b <= #3 ~d;

end

....................

 D-type Flip-Flop with Asynchronous Control (Continued)

This flip-flop is sensitive to the

edge of clock, but to the levels

of s and r .

168

Flip-flop With Set-Reset

Control

 Comparing Synchronous and Asynchronous Flip-Flop Controls

Before 120 ns, changes to q is

triggered by the clock and

q_Synch and q_Asynch are the

same.

s and r become active and cause

changes to the flip-flop output.

q_Asynch changes occur

independent of the clock when s

or r becomes activeq_Synch will waits for the edge of

the clock to set or reset

169

Behavioral

Memory

Elements

Latch

Modeling

Flip-flop

Modeling

Flip-flop

with Set-Reset

Control

Other Storage

Element Modeling

Style

Other

Storage Element

Modeling Styles

Other Storage Element Modeling

Styles

170

Other Storage Element

Modeling Styles
`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b);

always begin

wait (c);

#4 q <= d;

#3 q_b <= ~d;

end

endmodule

 Latch Using wait, a Potentially Dangerous Model

A latch using a wait

statement instead of an

event control statement

Blocks the flow of procedural

block when c is 0.

If c becomes 1 and remains at

this value, the body of the always

statement repeats itself every 7

ns.

If the delay control statements are

omitted, then the looping of the

always block happens in zero time,

causing an infinite loop in simulation.

171

Basic Memory

Components

Gate Level Primitives
User Defined

Sequential Primitives

Memory Elements

Using Assignments

Behavioral

Memory Elements

Flip-flop Timing
Memory Vectors

and Arrays

Flip-flop Timing

Flip-flop Timing

172

Flip-flop Timing

Flip-flop

Timing

Setup

Time

Hold

Time

Width

And

Period

173

Setup Time

Flip-flop

Timing

Setup

Time

Hold

Time

Width

And

Period

Setup

Time

174

Setup Time
 Setup Time

 The Minimum necessary time that a data input requires to setup before it is

clocked into a flip-flop.

 Verilog construct for checking the setup time: $setup task

 The $setup task:

 Takes flip-flop data input, active clock edge and the setup time as its parameters.

 Is used within a specify block.

175

`timescale 1ns/100ps

module d_ff (input d, clk, s, r, output reg q, q_b);

specify

$setup (d, posedge clk, 5);

endspecify

always @(posedge clk or posedge s or posedge r)

begin

..............

end

endmodule

Setup Time

 Flip-Flop with Setup Time

Positive edge trigger flip-flop and

Asynchronous set and reset

controls

$setup task within a specify block

Continuously checks timing

distance between changes on d

and the positive edge of clk.

If this distance is less than 5ns,

a violation message will be issued.

176

Setup Time
...........................

always @(posedge clk or posedge s or posedge r)

begin

if(s) begin

q <= #4 1'b1;

q_b <= #3 1'b0;

end else if(r) begin

q <= #4 1'b0;

q_b <= #3 1'b1;

end else begin

q <= #4 d;

q_b <= #3 ~d;

end

end

endmodule

 Flip-Flop with Setup Time (Continued)

177

Setup Time

 Setup Time Violation

The d input changes at 57ns and

the data is clocked into the flip-

flop at 60ns,

only 3ns after d.

The simulation run reports the

violation.

178

Hold Time

Flip-flop

Timing

Setup

Time

Hold

Time

Width

And

Period

Hold

Time

179

Hold Time
 Hold Time

 The Minimum necessary time a flip-flop data input must stay stable (holds its

value) after it is clocked.

 Verilog construct for checking the setup time: $hold task

 The $setup task:

 Takes flip-flop data input, active clock edge and the required hold time as its

parameters.

 Is used within a specify block.

180

`timescale 1ns/100ps

module d_ff (input d, clk, s, r, output reg q, q_b);

specify

$hold (posedge clk, d, 3);

endspecify

always @(posedge clk or posedge s or posedge r)

begin

..

end

endmodule

Flip-flop with hold time of 3ns.

Hold Time

 Flip-Flop with Hold Time

181

Hold Time

 Hold Time Violation

The clock samples the d value of 1

at 20ns. At 22ns, d changes.

This violates the minimum required

hold time of 3ns.

182

Hold Time

 The Verilog $setuphold task combines setup and hold timing checks.

 Example:

 $setuphold (posedge clk, d, 5, 3)

183

Width And Period

Flip-flop

Timing

Setup

Time

Hold

Time

Width

And

Period

Width

And

Period

184

Width And Period

 Verilog $width and $period check for minimum pulse width and period.

 Pulse Width: Checks the time from a specified edge of a reference signal to its

opposite edge.

 Period: Checks the time from a specified edge of a reference signal to the same edge.

185

Width And Period
specify

$setuphold (posedge clk, d, 5, 3);

$width (posedge r, 4);

$width (posedge s, 4);

$period (negedge clk, 43);

endspecify

always @(posedge clk or posedge s or posedge r)

if(s) q <= #4 1'b1;

else if(r) q <= #4 1'b0;

else q <= #4 d;

................................

 Setup, Hold, Width, and Period Checks (Continued)

186

Controllers

Component

Description

Data

Components
ControllersControllers

187

Controllers

 Controller Outline

Decisions

Based on : Inputs ,

Outputs , State

Issue Control Signal

Set Next State

Go to Next State

188

Controllers

 Controller:

 Is wired into data part to control its flow of data.

 The inputs to controller determine its next states and outputs.

 Monitors its inputs and makes decisions as to when and what output signals to

assert.

 Keeps the history of circuit data by switching to appropriate states.

 Two examples to illustrate the features of Verilog for describing state machines:

 Synchronizer

 Sequence Detector

189

Controllers

Controllers

Synchronizer
Sequence

Detector

190

Synchronizer

Controllers

Synthesizer
Sequence

Detector
Synchronizer

191

Synchronizer

 Synchronizing adata

Clk

adata

synched

192

Synchronizer

`timescale 1ns/100ps

module Synchronizer (input clk, adata,
output reg synched);

always @(posedge clk)
if (adata == 0) synched <= 0;
else synched <= 1;

endmodule

 A Simple Synchronization Circuit

If a 1 is Detected on

adata on the rising

edge of clock, synched

becomes 1 and

remains 1

for at least one

clock period

193

Sequence Detector

Controllers

Synthesizer
Sequence

Detector

Sequence

Detector

194

Sequence Detector

 State Machine Description

Searches on

it’s a input

for the

110 Sequence

When the sequence

is detected, the w

Output becomes 1 and

stays 1 for a complete

clock cycle

If 110 is detected

on a, then w gets

1, else w gets 0.

clk

a w

195

Sequence Detector

 Sequence Detector State Machine

Initia

l

State

01

1

1

0

0

1

0
reset

S0
0 0 10

S1 S2 S3

States are named:

s0 , s1 , s2 , s3

The State in which the

110 sequence is

detected.

It Takes at least

3 clock periods to get

to the s3 state

A Moore Machine

Sequence Detector

196

Sequence Detector

module Detector110 (input a, clk, reset, output w);
parameter [1:0] s0=2'b00, s1=2'b01, s2=2'b10, s3=2'b11;
reg [1:0] current;

always @(posedge clk) begin
if (reset) current = s0;
else

case (current)
s0: if (a) current <= s1; else current <= s0;
s1: if (a) current <= s2; else current <= s0;
s2: if (a) current <= s2; else current <= s3;
s3: if (a) current <= s1; else current <= s0;
endcase

end

assign w = (current == s3) ? 1 : 0;

endmodule

 Verilog Code for 110 Detector

197

State Machine

Coding

Moore Machines Mealy Machines

Huffman

Coding Style

A More Modular

Style

A ROM Based

Controller

State Machine Coding

198

State Machine

Coding

Moore Machines Mealy Machines

Huffman

Coding Style

A More Modular

Style

A ROM Based

Controller

Moore Machines

Moore Machines

199

Moore Machines

 Moore Machine :

 A state machine in which all outputs are carefully synchronized with the circuit

clock.

 In the state diagram form, each state of the machine specifies its outputs

independent of circuit inputs.

 In Verilog code of a state machine, only circuit state variables participate in the

output expression of the circuit.

200

State Machine

Coding

Moore Machines Mealy Machines

Huffman

Coding Style

A More Modular

Style

A ROM Based

Controller

Mealy Machines

Mealy Machines

201

Mealy Machines

 Mealy Machine :

 Is different from a Moore machine in that its output depends on its current state

and inputs while in that state.

 State transitions and clocking and resetting the machine are no different from

those of a Moore machine. The same coding techniques are used.

