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UNIT – I
CMOS LOGIC,  

BIPOLAR LOGIC

AND INTERFACING
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Logic Families
• There are many, many ways to design an electronic logic circuit.

– The first electrically controlled logic circuits, developed at Bell

Laboratories in 1930s, were based on relays.

– In the mid-1940s, the first electronic digital computer, the Eniac, used logic

circuits based on vacuum tubes. The Eniac had about 18,000 tubes and a

similar number of logic gates, not a lot by today’s standards of

microprocessor chips with tens of millions of transistors.

– The inventions of the semiconductor diode and the bipolar junction

transistor allowed the development of smaller, faster, and more capable

computers in the late 1950s.

– In the 1960s, the invention of the integrated circuit (IC) allowed multiple

diodes, transistors, and other components to be fabricated on a single chip,

and computers got still better.

• A logic family: is a collection of different integrated-circuit chips that have 

similar input, output, and internal circuit characteristics, but that perform 

different logic functions. Chips from the same family can be interconnected to 

perform any desired logic function.
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Logic Signals and Gates
• Digital logic hides the pitfalls of the analog world by

mapping the infinite set of real values for a physical
quantity into two subsets corresponding to just two
possible numbers or logic values—0 and 1.

• A logic value, 0 or 1, is often called a binary digit, or bit.
If an application requires more than two discrete values,
additional bits may be used, with a set of n bits
representing 2n different values. With most phenomena,
there is an undefined region between the 0 and 1 states
(e.g., voltage = 1.8 V, dim light, capacitor slightly
charged, etc.). This undefined region is needed so that the
0 and 1 states can be unambiguously defined and reliably
detected. Noise can more easily corrupt results if the
boundaries separating the 0 and 1 states are too close.
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CMOS Logic

• The functional behavior of a CMOS logic circuit is fairly easy 

to understand, even if your knowledge of analog electronics is 

not particularly deep. 

• The basic (and typically only) building blocks in CMOS logic 

circuits are MOS transistors, described shortly. Before 

introducing MOS transistors and CMOS logic circuits, we 

must talk about logic levels.
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CMOS Logic Levels
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Basic CMOS Inverter Circuit
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Basic CMOS Inverter Circuit
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CMOS NAND Gate
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CMOS NOR Gate

Fan-In
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CMOS AOI logic
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CMOS OAI logic
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CMOS AND gate
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CMOS OR  gate
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CMOS XOR gate
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CMOS XNOR gate
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Electrical Behavior of CMOS Circuits
• Logic voltage levels 
• DC noise margins
• Fanout: - It affects the speed at which the output changes from one 

state to another.
• Speed: - It depends on both the internal structure of the device and 

the characteristics of the other devices that it drives.
• Power consumption: - The power consumed by a CMOS device 

depends on how often its output changes between LOW and HIGH.
• Noise :- Noise can be generated by a number of sources: 
• Electrostatic discharge: - CMOS devices can be destroyed just by 

touching it.
• Open-drain outputs: - In the HIGH state, such outputs are 

effectively a “no-connection,” which is useful in some applications. 
• Three-state outputs: - Some CMOS devices have an extra “output 

enable” control input that can be used to disable both the p-
channel pull-up transistors and the n-channel pull-down transistors. 
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CMOS Steady-State Electrical Behavior

• Logic Levels and Noise Margins:- The power-supply 
voltage VCC and ground are often called the power 
supply rails. 

• Circuit Behavior with Resistive Loads: - CMOS gate 
inputs have very high impedance and consume very 
little current from the circuits that drive them. 

• Circuit Behavior with Non-ideal Inputs:- If the input 
voltage is not close to the power-supply rail, then the 
“on” transistor may not be fully “on” and its 
resistance may increase and the “off” transistor may 
not be fully “off’ and its resistance. 

18



CMOS Steady-State Electrical Behavior

• Fanout:- It affects the speed at which the output
changes from one state to another

• Effects of Loading:- Loading an output beyond its
rated fanout has several effects:

• Unused Inputs:- Connects to power rails.

• Current Spikes and Decoupling Capacitors:-
When a CMOS output switches between LOW and
HIGH, current flows from VCC to ground through
the partially-on p- and n-channel transistors.
These currents, often called current spikes
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CMOS Dynamic Electrical Behavior

• Speed depends on two characteristics, transition 
time and propagation delay

• Transition Time:- The amount of time that the 
output of a logic circuit takes to change from one 
state to another is called the transition time.

• Propagation Delay:- The propagation delay tp of 
a signal path is the amount of time that it takes 
for a change in the input signal to produce a 
change in the output signal.
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Electrical Behavior of CMOS Circuits
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CMOS Steady-State Electrical Behavior
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CMOS Dynamic Electrical Behavior
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TTL NOR gate
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CMOS/TTL interfacing

When 5V supply is given to TTL and CMOS ICs, logic levels of 

TTL and CMOS are different. 

One TTL IC can drive any number of CMOS ICs. 

However, TTL output in 'high state' yields 2.4 Volt which is 

lower than the minimum voltage required by CMOS IC 

(which is 3.5V)
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Emitter Coupled Logic
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Emitter Coupled Logic
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Emitter Coupled Logic
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UNIT – II

THE VHDL HDL 

AND ITS ELEMENTS
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Design Flow

• There are several steps in a VHDL-based design process, often 
called the design flow

32



VHDL Program Structure

VHDL program file structure
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Syntax of a VHDL entity declaration

• entity entity-name is

• port (signal-names : mode signal-type;

• signal-names : mode signal-type;

• ...

• signal-names : mode signal-type);

• end entity-name;
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Architecture body

• The architecture body looks as follows,
• architecture architecture_name of NAME_OF_ENTITY is
• -- Declarations
• -- components declarations
• -- signal declarations
• -- constant declarations
• -- function declarations
• -- procedure declarations
• -- type declarations
• begin
• -- Statements
• end architecture_name;
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Types and Constants

• VHDL predefined types

bit character severity_level

bit_vector integer string

Boolean real time
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std_logic type
• Definition of VHDL std_logic type
•

• type STD_ULOGIC is ( 'U', -- Uninitialized
• 'X', -- Forcing Unknown
• '0', -- Forcing 0
• '1', -- Forcing 1
• 'Z', -- High Impedance
• 'W', -- Weak Unknown
• 'L', -- Weak 0
• 'H', -- Weak 1
• '-' -- Don't care
• );
• subtype STD_LOGIC is resolved STD_ULOGIC;
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TYPE and CONSTANTS

• type type-name is array (start to end) of element-type;
• type type-name is array (start downto end) of element-

type;
• type type-name is array (range-type) of element-type;
• type type-name is array (range-type range start to end) of 

element-type;
• type type-name is array (range-type range start downto

end) of element-type;
•

• constant BUS_SIZE: integer := 32; -- width of component
• constant MSB: integer := BUS_SIZE-1; -- bit number of MSB
• constant Z: character := 'Z'; -- synonym for Hi-Z value
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Structural Design Elements

• In VHDL, each concurrent statement executes simultaneously 
with the other concurrent statements in the Same 
architecture body.

• The most basic of VHDL’s concurrent statements is the 
component statement.

Syntax of a VHDL component statement

• label: component-name port map(signal1, signal2, ..., 
signaln);

• label: component-name port map(port1=>signal1, 
port2=>signal2, ..., portn=>signaln);
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Syntax of a VHDL component declaration

• component component-name

• port (signal-names : mode signal-type;

• signal-names : mode signal-type;

• ...

• signal-names : mode signal-type);

• end component;
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Example Structural VHDL program
• library IEEE;     use IEEE.std_logic_1164.all;

• entity prime is

• port ( N: in STD_LOGIC_VECTOR (3 downto 0);

• F: out STD_LOGIC );

• end prime;

• architecture prime1_arch of prime is

• signal N3_L, N2_L, N1_L: STD_LOGIC;

• signal N3L_N0, N3L_N2L_N1, N2L_N1_N0, N2_N1L_N0: STD_LOGIC;

• component INV port (I: in STD_LOGIC; O: out STD_LOGIC); end component;

• component AND2 port (I0,I1: in STD_LOGIC; O: out STD_LOGIC); end component;

• component AND3 port (I0,I1,I2: in STD_LOGIC; O: out STD_LOGIC); end component;

• component OR4 port (I0,I1,I2,I3: in STD_LOGIC; O: out STD_LOGIC); end component;

• begin

• U1: INV port map (N(3), N3_L);       U2: INV port map (N(2), N2_L);

• U3: INV port map (N(1), N1_L);        U4: AND2 port map (N3_L, N(0), N3L_N0);

• U5: AND3 port map (N3_L, N2_L, N(1), N3L_N2L_N1);

• U6: AND3 port map (N2_L, N(1), N(0), N2L_N1_N0);

• U7: AND3 port map (N(2), N1_L, N(0), N2_N1L_N0);

• U8: OR4 port map (N3L_N0, N3L_N2L_N1, N2L_N1_N0, N2_N1L_N0, F);

• end prime1_arch;

• ;
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Data flow design elements
• library IEEE;

• use IEEE.std_logic_1164.all;

•

• entity V74x138 is

• port  (G1,  G2A_L,  G2B_L:  in  STD_LOGIC; -- enable  inputs A: in STD_LOGIC_VECTOR (2 downto 0);

-- select inputs Y_L: out STD_LOGIC_VECTOR (0 to 7) ); -- decoded outputs

• end V74x138;

•

• architecture  V74x138_a  of  V74x138  is signal Y_L_i: STD_LOGIC_VECTOR (0 to 7);

• begin

• with  A  select  Y_L_i <= "01111111" when "000",

• "10111111"  when "001",

• "11011111"  when "010",

• "11101111"  when "011",

• "11110111"  when "100",

• "11111011"  when "101",

• "11111101"  when "110",

• "11111110"  when "111",

• "11111111" when others;

• Y_L  <=  Y_L_i when  (G1  and  not  G2A_L  and  not  G2B_L)='1'  else  "11111111"; end V74x138_a
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Data flow design elements
• library  IEEE;
• use IEEE.std_logic_1164.all;
•

decoder.
•

entity V3to8dec is
• port  (G1,  G2,  G3:  in  STD_LOGIC;
• A:  in  STD_LOGIC_VECTOR  (2  downto 0); Y:  out  STD_LOGIC_VECTOR  (0  to  7)  );
• end V3to8dec;
•

architecture V3to8dec_a of V3to8dec is signal Y_s: STD_LOGIC_VECTOR (0 to 7);
• begin
• with A select Y_s <= "10000000"  when "000",
• "01000000"  when "001",
• "00100000"  when "010",
• "00010000"  when "011",
• "00001000"  when "100",
• "00000100"  when "101",
• "00000010"  when "110",
• "00000001"  when "111",
• "00000000"  when others;
• Y <= Y_s when (G1 and G2 and G3)='1' else "00000000";
• end V3to8dec_a;
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Time dimension and simulation synthesis

• Rise and fall times only partially describe the dynamic
behavior of a logic element; we need additional parameters
to relate output timing to input timing.

•
A signal path is the electrical path from a particular input
signal to a particular output signal of a logic element. The
propagation delay tp of a signal path is the amount of time
that it takes for a change in the input signal to produce a
change in the output signal.

•
A complex logic element with multiple inputs and outputs
may specify a different value of tp for each different signal
path. Also, different values may be specified for a particular
signal path, depending on the direction of the output

• change. Ignoring rise and fall times,
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Synthesis

• Loproblem we usu- DESIGN ally start out with an informal 

(word or thought) description of the circuit. Often the most 

challenging and creative part of design is to formalize the circuit 

description, the circuit’s input and output signals and specifying its 

functional behavior by means of truth tables and equations. 

• Once we’ve created the formal circuit description, we can usually 

follow a “turn-the-crank” synthesis procedure to obtain a logic 

diagram for a circuit with the required functional behavior.

• The material in the first four sections of this chapter is the basis for 

“turn-the-crank” procedures, the crank is turned by hand or by a 

computer. The last two sections describe actual design languages, 

ABEL and VHDL. When we create a design using one of these 

languages, a computer program can perform the synthesis steps.

• Logic circuit design is a superset of synthesis, since in a real design

48



UNIT – III

COMBINATIONAL LOGIC 

DESIGN USING VHDL 

49



Decoders
• A decoder is a multiple-input, multiple-output logic circuit that 

converts coded inputs into coded outputs. 

• The general structure of a Decoder circuit is shown in figure.

• The most common decoder circuit is an n-to-2n decoder or binary 
decoder
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74x139 Dual 2-to-4 Decoder
Two independent and identical 2-to-4 decoders are contained in a single 
MSI part, the 74x139. The gate-level circuit diagram for this IC is shown in 
Figure
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74x139 Dual 2-to-4 Decoder

• The Truth Table for one-half of a 74x139 dual 2-to-4 Decoder.

• The outputs and the enable input of the 74x139 are active-low.
• Most MSI decoders were originally designed with active-low outputs,

since TTL inverting gates are generally faster than non-inverting ones.
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VHDL CODE FOR 74x139
library IEEE;
use IEEE.std_logic_1164.all;

entity dec74x139 is
port ( EN_L: in STD_LOGIC; 

A: in STD_LOGIC_VECTOR (1 downto 0); 
Y_L: out STD_LOGIC_VECTOR (3 downto 0) ); 

end dec74x139;

Architecture arch_dec74x139 of dec74x139 is
signal Y_s: STD_LOGIC_VECTOR (3 downto 0);

begin
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VHDL CODE FOR 74x139
process(EN_L, A, Y_s)
begin

case A is
when "00" => Y_s <= "1110";
when "01" => Y_s <= "1101";
when "10" => Y_s <= "1011";
when "11" => Y_s <= "0111";
when others => Y_s <= "1111";

end case;

if EN_L='0' then Y_L <= Y_s;
else Y_L <= "1111";
end if;

end process;
end behavior;

54



74x138 3-to-8 Decoder
The 74x138 is a commercially available MSI 3-to-8 decoder. 74x138 has
active-low outputs, and it has three enable inputs (G1, /G2A, /G2B), all

of which must be asserted for the selected output to be asserted.
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74x138 3-to-8 Decoder Truth Table

Truth Table for a 74x138 3-to-8 Decoder
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VHDL CODE FOR 74x138
library IEEE;

use IEEE.std_logic_1164.all;

entity Dec74x138 is

port ( G1, G2A_L, G2B_L: in STD_LOGIC; 

A: in STD_LOGIC_VECTOR (2 downto 0); 

Y_L: out STD_LOGIC_VECTOR (0 to 7) ); 

end Dec74x138;

architecture behavior of V3to8dec is

signal Y_s: STD_LOGIC_VECTOR (0 to 7);

begin
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VHDL CODE FOR 74x138
process(A, G1, G2A_L, G2B_L, Y_s)
begin

case A is
when "000" => Y_s <= "01111111";
when "001" => Y_s <= "10111111";
when "010" => Y_s <= "11011111";
when "011" => Y_s <= "11101111";
when "100" => Y_s <= "11110111";
when "101" => Y_s <= "11111011”;
when "110" => Y_s <= "11111101";
when "111" => Y_s <= “11111110";
when others => Y_s <= "11111111";

end case;
if (G1 and not G2A_L and not G2B_L)='1' then Y <= Y_s;
else  Y_L <= "11111111";
end if;

end process;
end behavior;
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ENCODERS

Encoder to build is a 2n-to-n or binary encoder. Its input code is the
1 out-of-2n code and its output code is n-bit binary.
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The 74x148 Priority Encoder
• The 74x148 is a commercially available, MSI 8-input priority encoder.
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The 74x148 Priority Encoder

 It has an enable input, EI_L, that must be asserted for any of its

outputs to be asserted.

 74x148 has a GS_L output that is asserted when the device is enabled
and one or more of the request inputs is asserted, called as “Group
Select”.

 The EO_L signal is an enable output designed to be connected to the
EI_L input of another ’148 that handles lower-priority requests. EO_L is
asserted if EI_L is asserted but no request input is asserted; thus, a
lower-priority ’148 may be enabled.
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VHDL Code for 74x148 Priority Encoder
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity enc_74x148 is
port ( EI_L: in STD_LOGIC;

I_L: in STD_LOGIC_VECTOR (7 downto 0);
A_L: out STD_LOGIC_VECTOR (2 downto 0);
EO_L, GS_L: out STD_LOGIC);

end enc_74x148;

Architecture arch_enc_74x148 of enc_74x148 is
signal EI: STD_LOGIC; 
signal I: STD_LOGIC_VECTOR (7 downto 0); 
signal EO, GS: STD_LOGIC; 
signal A: STD_LOGIC_VECTOR (2 downto 0); 

begin
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VHDL Code for 74x148 Priority Encoder
process (EI_L, I_L, EI, EO, GS, I, A)

variable j: INTEGER range 7 downto 0;

begin

EI <= not EI_L;  I <= not I_L;  EO <= '1';  GS <= '0'; A <= "000";

if (EI)='0' then EO <= '0';

else for j in 7 downto 0 loop

elsif I(j)='1' then

GS <= '1';  EO <= '0';  

A <= CONV_STD_LOGIC_VECTOR(j,3);

end if;

end loop;

end if;

EO_L <= not EO;  GS_L <= not GS;  A_L <= not A; 

end process;

end arch_enc_74x148;
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Three state devices

• The electrical design of CMOS and TTL devices whose outputs may be in 

one of three states—0, 1, or Hi-Z. 
• The most basic three-state device is a three-state buffer, often called a 

three-state driver. 

• The logic symbols for four physically different three-state buffers.

• (a) noninverting, active-high enable (b) noninverting, active-low enable 
(c) inverting, active-high enable (d) inverting, active-low enable
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Standard SSI and MSI Three-State Buffers

• 74x125 and 74x126, each of which contains four independent non-
inverting three-state buffers in a 14-pin package.

• The three-state enable inputs in the 74x125 are active low, and in
the 74x126 they are active high.
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Standard SSI and MSI Three-State Buffers

• 74x541 octal non-inverting three-state buffer.

• The 74x540 is identical to the 74x541 except that it contains
inverting buffers.

66



VHDL Code for 74x541
Library ieee;
Use ieee.std_logic_1164.all;

Entity IC74541 is
Port( A:  in       std_logic_vector(7 downto 0);

G1_L,G2_L: in       std_logic;
Y: out    std_logic_vector(7 downto 0));

End IC74541;

Architecture behav of IC74541 is
Begin
Process(a,G1_L, G2_L)
Begin

If(G1_L=‘0’ and G2_L=‘0’ ) then Y<=A;
else Y<=“ZZZZZZZZ”;
End if;

End process;
End behav;
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VHDL Code for 74x151
Library ieee;

Use ieee.std_logic_1164.all;

Entity mux74x151 is

Port( EN_L: in std_logic;

S: in std_logic_vector(2 downto 0);

D: in std_logic_vector(7 downto 0);

Y, Y_L: out std_logic);

End mux74x151;

Architecture dataflow of mux74x151 is

Signal Y1: std_logic;

Begin
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Multiplexers 
• A multiplexer is a digital switch—it connects data from one of n sources 

to its output.
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The 74x151 8-input, 1-bit multiplexer
The 74x151 selects among eight 1-bit inputs. The enable input EN_L is 
active low; both active-high (Y) and active-low (Y_L) versions of the output 
are provided.
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VHDL Code for 74x151
Library ieee;

Use ieee.std_logic_1164.all;

Entity mux74x151 is

Port( EN_L: in std_logic;

S: in std_logic_vector(2 downto 0);

D: in std_logic_vector(7 downto 0);

Y, Y_L: out std_logic);

End mux74x151;

Architecture dataflow of mux74x151 is

Signal Y1: std_logic;

Begin
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VHDL Code for 74x151
with S select Y1<= D(7) when “111”,

D(6) when “110”,

D(5) when “101”,

D(4) when “100”,

D(3) when “011”, 

D(2) when “010”,

D(1) when “001”, 

D(0) when “000”, 

‘0’ when others;

Y<=Y1 when EN_L=‘0’ else ‘0’;

Y_L<=not y;

End dataflow; 
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74x153 4-input, 2-bit multiplexer
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VHDL Code for 74x153
Library ieee;
Use ieee.std_logic_1164.all;

Entity mux74x153 is
Port( G_L,S: in std_logic_vector(1 downto 0);

C1,C2: in std_logic_vector(3 downto 0);
Y: out std_logic_Vector(1 downto 0));

End mux74x153;

Architecture behavioral of mux74x153 is
Signal y1: std_logic_vector(1 downto 0); 

Begin

Process(G_L,S,C1,C2)
Begin

If (G_L=“00”) then
If (S=“00”) then Y1(1)<= C1(0); Y1(0)<= C2(0);
Elsif (S=“01” ) then Y1(1)<= C1(1); Y1(0)<= C2(1);
Elsif (S=“10” ) then Y1(1)<= C1(2); Y1(0)<= C2(2);
Elsif (S=“11” ) then Y1(1)<= C1(3); Y1(0)<= C2(3);
End if;
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VHDL Code for 74x153
Els if(G_L=“01” ) then

If (S=“00”) then Y1(1)<= C1(0); Y1(0)<= ‘0’;
Elsif (S=“01” ) then Y1(1)<= C1(1); Y1(0)<= ‘0’;
Elsif (S=“10” ) then Y1(1)<= C1(2); Y1(0)<= ‘0’;
Elsif (S=“11” ) then Y1(1)<= C1(3); Y1(0)<= ‘0’;
End if;

Els if(G_L=“10” ) then
If (S=“00”) then Y1(1)<= ‘0’; Y1(0)<= C2(0);
Elsif (S=“01” ) then Y1(1)<= ‘0’; Y1(0)<= C2(1);
Elsif (S=“10” ) then Y1(1)<= ‘0’; Y1(0)<= C2(2);
Elsif (S=“11” ) then Y1(1)<= ‘0’; Y1(0)<= C2(3);
End if;

Elsif (G_L=“11”) then Y1=“00”;

end if;

End process;

End behavioral;
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Demultiplexers

• A demultiplexer can be used to route the bus 
data to one of m destinations. 

• The function of a demultiplexer is just the 
inverse of a multiplexer’s. For example, a 1-bit, 
n-output demultiplexer has one data input 
and s inputs to select one of n 2s data 
outputs. 
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Demultiplexers

DO NOT

The decoder’s enable input is connected to the data line, and its select inputs

determine which of its output lines is driven with the data bit. The remaining

output lines are negated.

77

http://www.studynama.com/?utm_source=pdf&amp;utm_medium=downloaded_file&amp;utm_campaign=studynama_referral


Binary to BCD converter

78



Binary to BCD converter
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BCD to Excess-3 code converter
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BCD to Excess-3 code converter
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Exclusive OR Gates
Truth Table for XOR and XNOR functions

Pin outs of the 74x86 quadruple 2-input Exclusive OR Gate
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Parity Circuits
n XOR gates may be cascaded to form a circuit with n+1 inputs and a
single output. This is called an odd-parity circuit, because its output is
if an odd number of its inputs are 1.
The circuit in (b) is also an odd parity circuit, but it’s faster because its
gates are arranged in a tree-like structure
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74x280 9-Bit Parity Generator

84



VHDL Code for 74x280
library IEEE;
use IEEE.std_logic_1164.all;

entity parity74x280 is
port ( I: in      STD_LOGIC_VECTOR (1 to 9);

EVEN, ODD: out   STD_LOGIC);
end parity74x280;

architecture structural of parity74x280 is
component vxor3
port (A, B, C: in STD_LOGIC; Y: out STD_LOGIC);
end component; 
signal Y1, Y2, Y3, Y3N: STD_LOGIC;

begin

U1: vxor3 port map (I(1), I(2), I(3), Y1);
U2: vxor3 port map (I(4), I(5), I(6), Y2);
U3: vxor3 port map (I(7), I(8), I(9), Y3);
Y3N <= not Y3;
U4: vxor3 port map (Y1, Y2, Y3, ODD);
U5: vxor3 port map (Y1, Y2, Y3N, EVEN);

end Structural;
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Exclusive OR Gates
Truth Table for XOR and XNOR functions

Pin outs of the 74x86 quadruple 2-input Exclusive OR Gate
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Parity Circuits
n XOR gates may be cascaded to form a circuit with n+1 inputs and a
single output. This is called an odd-parity circuit, because its output is
if an odd number of its inputs are 1.
The circuit in (b) is also an odd parity circuit, but it’s faster because its
gates are arranged in a tree-like structure
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74x280 9-Bit Parity Generator
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VHDL Code for 74x280
library IEEE;
use IEEE.std_logic_1164.all;

entity parity74x280 is
port ( I: in      STD_LOGIC_VECTOR (1 to 9);

EVEN, ODD: out   STD_LOGIC);
end parity74x280;

architecture structural of parity74x280 is
component vxor3
port (A, B, C: in STD_LOGIC; Y: out STD_LOGIC);
end component; 
signal Y1, Y2, Y3, Y3N: STD_LOGIC;

begin

U1: vxor3 port map (I(1), I(2), I(3), Y1);
U2: vxor3 port map (I(4), I(5), I(6), Y2);
U3: vxor3 port map (I(7), I(8), I(9), Y3);
Y3N <= not Y3;
U4: vxor3 port map (Y1, Y2, Y3, ODD);
U5: vxor3 port map (Y1, Y2, Y3N, EVEN);

end Structural;
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Carry look ahead technique

• The 74x283 is a 4-bit binary adder that forms 
its sum and carry outputs with just a few 
levels of logic, using the carry lookahead
technique. 

• The older 74x83 is identical except for its 
pinout, which has nonstandard locations for 
power and ground. 
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Carry lookahead technique
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Subtractors

• A full subtractor handles one bit of the binary
subtraction algorithm, having input bits X
(minuend), Y (subtrahend), and BIN (borrow
in), and output bits D (difference) and BOUT
(borrow out).
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Arithmetic and Logic Units
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Arithmetic and Logic Unit
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Subtractors

• A full subtractor handles one bit of the binary
subtraction algorithm, having input bits X
(minuend), Y (subtrahend), and BIN (borrow
in), and output bits D (difference) and BOUT
(borrow out).

95



Arithmetic and Logic Units
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Arithmetic and Logic Unit
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Combinational Multipliers
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4X4 combinational multiplier with carry save
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Barrel shifter 

• A barrel shifter is a combinational logic circuit
with n data inputs, n data outputs, and a set
of control inputs that specify how to shift the
data between input and output. A barrel
shifter
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Barrel shifter 
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Barrel shifter 

• A barrel shifter is a combinational logic circuit
with n data inputs, n data outputs, and a set
of control inputs that specify how to shift the
data between input and output. A barrel
shifter
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Barrel shifter 
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Floating-point encoder
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Cascading Comparators
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Dual parity encoder

• A priority encoder that identifies not only  the 
highest but also the second-highest priority 
asserted signal among a set of eight request 
inputs. 
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Dual parity encoder

107



UNIT – IV

SEQUENTIAL LOGIC DESIGN 
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Sequential Circuits

• Latches and flip-flops (FFs) are the basic 
building blocks of sequential circuits.

– latch: bistable memory device with level sensitive 
triggering (no clock), watches all of its inputs 
continuously and changes its outputs at any time, 
independent of a clocking signal.

– flip-flop: bistable memory device with edge-
triggering (with clock), samples its inputs, and 
changes its output only at times determined by a 
clocking signal.
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Sequential Circuit
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SR Latch
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D latch
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D flip-flop
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Flip-Flop Vs. Latch

• The primary difference between a D flip-flop 
and D latch is the EN/CLOCK input.

• The flip-flop’s CLOCK input is edge sensitive, 
meaning the flip-flop’s output changes on the 
edge (rising or falling) of the CLOCK input.

• The latch’s EN input is level sensitive, meaning 
the latch’s output changes on the level (high 
or low) of the EN input.
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Sequential Circuits

• Latches and flip-flops (FFs) are the basic 
building blocks of sequential circuits.

– latch: bistable memory device with level sensitive 
triggering (no clock), watches all of its inputs 
continuously and changes its outputs at any time, 
independent of a clocking signal.

– flip-flop: bistable memory device with edge-
triggering (with clock), samples its inputs, and 
changes its output only at times determined by a 
clocking signal.
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Sequential Circuit
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SR Latch
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D latch
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D flip-flop
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Flip-Flop Vs. Latch

• The primary difference between a D flip-flop 
and D latch is the EN/CLOCK input.

• The flip-flop’s CLOCK input is edge sensitive, 
meaning the flip-flop’s output changes on the 
edge (rising or falling) of the CLOCK input.

• The latch’s EN input is level sensitive, meaning 
the latch’s output changes on the level (high 
or low) of the EN input.
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Synchronous Counters

• To eliminate the "ripple" effects, use a common 
clock for each flip-flop and a combinational 
circuit to generate the next state.

Clock
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ASynchronous Counters
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ASynchronous Counters

• Clock is applied only to FF A. J and K are high 
in all FFs to toggle on every clock pulse. 
Output of FF A is CLK of FF B and so forth.

• FF outputs D, C, B, and A are a 4 bit binary 
number with D as the MSB.

• After the negative transition of the 15th clock 
pulse the counter recycles to 0000.

• This is an asynchronous counter because state 
is not changed in exact synchronism with the 
clock.
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Serial In - Serial Out Shift Registers
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Serial In - Parallel Out Shift Registers
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Parallel In - Serial Out Shift Registers
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Parallel In - Parallel Out Shift Register
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Bidirectional Shift Registers
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Synchronous System Structure
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Serial In - Parallel Out Shift Registers

Everything is clocked by the same, common 

clock. 

Typical synchronous-system timing

Outputs have one complete clock period to propagate to inputs.
Must take into account flip-flop setup times at next clock period.
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Impediments to synchronous design
Clock skew
• The difference between arrival times of the clock at 

different memory devices.
Influence of clock skew
• Reduce the setup and hold time margins. 
• For proper operation tffpd(min) + tcomb(min) - thold -

tskew(max) > 0
• tsetup -tclk -tffpd(max) - tcomb(max) - tskew(max) > 0 
• Reducing clock skew proper buffering the clock Better clock 

distribution .

Gating clock
• It is for Asynchronous inputs
• Problem with asynchronous inputs is Meta-stable
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UNIT – V

MEMORIES
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Types of Memories

There are two types of memories that are used in digital 
systems:

Random-access memory (RAM): perform both the write and 
read operations. 

Read-only memory (ROM): perform only the read operation.
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Write and Read operations

Transferring a new word to be stored into memory:

• Apply the binary address of the desired word to 
the address lines.

• Apply the data bits that must be stored in 
memory to the data input lines.

• Activate the write input. 

Transferring a stored word out of memory:

• Apply the binary address of the desired word to 
the address lines.

• Activate the read input.
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Internal Structure of ROM

.
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General Block Diagram of ROM
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Timing Diagram of ROM
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Types of Memories

There are two types of memories that are used in digital 
systems:

Random-access memory (RAM): perform both the write and 
read operations. 

Read-only memory (ROM): perform only the read operation.
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Write and Read operations

Transferring a new word to be stored into memory:

• Apply the binary address of the desired word to 
the address lines.

• Apply the data bits that must be stored in 
memory to the data input lines.

• Activate the write input. 

Transferring a stored word out of memory:

• Apply the binary address of the desired word to 
the address lines.

• Activate the read input.
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Internal Structure of ROM

.
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Internal arrangement of storage structures
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Timing for read
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Internal arrangement of DRAM

In DRAM data is stored in a semiconductor capacitor.
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Internal arrangement of DRAM

• A read sees the bit line pre-charged to high. 
The word line is then activated. 

• If cell stores a 0 then there is a small drop on 
the voltage on the bit line. 

• This is monitored by a sense amp which 
provides the value stored. 

• Value must be written back after the read.
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DRAM Refresh
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Operation of DRAMs

• Charge stored leaks off over time. 

• Must restore the values stored a 4096 row 

• DRAM it refresh every 64ms and thus each 
row every 15.6 usec. 

• Larger DRAMs are banks of smaller.
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Write and Read Operations

Write operation
• Setting the word line to 1.To store a 1, a HIGH voltage is placed on 

the bit line, which charges the capacitor through the ―on‖ 
transistor. 

• To store a 0, a LOW voltage is placed on the bit line, which 
discharges the capacitor through the ―on‖ transistor.

Read operation
• The bit line is first precharged to a voltage halfway between HIGH 

and LOW. 
• The word line is set HIGH so that the precharged bit line is pulled 

slightly higher or slightly lower. 
• A sense amplifier detects this small change and recovers a 1 or 0 

accordingly. Reading a DRAM cell destroy the original voltage stored 
on the capacitor, the DRAM cell must be written back the original 
data after reading.
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SYNCHRONOUS DYNAMIC RAM

In a synchronous DRAM, the control signals are
synchronized with the system bus clock and therefore
with the microprocessor. It allows pipelined read/write
operations
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SYNCHRONOUS DYNAMIC RAM
• Tied to the system clock Burst mode

– System timing : 5-1-1-1
– Internal interleaving New memory 

. standard for modern PCs Speed
– Access time: 10ns, 12ns,…
– MHz rating: 100 MHz, 133MHz

•

Latency
• SDRAMs are still DRAMs
• 5-1-1-1 (10ns means the second, third and fourth 

access times) 2-clock and 4-
•

clock Circuitry
• 2-clock: 2 different DRAM chips on the module
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Comparison of semiconductor memories
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