U
NUMBER SYSTEMS

Any number in one base system can be
converted into another base system

Types

1) decimal to any base
2) Any base to decimal
3) Any base to Any base

Number Systems

Decimal number: 123.45=110¢+2 101+ 310+ 4 101+5 102 .

Base b number: N=a_,b*" + +ah’+ +a b
b>1, O<=a,<=b1
Integer part:a,a., a
Fractionalpart: a,0, @3-
Most significant digit: @, ; « « «
Least significant digit: a ,

Binary number {b=2): 1101.01=123+1224+021+12°4+021+1 22
Representing number ¥ in base b: [N}, - . . .

Complementof digit a: @' =({b-1)-a
Decimal system: 9°s complementof3=93=6
Binary system: 1's complementof1=1-1=0

Representation of Integers

Base
2 41 8110 12
0000 0 0 0 0
0001 | |
0010 2
0011 3 3
|

5

o

0100 | 10
0101 | 11 : 3]
0110 {12 6| 6 6
0.0 10 I i I | |
1000 | 20 (10| 8| 8
1001 | 21 | 11 9 9
1010 | 22 | 12 | 10 | a
1011 |23 |13 |11 | B
1100 | 30 | 14 (12 | 10
1101 | 31 | 15| 13 | 11
1110 | 32 [16 | 14 | 12
1111 |33 |17 | 15 | 13

Base Conversions

Example: Base 8 to base 10
{432.2); =482 +381+28%+281=(282.25),,

Example: Base 2 to base 10
{1101.01), =122+ 122+02'+12°4+021'+122={13.25),,

Base b, to b,, where b, > b,;:

(N)p, = ag—1b3™" +aq 26372 + - - - + a1b} + aob?

(N)s —2 —3 ao
T‘ = gq_lbg, —+ aq_zbg o e al+b—2
Qo
= - a
(32),, =camabt® +ag ot + - +3L
1 2
Q1

——

Conversion of Bases (Contd.)

Example: Convert (548),, to base 8

Qi r';
o8 S — 1y
S 4 = aq

| 0= a

l = ag

Thus, {548),, = (1044),
Example: Convert (345),, to base 6
Q; s

ST | 3=ap

9 3 = aq
| 3 =as

1 = ag

Thus, (345),, = (1333),

Conversions of fractional numbers

Fractional number:

(N)p, = a_1by" +a_gby® + - +a_pby?

b - (N)p, = acy +agby! 4+ +a_pby "

Example: Convert {0.3125),, to base 8
0.3125 8=2.5000 hence a,=2
0.5000 8=4.0000 hence a,=4

Thus, (0.3125),, = {0.24),

—"

Q;

r;

216
108

0 = agp
O=a1
O=(12
O=(23
1=a4
=gk
0=a6
1 =a7

= asg

Example: Convert {432.354),, to binary

0.354 2=0.708
0.708 2=1.416
0.416 2=0.832
0.832 2=1.664
0.664 2=1.328
0.328 2=0.656

Thus, (432.354),, = {110110000.0101101....),

Decimal to Binary

—‘

Octal to Binary Conversion

Example: Convert {123.4); to binary
(123.4), = (001 010 011.100},

Example: Convert {1010110.0101), to octal
(1010110.0101), = (001 010 110.010 100}, = (_126.24)8

Complements arc used in digital
computers to simplify the subtraction
operation and for log- ical manipulation

They are two types of complements
1) Diminished radix complement
(r"- 1)-N {r is the base of num
system }
2) Radix Complement
(rm-1)-N+1

(r-1)'s complement

- If the base = 10

« The 9's complement of 546700 is
999999 - 546700 = 453299.

« If the base = 2

« The 1's complemcnt of 1011000 is
0100111.

_

r's complement

« the 10's complement of 012398 is 987602

« the 1's complement of 1101100 is
0010100

Subtraction using complements

« Discard end carry for r's complement

Using 10's complement subtract 72532 -
3250.

M= 72532
10's complement of N = + 96750
Sum = 169282
Discard end carry for 10’s complement
Answer =

\69282 ‘

Subtraction using (r-1)’s

complement
« X-Y =1010100 - 1000011
X = 1010100
1's comp of Y=+ 0111100
Sum =1 0010000
Add End-around carry = + 1

(1) X -Y =0010001

)

0
T

<

O

>
L=

O
L=

o

g
N
3
)
3
4
S

2 4 2 1 6 4 2 -3

1

8 4 2

O O 0 0
0O 0 O

Q O 0 O

1

1

0O 0 O

o O 9
0 O 1

1

1

Decimal |

digit

Self-complementing Codes

BCD

Code word of 9's complement of & obtained by

ing code
interchanging 1's and O’s in the code word of M

Selfcomplement

"
0
.=
O
O
o
0
)
=
=
=
c
=
<

3
~
3
Q

Frcess-3

- QO

=~ O

™~ Qo

o ™~

Decimal

digit

+ 0

Add 3 to

Successive code words

differ in only one digit

BCD

)
D
d
O
O
D
@
o=
0
)
o
d
f=
e
-
N’
9,
L°,
O
O
>
0
S
O

SO-HOHOHOHOHOHOHO ™
PoooHAoeRAEnHHD oW
g
k:
3%0000111100001111

Joooo0o00 0O MMM ™M™

SOHHOOHHOOHHOOHHO
SO HHHMOOOO N HHMO O
>
Gwoooo11111111oooo

QOO0 000O0O0 ™M mmmm
~

~
s 3
mW0123456789mnmwmw
o

Blnary to Gray Conversion

Binary: bs by bz by bs b
1 O 1 1 0 1
+ +) +) s +))
Gray: 1 1 1 0 1 1
gs gs Q93 Q92 g1 9o

Gray-to-binary:
= h. = g. if no. of 1's preceding g; is even
= . = g. if no. of 1's preceding g; is odd

ee———

Mirror Image Representation in

Gray Code

00 O 00 0 000
01 0O 01 0 001
11 o 11 0O 011
10 0O 10 0 010
1 10 0O 110

3 14 Q' 114

1 01 0O 101

1 00 0O 100

1 100

1 1eA

1 911

1 118

1 010

1 68711

1 001

1 000

Error Detection and Correction

+ No communication channel or storage
device is completely error-free

« As the number of bits per area or the
transmission rate increases, more errors
OCCUr.

« Impossible to detect or correct 100% of
the errors

Types of Error Detection

- 3 Types of Error Detection/Correction
Methods

- Cyclic Redundancy Check (CRC)
- Hamming Codes
- Reed-Solomon (RS)

10011001011 = 1001100 + 1011
N\ N\

N\

Code word information error-checking bits/

bits parity bits/
syndrome/
redundant bits

T
Hamming Codes

One of the most effective codes for error-recovery
Used in situations where random errors are likely to

oCcur

rror detection and correction incregses. i roportion to
the num%c?r PP aqu BI S C(\e ror-c%eckpnla I:l)tsf adéed
to the end of the informatio its

code word = information bits + parity bits _
Hﬁ min dlgtancccej: th? number of bit positions in
which twd code words differ.
10001001
10110001
X X Xk
inimum Hamming distance or D(mjn) : determines
Ptlls error detecltTl anc"d correcﬁn capgnbﬂw

| ng : :
A FRIING, <osles SPRAMPYR St R(min) ~'L errors, but

EX. Data

Bits
00
01
10
11

Hamming Codes

Parity
Bit

OO

Word

000
011
101
110

Code

000> 100
001 101*
010 110*
011*111

Single parity bit can only detect error,
not correct it
Error-correcting codes require more
than a single parity bit
EX. 00000
01011
10110
11101

Minimum Hamming distance = 3

Can detect up to 2 errors and correct 1
error

Cyclic Redundancy Check
Let the information byte F = 1001011

The sender and receiver agree on an arbitrary
binary pattern P. Let P = 1011.

Shift F to the left by 1 less than the number of
bits in P. Now, F = 1001011000.

Let F be the dividend and P be the divisor.
Perform “modulo 2 division”.

After performing the division, we ignore the
quotient. We got 100 for the remainder, which
becomes the actual CRC checksum.

Add the remainder to F, giving the message M:

1001011 + 100 = 1001011100 = M

V.

Calculating and Using CRCs

M is decoded and checked by the message
receiver using the reverse process.

1010100

1011 | 1001011100
1011
001001
1001
0010
001011
1011
0000 < Remainder

Canonical and Standard Forms

« We need to consider formal techniques for
the simplification of Boolean functions.

- Identical functions will have exactly the same
canonical form.

> Minterms and Maxterms
- Sum-of-Minterms and Product-of- Maxterms
> Product and Sum terms

- Sum-of-Products (SOP) and Product-of-Sums
(POS)

Literal: A variable or its complement
Product term: literals connected by e
Sum term: literals connected by +

Minterm: a product term in which all the
variables appear exactly once, either
complemented or uncomplemented

Maxterm: a sum term in which all the
variables appear exactly once, either
complemented or uncomplemented

Truth Table notation for Minterms

and Maxterms

* Minterms and

‘x Y |Z | | Minterm Maxterm
Maxterms are easy|o [0 [0 | |xyz =mg |xsvez = Mg
todenote using a [0 [0 [1 | [xyz=m |xwy+Z =M,
truth table. 01 0] [xyz=m |xsy+zz=M,
* Example: 01 |1 |[xXyz=mg [xsy*z= My
Assume 3 variableg: (o [o | [xyz=ms |x*y+rz=M,
xX.V.Z o 1 (0|1 | |[xvz=mg |X+y+Z =Ms
(order is fixed) 11 (0] [xyz=me |xvy+z=Me
1 (1|1 | [xyz=my |X+y+2 =My

- (Ll

™ Lo ._q = & m — —

anonice w que,
/l\.x——-/—-‘-\./\./—- 5 Wi BEEN l_ -y 1§ A \.z—_./_/

Any Boolean function F() can be
expressed as a unigue sum of minterms
and a unique product of maxterms
(under a fixed variable ordering).

In other words, every function F() has two
canonical forms:

Canonical Sum-0Of-Products (sum of minterms)

Canonical Product-Of-Sums (product of
maxterms)

Canonical Forms (cont.)

« Canonical Sum-0Of-Products:
The minterms included are those m; such
that F() = 1 in row j of the truth table for
=).

« Canonical Product-Of-Sums:
The maxterms included are those M; such
that F() = 0 in row j of the truth table for

B).

L F

Truth table for f,(a,b,c) at right

The canonical sum-of-products form for f;
IS
fi(a,b,c)=my+m,+ my+mg
=a’blc +a’bc’ +ab’c’ + abc’
The canonical product-of-sums form for f; is
fi(a,b.c) =My e M3 ® Mg « My
= (atbtc)e(atb+c’)e
(a’+b+c’)e(a’+b+c’).

Observe that: m; = M’

=10 0O = =0 00
O ™= O = 0O = 0On

Conversion Between Canonical

Forms

- Replace > with TT (or vice versa) and
replace those j’s that appeared in the
original form with those that do not.

« Example:
f;(a,b,c) = a’'b’c + a’bc’ + ab’c’ + abc’
=m; +m, + M, + mg
. 2(1,2,4,6)
- ﬂ(013I5I7)

\ (a+b+c)-(a_+b’+c’)-(a’+b+c’)-(a’+b’+c’)‘

Conversion of SOP from standard

to canonical form

« Expand non-canonical terms by inserting
equivalent of 1 in each missing variable Xx:
et X') =1
- Remove duplicate minterms
» f;(a,b,c) = a’b’c + bc’ + ac’
= a’b’c + (a+a’)bc’ + a(b+b")c
= a’b’c + abc’ + a’bc’ + abc” +
ab’c’

L

a’b’c + abc’ + a’bc + ab’c’ ‘

Conversion of POS from standard

to canonical form

+ Expand noncanonical terms by adding 0 in
terms of missing variables (e.g., xx’ = 0) and
using the distributive law

+ Remove duplicate maxterms

« fy(a,b,c) = (a+b+c)e(b’+c’)e(a’+c’)

= (a+b+c)e(aa’+b'+c’)e(a’+bb’'+c’)
= (a+b+c)e(a+b'+c)e(a’+b'+C e
(@a'+b+c')e(a’+b'+’)

\ (a+b+c)e(a+b’+c’)e(a’+b’+c’)e(a’+b+c’) ‘

lean Algebra an
Gates

Formal logic: In formal logic, a statement
(proposition) is a declarative sentence that is

either

true(1) or false (0).

It is easier to communicate with computers using
formal logic.

e Boolean variable: Takes only two values -
either

true (1) or false (0).

They are used as basic units of formal logic.

e Boolean function: Mapping from
Boolean variables to a Boolean value.

e Truth table:

Represents relationship between a Boolean
function and its binary variables.

It enumerates all possible combinations of
arguments and the corresponding function
values.

e Boolean algebra: Deals with binary
variables and logic operations operating
on those variables.

e Logic diagram: Composed of graphic
symbols for logic gates. A simple circuit
sketch that represents inputs and outputs
of Boolean functions.

Refer to the hardware to implement Boolean
operators.

The most basic gates are

Name Graphic Algebraic Truth
aymbol function table

. Al x
Inverter A I>O b x = A 511

1] 0
A—
AND B — x x = AB

True 1f both are true.

O ol
= o ol
= oo O)lH

True if either one 1s true.

L=
ea
(s = B &

-1

w

1

e

-'-

o
= O ol
= O = ol
[l ol Sl]

+ Other common gates include:

n function and truth

Name Graphic Algebraic Truth
symbol function table

Bxclusive-0R & ABlx
tIGRJ X Xx=4@E a oo
B =48 +2p 011

101

1 110

A— ABlx

NAND X X = (AB}' 00]1
BE— 011

101

1 110

A ABlx

NOR X x=A+8E 0ol
B 0 1|0

1 0]0

1 110

Parity check: True if only one
Is true.

[nversion of AND.

[nversion of OR.

e Postulate 1 (Definition):. A Boolean
algebra is a closed algebraic system
containing a set K of two or more
elements and the two operators - and +
which refer to logical AND and logical OR

Identities of Boolean Al
Existence of 1 and 0 element

(9)x+y=y+x

(10) xy = yx

(11) x+(y+z)=(x+y)+2Zz
(12) x (yz) = (xy) z

(13) x(y +z) =xy + xz

(14d) X +yz=(x+y)(x+2)
(15) (x+y) =x"y’

(16) (xy)" =x"+y’

) (X)) = x

Examples:

(a)a +ab =a(l+b)=a

(b) a(a + b) = a.a +ab=a+ab=a(1+b)=a.
(c)a+ab=(a+a)(a+ b)=1(a + b) =a+b

(d) a(a' + b) = a. a +ab=0+ab=ab

(@) (a + b)' =a'b’
(b) (ab)' = a' + b’

Generalized DeMorgan's Theorem
(@) (a+b+..2)=ab..~72
(b) (a.b..2)=a" +b' +..Z

Morgan's Theo

= ab + c'd’
= ?7?

= ab + c'd’ + b'd
= ?7?

~~
~ ~ — A / — . — — — . —_ - —

—_— — - —_— —

= e = N——— —_— - = - . - — Y = - - - ¥ & % B2 B B

Show that: (a(b + z(x + a')))' =a' + b’ (' + X')

(a(b +z(x +a)))" =a'+ (b +z(x + a"))’
=a' +b' (z(x +aY))
=a'+b' (Z'+(x+a))
=a +b' (z'+x(@))
=a'+Db'(z +xa)
=a‘+b'z' + b'x'a
=(a‘+ b'x'a) +b'Z'

=(a‘+ b'x‘)(a+a‘) +b'z

=a‘+t b'x'+b'z
=a +b' (z'+X)

NAND-AND

AND-NOR functions:

Example 3: Implement the following function
F=XZ+YZ+X¥Z or
F=XZ+¥Z+X¥Z

since F7 1s 1n SOP form, 1t can be implemented bv using NAND-NAND circuit.
Bv complementing the output we can get F, or bv using NAND-AND circuit as
shown in the figure.

b —

T

T- B
F
E —

1D

-
F
4
x
Y
F
Iso be implemented using AN
it is equivalent to NAND-

—

OR-NAND functions:
Example 4: Implement the following function

F=(X+Z)(T+Z)(X+Y+Z) or
F=(X+Z)YF¥+Z)X+Y+2Z)

Since F7 15 1n POS form, 1t can be implemented by using NOE-NOE. circuit.
By complementing the output we can get F, or bv using NOR-0OR circuit as shown 1n

the figure.

) D
) =) >
=

T y

Iso be implemented using OR
ls equivalent to NOR-O

The objectives of this lesson are to learn

about:
1. Universal gates - NAND and NOR.

2. How to implement NOT, AND, and OR
gate using NAND gates only.

3. How to implement NOT, AND, and OR
gate using NOR gates only.

4. Equivalent gates.

1
-
<
O
(14
O
<

1. All NAND nput pins connect to the input signal A gives an output A°.

D= -

2. One NAND input pin 1s connected to the iput signal A while all other input pins
are connected to logic 1. The output will be A°.

A — .
(AA)=A A I: A
—

Implementing AND Using only NAND Gates
An AND gate can be replaced by NAND pgates as shown in the figure (The AND 1s

replaced by a NAND gate with 1ts output complemented by a NAND gate inverter).

A L e =
BNAND AS A UNIVERSAL GATES

Implementing OR Using only NAND Gates

An OR gate can be replaced by NAND gates as shown in the figure (The OR gate 15
replaced by a NAND gate with all its mputs complemented by NAND gate inverters).

D2
’ (A'B)'=A+B

Y
-. A A
f— —p)
._,f' +
——
E{ '}Jﬂ'
I

Thus, the NAND gate is a universal gate since it can implement the AND, OR
and NOT functions.

1. All NOR input pins connect to the input signal A gives an output A°.

2. One NOE input pin 1s connected to the input signal A while all other input pins are
connected to logic 0. The output will be A°.

(A+0)=A , A A

Implementing OR Using only NOR Gates

An OR gate can be replaced by NOR gates as shown in the figure (The OR is
replaced by a NOR. gate with 1ts output complemented by a NOR. gate inverter)

NOR AS A UNIVERSAL GAT_

Implementing AND Using only NOR Gates

An AND gate can be replaced by NOR. gates as shown in the figure (The AND gate 15
replaced by a NOR gate with all 1ts inputs complemented by NOR gate mverters)

D

| 'AI"l"Hr]r:A.E A _—_—-.,_ '.IIAE
| Jﬂ'h_

L B— ;

Thus, the NOR gate 1s a umiversal gate since it can implement the AND, OR and
NOT functions.

Gate Level Minimization
of Logic Circuits

A process with 5 steps
Specification
Formulation
Optimization
Technology mapping
Verification

1st three steps and last best illustrated by
example

Fundamental circuits that are the base
building blocks of most larger digital
circuits

They are reusable and are common to
many systems.

Examples of functional logic circuits

Decoders
Encoders

Code converters
Multiplexers

Multiplexers

Selectors for routing data to the processor,
memory, I/0

Multiplexers route the data to the correct bus or
port.
Decoders

are used for selecting things like a bank of memory
and then the address within the bank. This is also
the function needed to ‘decode’ the instruction to
determine the operation to perform.

Encoders
are used in various components such as keyboards.

- ~

BCD is a code for the decimal digits 0-9

Excess-3 is also a code for the decimal
d Ig ItS Decimal Input Qutput

Digit BCD Excess-3

WD =<l e WwkhEe o
| o o T e e B e N TR N (O Y
o O KRR K= = OO o
copMHEPRPrROoODOoOHKEOO
HokrOoOKROoOHoOKHEO
= EEEEO OO D
Ho oo oORkRrHEHKHEKBEDO
SoHRPRPOoODOoORLRHOOoOK
ocoHOoOMFHPOoORKROoOHOoOHKH

~
- - — — \._,__.4-—

—

Inputs: a BCD input, A,B,C,D with A as
the most significant bit and D as the least
significant bit.

Outputs: an Excess-3 output W,X,Y,Z that
corresponds to the BCD input.

Internal operation — circuit to do the
conversion in combinational logic.

Excess-3 code is easily formed by adding
a binary 3 to the binary or BCD for the
digit.

There are 16 possible inputs for both BCD
and Excess-3.

It can be assumed that only valid BCD
inputs will appear so the six combinations
not used can be treated as don’t cares.

L

=) = ~ ™ — - b m - — T -~ \, ~ — e
—~ — — — . ——\\——"‘
" a & \ /L —

Lay out K-maps for each output, W XY Z

K-map for W K-map for X K-map for Y K-map for Z
C C C c C C ¢
A\n | ' - AN D , C
00 01 11 10 AND \ 00 01 11 1() AND
B B\ 00 01 11 10 B B\ 0 01 11 10
00 00 | 1
00 I B 00| ! 1
01 1|1)1 ol 1 1
B 01) 1 B 01] 1 1
mfx | x | x|x | WB ml x| x| x| x JB
AL 0 A IR R B A[f x| x[x |x
10 x| x 10f 1 X | x
L | L
D | D l
D

A step in the digital circuit design process.

Where are the minterms located on a K-

Map? P |)

AH\ 00 01 11 10
00 My m; s m;
01 my s 5 my -

B
Il my3 my3 my 5 my 4 L
A

|: Mg Mg My My

10

W(A,B,C,D) = >m(5,6,7,8,9)
+d(10,11,12,13,14,15)
X(A,B,C,D) = 3m(1,2,3,4,9)
+d(10,11,12,13,14,15)
Y(A,B,C,D) = 3m(0,3,4,7,8)
+d(10,11,12,13,14,15)
Z(A,B,C,D) = 3m(0,2,4,6,8)
+d(10,11,12,13,14,15)

N

W minimization

K-map for W
C

C

.-x\n
B 00 01 11 10
00

Find W=A+BC+ AN
=15

Jn

AR

—
s

X minimization

Find X = BC'D'+B'C+B’D

K-map for X

C
[R
lor i 1%»\

a

=

C
D
';\ 00
00
o1 1
(1)

1 \x)
.I'lt.|7
10

I
1

Y minimization

Find Y=CD + CD’

K —muap for W
L

. | [
e S~ 00 01

L

) I |
Jt|7 ll' II
1o LN |

11 10
[1 1
B -
| = | ™ ||?"'"‘J| -~
/| x

Z minimization

Find Z =D’

K-map for A
«

F | I
“ANGT oo o1 11
=

g !

o1 o

Specification
Digital readouts on many digital products often
use LED seven-segment displays.
Each digit is created by lighting the appropriate
segments. The segments are labeled
a,b,c,d,ef,g
The decoder takes a BCD input and outputs the
correct code for the seven-segment display.

Input: A 4-bit binary value that is a BCD

coded input.

Outputs: 7 bits, a through g for each of

the segments of the display.

Operation: Decode the input to activate

the correct segments. —

i- ”

f|]'

]h

]c

Construct a truth table

Decimal
Digit

Seven-Segment
Decoder Outputs
abcecdefg

Input
BCD

1111110
0110000
1101101
1111001
1011011
1011011
1011111
1110000
1111111
1111011
C00O0DO0O0O0

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

All other inputs

Create a K-map for each output and get
A = A'C+A’'BD+B'C'D'+AB'C’
B =AB+A'C'D'+A'CD+AB’C’
C = AB+A'D+B'C'D'+AB'C’
D = A'CD'+A'B'C+B’C'D'+AB’C'+A’'BC'D
E = ACD’+B'C'D’
F = ABC'+A'C'D'+A’'BD’+AB'C’
G = ACD'+A'B'C+A'BC'+AB'C’

Karnaugh Maps for
Simplification

Boolean algebra helps us simplify expressions and circuits

Karnaugh Map: A graphical technique for simplifying a Boolean expression into
either form:

minimal sum of products (MSP)
minimal product of sums (MPS)
Goal of the simplification.
There are a minimal number of product/sum terms
Each term has a minimal number of literals
Circuit-wise, this leads to a minimal two-level implementation

s
-

— o — . ‘« - - — “ —

™
Y, ~ —
—_— — —
TS G208 § G2 4 . = , :

A two-variable function has four possible minterms. We can
re-arrange

these minterms into a Karnaugh map

Now we can easily see which minterms contain common

literals

Minterms on the left and right sides contain y’ and y respectively

Minterms in the top and bottom rows contain x’ and x respectively
Y '
. y | Y
'O,]I, XI xlyl xly
X O | xy' | Xy '
{ 1| xy' | xy XXy [xy

x vy | minterm Y

0) (@) X'y' d o) 1
o 1 X'y » . O | xy | Xy
1 O Xy’ 1| xy' | xy
1 1 Xy

Nnaltiiaul viap SI1inpiitical S

Imagine a two-variable sum of minterms: 4
I XI U xl I
Xy' + Xy 7 xy' | Xy

Both of these minterms appear in the top row of a
Karnaugh map, which

means that they both contain the literal x’

Xy + x'y = X'(y" +vy) [Distributive]
=x'e1 [y+y =1]
= X' [X el =X]

What happens if you simplify this expression using
Boolean algebra?

VIO € E EAXAAQINPDIES
Another example expression is x'y + xy
Both minterms ﬂapear in the right side, where y is
uncomplemente
Thus, we can reduce x'y + xy to justy Y
Xy | Xy
X | xy —y
How about x'y" + x'y + xy?
We have x'y’ + x'y in the top row, corresponding to
XI
There's also x'y + xy in the right side, corresponding 4
toy
This whole expression can be reduced to x" + y | xy | XYy
X | xy | xy

For a three-variable expression with inputs X,
y, z, the arrangement of
minterms is more tricky:

YZ YZ
00 01 11 10 OO 01 11 10
0 | xy'z | xyz | xyz | xyZ X O [mo | M | mg | m
1 | xy'z | xy'z | xyz | xyzZ 1 | mg | ms | M7 [Mg
Y Y
Xyz | xXyz | xyz | xyz Mo | M | ms | mp
X | xyz | xy'z | xyz | xyz X | mg| ms | my | mg
Z Z
Another way to label the K-map (use

whichever you like):

()
-

With this ordering, any group of 2, 4 or 8 adjacent squares on
the map

contains common literals that can be factored out

4 X'y'z + xX'yz
Xyz |[xyz | xyz][xyz = X'z(y' +vY)
X | xyz | xy'z | xyz | xyZ = X'ze1l
7 = X'z
“Adjacency” includes wrapping around the left and right sides:
Y X'y'Z" + XY
Xyz | xXy'z | Xyz | XyzZ [x'yz" + xyz’
X XyZ]| xy'z | xyz || xyzZ = Z'(Xy’ TG
> X'y + Xy)
. = Z2(y'(xX" + x) +
We'll use this property of adjacent squares y(xX" + X))
to do our simplifications. = Z'(y'+y)

= Z
= »_

-
- = = s “ “_ _ - . . —

—_—

We can fill in the K-map directly from a truth table
The output in row i of the table goes into square m; of the K-map
Remember that the rightmost columns of the K-map are “switched”

Y
x vy z] f(xy,z)
o o 0 Mo | My ms | mp
- 1 ! X|mg | ms | mz | M
. . = 4 5 7 6
0 1 1 0 Z
oy
0 1 0 0
X 0 1 1 1
. Z

o o 0
o 1 1
1 o 1
1 1 1
/ S —_ — ~ —_ o~ - —_A — ~~ —~

You can find the minimal SoP expression
Each rectangle corresponds to one product term
The product is determined by finding the common literals in that
rectangle

Y Y
1 | X'y'z
X 1] 1 1 | X Xy'Z Xyz'
Z \ Z
y'z Xy

F(XIYIZ)= y,Z + Xy

The most difficult step is grouping together all the 1s in the K-map
Make rectangles around groups of one, two, four or eight 1s
All of the 1s in the map should be included in at least one rectangle
Do not include any of the Os
Each group corresponds to one product term

Y

X 1 1 1]

Z

Make as few rectangles as possible, to
minimize the number of products in the

final expression.

Make each rectangle as large as possible,
to minimize the number of literals in each
term.

Rectangles can be overlapped, if that
makes them larger.

Let’s consider simplifying f(x,y,z) = xy + y'z + xz

You should convert the expression into a sum of minterms form,

The easiest way to do this is to make a truth table for the function, and then read
off the minterms

You can either write out the literals or use the minterm shorthand

Here is the truth table and sum of minterms for our example:

x vy z | f(xy.z)

8 8 ‘1) ‘13 f(x,,y,z) =x'y'z + +

o 1 o 0 Xyz + Xyz

Bl 1 1 0 =m, + + Mg+ m,
1 0 O 0

o 1 1

i : o 1

& 1 1 1

. —_— ,, . ‘ . — . - — —_— —~ . —

~ N B - ~— _ - - /

You can also convert the expression to a sum of
minterms with Boolean
algebra

Apply the distributive law in reverse to add in missing
variables.

Very few people actually do this, but it's occasionally useful.
XY + YZ+Xxz=(xyel)+ (y'zel)+ (xzel)
= (xye(z'+2)) + (yze (X +x)) + (xze(y +Y))
(xyz' + xyz) + (X'y'z + xy'z) + (xy'z + xyz)
xyz' + xyz + xX'y'z + xy'z
m, + + mg + m,

In both cases, we're actually “unsimplifying” our
example expression
The resulting expression is larger than the original one!

But having all the individual minterms makes it easy to
combine them

together with the K-map

In our example, we can write f(X,y,z) in
two equivalent ways

f(x,y,2) = x'y'z + + xyz' + xyz f(x,y,z) = m; + + mg + My
N Y
X'y'Z mi
X xyz | xyz | xyz X ms | my | mg
Z y4

In either case, the resulting K—mayp IS

shown below 1
X 1 1 1

— = - Y - - —~ o~ — —

Simplify the sum of minterms m; + ms +

ms + mg)

Here is the filled in K-map, with all groups
shown

The magenta and green groups overlap, which
makes each of them as

large as possible
Minterm myg is in a group aIbey its lonesome

o il 11 o
x| o ||1|] o ([1]

L
The final MSP here is x'z + + Xxyz’

There may not necessarily be a unigue MSP. The K-map
below yields two

valid and equivalent MSPs, because there are two possible
ways to

include minterm m,

O 1 0 1
X 0) 1 1 1

<

o I 1+ [o T]
X | o 1 1 I 1 |

X
o

II1|1||
zZ

y'z + yz' + xy y'z +yz' +

Remember that overlapping groups is possible, as shown above

We can do four-variable expressions too!
The minterms in the third and fourth columns, and in the third and
fourth rows, are switched around.
Again, this ensures that adjacent squares have common literals

YZ . Y
ATAT D4 oo o1 11 10

Lol

o1

11
W
10

i

Grouping minterms is similar to the three-variable case, but:
You can have rectangular groups of 1, 2, 4, 8 or 16 minterms
You can wrap around all four sides

YZ

WX 00 01 11 10

00

01

11

W

10

M4
Wlxlylzl Wlxlylz Wlxlyz Wlxlyzl
wxyz | wxy'z | wxyz | wxyz
wxy'z | wxy'z | wxyz | wxyz
wxyz | wxyz | wxyz | wxyz

Mo mx ms: | mz
M4 (115 my Me
Mz | M13 | M5 | M4
Mg | Mg | M | Mg

The expression,is aI»r/eady a sum of minterms, so here’s the K—mzip:
1 1 Mo ma
1 Ms X
1 m
w W =
1 1 Mg Mio
Z Z
We can make the following groups, resulting in the MSP +
Y Y,
. 1 wx'yz'
1
; X
g/ 1 1
WX'yz'

Y Z

VWX 00 o1 11 10
oo
o1
11
W
10
mo mi ms mz
my ms mz Me
miz mis mis miq
wW
ms Mo mii mio

YZ Y
W = OO o1 11 10
w 11
=1Y
Mie| Mh7| Miof My
Mbo| NMb1| Mbz| Mbo
W Mbg | Mbo | M1 | Mo
Mbga| Mbs| Mb7 | Mbe

YZ Y YZ

WX 00 01 11 10 WX . 00
00 00
01 1] 1) | _01 1
i !]] :I- | L "]/./
10
——
V=20
f=XZ'
Sm(4,6,12,14,20,22,28,30)
+ VWY’ sm(0,1,4,5)
+ W'Y'Z’ >m(0,4,16,20)
+ VWXY >m(30,31)

+ V'WX'YZ m1l1l

Maxterms are grouped to find minimal PoS

expression yz
00 01 11 10
0
X X +y+Z x+y+z' x+y'+z' x+y'+z
1 X' +y+Z x'+y+z' x'+y'+z' x'+y'+z

F(W,X,Y,Z2)= TT M(0,1,2,4,5)

7 X +y+z [x+y+z"|| x+y'+Z' || x+y'+z
X O0°Z | X+yAlF x+y+2 1 [XFY*Z
1 Uin
LU

F(W,X,Y,Z)=Y . (X + Z)

/\

0 0 0 1 0
00 011 1L
1 [[100 0 1 1

F(W,X,Y,Z2)= m(0,1,2,5,8,9,10)
=TT M(3,4,6,7,11,12,13,14,15)

YZ N |
WX 00 01 —11— 10
F(W,X,Y,Z2)= (W + XY + Z)(X’
00 0
+ Z)
o1 O ollo
: X Or,
"1l O(|O|] OO
W : F(W,X,Y,Z)= X'Y" + X'Z' + W'Y'Z
0
' Which one is the minimal one?
Z
AS IR TFIMIZarion rrom S

F(W,X,Y,2)= TT M(0,2,3,4,5,6)
= m(1,7,8,9,10,11,12,13,14,15)

YZ LY

WX 00 01 11 10
00]_
o 1 F(W,X,Y,Z)= W + XYZ + X'Y'Z
r X
1Ml 1 1 1 1

W
1q1 1 1 1 1

Vi
SOoF Optimization trrom rPOS

You don’t always need all 2" input combinations in an n-variable function

If you can guarantee that certain input combinations never occur
If some outputs aren’t used in the rest of the circuit

We mark don’t-care outputs in truth tables and K-maps with Xs.

x Y 4 f(x.,y.z)
(@] (@) (@) (@]
(@] (@) 1 1
(@] 1 (@] X
o 1 1 (@]
1 (@) (@) (@]
1 (@) 1 1
1 1 (@) X
1 1 1 1

Within a K-map, each X can be considered as either 0 or 1. You should pick
the interpretation that allows for the most simplification.

Find a MSP for

f(WIXIYIZ) = zm(()I214-I518I14-I15)I d(WIXIYIZ)
=>*m(7,10,13)

This notation means that input combinations wxyz = 0111, 1010 and 1101

(corresponding to minterms m,, m,, and m,5) are unused.
Y

O|l—|X |O
X |—|O|+-

= O]
O|X |—|O

SP for:
f(w,x,y,z) = £m(0,2,4,5,8,14,15), d(w,x,y,z) = m(7,10,13)

f(w,x,y,2)= x'z" + wxy’ + wxy

ions for Practice K

107

K-maps are an alternative to algebra for simplifying
expressions

The rtgsult is @ MSP/MPS, which leads to a minimal two-level
circui

It's easy to handle don’t-care conditions

K-maps are really only good for manual simplification of
small expressions...

Things to keep in mind:

ﬁemember the correct order of minterms/maxterms on the
-map

When grouping, you can wrap around all sides of the K-
map, and your groups can overlap

Make as few rectangles as possible, but make each of them
as large as possible. This leads to fewer, but simpler,
product terms

There may be more than one valid solution

Logic circuits for digital systems may be
combinational or sequential.

A combinational circuit consists of input
variables, logic gates, and output variables.

—> —
— S
. Combinational
ninputs — > L — > moutputs
: circuit
—> —

Fig. 4-1 Block Diagram of Combinational Circuit

To obtain the output Boolean functions
from a logic diagram, proceed as follows:

Label all gate outputs that are a function of input
variables with arbitrary symbols. Determine the
Boolean functions for each gate output.

Label the gates that are a function of input
variables and previously labeled gates with other
arbitrary symbols. Find the Boolean functions for
these gates.

Repeat the process outlined in step 2 until the
outputs of the circuit are obtained.

By repeated substitution of previously defined
functions, obtain the output Boolean functions in

terms of input variables.

S S

e I

Fig. 4-2 Logic Diagram for Analysis Example

— — —
\ . \ - L & a 8 - 0 L 2 = = L B = = = — e |

el W S S A %Il SSEAISw 88 S0 0 OW\mLAm

- We can derive the truth table in Table 4-1 by
using the circuit of Fig.2.

Table 4-1

Truth Table for the Logic Diagram of Fig. 4-2
A B C I F, F, T, T, Ts [
0O 0 0 0O | 0 0 0 0
0 0 | 0 | | 0 | |
0 | 0 0 | | 0 | |
0 | | | 0 | 0 0 0
| 0O 0 0 | | 0 | |
| 0] | 0 | 0 0 0
| | 0 | 0 | 0 0 0
| | l | 0 | | 0 l

— ™ —
\ ~ — — P, — ~ — ~
— - S ——
_— — _— T B = - - — - - S S

Table4-2 is a Code-Conversion example,
first, we can list the relation of the BCD and
Excess-3 codes in the truth table.

input BCD Output Excess- 3 Code

2 B C D “ X y

&
AN je

For each symbol of the Excess-3 code, we use
1’s to draw the map for simplifying Boolean

function.

D < D <
AB 00 01 11 10 AR 00 01 11 10
00 1 1 00 1 1
01 1 1 01 1 1
B B
11 X X X X 11 X X X X
A A
10 1 X X 10O 1 X X
Fo4 o
z = D v =CD + C" D’
D < D C
AR 00 01 11 10 AR 00 01 11 10
00 1 1 1 00
01 1 o1 ‘ 1 ‘ 1 ‘ 1 B
B
11 X X X X 11 X ‘ X ‘ X ‘ X
A A
10 1 X X 1O 1 1 X X
D D
X = B'C + B'D + BC' D' w — . A + BC + BD

Fig. 4-3 Maps for BCID to Excess-3 Code Converter

it implementatio

y =CD + CD’ = CD + (C + DY)’
+ B'D + BCD’ = B(C + D) + B(C + D)
+ BC + BD = A + B(C + D)

[>o—£-
——___cp I
) —) >
) > [So— (C +D)
C +D

Fig. 4-4 IL.ogic Diagram for BCD to Excess-3 Code Converter

M

—t A
— — . - = = ~ o~
—

/ 2IRNaF _ :
= a “ “ o = — - = —_— e N N O

A combinational circuit that performs the addition of

two bits is called a
The truth table for the half adder is listed below:

Table 4-3
Half Adder

X y C 5 S: Sum
0 0 0 N C: Carry
() | 0 |

| 0 0 |

| l |)

S =Xy + Xy

¢ F—c

(a) S =xy' +x'y (b)S=xDy
C=uxy C=uxy

slele

Fig. 4-5 Implementation of Half-Adder

‘entation of Halfa-

-Adder

at performs the addition of three
ficant bits and a previous carry) is a
.

Table 4-4
Full Adder

-

-0 00 C
-==0=00C |A
=Q00=0==0 | W

'-EQ-QG =<
-0 =0=0=0|N

lified Expression

yz Y yz Y
. 00 01 11 10 . 00 01 11 10

1 1 0 1
| IR

Z Z
S=x'y'z+x'yz'+xy'z’ +xyz S = xy +<v<p)z

=xy+xy'z+x'yz

Fig. 4-6 Maps for Full Adder

C

Xyz+ Xyz + xXyz +
Xy + XZ + yz

O W
I

) —
)
-
)—

Fig. 4-7 Implementation of Full Adder in Sum of Products

— ~ - — — ~ —

ull-adder can also implemented with two
If adders and one OR gate (Carry Look-

z® (X DY)

Z’(xy’ + Xy) + z(xy’ + Xy)

Xy'z + XyzZ + Xyz + Xy'z

C =z(xy' + X¥y) + Xy = Xy'z + Xyz + xy

| > ;
'
B))

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

™
—_ = =

™ —

e e s . . A B B B

This is also called

- —

Subscript i 3 2 1 0
R PP le Ca Ty Input carry O 1 1 0 C
Adder ,because of Augend THS I AN SR
the construction suiklend IR R
. Sum I 1 1 0 S,
Wlth fU” adders_’ Output carry 0O 0 1 1 Cisi
are connected in
casCa d e. By A3 By Ay By A By Ay
C; C C
J— FA | FA | FA |« FA le——,
Cy ;L }2 }1 Slo

Fig. 4-9 4-Bit Adder

Fig.4-9 causes a factor on , and
produces a

The signal from C, to the output carry C.4,

, So, for an
n-bit RCA, there are gate levels for the carry to
propagate from input to output.

Because the propagation delay will affect the output
signals on different time, so the signals are

The most widely used technique employs the principle of
to

B; 1_/ Si

e L)

Fig. 4-10 Full Adder with P and G Shown

= AB; steady state value
and carry

Cii1 = G + PG
G, : carry generate P, : carry propagate
Cy, = input carry
C, = Gy + PG,
C, =G, + P,C, = Gy + PGy + PyP,Cy
C; =G, +P,C, =G, + P,G; + P,P,Gy + P,P;P,Cy

C5 does not have to wait for C, and C; to
propagate.

look-ahead ge

ropagated at the same time as C,
D
D) >
D

.
D T

Fig. 4-11 Logic Diagram of Carry LLookahead Generator

= =
“LTAeldmE_lalel_ TaV or_ h

ahead
me of n-bit CLAA = XOR + (AND + OR)

C4 C4
B3 —0—)—] : P3
A 3 7 P3 <
Cs 3
e

|) >

>
) G2 Carry

Look ahead

enerator
7

Vo
) >
’ 0) >
So
Vi

Fig. 4-12 4-Bit Adder with Carry Lookahead

ﬁ

ry subtractor

subtractor ' M = 0->adder
Bz A3 By, Ay By A
Y Y Y
Cy C3 Cy Cq
C FA |=< FA |= FA |=<
S3 AY) S1
14
Fig. 4-13 4-Bit Adder Subtractor
W

It is noting Fig.4-13 that binary numbers in the

by
the same basic addition and subtraction rules as
unsigned numbers.

Overflow is a problem in digital computers because the
number of bits that hold the number is finite and a result
that contains n+1 bits cannot be accommodated.

N— - — -= —_ — — — — - —
— A

~
[\ ~
A el B O WE

— — — —
S—
e = = O O

When two unsigned numbers are added, an overflow is
detected from the

When two signed numbers are added, the sign bit is
treated as part of the number and the end carry does not
indicate an overflow.

An after an addition if one number
IS positive and the other is negative.

An overflow may occur if the two numbers added are
both positive or both negative.

Decimal

Sa

BCD Sum
Sa

Z

Z2

imal adder

dder can’t exceed 9 on each input digit. K is th

Binary Sum
Za

Zs

Derivation of BCD Adder

Table 4-5

C=ANONTVCMHW0RN

CO=m=QCO==0Q0

COQCQO = mm=0QOQO

COOCCOCOQO ==

COCOCOOCO0OCC

OmQOmQOQwmQwmQOm™

COmm=mQOO0m=m=Q0

CCOOC ™mm = =00

CCCOOCCOO ==

COCOCOCQOCOCOC

10
11

12
13
14

5
16
17
18
19

QO mem OO mwmQO

O

(8]

0000 =m=mm==0

COCOCOCOOOC ™mm

SN e g e g g g e e e

COmmm=mmQQO0O0

COOCOCOO ™ m = =

132

—
~ —

V'/H_e_nuthe binary sum is greater than 1001, we
obtain a representation.

The to the binary sum
representation and
also produces an output carry as required.

To distinguish them from binary 1000 and 1001,
which also have a 1 in position Zg, we specify further
that either Z, or Z, must have a 1.

C = K + Z8Z4 + ZSZZ

A decimal parallel
adder that adds n
decimal digits
needs n BCD
adder stages.

The

must

to the
iInput carry of the
next higher-order
stage.

Addend Augend
Carry K 4- bit binary adder <—C°flrry
out n
Zy Zy Zp Zy
Output ____
carry z
If =1 0
YYYY Y Y Y ¥
e A N
——4=bit binary adder

0110

by

Ss Si S, S

Fig. 4-14 Block Diagram of a BCD Adder

ry multiplier

ere are more bits in the partial products and it is ne
adders to produce the sum of the partial products.

B B A
1 0 0 B,
A
1 \\T‘O And
AoBq AoBo L
A1B, A1By
A
CoH C Cy 1 B By
Y Y
~
HA N HA
\A
C3 O Cyq

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier

For

and

bits we need

AND gates and
to

produce a product of

J+K bits.

K=4 and]J=3, we
need 12 AND gates

and two 4-bit adders.

Ao B 1B | B | By
L]
. .
By | B, | By | By
NN
Addend Augend
4-bit add
Sum and output y
A2

4-bit adder

Sum and output carry

N

Cs Cs Cy G G Cy

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

8 |
l/_‘
l'\
(;
(
(
:
(

The
can be
expressed logically with an
function as:

A — A3A2A1A0 ; B =
B3B,B;B,

i=AiBi+Ai,Bi, fOF | =

(A = B) = x3X3X1Xg

Qwu

— D-u<n

=) >-u>n

(A =B)

ugJ JU U

Fig. 4-17 4-Bit Magnitude Comparator

We A?E:}:DL
CIf B

equal, we compare the next -

lower significant pair of digits .

until a pair of unequal digits is Bzm |

reached.

If the corresponding digit of A ™ N
is 1 and that of B is 0, we B, o

conclude that A>B.

(A>B)= o
A3B'3+X3A B +X3X0A B +X3x0xy -
A,B’

(A<B)= =

A'3Bs+X3A'5B5+X3X,A" 1 By +X3X5X4
A’O BO Fig. 4-17 4-Bit Magnitude Comparator

LHU

Dy

=] Da>n)

JY UL U

(A = B)

—~
™~
o S S

-—

The decoder is called n-to-m-line decoder,
where m<2".

the decoder is also used in conjunction with
other code converters such as a BCD-to-
sevensegment decoder.

3-to-8 line decoder: For each possible input
combination, there are seven outputs that
are equal to 0 and only one that is equal to 1.

Table 4
w2 Tnih Tobl of o 40-:Lin Decoder

D0=

— O O O O o o Z-—

0 © €©€©© © © O e— O

— O O O O Ze— O o

0 O O O e OO O o

—D O O e— SO O <O o

—— O e O O O O oo

S e— O O O O O oo

—ED O O O O O o

D —— D — D — D ——

T D e— — D D e— —

= S T T e—— e— — —

Fig. 4-18 3-to-8-Line Decoder

oder with enable in

decoders are constructed with NAND gates,
mes more economical to generate the decode
terms in their complemented form.

indicated by the truth table , only one output can

ual to O at any given time, all other outputs are e
Il

Dy

>l
S
=]
3

Dy

coc o= Im
e =R =R N
—or~ o W
—_ e O

»—-»—o—»—U
—_ O = e e

o»—ni—tv—\r—AE

D>

JUOT

(a) Logic diagram (b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

A decoder with an enable input is referred to
as a decoder/demultiplexer.

The truth table of demultiplexer is the same
with decoder. A T

|

wWo NO PO OO

Demultiplexer

3 X 8
decoder

* E

3 X 8
decoder

E

— Dg to D15

Fio. 4-20 4 X 16 Decoder Constructed with Two 3 X 8 Decoders

-8 decoder with en
lement the 4-to-
decoder

143

—

From table 4-4, we obtain the functions for the combinational
circuit in sum of minterms:

S(x,y,2) =2(1,2,4,7)
Cx,y,2) = 2(3,5,6,7)

0

1

S
X —22 2
, 5 38 3
decoder 4

7 — 2() 5 C
6
7

Fig. 4-21 Implementation of a Full Adder with a Decoder

~ —
St -
Y = e

An encoder is the inverse operation of a decoder.

We can derive the Boolean functions by table 4-7
z=D,;+ D3+ Ds+ Dy
y = D, + D3+ Dg + D5
X = Dy + Ds + Dg + D5

Table 4-7

Truth Table of Octal-to-Binary Encoder
Inputs Outputs
D, D, D, D D, D D, D, x y z
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 | 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 | 0 0
0 0 0 0 0 1 0 0 1 0 I
0 0 0 0 0 0 1 0 | 1 0
0 0 0 0 0 0 0 1 1 1 1

If two are , the

produces an . We can establish
an input to ensure that only one input is
encoded.

in the octal-to-binary encoder is
that an IS generated when
; the output is the same as when Dy is
equal to 1.

The discrepancy tables on Table 4-7 and Table 4-8
can
to indicate that at least one input is equal to 1.

aamet ety €1 ICOVOUC!

V=0->no valid inputs
V=1->valid inputs

in output columns
represent
don’t-care conditions
in the input columns are

useful for representing a
truth

table in condensed form.
Instead of listing all 16
minterms of four variables.

Table 4-8
Truth Table of a Priority Encoder
Inputs Outputs
DD D b x gV
0 0 0) X X 0

0
I

X
X

0
0

l
X

0

0
0

< <

Implementation
of table 4-8

D2 + D3
— D3 + D]_D’Z
B D, + D, + D,

01 11

O |lO0O0 O | O

D3
y = D3 + D]D'g

== — = — -_— I W -_— - —_—— e =
D;
00 01 11 10 00
00| X 1 1 1 0| X
01 1 1 1 01 1
Dy
11 1 1 1 11 1
Dy Dy
10 1 1 10
D;
X = Dg + D
Fig. 4-22 Maps for a Priority Encoder
Dj
D2 DC
D,
Dy }_/

Fig. 4-23 4-Input Priority Encoder

.

(a) Logic diagram

plexers

I, Truth Table> S
1

)
)

= O

S

(b) Block diagram

Fig. 4-24 2-to-1-Line Multiplexer

(b) Function table

}
}
}
}

(a) Logic diagram

Fig. 4-25 4-to-1-Line Multiplexer

150

er circuits can be combined with common sele
ide multiple-bit selection logic. Compare with Fig4

Ao)
i >— Yo
A4 R
— D_ Y1
Az)
— D_ Ys
Az Iﬁ [) Y
—1 D—— Y3
Bo —
—1 / Function table
By — S| Output vV
|) 1 X| allO's
0 0] sclect A
B> I 0 1| select B
I S
Bs L)
—
r\‘"»c
(sei?act) el Dc
(enfble) DC

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

ﬁ

A more efficient method for implementing a Boolean
function of n variables with a multiplexer that has n-
1 selection inputs.

F(XI YI Z) = 2(1121617)

4 X 1 MUX

y —15%

x —'s,
X vy z F
0 0 O 0
0o o1 [1] 72 z —0 F
0 170 |1
0o 1/1 0 77 S
1 0{0 | O Fe0 0 ——2
1 of1 o °
1 1[0 |1 o I 3
1 1|1 |1 B

(ay Truthtable (b) Multiplexer implementation

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

multiplexer

(1, 3, 4, 11, 12, 13,

Al Bl CI D)

<
=
—
X
o0
S — e~
Ly \»nn U1 [e 2 T i Vo NN T o
[&
R A Q o | o Q| — | —
Il [l I Il I Il Il I
~ S F_ Sy ~ ~ ~
N oH o —H|l— DOl oo o O —|—|— —
Qo = oo —e—Ho
O ool —locoo|l—~ —o0 o —|lo ol—
~

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer

ate Gates

lexer can be constructed with three-state ga

Normal input A N Output Y =AifC=1
High-impedance if C = 0
Control input C

Fig. 4-29 Graphic Symbol for a Three-State Buffer

YWWL

g
r\
L Y I3
g 0
Select 1 1
ll> So 2 x4
decoder 2
Enable — EN 3

(a) 2-to-1- line mux (b)4 -to -1 line mux

. Fig. 4-30 Multiplexers with Three-State Gates !

A module can be described in any one of
the following modeling techniques:

Gate-level modeling using instantiation of primitive
gates and user-defined modules.

Dataflow modeling using continuous assignment
statements with keyword assign.

Behavioral modeling using procedural assignment
statements with keyword always.

evel Modeling

t is specified by its logic gates and their intercon
g recognizes 12 basic gates as predefined primitives

ogic values of each gate may be 1, 0, x(unknown),
h-impedance).

Table 4-9
Truth Table for Predefined Primitive Gates

and |0 1 X z or 0O 1 X ‘K
0 0O O O O 0 0O 1 > S
1 0 1 X X | 1 1 1 |
X 0 ‘X X X X X 1 X X
z 0 X X X z X 1 X X
xor |O 1 x =z not input output
0 0 1 x X 0 1
1 1 O ‘E x 1 0
X X X X =x X x
z % X X X z X

a ZAVAC el :

Verilog code

HDL Example 4-1

e deCI a rati O n iS fo r int //Gate-level description of a 2-to-4-line decoder

//Figure 4-19
module decoder_gl (A,B,E,D);
input A,B,E;
output (0:3]D;
wire Anot,Bnot,Enot;
not
nl (Anot,A),
n2 (Bnot,B),

n3 (Enot,E);
nand
n4 (D[0],Anot, Bnot, Enot),
D n5 (D[1],Anot,B,Enot),
| 0 né (D[2],A,Bnot,Enot),
n7 (D[3],A,B,Enot);
endmodule
E A B DyDy Dy Dy
D
= o xx 1111
AT—Dof 0 00 01 1 1
0 0 1 1 01 1
b_DQ 0 1 0 11 0 1
*—
B 0 1 1 11 1 0
B
*—
E DC
(a) Logic diagram (b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

e —

There are two basic types of design methodologies:

and

Top-down: the top-level block is defined and then

the sub-blocks necessary to
block are identified.(Fig.4-9

build the top-level
pinary adder)

Bottom-up: the building blocks are first identified
and then combined to build the top-level
block.(Example 4-2 4-bit adder)

4 A aValadal..TT101,

ption
HDL Example 4-2

//Gate-level hierarchical description of 4-bit adder
// Description of half adder (see Fig 4-5b)
module halfadder (S,C,x,y);
input x,y;
output S5,C;
//Instantiate primitive gates
xor (S,x,y);
and (C,x,y);
endmodule

159

—

Full-adder

//Description of full adder (see Fig 4-8)
module fulladder (S,C,x,y,z);
input x,y,z;
output 5,C;
wire S1,D1,D2; //Outputs of first XOR and two AND gates
//Instantiate the halfadder
halfadder HAL (S1,D1,x,y),
HA2 (S,D2,81,2);
or gl(C,D2,D1);
endmodule

160

—

4-bit adder

//Description of 4-bit adder (see Fig 4-9)
module _4bit_adder (S,C4,A,B,C0);

input (3:0] A,B;

input CO;

output [(3:0] S;

output C4;

wire C1,C2,C3; //Intermediate carries
//Instantiate the fulladder
fulladder FAO (S[0],C1,A[0].,B[0).CO),
FAl (S[1),C2,A[1].B[1]).C1),
FA2 (S[2],C3,A[2).,B[2]),C2),
FA3 (S[3),C4.A[3]).B[3],C3);

161

—_—

— —_ —_ —~—~ = — - —~ = - o - - -

_ _— ~— — —

- R S

Gates statement: gate name(output, input, control)
> >

A = OUT when control = 1, OUT = z when control = 0;
> >

Y = B’ when enable = 0, Y = z when enable = 1;

in [— out in [— out
control ;I control j

bufirfl bufrfitfO
in ?% out in ?% out
control control

notifl notifo

Fig. 4-31 Three-State G ates

)

/‘—-—,-\ —ﬁ -

— N D’ —

HDL uses the keyword g [o

to indicate that the
ou_tput has multiple . ~
drivers. I«T
select .
module muxtri (A, B, Se|eCt, Fig. 4-32 2-to-1-Line Multiplexer with Three-State Buffers
ouT);

input A,B,select;

output OUT;

tri OUT,;

bufifl (OUT,A,select);

bufifO (OUT,B,select);
endmodule

UN
SEQUENTIAL

CIRCUITS

In this chapter you will learn about:
Logic circuits that can store information
Flip-flops, which store a single bit
Registers, which store multiple bits
Shift registers, which shift the contents of a
register
Counters of various types

Set
Sensor —

Memory On/Off

element

Reset >

Alarm turned on when On/Off = 1

Alarm turned off when On/Off = O

Once triggered, alarm stays on until manually reset
The circuit requires a memory element

Alarm

Basic latch is a feedback connection of
two NOR gates or two NAND gates

It can store one bit of information

It can be set to 1 using the S input and
reset to O using the R input.

A DC B {>07

A feedback loop with even number of
Inverters
IfA=0,B=1orwhenA=1,B=0
This circuit is not useful due to the lack of
a mechanism for changing its state

emory Element with N
Gates

Reset

Set —DO_DOTQ

Gated latch is a basic latch that includes input gating and a
control signal

The latch retains its existing state when the control input is
equal to O

Its state may be changed when the control signal is equal to
1|. II? our discussion we referred to the control input as the
cloc

We consider two types of gated latches:

Gated SR latch uses the S and R inputs to set the latch to 1 or reset it
to O, respectively.

Gated D latch uses the D input to force the latch into a state that has
the same logic value as the D input.

= 7_\\ =" 1k = = 0r + 1%
—J =2] = = 20y {ino changs)
1 O e el ino change)
—lk I 1 o 1 o
. 1 1 o 1
™y =2 1 1 1 =
e — - =7
{a)y Circuit {2y Characteristic tabla
1
[y N
]
1
x ! ! | 1 ! L
1
-t | | L |
1 - — -
2 7
O -_——
_ 1 - — -
2 7
D ——

{c)y Timiing diagrarmm

= -
Tk
R 2

() Sraphical syirmbaol

B Gated S/R Latch

(IData) 2
1k
Q
R
(=) Circuit

Clk I QCr+ 1D o Q

O = Q)

1 O O

1 1 1

i O

(b)) Characteristic table

(c) Graphical symbol
£y

¥ 3
Clk

fq

—_— e Time
() Timing diagram

—

S— —

Setup Time t_,
The minimum time that the input signal must be stable
prior to the edge of the clock signal.

Hold Time t;

The minimum time that the input signal must be stable
after the edge of the clock signal.

T T lau

» <—th

Clk

A flip-flop is a storage element based on
the gated latch principle

It can have its output state changed only
on the edge of the controlling clock signal

We consider two types:
Edge-triggered flip-flop is affected only by the input
values present when the active edge of the clock occurs
Master-slave flip-flop is built with two gated latches

- The master stage is active during half of the clock cycle,
and the slave stage is active during the other half.

- The output value of the flip-flop changes on the edge of
the clock that activates the transfer into the slave stage.

—Master Slava

Clock I

Clock

OQm

D QS D Q=
Clk O Clk O
o
(a) Circuit

(b) Timing diagram

(c) Graphical symbol

Ol O

ve-Edge-Triggered
Flop

Clock > Q

Graphical symbol

D D QI Qs;
Clock ck Q[— Q=
D QI Qp
= Qf[— a»s
D QI Q¢
— Q — ac
(a) Circuit
Clock
= L | I LI 1 1
Qa I 1
Q
Q

Timing,diagram

rison of Level-Sensitiveé an
gered D Storage Elements

arison of Level-Sensitiv
ge-Triggered D Stora
Elements

aster-Slave D Flip-Flop wi
Clear and Preset

-
Vv
9]

Clock
(a) Circuit
T o+ 1 — T o
O QL) -
1 Qi 1) — ¥ Ql—

(b) Characteristic table (c) Graphical symbol

Clock

; T O

=S - @
Clock
(a) Circuit

J K|1Q((t+1)

0O 0 Q (1) T Ql—

Lol 1 T

—_ 1 olL—
1 1| Qo =2

(b) Characteristic table (c) Graphical symbol

— —~ —

— - - - - — - N - —

Ql

Flip-flop exci

SR flip-flop (Set,
Reset)

T flip-flop (Toggle)

D flip-flop (Delay)

JK flip-flop =

0->0
0->1
1->0
1->1

0->0
0->1
1->0
1->1

Excitation Tables

Previous State -> Present
State

X O = O

Previous State -> Present State

O »r O X

0
1
1
0

Excitation Tables
_ Previous State -> PresentState | D |

0->0
0->1
1->0
1->1

Previous State -> Present
State

R O = O

0->0 0 X
0->1 1 X
1->0 X 1
1->1 X 0

0->0

0->1

1->0

X|lol—~|O]|] 0

o|lr| o] X o)

1->1

0->0

0->1

1->0

1->1

o|lr|rr|lOo]| H

Timing Diagrams

CLK

CLK

D
0->0 0
0->1 1
1->0 0
1->1 1

J K
0->0 0 X
0->1 1 X
1->0 X 1
1->1 X 0

Timing Diagrams

CLK

CLK

N - -

S

Procedure uses excitation tables

Method: to realize a type A flipflop using a type B flipflop:

1. Start with the K-map or state-table for the A-flipflop.
2. Express B-flipflop inputs as a function of the inputs and present state of
A-flipflop such that the required state transitions of A-flipflop are reallized.

. | g |
9 o [Eve -
y O— H —CL,)—1y
Type B Type A

1. Find Q* = f(g,h,Q) for type A (using type A state-table)

2. Compute x = f1(g,h,Q) and y=f2(g,h,Q) to realize Qt.

Example: Use JK-FF to realize D-FF
1) Start transition table for D-FF
2) Create K-maps to express J and K as functions of inputs (D, Q)

3) Fill in K-maps with appropriate values for J and K -
to cause the same state transition as in the D-FF transition table

BNO o 1 K Q| RS|JK|T]|D
R 0 x o010 1|1 x|
(1) (1) >1< >1< 1 0|1 o0fx 1f[1]o0
| X 0 1 1|0 x|x o]o]z1
D D

State-Table o 0 1 S
e.g.

when D=Q=0, then Q+*=0 0] 0 [|1 Q o|[X]]| X

the same transition Q-->Q+*
is realize with J=0, K=X 11 X ||X 1111

Example: Implement JK-FF using a D-FF

] K |Q Q+ D T
0 0|0 0 0 0
0 |1 1 1 0
0O 1|0 0 0 0
Bl |1 0 0 1
1 0 |0 1 1 1
0 |1 1 1 0
i1 | O 1 1 1
i |1 0 0 1
J
JK J JK —J
ON00 01711 10" QN\QQ 01 i1 10
ofo|O (L1 f1 ojofo|1]1
1jo|o|U Oj]1]1]0
K K

d=jQ + K¢ t=jQ + kq

1.

TN

i,

— |C
Ik

DFF

C

D,
>

— |C

T-FF

Clk

- S - - - - - - ~— - - — —_—— =

PRESET and CLEAR:
asynchronous, level-sensitive inputs
used to initialize a flipflop.

PRESET, CLEAR: active low inputs

PRESET = 0 --> Q =
CLEAR=0 -->Q =

LogicWorks Simulation

PRESET

e,
Clk— ¢ e

ﬁ)

CLEAR

~_SET

-

~
o T N 2 Q

(

E)
0 CLR

Clk _l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_[
CLR :

SET

Counters are a specific type of
sequential circuit.

Like registers, the state, or the
flip-flop values themselves,
serves as the “output.”

The output value increases by
one on each clock cycle.

After the largest value, the output
“wraps around” back to O.

Using two bits, we’'d get
something like this:

Present State | Next State
A B A B

— = O O
O~ =~ O
O —~ O =

0]
1
0]
1

(4

Counters can act as simple clocks to keep track of “time.’
You may need to record how many times something has

happened.
How many bits have been sent or received?
How many steps have been performed in some computation?

All processors contain a program counter, or PC.
Programs consist of a list of instructions that are to be executed

one after another (for the most part).
The PC keeps track of the instruction currently being executed.

The PC increments once on each clock cycle, and the next
program instruction is then executed.

Let’s try to design a slightly different two-bit counter:
Again, the counter outputs will be 00, 01, 10 and 11.

Now, there is a single input, X. When X=0, the counter value should
increment on each clock cycle. But when X=1, the value should
decrement on successive cycles.

We'll need two flip-flops again. Here are the four possible states:

® Here's the complete state diagram and state table for this circuit.

0 Present State | Inputs | Next State
00 01 Q1 Qo X Qi Qo

= == =0 0|0
= = OO~ m~=OO
_— O~ O~ O|~ O
_ O O —~ O R~k
O O~ —|O O+

0111

If we use D flip-flops, then the D inputs will just be the same as the
desired next states.

Equations for the D flip-flop inputs are shown at the right.

Why does make sense?
Qo

Present State | Inputs | Next State O|1[0]1

Q1 Qo X Q Qo Ql1[0]1]0O0

0) 0) 0) 0 1 X

0] 0) 1 1 1

0) 1 0) 1 0) D;=Q; ®Qy,® X

0 1 1 0 0 Qo

1 0 0 1 1 1| 1| oNl.

1 0 1 0 1 Q| 1 1 | ollE

1 1 0) 0 0) X

1 1 1 1 0)

Here are some D Flip Flop
devices from LogicWorks.

They have both normal and
complemented outputs, so we
can access QO’ directly without
using an inverter. (Q1’ is not
needed in this example.)

This circuit counts normally
when Reset = 1. But when
Reset is 0, the flip-flop outputs
are cleared to 00 immediately.

There is no three-input XOR
gate in LogicWorks so we've
used a four-input version
instead, with one of the inputs
connected to 0.

D_

Qo' —

* Reset

If we use JK flip-flops instead, then we have to Q) Q(t+1)

compute the JK inputs for each flip-flop. 0 0
Look at the present and desired next state, and

X X = Oly
O —~ X X |

use the excitation table on the right. ? (1)
1 1
Present State | Inputs | Next State Flip flop inputs
Q1 Qo X Q1 Qo J1 K Jo Ko
0] 0] 0] 0 1 0] X 1 X
0] 0] 1 1 1 1 X 1 X
0] 1 0] 1 0] 1 X X 1
0] 1 1 0 0] 0] X X 1
1 0 0 1 1 X 0 1 X
1 0] 1 0 1 X 1 1 X
1 1 0] 0 0 X 1 X 1
1 1 1 1 0] X 0] X 1

Present State | Inputs | Next State Flip flop inputs
Q1 Qo X Q1 Qo J1 Ki Jo Ko
0) 0] 0) 0] 1 0) X 1 X
0 0 1 1 1 1 X 1 X
0) 1 0) 1 0) 1 X X 1
0) 1 1 0 0) 0) X X 1
1 0 0] 1 1 X 0] 1 X
1 0] 1 0] 1 X 1 1 X
1 1 0] 0 0 X 1 X 1
1 1 1 1 0 X 0] X 1

We can then find equations for all four flip-flop inputs, in terms of the present state
and inputs. Here, it turns out J; = K; and J, = K,.

J; =K =Qy X+ Qy X’

JO = KO = 1

Here is the counter again, but
using JK Flip Flop n.i. RS devices
instead.

The direct inputs R and S are
non-inverted, or active-high.

So this version of the circuit
counts normally when Reset = 0,
but initializes to 00 when Reset is
1.

D_

=0

=0

en|—1

A

* Reset

® This counter is called
asynchronous because not
all flip flops are hooked to
the same clock.

e Look at the waveform of
the output, Q, in the timing
diagram. It resembles a
clock as well. If the period of
the clock is T, then what is
the period of Q, the output
of the flip flop? It's 2T!

e We have a way to create a
clock that runs twice as slow.
We feed the clock intoa T
flip flop, where T is
hardwired to 1. The output
will be a clock who's period
is twice as long.

CLK

Qf

] —»

i

Q == Q0 = Q =

clock has period T. QO has
d 2T. Q1 period is 4T
flip flops the period is 2".

Registers,Counters,State
Reduction

® This is called as a ripple
counter due to the way the FFs
respond one after another in a

kind of rippling effect.

CLK

=]
=23
=
[
<
=
i

O == 0O = 0 = 0 =

=

-

(=
Aemg-mp----f

[=]

-

(=

1 —T O

N ¢

CLK | —»

T Q

— - Q’

1 —T ©Q
> QY

—

To eliminate the "ripple" effects, use a common clock for
each flip-flop and a combinational circuit to generate

the next state.
For an up-counter,
use an incrementer =>
Incre-
Asmente§3 D3 Q3[
A2 S2 D2 Q2
Al S1 D1 Q1p}—~
AO S0 DO QO }—t

Clock >

Internal details =>
Internal Logic
XOR complements each bit

AND chain causes complement
of a bit if all bits toward LSB
from it equal 1

Count Enable

Forces all outputs of AND
chain to 0 to “hold” the state

Carry Out
Added as part of incrementer

Connect to Count Enable of
additional 4-bit counters to
form larger counters

Incrementer ——,
Count enable EN

n Tﬁﬁ_\/ D Qg
b -
k) = C

L),_‘_> D Q@

3 P D Q,
= C

LFJ Carry
.................... output CO
Clock

(a) Loagic Diagram-Serial Gatina

- —~ o~ —~ —_ — - ~ \

Use the sequential logic model to design a synchronous
BCD counter with D flip-flops

State Table => Current State Next State
Input combinations Q8Q4Q2Q Q8 Q4 Q2 Q1
1010 through 1111 0000 00 0 1
are don't cares 0 001 0 010
0010 0.0 11

00 1 1 01 00

01 00 0.1 0 1

0101 0110

0110 01 il

01 1 1 1. 000

1 0020 1 001

1. 0 0 1 00 00

Use K-Maps to two-level optimize the next state equations and manipulate
into forms containing XOR gates:

D1 = Q1’

D2 = Q2 + Q1Q8’

D4 = Q4.+ Q1Q2

D8 =Q (Q1Q8 + Q1Q2Q4)
Y = Q1Qé)

The logic diagram can be drawn from these equations
An asynchronous or synchronous reset should be added

What happens if the counter is perturbed by a power disturbance or other
interference and it enters a state other than 0000 through 1001?

Find the actual values of the six next states for the don’t care combinations
from the equations

Find the overall state diagram to assess behavior for the don’t care states
(states in decimal)

Present State Next State

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1

e 1 0 1 0 11

o 1 1 O 1 10

1 1 0 O 1 1 0 1

1 1 0 1 O 1 0 O

1 110 1 1 11

1 1 11 O 01 O

Svnchronoune RCT ~Aanftiniiad)
= W BB 88 Wi

For the BCD counter design, if an
Invalid state is entered, return to a valid
state occurs within two clock cycles

Is this adequate?!

("\

BOUINLING all afviltialy SCQUEIICES
0 TABLE 7-10
State Table and Flip-Flop Inputs for Counter ED A
|
Present
State Next State Ty
DA = DB = DC= I D—|
A B C A(t+1)B(t+1)C(t+1) FD T R
e b
0 0 0 0 0 1 ek
O O 1 O l O ABC
0 1 0 10 0 Rese——=(_ 00)
1 0 0 1 0 1 o Coni D) oot
1 0 1 1 1 0 1
1 1 0 O O O 010

101

The examples shown so far have all had 2" states, and used n flip-flops.
But sometimes you may have unused, leftover states.

For example, here is a state table and diagram for a counter that
repeatedly counts from 0 (000) to 5 (101).

What should we put in the table for the two unused states?

Present State Next State @

Q QA Q| Q@ Q Qo

0 0 0 0 0 1

0 0 1 0 1 0 @ @
0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

IR
1 1 0 ? ? ?

| > > > @

To get the simplest possible circuit, you can fill in don’t cares for the next
states. This will also result in don’t cares for the flip-flop inputs, which can
simplify the hardware.

If the circuit somehow ends up in one of the unused states (110 or 111),
its behavior will depend on exactly what the don’t cares were filled in
with.

Present State Next State
Q Qo Q Qo

0 o 0 1 @

0
>

_ = = - O 00 00
X X O~ - O O O

0 1
1 0
1 1
0 0
0 1
1 0
1 1

X X OO0 0O - -
X X O -~ O -~ 0O

W A U N AN N — = “ = “— N — N O N~ A L

To get the safest possible circuit, you can explicitly fill in next states for
the unused states 110 and 111.

This guarantees that even if the circuit somehow enters an unused state,
it will eventually end up in a valid state.

This is called a self-starting counter.

Present State Next State @ @
Q. Q Q| Q Qi Qo

0 0 0 0 0 1 @

0 0 1 0 1 0 @ @
0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

B (o 0 o Gm ol
1 1 0 0 0 0

1 1 1 0 0 0 @

—

There are a couple of different counters
available in LogicWorks.
The simplest one, the Counter-4 Min, just

increments once on each clock cycle.

This is a four-bit counter, with values ranging
from 0000 to 1111.

The only “input” is the clock signal.

Q3
Q2
Q1
— CLK QO

N 4=

—

—
S

More complex counters are also possible. The full-featured LogicWorks

Counter-4 device below has several functions.

It can increment or decrement, by setting the UP input to 1 or O.
You can immediately (asynchronously) clear the counter to 0000 by

setting CLR = 1.

You can specify the counter’s next output by setting D;-D, to any four-

bit value and clearing LD.
The active-low EN input enables or disables the counter.

- When the counter is disabled, it continues to output the same value

without incrementing, decrementing, loading, or clearing.
The “counter out” CO is normally 1, but becomes 0
when the counter reaches its maximum value, 1111.

CLK
UpP
CLR

D3
D2
D1
DO

LD
EN

CQ

Q3
Q2
Q1
Q0

As you might expect by now, we
can use these general counters
to build other counters.

Here is an 8-bit counter made
from two 4-bit counters.

The bottom device represents the
least significant four bits, while the
top counter represents the most
significant four bits.

When the bottom counter reaches

1111 (i.e., when CO = 0), it enables

the top counter for one cycle.
Other implementation notes:

The counters share clock and clear
signals.

Lk
LIF Oy
CLR

03 03

02 o

o1 m

oo Qo
LD

Er

Lk
LIF COf
CLR

03 o3

o2 02

o1 m

oo Qo
LD

EM

We can also make a counter that “starts” at some value besides 0000.

In the diagram below, when CO=0 the LD signal forces the next state to
be loaded from D;-D,.

The result is this counter wraps from 1111 to 0110 (instead of 0000).

L
CLK

-
0] UP CQ
CLR
0— D3 Q3
1— D2 Q2 6
1— D1 Qf
0— D0 QO *
—a| LD
—C EN

We can also make a circuit that counts up to only 1100, instead of 1111.

Here, when the counter value reaches 1100, the NAND gate forces the
counter to load, so the next state becomes 0000.

LI
~ _LCLI(
OJ———-UurP cO—
CLR
0— D3 Q3—*
0— D2 Q2 +
0— D1 Qf *
0— D0 QO
—o|LD l
+——C| EN

Counters serve many purposes in sequential
logic design.
There are lots of variations on the basic
counter.

Some can increment or decrement.

An enable signal can be added.

The counter’s value may be explicitly set.

There are also several ways to make ;
counters.

You can follow the sequential design principles to
build counters from scratch.

You could also modify or combine existing counter
devices.

Sequential Ci
D

Creating a sequential circuit to address a design need.

Steps in the design process for sequential
circuits

State Diagrams and State Tables
Examples

(P
)

Steps in Design of a Sequential Circuit

1. Specification — A description of the sequential
circuit. Should include a detailing of the inputs, the
outputs, and the operation. Possibly assumes that
you have knowledge of digital system basics.

2. Formulation: Generate a state diagram and/or a
state table from the statement of the problem.

3. State Assignment: From a state table assign
binary codes to the states.

4. Flip-flop Input Equation Generation: Select the
type of flip-flop for the circuit and generate the
needed input for the required state transitions

— ~ -~ 1 N ~ —_— ™~ ~

—~
—_— e O O e B B - ‘ ‘ ‘ . - B O O\

5. Output Equation Generation: Derive output
logic equations for generation of the output
from the inputs and current state.

6. Optimization: Optimize the input and output
equations. Today, CAD systems are typically
used for this in real systems.

/. Technology Mapping: Generate a logic
diagram of the circuit using ANDs, ORs,
Inverters, and F/Fs.

8. Verification: Use a HDL to verify the design.

Sequential machines are typically
classified as either a Mealy machine or a
Moore machine implementation.

Moore machine: The outputs of the circuit

depend only upon the current state of the
circuit.

Mealy machine: The outputs of the circuit
depend upon both the current state of the
circuit and the inputs.

The specification: The circuit will have
one input, X, and one output, Z. The
output Z will be 0 except when the input
sequence 1101 are the last 4 inputs
received on X. In that case it will be a 1.

Create states and meaning for them.

State A - the last input was a 0 and previous
inputs unknown. Can also be the reset state.

State B - the last input was a 1 and the
previous input was a 0. The start of a new
sequence possibly.

Capture this in a state diagram

0/0

Capture this in a state diagram

Circles represent the states
Lines and arcs represent the transition between
state.

The notation Input/Output on the line or arc
specifies the input that causes this transition and
the output for this change of state.

0/0

Add a state C

State C — Have detected the input sequence 11
which is the start of the sequence.

~ — " P ~—

A" A R A 12 R A -,,,

Add a state D

State D - have detected the 3 input in the
start of a sequence, a 0, now having 110.
From State D, if the next input is a 1 the
sequence has been detected and a 1 is output.

The previous diagram was incomplete.

In each state the next input could be a 0
ora 1. This must be included.

—~ —

_— S —

The state table
This can be done directly from the state
diagram.

Now need to do a state assignment

Next State Output
Prresent State | X =0 | X=1 X=0 | X=1
A A B 0 0
B A C () 0
C D C 0 0
D A B 0 1

Will select a gray encoding

For this state A will be encoded 00,
state B 01, state C 11 and state D 10

Next State Output
Prresent State | X =0 | X=1 X=0 | X=1
00 00 01 0 0
0l 00 11 0 ()
11 10 11 0 0
10 00 01 0 l

Generate the equations for the flip-flop
Inputs

Generate the D, equation

QuQ
X N_00 01 11 10

0 T\

I I

(1

Dy =li.!::(.?l T XQ;

I

Generate the D, equation

QoQ
X ON_00 01 11 10
0

|a 1|1 D

The next step is to generate the equation

for the output Z and what is needed to
generate It.

Create a K-map from the truth table.

{-?IJQI
X O N_00__ 01 11 10

D —
Z=XQQ
| 1

D"'QL
> ()

U
MEMORY

Memories are made up of registers

Each register in the memory is one
storage location also called memory
location.

Each storage element is called a cell .
These cells are made up of flip-flops or
capacitors in semiconductor memories.

Data stored in @a memory by a process
called writing

N

Memory is mainly classified into
Volatile memory
non-volatile memory

In volatile memory data will be erased
once the power is switched off

In non-volatile memory data is retained
even after the power is switched off

RAM is volatile
ROM is non-volatile

— N —
— = - ~ ~ —

N~ UYL aAC- . ’ —101L%)

RAM is of two types
SRAM (Static RAM) (flip-flop gates)

SRAM is made of flip-flops and the data is retained
until the power is on

DRAM (Dynamic RAM)

DRAM is made of capacitors and the data needs
to be refreshed to retain the contents of the memory. For
that purpose we need additional circuit called refresh
circuitry to refresh the data after a particular time interval.

— — ‘) —

N =
= = O O

ROM is classified as
ROM
PROM (programmable)
EPROM (erasable programmable)
EEPROM (electronically erasable programmable)

l n data input lines

k address lines ——>
Memory unit

2k words
n bit per word

Read ——>

Write ———>

i n data output lines

Fig. 7-2 Block Diagram of a Memory Unit

k address lines : select one
particular word

read, write : specify the direction
of transfer

n data input line : provide the
Information to be stored in
memory

n data output line : supplying the
information coming out of
memory

it memory cell

Select

l Select
S } Output Input——-{ BC |——> Output

Read/Write

AH)HJ

Read/Write

(a) Logic diagram (b) Block diagram

Read/Write

4x4 RAM

Input data

| BC > > BC > = BC
3 3 3
Word 1 he I 7

2 < 4 BC BC BC
decoder i i i
Word 2 s 7 s

BC BC BC
EN 1 3 3
Word 3 1 ¥ ¥

BC BC BC
3 3 3

Output data

Decoder with k input and 2% output
requires 2 AND gates with k input

K input decoder can be implemented by
two k/2 input decoders with one for
column and another for row

e.g., 10x1024 decoder can be
implemented by two 5x32 decoders

ensional decoding structu
memory

5 X 32 decoder

o 1 2 . 20 31

0
1
2

I . binary address

5 X 32 01100 10100

decoder X Y

31

r

8-bit column
register

I 8 X 256
decoder

8-bit

row decoder
register cell array

|

Data Data
in out

ddress multiplexin
64K-word memory

256 X 256
8 > 256 memory <— Read/Write

* Range of memory size
— 210~232 words

*x bytes
— K=210. M=220. G=230 -
— 64K=216 - 2M=221 .4G=232 -
* Memory 1K x 16
— 10 bits address - 16 bits in each word

* Determine the no. of bits for

address _
k: no. of address bits

m: total number of words

trol inputs to memory

Memory enable Read/write Memory operation

X None
Write to select word

Read from selected word

—_ ~ — ~ . - ~ 5 L~ B —

access time
the time required to select a word and read it

cycle time
the time required to complete a write cycle

access time - cycle time
equal to a fixed number of CPU clock

Tape Reel Take-up Reel

Read/Write Head

UENTIAL MEMORY-MAGN

configuration of a tape:

Track 1 Block Block

Track 9

Surface organization of a tape

Read/Write Head

~D——0O0=~350MN

Read/Write Heao

Physical layout of a magnetic disk

organization of a dis

Land IL.and Land L.and L.and
Pit

Plastic or Glass

a. Master IDDisc

Molding ZMiaterial

b. Mold

IL.abel

Protective L.ayver

Reflective T_.aver

Polvcarbonate
Resin

I . aser Detector
IL.aser Source

c. CD-ROM

Creation and use of CD-ROM

Byte (8 bit)

Symbol (14 bit)

.- - Frame (42 symbols)

Sector (98 frames)

M format

Label

Protective Layer

Reflective Layer

Simulated Pit

Polycarbonate
Resin

>
x

Laser Detector

Laser Source

Making a CD-R

Dye

Label

Reflective Layer

I BN @ 1 B B o
T
‘ Amorphous (pit)
Crystalline (land) Polycarbonate
Resin

.{
Laser Detector
Laser Source

Making a CD-RW

DVD capacity:

Feature Capacity
single-sided, single-layer 4.7 GB
single-sided, dual-layer 8.5GB
double-sided, single-layer 9.4GB
double-sided, dual-layer 17 GB

DVD capacities

CPU

Memory

Cache

~

= ~ =) = =~ ayY.Y-Y 1L 1. . B , e = et
C: C’.’Lc ‘_\i‘cc.v. Jperacion = riowcinars

START

Receive address
RA from CPRPU

Is block
containing RA
in cache?

Mo Access main
> memory for block
containing RA

Allocate cache
lime for main
memory block

| |

Load main
memory block
into cache line

Fetch RA word
and deliver
to CPU

Deliver RA word
to CPU

- ~

(1)

£~
~ S B — _

f'\

Size

Mapping Function
Replacement Algorithm
Write Policy

Block Size

Number of Caches

- =
— — —

N 4 =

e — — e —

Cost
More cache is expensive

Speed
More cache is faster (up to a point)
Checking cache for data takes time

Address
w [

Address
buffer

Control Control

Processor > > Cache »

Data
buffer

ol P%

Data

System Bus

Cache of 64kByte

Cache block of 4 bytes
i.e. cache is 16k (21%) lines of 4 bytes

16MBytes main memory

24 bit address
(224=16M)

54
P
Cache Main Memory
Tag Daia WL
1 Wl
W2 B
ol K
. . | . |
| |
-1 I : I | : |
< ‘ | | I I

—— W

- Ly : Widi+1)

Compare L% el Witir2) B
(hit in cache)

NE

{miss in cache)

Mapping Cache

b i 8
Fa

Cache
Menvory Auddness Tag Ikiia
| Tag | wWiord |
51
-
Y
1 - 1
-
1 1
-
W
-
1 - 1

COMTpRare

{hit im cache)

- -_—— - =

(miss in cachel

Mlzim Memory

WD
W1
W2 B
W3
1 1
-
I
1 1
W
Wi+l
Wdj+2 H'_1
WAl +3
| - '
1
1 -
- |
l . - =

Cache Main Memory
Mlemory Address lag Ixata "
| ET | St [word | l I N
B
-l [~ d w l]
by Py Fi
I Sat 0 1 - 1
o, 1
1 1 I I
-
g L n I I
Fal 1
r |_ 15 R
1 I
- 1
4]t : |
Commpare i-' Fr Hal | - |
M 1 - I
| . | I
{hit in cache) I— Fap g 1 I
1 1
1 1
(miss in cache)
A M ‘ == -1, i - DTl -
— N — e A = — = — — = — -
- | ™ ~ — — - o -~

PLD (Programmab
Device)

Fixed rogrammable
Inputs > AND array - p (§R arra
(decoder) y
(a) Programmable read-only memory (PROM)
I t - programmable - Fixed Output
nputs AND array OR array utputs
(b) Programmable array logic (PAL)
I t - programmable - programmable Output
nputs AND array OR array utpuis
(¢) Programmable logic array (PLA)
Fig. 7-13 Basic Configuration of Three PLDs

similar to PROM

does not provide full decoding and does
not generate all the minterms

decoder is replaced by an array of AND
gate

_1> AR
B e
ED e
E A'BC

C C’ B B'A A, (7?

3 inputs, 4 produ
tputs

* PLA Programming Table consists of three sections
— 1st, list the product terms numerically
- 2nd, specify the required path between inputs and
AND gates

— 3rd, specifies the paths between the AND and OR

B ' outputs

g d t S Product inputs (M) ©)
term A B C Fa F,
AB’ 1 1 0
AC 2 1 -
BC 3 - 1
ABC' 4 0 1 0 1

*Implement the following two Boolean
functions with a PLA:

F,=(AB,C)=)(0124)
F,=(AB,C)=) (056,7)
*xSimplified by K-map :

F,.=(AB+AC +BC)’
F,=AB+AC+AB'C’

111

10 00 01
A
1 1 0
0
A1 1 0 0 0 A1l 0 1
c C
F1 = A'B" + A'C’ + B'C’ F>— AB + AC + A'B'C’
F1 = (AB + AC + BC)’ Fr»—(A'C+ A'B + AB'C’)’

PLA programming table

Outputs

Product Inputs (O)
term A B C r
1
AB 1 1 1 — 1
AC 2 1 — 1 1
BC 3 — 1 1 1
A'B'C’ -+ O O O —

Fastest Speed
(Registers)

Faster Speed
(Cache Memory)

Fast Speed
(Main Memory)

Memory hierarchy

Increasing Increasing
speed cost per bit

f f

i

rMagnetic disk, magnetic

tape secondary
memory

hierarchy

—

ierarchy in a co

mermory”

!

=N
mermony

I

170
processor

Auxiliary memory

