
Unit 1

NUMBER SYSTEMS



Any number in one base system can be 
converted into another base system
Types
1) decimal to any base
2) Any base to decimal
3) Any base to Any base 







Base Conversions





Conversions of fractional numbers



Decimal to Binary



Octal to Binary Conversion



Complements

 Complements arc used in digital 
computers to simplify the subtraction 
operation and for log- ical manipulation

 They are two types of complements

1) Diminished radix complement

(rn - 1)-N {r is the base of num 
system}

2)  Radix Complement

(rn - 1)-N+1



(r-1)’s complement

 If the base = 10

 The 9's complement of 546700 is

999999 - 546700  = 453299.

 If the base = 2

 The 1's complemcnt of 1011000 is 
0100111.



r’s complement

 the 10's complement of 012398 is 987602

 the 1's complement of 1101100 is 
0010100



Subtraction using complements

 Discard end carry for r’s complement
Using 10's complement subtract 72532 -

3250.
M = 72532 

10's complement of N = + 96750
Sum = 169282 

Discard end carry for 10’s complement 
Answer = 

69282



Subtraction using (r-1)’s 
complement

 X - Y = 1010100 - 1000011

X =  1010100

1's comp of         Y =+ 0111100 

Sum = 1 0010000

Add End-around carry =         + 1

X - Y = 0010001 1



Binary Codes



Non Weighted Codes



Gray Code(Unit distance Code)



Binary to Gray Conversion



Mirror Image Representation in 
Gray Code



Error Detection and Correction

 No communication channel or storage 
device is completely error-free

 As the number of bits per area or the 
transmission rate increases, more errors 
occur.

 Impossible to detect or correct 100% of 
the errors



Types of Error Detection

- 3 Types of Error Detection/Correction 
Methods

- Cyclic Redundancy Check (CRC)
- Hamming Codes
- Reed-Solomon (RS)

10011001011 = 1001100 + 1011
^ ^ ^
Code word information      error-checking bits/

bits parity bits/
syndrome/
redundant bits



Hamming Codes
1. One of the most effective codes for error-recovery
2. Used in situations where random errors are likely to 

occur
3. Error detection and correction increases in proportion to 

the number of parity bits (error-checking bits) added 
to the end of the information bits
code word = information bits + parity bits
Hamming distance: the number of bit positions in 
which two code words differ.

10001001
10110001

* * *
Minimum Hamming distance or D(min) : determines 
its error detecting and correcting capability.

4. Hamming codes can always detect D(min) – 1 errors, but 
can only correct half of those errors.



Hamming Codes

EX.Data Parity Code

Bits Bit Word
00 0 000
01 1 011
10 1 101
11 0 110

000* 100
001 101*
010 110*
011* 111



- Single parity bit can only detect error, 
not correct it

- Error-correcting codes require more 
than a single parity bit

EX. 0 0 0 0 0 
0 1 0 1 1
1 0 1 1 0
1 1 1 0 1

Minimum Hamming distance = 3

Can detect up to 2 errors and correct 1 
error



Cyclic Redundancy Check

1. Let the information byte F = 1001011
2. The sender and receiver agree on an arbitrary 

binary pattern P. Let P = 1011.
3. Shift F to the left by 1 less than the number of 

bits in P. Now, F = 1001011000.
4. Let F be the dividend and P be the divisor. 

Perform “modulo 2 division”.
5. After performing the division, we ignore the 

quotient. We got 100 for the remainder, which 
becomes the actual CRC checksum.

6. Add the remainder to F, giving the message M:

1001011 + 100 = 1001011100 = M



Calculating and Using CRCs

7. M is decoded and checked by the message 
receiver using the reverse process. 

____1010100

1011  |  1001011100
1011
001001
1001
0010
001011

1011
0000  Remainder



Canonical and Standard Forms

 We need to consider formal techniques for 
the simplification of Boolean functions.
◦ Identical functions will have exactly the same 
canonical form.

◦ Minterms and Maxterms
◦ Sum-of-Minterms and Product-of- Maxterms
◦ Product and Sum terms
◦ Sum-of-Products (SOP) and Product-of-Sums 
(POS)



Definitions

 Literal: A variable or its complement

 Product term: literals connected by •

 Sum term: literals connected by +

 Minterm: a product term in which all the 
variables appear exactly once, either 
complemented or uncomplemented

 Maxterm: a sum term in which all the 
variables appear exactly once, either 
complemented or uncomplemented



Truth Table notation for Minterms
and Maxterms



Canonical Forms (Unique)

 Any Boolean function F( ) can be 
expressed as a unique sum of minterms
and a unique product of maxterms
(under a fixed variable ordering).

 In other words, every function F() has two 
canonical forms:
◦ Canonical Sum-Of-Products  (sum of minterms)
◦ Canonical Product-Of-Sums (product of 
maxterms)



Canonical Forms (cont.)

 Canonical Sum-Of-Products:
The minterms included are those mj such 
that F( ) = 1 in row j of the truth table for 
F( ).

 Canonical Product-Of-Sums:
The maxterms included are those Mj such 
that F( ) = 0 in row j of the truth table for 
F( ).



Example



Conversion Between Canonical 
Forms

 Replace ∑ with ∏ (or vice versa) and 
replace those j’s that appeared in the 
original form with those that do not.

 Example:
f1(a,b,c) = a’b’c + a’bc’ + ab’c’ + abc’ 

= m1 + m2 + m4 + m6

= ∑(1,2,4,6)
= ∏(0,3,5,7)

= 
(a+b+c)•(a+b’+c’)•(a’+b+c’)•(a’+b’+c’)



Conversion of SOP from standard 
to canonical form

 Expand non-canonical terms by inserting 
equivalent of 1 in each missing variable x:
(x + x’) = 1

 Remove duplicate minterms

 f1(a,b,c) = a’b’c + bc’ + ac’
= a’b’c + (a+a’)bc’ + a(b+b’)c’
= a’b’c + abc’ + a’bc’ + abc’ + 

ab’c’
= a’b’c + abc’ + a’bc + ab’c’



Conversion of POS from standard 
to canonical form

 Expand noncanonical terms by adding 0 in 
terms of missing variables (e.g., xx’ = 0) and 
using the distributive law

 Remove duplicate maxterms

 f1(a,b,c)   = (a+b+c)•(b’+c’)•(a’+c’)
= (a+b+c)•(aa’+b’+c’)•(a’+bb’+c’)
= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•

(a’+b+c’)•(a’+b’+c’)
= 

(a+b+c)•(a+b’+c’)•(a’+b’+c’)•(a’+b+c’)



Boolean Algebra and 
Basic Gates



Formal logic: In formal logic, a statement 
(proposition) is a declarative sentence that is 
either 

true(1) or false (0). 
It is easier to communicate with computers using 

formal logic.

• Boolean variable: Takes only two values –
either 

true (1) or false (0). 
They are used as basic units of formal logic.

LOGIC GATES



• Boolean function: Mapping from 
Boolean variables to a Boolean value.

• Truth table: 
◦ Represents relationship between a Boolean 
function and its binary variables. 

◦ It enumerates all possible combinations of 
arguments and the corresponding function 
values. 

Boolean function and logic 
diagram



• Boolean algebra: Deals with binary 
variables and logic operations operating 
on those variables.

• Logic diagram: Composed of graphic 
symbols for logic gates. A simple circuit 
sketch that represents inputs and outputs 
of Boolean functions.

Boolean function and logic 
diagram



 Refer to the hardware  to implement Boolean 
operators. 

 The most basic gates are

Gates



Boolean function and truth table



• Postulate 1 (Definition): A Boolean 
algebra is a closed algebraic system 
containing a set K of two or more 
elements and the two operators · and + 
which refer to logical AND and logical OR

BASIC IDENTITIES OF BOOLEAN 
ALGEBRA



(1) x + 0 = x

(2) x  · 0 = 0

(3) x + 1 = 1

(4) x · 1 = 1

(5) x + x = x

(6) x · x = x

(7) x + x’ = x

(8) x · x’ = 0

Basic Identities of Boolean Algebra
(Existence of 1 and 0 element)



(9) x + y = y + x
(10) xy = yx
(11) x + ( y + z ) = ( x + y ) + z
(12) x (yz) = (xy) z
(13) x ( y + z ) = xy + xz
(14) x + yz = ( x + y )( x + z)
(15) ( x + y )’ = x’ y’
(16) ( xy )’ = x’ + y’
(17) (x’)’ = x

Basic Identities of Boolean 
Algebra (Commutatively):



Function Minimization using  Boolean 

Algebra

 Examples:

(a) a + ab = a(1+b)=a

(b) a(a + b) = a.a +ab=a+ab=a(1+b)=a.

(c) a + a'b = (a + a')(a + b)=1(a + b) =a+b

(d) a(a' + b) = a. a' +ab=0+ab=ab



(a) (a + b)' = a'b'

(b) (ab)' = a' + b'

Generalized DeMorgan's Theorem

(a) (a + b + … z)' = a'b' … z'

(b) (a.b … z)' = a' + b' + … z‘

DeMorgan's Theorem



 F = ab + c’d’

 F’ = ??

 F = ab + c’d’ + b’d

 F’ = ??

DeMorgan's Theorem



More DeMorgan's example

Show that: (a(b + z(x + a')))' =a' + b' (z' + x')

(a(b + z(x + a')))' = a' + (b + z(x + a'))'

= a' + b' (z(x + a'))'

= a' + b' (z' + (x + a')')

= a' + b' (z' + x'(a')')

= a' + b' (z' + x'a)

=a‘+b' z' + b'x'a

=(a‘+ b'x'a) + b' z' 

=(a‘+ b'x‘)(a +a‘) + b' z' 

= a‘+ b'x‘+ b' z‘

= a' + b' (z' + x')



 NAND-AND 

 AND-NOR

 NOR-OR

 OR-NAND 

Two Level implantation



NAND-AND



It can also be implemented using AND-NOR 
circuit as it is equivalent to NAND- AND circuit





It can also be implemented using OR-NAND 
circuit as it is equivalent to NOR-OR circuit 



 The objectives of this lesson are to learn 
about:

1. Universal gates - NAND and NOR.

2. How to implement NOT, AND, and OR 
gate using NAND gates only.

3. How to implement NOT, AND, and OR 
gate using NOR gates only.

4. Equivalent gates.

Universal Gates



NAND GATE



NOR GATE



NAND AS A UNIVERSAL GATE





NOR AS A UNIVERSAL GATE





Gate Level Minimization 
of Logic Circuits

UNIT 2



Combinational Logic Design

 A process with 5 steps
◦ Specification 

◦ Formulation

◦ Optimization

◦ Technology mapping

◦ Verification

 1st three steps and last best illustrated by 
example



Functional Blocks

• Fundamental circuits that are the base 
building blocks of most larger digital 
circuits

• They are reusable and are common to 
many systems.

• Examples of functional logic circuits
–Decoders
–Encoders
–Code converters
–Multiplexers



Where they are used

• Multiplexers
–Selectors for routing data to the processor, 

memory, I/O

–Multiplexers route the data to the correct bus or 
port.

• Decoders 
–are used for selecting things like a bank of memory 

and then the address within the bank.  This is also 
the function needed to ‘decode’ the instruction to 
determine the operation to perform.

• Encoders 
–are used in various components such as keyboards.



BCD-to-Excess-3 Code converter

 BCD is a code for the decimal digits 0-9

 Excess-3 is also a code for the decimal 
digits 



Specification of BCD-to-Excess3

 Inputs: a BCD input, A,B,C,D with A as 
the most significant bit and D as the least 
significant bit.

 Outputs: an Excess-3 output W,X,Y,Z that 
corresponds to the BCD input.

 Internal operation – circuit to do the 
conversion in combinational logic.



Formulation of BCD-to-Excess-3

 Excess-3 code is easily formed by adding 
a binary 3 to the binary or BCD for the 
digit.

 There are 16 possible inputs for both BCD 
and Excess-3.

 It can be assumed that only valid BCD 
inputs will appear so the six combinations 
not used can be treated as don’t cares.



Optimization – BCD-to-Excess-3

 Lay out K-maps for each output, W X Y Z

 A step in the digital circuit design process.



Placing 1 on K-maps

 Where are the minterms located on a K-
Map?



Expressions for W X Y Z

 W(A,B,C,D) = Σm(5,6,7,8,9)             
+d(10,11,12,13,14,15)

 X(A,B,C,D) = Σm(1,2,3,4,9)             
+d(10,11,12,13,14,15)

 Y(A,B,C,D) = Σm(0,3,4,7,8)             
+d(10,11,12,13,14,15)

 Z(A,B,C,D) = Σm(0,2,4,6,8)             
+d(10,11,12,13,14,15)



Minimize K-Maps

 W minimization 

 Find     W = A + BC + BD



Minimize K-Maps

 X minimization 

 Find     X = BC’D’+B’C+B’D



Minimize K-Maps

 Y minimization 

 Find     Y = CD + C’D’



Minimize K-Maps

 Z minimization 

 Find     Z = D’



BCD-to-Seven-Segment Decoder

 Specification
◦ Digital readouts on many digital products often 
use LED seven-segment displays.

◦ Each digit is created by lighting the appropriate 
segments.  The segments are labeled 
a,b,c,d,e,f,g

◦ The decoder takes a BCD input and outputs the 
correct code for the seven-segment display.



Specification

 Input:  A 4-bit binary value that is a BCD 
coded input.

 Outputs:  7 bits, a through g for each of 
the segments of the display.

 Operation:  Decode the input to activate 
the correct segments.



Formulation

 Construct a truth table



Optimization

 Create a K-map for each output and get
◦ A = A’C+A’BD+B’C’D’+AB’C’

◦ B = A’B’+A’C’D’+A’CD+AB’C’

◦ C = A’B+A’D+B’C’D’+AB’C’

◦ D = A’CD’+A’B’C+B’C’D’+AB’C’+A’BC’D

◦ E = A’CD’+B’C’D’

◦ F = A’BC’+A’C’D’+A’BD’+AB’C’

◦ G = A’CD’+A’B’C+A’BC’+AB’C’
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Karnaugh Maps for 
Simplification
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Karnaugh Maps

 Boolean algebra helps us simplify expressions and circuits

 Karnaugh Map: A graphical technique for simplifying a Boolean expression into 
either form:

◦ minimal sum of products (MSP)

◦ minimal product of sums (MPS)

 Goal of the simplification.

◦ There are a minimal number of product/sum terms

◦ Each term has a minimal number of literals

 Circuit-wise, this leads to a minimal two-level implementation
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Re-arranging the Truth Table

 A two-variable function has four possible minterms. We can 
re-arrange
these minterms into a Karnaugh map

 Now we can easily see which minterms contain common 
literals
◦ Minterms on the left and right sides contain y’ and y respectively
◦ Minterms in the top and bottom rows contain x’ and x respectively

x y minterm

0 0 x’y’

0 1 x’y

1 0 xy’

1 1 xy

  Y 

    
  0 1 

X 
0 x’y’ x’y 

1 xy’ xy 
 

Y

0 1

0 x’y’ x’y
X

1 xy’ xy

Y’ Y

X’ x’y’ x’y

X xy’ xy
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Karnaugh Map Simplifications

 Imagine a two-variable sum of minterms:

x’y’ + x’y

 Both of these minterms appear in the top row of a 
Karnaugh map, which
means that they both contain the literal x’

 What happens if you simplify this expression using 
Boolean algebra?

x’y’ + x’y = x’(y’ + y) [ Distributive ]
= x’  1 [ y + y’ = 1 ]
= x’ [ x  1 = x ]

Y

x’y’ x’y

X xy’ xy
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More Two-Variable Examples

 Another example expression is x’y + xy
◦ Both minterms appear in the right side, where y is 

uncomplemented
◦ Thus, we can reduce x’y + xy to just y

 How about x’y’ + x’y + xy?
◦ We have x’y’ + x’y in the top row, corresponding to 

x’
◦ There’s also x’y + xy in the right side, corresponding 

to y
◦ This whole expression can be reduced to x’ + y

Y

x’y’ x’y

X xy’ xy

Y

x’y’ x’y

X xy’ xy
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A Three-Variable Karnaugh Map

 For a three-variable expression with inputs x, 
y, z, the arrangement of
minterms is more tricky:

 Another way to label the K-map (use 
whichever you like):

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

YZ

00 01 11 10

0 x’y’z’ x’y’z x’yz x’yz’
X

1 xy’z’ xy’z xyz xyz’

YZ

00 01 11 10

0 m0 m1 m3 m2
X

1 m4 m5 m7 m6
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Why the funny ordering?

 With this ordering, any group of 2, 4 or 8 adjacent squares on 
the map
contains common literals that can be factored out

 “Adjacency” includes wrapping around the left and right sides:

 We’ll use this property of adjacent squares 
to do our simplifications.

x’y’z + x’yz
= x’z(y’ + y)
= x’z  1
= x’z

x’y’z’ + xy’z’ + 
x’yz’ + xyz’
= z’(x’y’ + xy’ + 
x’y + xy)
= z’(y’(x’ + x) + 
y(x’ + x))
= z’(y’+y)
= z’

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

   Y 

 x’y’z’ x’y’z x’yz x’yz’ 

X xy’z’ xy’z xyz xyz’ 

  Z  
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K-maps From Truth Tables

 We can fill in the K-map directly from a truth table

◦ The output in row i of the table goes into square mi of the K-map

◦ Remember that the rightmost columns of the K-map are “switched”

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

x y z f(x,y,z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Y

0 1 0 0

X 0 1 1 1

Z
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Reading the MSP from the K-map

 You can find the minimal SoP expression

◦ Each rectangle corresponds to one product term

◦ The product is determined by finding the common literals in that 

rectangle

   Y 

 x’y’z’ x’y’z x’yz x’yz’ 

X xy’z’ xy’z xyz xyz’ 

  Z  
 

Y

0 1 0 0

X 0 1 1 1

Z

xyy’z

F(x,y,z)= y’z + xy
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Grouping the Minterms Together

 The most difficult step is grouping together all the 1s in the K-map

◦ Make rectangles around groups of one, two, four or eight 1s

◦ All of the 1s in the map should be included in at least one rectangle

◦ Do not include any of the 0s

◦ Each group corresponds to one product term

Y

0 1 0 0

X 0 1 1 1

Z
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For the Simplest Result

 Make as few rectangles as possible, to 
minimize the number of products in the 
final expression.

 Make each rectangle as large as possible, 
to minimize the number of literals in each 
term.

 Rectangles can be overlapped, if that 
makes them larger.
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K-map Simplification of SoP 
Expressions

 Let’s consider simplifying f(x,y,z) = xy + y’z + xz

 You should convert the expression into a sum of minterms form, 

◦ The easiest way to do this is to make a truth table for the function, and then read 
off the minterms

◦ You can either write out the literals or use the minterm shorthand

 Here is the truth table and sum of minterms for our example:

x y z f(x,y,z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

f(x,y,z) = x’y’z + xy’z + 
xyz’ + xyz

= m1 + m5 + m6+ m7
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Unsimplifying Expressions

 You can also convert the expression to a sum of 
minterms with Boolean
algebra
◦ Apply the distributive law in reverse to add in missing 

variables.
◦ Very few people actually do this, but it’s occasionally useful.

 In both cases, we’re actually “unsimplifying” our 
example expression
◦ The resulting expression is larger than the original one!
◦ But having all the individual minterms makes it easy to 

combine them 
together with the K-map

xy + y’z + xz = (xy  1) + (y’z  1) + (xz  1)
= (xy  (z’ + z)) + (y’z  (x’ + x)) + (xz  (y’ + y))
= (xyz’ + xyz) + (x’y’z + xy’z) + (xy’z + xyz)
= xyz’ + xyz + x’y’z + xy’z
= m1 + m5 + m6 + m7



92

Making the Example K-map

 In our example, we can write f(x,y,z) in 
two equivalent ways

 In either case, the resulting K-map is 
shown below

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

f(x,y,z) = x’y’z + xy’z + xyz’ + xyz

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

f(x,y,z) = m1 + m5 + m6 + m7

   Y 

 0 1 0 0 

X 0 1 1 1 

  Z  
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Practice K-map 1

 Simplify the sum of minterms m1 + m3 + 
m5 + m6 Y

X

Z

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z
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Solutions for Practice K-map 1

 Here is the filled in K-map, with all groups 
shown
◦ The magenta and green groups overlap, which 
makes each of them as 

large as possible

◦ Minterm m6 is in a group all by its lonesome

 The final MSP here is x’z + y’z + xyz’

Y

0 1 1 0

X 0 1 0 1

Z
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K-maps can be tricky!

 There may not necessarily be a unique MSP. The K-map 
below yields two

valid and equivalent MSPs, because there are two possible 
ways to 

include minterm m7

 Remember that overlapping groups is possible, as shown above

Y

0 1 0 1

X 0 1 1 1

Z

y’z + yz’ + xy y’z + yz’ + xz

Y

0 1 0 1

X 0 1 1 1

Z

Y

0 1 0 1

X 0 1 1 1

Z
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Four-variable K-maps – f(W,X,Y,Z)

 We can do four-variable expressions too!

◦ The minterms in the third and fourth columns, and in the third and

fourth rows, are switched around.

◦ Again, this ensures that adjacent squares have common literals

 Grouping minterms is similar to the three-variable case, but:

◦ You can have rectangular groups of 1, 2, 4, 8 or 16 minterms

◦ You can wrap around all four sides
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Four-variable K-maps

Y

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y

w’x’y’z’ w’x’y’z w’x’yz w’x’yz’

w’xy’z’ w’xy’z w’xyz w’xyz’

wxy’z’ wxy’z wxyz wxyz’
X

W
wx’y’z’ wx’y’z wx’yz wx’yz’

Z
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Example: Simplify 
m0+m2+m5+m8+m10+m13

 The expression is already a sum of minterms, so here’s the K-map:

 We can make the following groups, resulting in the MSP x’z’ + xy’z

Y

1 0 0 1

0 1 0 0

0 1 0 0
X

W
1 0 0 1

Z

Y

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y

1 0 0 1

0 1 0 0

0 1 0 0
X

W
1 0 0 1

Z

Y

w’x’y’z’ w’x’y’z w’x’yz w’x’yz’

w’xy’z’ w’xy’z w’xyz w’xyz’

wxy’z’ wxy’z wxyz wxyz’
X

W
wx’y’z’ wx’y’z wx’yz wx’yz’

Z
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Five-variable K-maps –
f(V,W,X,Y,Z)

V= 0 V= 1
   Y  

 m0 m1 m3 m2  

 m4 m5 m7 m6 
X 

W 
m12 m13 m15 m14 

m8 m9 m11 m10  

  Z   
 

 

Y

m16 m17 m19 m8

m20 m21 m23 m22

m28 m29 m31 m30

X

W
m24 m25 m27 m26

Z



100

Simplify f(V,W,X,Y,Z)=Σm(0,1,4,5,6,11,12,14,16,20,22,28,30,31)

V= 0 V= 1

1 1

1 1 1

1

1 1

1

1 1

1 11

f = XZ’                
Σm(4,6,12,14,20,22,28,30) 

+ V’W’Y’            Σm(0,1,4,5) 
+ W’Y’Z’            Σm(0,4,16,20) 
+ VWXY            Σm(30,31) 
+ V’WX’YZ        m11 
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PoS Optimization

 Maxterms are grouped to find minimal PoS 
expression

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z

00           01           11     10

0

1

x

yz
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PoS Optimization

 F(W,X,Y,Z)= ∏ M(0,1,2,4,5)

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z00           01           11         
10

0

1

x yz

0 0 1 0

0 0 1 1
00           01           11         

10

0

1

x
yz

F(W,X,Y,Z)= Y . (X + Z)
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PoS Optimization from SoP

F(W,X,Y,Z)= Σm(0,1,2,5,8,9,10)

= ∏ M(3,4,6,7,11,12,13,14,15)

0

0 00

0

0 0 0 0

F(W,X,Y,Z)= (W’ + X’)(Y’ + Z’)(X’ 
+ Z)

Or,

F(W,X,Y,Z)= X’Y’ + X’Z’ + W’Y’Z

Which one is the minimal one?
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SoP Optimization from PoS

F(W,X,Y,Z)= ∏ M(0,2,3,4,5,6)

=  Σm(1,7,8,9,10,11,12,13,14,15)

1

1

1 1 1 1

1 1 1 1

F(W,X,Y,Z)= W + XYZ + X’Y’Z
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I don’t care!

 You don’t always need all 2n input combinations in an n-variable function

◦ If you can guarantee that certain input combinations never occur

◦ If some outputs aren’t used in the rest of the circuit

 We mark don’t-care outputs in truth tables and K-maps with Xs.

 Within a K-map, each X can be considered as either 0 or 1. You should pick

the interpretation that allows for the most simplification.

x y z f(x,y,z)

0 0 0 0

0 0 1 1

0 1 0 X

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 X

1 1 1 1
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   Y  

 1 0 0 1  

 1 1 x 0 

0 x 1 1 
X 

W 
1 0 0 x  

  Z   
 

 Practice K-map 

 Find a MSP for

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) 
= m(7,10,13)

This notation means that input combinations wxyz = 0111, 1010 and 1101

(corresponding to minterms m7, m10 and m13) are unused.
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Solutions for Practice K-map 

 Find a MSP for:

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) = m(7,10,13)

Y

1 1

1 1 x

x 1 1
X

W
1 x

Z

f(w,x,y,z)= x’z’ + w’xy’ + wxy
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K-map Summary

 K-maps are an alternative to algebra for simplifying 
expressions

◦ The result is a MSP/MPS, which leads to a minimal two-level 
circuit

◦ It’s easy to handle don’t-care conditions
◦ K-maps are really only good for manual simplification of 

small expressions...

 Things to keep in mind:

◦ Remember the correct order of minterms/maxterms on the 
K-map

◦ When grouping, you can wrap around all sides of the K-
map, and your groups can overlap

◦ Make as few rectangles as possible, but make each of them 
as large as possible. This leads to fewer, but simpler, 
product terms

◦ There may be more than one valid solution



Combinational Logic

 Logic circuits for digital systems may be 
combinational or sequential.

 A combinational circuit consists of input 
variables, logic gates, and output variables.
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2. Analysis procedure
 To obtain the output Boolean functions 

from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input 
variables with arbitrary symbols. Determine the 
Boolean functions for each gate output.

2. Label the gates that are a function of input 
variables and previously labeled gates with other 
arbitrary symbols. Find the Boolean functions for 
these gates.
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3. Repeat the process outlined in step 2 until the 
outputs of the circuit are obtained.

4. By repeated substitution of previously defined 
functions, obtain the output Boolean functions in 
terms of input variables.
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Example

F2 = AB + AC + BC;  T1 = A + B + C; T2 = ABC;   T3 = F2’T1;  

F1 = T3 + T2

F1 = T3 + T2 = F2’T1 + ABC = A’BC’ + A’B’C + AB’C’ + ABC
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Derive truth table from logic 
diagram

 We can derive the truth table in Table 4-1 by 
using the circuit of Fig.2.
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3. Design procedure

1. Table4-2 is a Code-Conversion example, 
first, we can list the relation of the BCD and 
Excess-3 codes in the truth table.
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Karnaugh map

2. For each symbol of the Excess-3 code, we use 
1’s to draw the map for simplifying Boolean 
function.
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Circuit implementation

z = D’; y = CD + C’D’ = CD + (C + D)’

x = B’C + B’D + BC’D’ = B’(C + D) + B(C + D)’

w = A + BC + BD = A + B(C + D)
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4. Binary Adder-Subtractor

 A combinational circuit that performs the addition of 
two bits is called a half adder.

 The truth table for the half adder is listed below:

S = x’y + xy’

C = xy

117

S: Sum
C: Carry



Implementation of Half-Adder
118



Full-Adder

 One that performs the addition of three bits(two 
significant bits and a previous carry) is a full 
adder.
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Simplified  Expressions

S = x’y’z + x’yz’ + xy’z’ + xyz

C = xy + xz + yz

120

C



Full adder implemented in SOP
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Another implementation

 Full-adder can also implemented with two 
half adders and one OR gate (Carry Look-
Ahead adder).

S = z ⊕ (x ⊕ y)
= z’(xy’ + x’y) + z(xy’ + x’y)’
= xy’z’ + x’yz’ + xyz + x’y’z

C = z(xy’ + x’y) + xy = xy’z + x’yz + xy
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Binary adder

 This is also called 
Ripple Carry 
Adder ,because of 
the construction 
with full adders 
are connected in 
cascade.
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Carry Propagation

 Fig.4-9 causes a unstable factor on carry bit, and 

produces a longest propagation delay.

 The signal from Ci to the output carry Ci+1, 

propagates through an AND and OR gates, so, for an 

n-bit RCA, there are 2n gate levels for the carry to 

propagate from input to output.
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Carry Propagation

 Because the propagation delay will affect the output 

signals on different time, so the signals are given enough 

time to get the precise and stable outputs.

 The most widely used technique employs the principle of 

carry look-ahead to improve the speed of the algorithm.
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Boolean functions
Pi = Ai ⊕ Bi steady state value

Gi = AiBi steady state value

Output sum and carry

Si = Pi ⊕ Ci

Ci+1 = Gi + PiCi

Gi : carry generate Pi : carry propagate

C0 = input  carry

C1 = G0 + P0C0

C2 = G1 + P1C1  = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

 C3 does not have to wait for C2 and C1 to 
propagate.
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Logic diagram of 
carry look-ahead generator

 C3 is propagated at the same time as C2 and C1.
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4-bit adder with carry 
lookahead

 Delay time of n-bit CLAA = XOR + (AND + OR) + XOR
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Binary subtractor

M = 1subtractor ; M = 0adder
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Overflow

 It is worth noting Fig.4-13 that binary numbers in the 

signed-complement system are added and subtracted by 

the same basic addition and subtraction rules as 

unsigned numbers.

 Overflow is a problem in digital computers because the 

number of bits that hold the number is finite and a result 

that contains n+1 bits cannot be accommodated.

130



Overflow on signed and 
unsigned

 When two unsigned numbers are added, an overflow is 

detected from the end carry out of the MSB position.

 When two signed numbers are added, the sign bit is 

treated as part of the number and the end carry does not 

indicate an overflow.

 An overflow cann’t occur after an addition if one number 

is positive and the other is negative.

 An overflow may occur if the two numbers added are 

both positive or both negative.
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5 Decimal adder

BCD adder can’t exceed 9 on each input digit. K is the carry.
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Rules of BCD adder
 When the binary sum is greater than 1001, we 

obtain a non-valid BCD representation.

 The addition of binary 6(0110) to the binary sum 

converts it to the correct BCD representation and 

also produces an output carry as required.

 To distinguish them from binary 1000 and 1001, 

which also have a 1 in position Z8, we specify further 

that either Z4 or Z2 must have a 1.

C = K + Z8Z4 + Z8Z2
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Implementation of BCD adder

 A decimal parallel 

adder that adds n 

decimal digits 

needs n BCD 

adder stages.

 The output carry 

from one stage

must be 

connected to the 

input carry of the 

next higher-order 

stage.
134
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6. Binary multiplier
 Usually there are more bits in the partial products and it is necessary to 

use full adders to produce the sum of the partial products.

135
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4-bit by 3-bit binary multiplier

 For J multiplier bits 

and K multiplicand

bits we need (J X K)

AND gates and (J − 1) 

K-bit adders to 

produce a product of 

J+K bits.

 K=4 and J=3, we 

need 12 AND gates 

and two 4-bit adders.
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7. Magnitude comparator

 The equality relation of 
each pair of bits can be 
expressed logically with an 
exclusive-NOR function as:

A = A3A2A1A0 ; B = 
B3B2B1B0

xi=AiBi+Ai’Bi’ for i = 
0, 1, 2, 3

(A = B) = x3x2x1x0
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Magnitude comparator

 We inspect the relative 

magnitudes of pairs of MSB. If 

equal, we compare the next 

lower significant pair of digits 

until a pair of unequal digits is 

reached.

 If the corresponding digit of A 

is 1 and that of B is 0, we 

conclude that A>B.

(A>B)=

A3B’3+x3A2B’2+x3x2A1B’1+x3x2x1

A0B’0
(A<B)=

A’3B3+x3A’2B2+x3x2A’1B1+x3x2x1

A’0B0
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8. Decoders

 The decoder is called n-to-m-line decoder, 
where m≤2n .

 the decoder is also used in conjunction with 
other code converters such as a BCD-to-
sevensegment decoder.

 3-to-8 line decoder: For each possible input 
combination, there are seven outputs that 
are equal to 0 and only one that is equal to 1.
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Implementation and truth 
table
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Decoder with enable input

 Some decoders are constructed with NAND gates, it 
becomes more economical to generate the decoder 
minterms in their complemented form.

 As indicated by the truth table , only one output can be 
equal to 0 at any given time, all other outputs are equal 
to 1.
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Demultiplexer

 A decoder with an enable input is referred to 
as a decoder/demultiplexer.

 The truth table of demultiplexer is the same 
with decoder.
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Demultiplexer

D
0

D
1

D
2

D
3

E

A B



3-to-8 decoder with enable 
implement the 4-to-16 

decoder
143



Implementation of a Full 
Adder with a Decoder

 From table 4-4, we obtain the functions for the combinational 
circuit in sum of minterms:

S(x, y, z) = ∑(1, 2, 4, 7)

C(x, y, z) = ∑(3, 5, 6, 7)
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9. Encoders

 An encoder is the inverse operation of a decoder.

 We can derive the Boolean functions by table 4-7
z = D1 + D3 + D5 + D7

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7
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Priority encoder

 If two inputs are active simultaneously, the output
produces an undefined combination. We can establish 
an input priority to ensure that only one input is 
encoded.

 Another ambiguity in the octal-to-binary encoder is 
that an output with all 0’s is generated when all the 

inputs are 0; the output is the same as when D0 is 
equal to 1.

 The discrepancy tables on Table 4-7 and Table 4-8 
can resolve aforesaid condition by providing one more 
output to indicate that at least one input is equal to 1. 
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Priority encoder

V=0no valid inputs

V=1valid inputs

X’s in output columns 

represent 

don’t-care conditions

X’s in the input columns are 

useful for representing a 
truth 

table in condensed form. 

Instead of listing all 16 

minterms of four variables.
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4-input priority encoder

 Implementation 
of table 4-8

x = D2 + D3

y = D3 + D1D’2
V = D0 + D1 + D2 + D3
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10. Multiplexers

S = 0, Y = I0 Truth Table S Y Y = S’I0 + SI1

S = 1, Y = I1 0 I0

1 I1
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4-to-1 Line Multiplexer
150



Quadruple 2-to-1 Line 
Multiplexer

 Multiplexer circuits can be combined with common selection inputs 
to provide multiple-bit selection logic. Compare with Fig4-24.

151

I0

I1

Y



Boolean function 
implementation

 A more efficient method for implementing a Boolean 
function of n variables with a multiplexer that has n-
1 selection inputs.

F(x, y, z) = (1,2,6,7)
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4-input function with a 
multiplexer

F(A, B, C, D) = (1, 3, 4, 11, 12, 13, 14, 15)
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Three-State Gates

 A multiplexer can be constructed with three-state gates.
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11. HDL for combinational 
circuits

 A module can be described in any one of 
the following modeling techniques:

1. Gate-level modeling using instantiation of primitive 
gates and user-defined modules.

2. Dataflow modeling using continuous assignment 
statements with keyword assign.

3. Behavioral modeling using procedural assignment 
statements with keyword always.
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Gate-level Modeling
 A circuit is specified by its logic gates and their interconnection.

 Verilog recognizes 12 basic gates as predefined primitives.

 The logic values of each gate may be 1, 0, x(unknown), 
z(high-impedance).
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Gate-level description on 
Verilog code

The wire declaration is for internal connections.
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 There are two basic types of design methodologies: 

top-down and bottom-up.

 Top-down: the top-level block is defined and then 

the sub-blocks necessary to build the top-level 

block are identified.(Fig.4-9 binary adder)

 Bottom-up: the building blocks are first identified 

and then combined to build the top-level 

block.(Example 4-2 4-bit adder)
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Design methodologies



A bottom-up hierarchical 
description
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Full-adder

160



4-bit adder
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Three state gates
Gates statement: gate name(output, input, control)

>> bufif1(OUT, A, control);

A = OUT when control = 1, OUT = z when control = 0;

>> notif0(Y, B, enable);

Y = B’ when enable = 0, Y = z when enable = 1;
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2-to-1 multiplexer

 HDL uses the keyword tri
to indicate that the 
output has multiple 
drivers.

module muxtri (A, B, select, 
OUT);

input A,B,select;

output OUT;

tri OUT;

bufif1 (OUT,A,select);

bufif0 (OUT,B,select);

endmodule
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UNIT 4
SEQUENTIAL 

CIRCUITS



Objectives

 In this chapter you will learn about:
◦ Logic circuits that can store information

◦ Flip-flops, which store a single bit

◦ Registers, which store multiple bits

◦ Shift registers, which shift the contents of a 
register

◦ Counters of various types



Memory

element 
Alarm 

Sensor

Reset 

Set 

On Off 

Motivation:  Control of an Alarm 
System

 Alarm turned on when On/Off = 1

 Alarm turned off when On/Off = 0

 Once triggered, alarm stays on until manually reset

 The circuit requires a memory element



The Basic Latch

 Basic latch is a feedback connection of 
two NOR gates or two NAND gates

 It can store one bit of information

 It can be set to 1 using the S input and 
reset to 0 using the R input.



A B 

A Simple Memory Element

 A feedback loop with even number of 
inverters

 If A = 0, B = 1 or when A = 1, B = 0

 This circuit is not useful due to the lack of 
a mechanism for changing its state



Reset 

Set Q 

A Memory Element with NOR 
Gates



The Gated Latch

 Gated latch is a basic latch that includes input gating and a 
control signal

 The latch retains its existing state when the control input is 
equal to 0

 Its state may be changed when the control signal is equal to 
1.  In our discussion we referred to the control input as the 
clock

 We consider two types of gated latches:
◦ Gated SR latch uses the S and R inputs to set the latch to 1 or reset it 

to 0, respectively.
◦ Gated D latch uses the D input to force the latch into a state that has 

the same logic value as the D input.



Gated S/R Latch



Gated D Latch



t su

t h 

Clk 

D 

Q 

Setup and Hold Times
 Setup Time tsu

◦ The minimum time that the input signal must be stable 
prior to the edge of the clock signal.

 Hold Time th

◦ The minimum time that the input signal must be stable 
after the edge of the clock signal.



Flip-Flops

 A flip-flop is a storage element based on 
the gated latch principle

 It can have its output state changed only 
on the edge of the controlling clock signal



Flip-Flops

 We consider two types:
◦ Edge-triggered flip-flop is affected only by the input 

values present when the active edge of the clock occurs

◦ Master-slave flip-flop is built with two gated latches
 The master stage is active during half of the clock cycle, 

and the slave stage is active during the other half.

 The output value of the flip-flop changes on the edge of 
the clock that activates the transfer into the slave stage.



D Q 

Q 

Master Slave 

D 

Clock 

Q 

Q 

D Q 

Q 

Q m Q s 

D 

Clock 

Q m 

Q Q s = 

D Q 

Q 

(a) Circuit 

(b) Timing diagram

(c) Graphical symbol

Clk Clk 

Master-Slave D Flip-Flop



D Q 

Q 

Graphical symbol

Clock 

A Positive-Edge-Triggered D Flip-
Flop



Comparison of Level-Sensitive and 
Edge-Triggered D Storage 

Elements

Comparison of Level-Sensitive and 
Edge-Triggered D Storage Elements



D Q 

Q 

Clear 

Preset

Master-Slave D Flip-Flop with 
Clear and Preset



T Flip-Flop



JK Flip-Flop



Flip-flop excitation 
tables



Types of Flip-flops

 SR flip-flop (Set, 
Reset)

 T flip-flop (Toggle)

 D flip-flop (Delay)

 JK flip-flop 



Excitation Tables
Previous State -> Present 

State
S R

0 -> 0 0 X

0 -> 1 1 0

1 -> 0 0 1

1 -> 1 X 0

Previous State -> Present State T

0 -> 0 0

0 -> 1 1

1 -> 0 1

1 -> 1 0



Excitation Tables

Previous State -> Present 
State

J K

0 -> 0 0 X

0 -> 1 1 X

1 -> 0 X 1

1 -> 1 X 0

Previous State -> Present State D

0 -> 0 0

0 -> 1 1

1 -> 0 0

1 -> 1 1



Timing Diagrams 

CLK

T

Q

CLK

S

R

Q

S R

0->0 0 X

0->1 1 0

1->0 0 1

1->1 X 0

T

0->0 0

0->1 1

1->0 1

1->1 0



Timing Diagrams 

J K

0->0 0 X

0->1 1 X

1->0 X 1

1->1 X 0

D

0->0 0

0->1 1

1->0 0

1->1 1

CLK

J

K

Q

CLK

D

Q



Conversions of flipflops
Procedure uses excitation tables

Method: to realize a type A flipflop using a type B flipflop:

1. Start with the K-map or state-table for the A-flipflop.
2. Express B-flipflop inputs as a function of the inputs and present state of 

A-flipflop such that the required state transitions of A-flipflop are reallized. 

x

y

Q

Type B

x

y

Q
g

h

CL

CL

Type A

1. Find Q+ = f(g,h,Q)  for type A  (using type A state-table)

2. Compute x = f1(g,h,Q)  and y=f2(g,h,Q)  to realize  Q+.



Example: Use JK-FF to realize D-FF

1) Start transition table for D-FF

2) Create K-maps to express J and K as functions of  inputs (D, Q)

3) Fill in K-maps with appropriate values for J and K 

to cause the same state transition as in the D-FF transition table

D  
0 
1 
0 
1 

T  
0 
1 
1 
0 

Q +  
0 
1 
0 
1 

Q  
0 
0 
1 
1 

S  
0 
1 
0 
X 

R  
X 
0 
1 
0 

K  
X 
X 
1 
0 

J  
0 
1 
X 
X 

D 

X X 

1 0 

K  = D 

0 1 

0 

1 

Q 
D 

0 1 

X X 

J  = D 

0 1 

0 

1 

Q State-Table 

D     Q       Q+ J    K

0     0         0        0    X 

0     1         0        X    1
1     0         1        1    X
1     1         1        X    0

e.g. 
when D=Q=0,   then  Q+= 0
the same transition Q-->Q+

is realize with J=0, K=X 



Example: Implement JK-FF using  a D-FF

J    K    Q        Q+        D        T

0    0    0         0           0         0
0    0    1         1           1         0
0    1    0         0           0         0
0    1    1         0           0         1
1    0    0         1           1         1
1    0    1         1           1         0
1    1    0         1           1         1
1    1    1         0           0         1

0 0 1 1 

0 1 1 0 

00 01 11 10 

J 

K 

JK 
Q 

0 

1 

t= jQ + kq

0 0 1 1 

1 0 0 1 

00 01 11 10 

J 

K 

JK 
Q 

0 

1 

d= jQ + Kq

J

K

D

C

Q

Clk

DFF

J

K

T

C

Q

Clk

T-FF



Asynchronous inputs
PRESET and CLEAR:
asynchronous, level-sensitive inputs
used to initialize a flipflop.

D

C

S

R

Q

Q

0
1

0
1

0
1 Q

Clk

SET

CLR

T

Q

T

SET

CLR

Clk

200 400

Clk

T Q

CLEAR

PRESET

PRESET, CLEAR: active low inputs

PRESET = 0 --> Q = 1
CLEAR = 0   --> Q = 0

LogicWorks Simulation



Counters
 Counters are a specific type of 

sequential circuit.

 Like registers, the state, or the 
flip-flop values themselves, 
serves as the “output.”

 The output value increases by 
one on each clock cycle.

 After the largest value, the output 
“wraps around” back to 0.

 Using two bits, we’d get 
something like this:

Present State Next State 

A B A B 

0 0 0 1 

0 1 1 0 

1 0 1 1 

1 1 0 0 
 

00 01

1011

1

11

1



Benefits of counters

 Counters can act as simple clocks to keep track of “time.”
 You may need to record how many times something has 

happened.
◦ How many bits have been sent or received?
◦ How many steps have been performed in some computation?

 All processors contain a program counter, or PC.
◦ Programs consist of a list of instructions that are to be executed 

one after another (for the most part).
◦ The PC keeps track of the instruction currently being executed.
◦ The PC increments once on each clock cycle, and the next 

program instruction is then executed.



A slightly fancier counter

 Let’s try to design a slightly different two-bit counter:

◦ Again, the counter outputs will be 00, 01, 10 and 11.

◦ Now, there is a single input, X. When X=0, the counter value should 
increment on each clock cycle. But when X=1, the value should 
decrement on successive cycles.

 We’ll need two flip-flops again. Here are the four possible states:

00 01

1011



The complete state diagram and 
table

00 01

1011

0

0

0

10 1

1

1

Present State Inputs Next State

Q1 Q0 X Q1 Q0

0 0 0 0 1

0 0 1 1 1

0 1 0 1 0

0 1 1 0 0

1 0 0 1 1

1 0 1 0 1

1 1 0 0 0

1 1 1 1 0

• Here’s the complete state diagram and state table for this circuit.



D flip-flop inputs

 If we use D flip-flops, then the D inputs will just be the same as the 
desired next states.

 Equations for the D flip-flop inputs are shown at the right.

 Why does D0 = Q0’ make sense? 

Present State Inputs Next State

Q1 Q0 X Q1 Q0

0 0 0 0 1

0 0 1 1 1

0 1 0 1 0

0 1 1 0 0

1 0 0 1 1

1 0 1 0 1

1 1 0 0 0

1 1 1 1 0

Q0

0 1 0 1

Q1 1 0 1 0

X

Q0

1 1 0 0

Q1 1 1 0 0

X

D1 = Q1  Q0  X

D0 = Q0’



The counter in LogicWorks

 Here are some D Flip Flop
devices from LogicWorks.

 They have both normal and 
complemented outputs, so we 
can access Q0’ directly without 
using an inverter. (Q1’ is not 
needed in this example.)

 This circuit counts normally 
when Reset = 1. But when 
Reset is 0, the flip-flop outputs 
are cleared to 00 immediately. 

 There is no three-input XOR 
gate in LogicWorks so we’ve 
used a four-input version 
instead, with one of the inputs 
connected to 0.



JK flip-flop inputs

 If we use JK flip-flops instead, then we have to 
compute the JK inputs for each flip-flop.

 Look at the present and desired next state, and 
use the excitation table on the right.

Present State Inputs Next State Flip flop inputs

Q1 Q0 X Q1 Q0 J1 K1 J0 K0

0 0 0 0 1 0 x 1 x

0 0 1 1 1 1 x 1 x

0 1 0 1 0 1 x x 1

0 1 1 0 0 0 x x 1

1 0 0 1 1 x 0 1 x

1 0 1 0 1 x 1 1 x

1 1 0 0 0 x 1 x 1

1 1 1 1 0 x 0 x 1

Q(t) Q(t+1) J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0



JK flip-flop input equations

 We can then find equations for all four flip-flop inputs, in terms of the present state 
and inputs. Here, it turns out J1 = K1 and J0 = K0.

J1 = K1 = Q0’ X + Q0 X’
J0 = K0 = 1

Present State Inputs Next State Flip flop inputs

Q1 Q0 X Q1 Q0 J1 K1 J0 K0

0 0 0 0 1 0 x 1 x

0 0 1 1 1 1 x 1 x

0 1 0 1 0 1 x x 1

0 1 1 0 0 0 x x 1

1 0 0 1 1 x 0 1 x

1 0 1 0 1 x 1 1 x

1 1 0 0 0 x 1 x 1

1 1 1 1 0 x 0 x 1



The counter in LogicWorks again

 Here is the counter again, but 
using JK Flip Flop n.i. RS devices 
instead.

 The direct inputs R and S are 
non-inverted, or active-high.

 So this version of the circuit 
counts normally when Reset = 0, 
but initializes to 00 when Reset is 
1.



Asynchronous Counters

• This counter is called 

asynchronous because not 
all flip flops are hooked to 
the same clock. 
• Look at the waveform of 
the output, Q, in the timing 
diagram. It resembles a 
clock as well. If the period of 
the clock is T, then what is 
the period of Q, the output 
of the flip flop? It's 2T! 
• We have a way to create a 
clock that runs twice as slow. 
We feed the clock into a T 
flip flop, where T is 
hardwired to 1. The output 
will be a clock who's period 
is twice as long. 



Asynchronous counters

If the clock has period T. Q0 has 
period 2T. Q1 period is 4T
With n flip flops the period is 2n.



Registers,Counters,State
Reduction



3 bit asynchronous “ripple” 
counter using T flip flops 

• This is called as a ripple 

counter due to the way the FFs 
respond one after another in a 

kind of rippling effect.



Synchronous Counters
 To eliminate the "ripple" effects, use a common clock for 

each flip-flop and a combinational circuit to generate 
the next state.

 For an up-counter,
use an incrementer =>

D3 Q3

D2 Q2

D1 Q1

D0 Q0

Clock

Incre-

menter
A3

A2

A1

A0

S3

S2

S1

S0



 Internal details =>

 Internal Logic

◦ XOR complements each bit

◦ AND chain causes complement
of a bit if all bits toward LSB
from it equal 1

 Count Enable

◦ Forces all outputs of AND
chain to 0 to “hold” the state

 Carry Out

◦ Added as part of  incrementer

◦ Connect to Count Enable of
additional 4-bit counters to
form larger counters

Synchronous Counters (continued)

Incrementer



Design Example:  Synchronous 
BCD

 Use the sequential logic model to design a synchronous 
BCD counter with D flip-flops

 State Table =>
 Input combinations

1010 through 1111
are don’t cares

Current State
Q8 Q4 Q2 Q1

Next State
Q8 Q4 Q2 Q1

0   0   0   0 0   0   0   1
0   0   0   1 0   0   1   0
0   0   1   0 0   0   1   1
0   0   1   1 0  1   0   0
0   1   0   0 0   1   0   1
0   1   0   1 0   1   1   0
0   1   1   0 0   1   1   1
0   1   1   1 1   0   0   0
1   0   0   0 1   0   0   1
1   0   0   1 0   0   0   0



Synchronous BCD (continued)

 Use K-Maps to two-level optimize the next state equations and manipulate 
into forms containing XOR gates:

D1 = Q1’

 D2 = Q2 + Q1Q8’
D4 = Q4 + Q1Q2
D8 = Q8 + (Q1Q8 + Q1Q2Q4)

 Y = Q1Q8

 The logic diagram can be drawn from these equations

◦ An asynchronous or synchronous reset should be added

 What happens if the counter is perturbed by a power disturbance or other 
interference and it enters a state other than 0000 through 1001?



 Find the actual values of the six next states for the don’t care combinations 
from the equations

 Find the overall state diagram to assess behavior for the don’t care states 
(states in decimal)

Synchronous BCD (continued)

Present State Next State

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1

1    0    1    0 1    0    1    1

1    0    1    1 0    1    1    0

1    1    0    0 1    1    0    1

1    1    0    1 0    1    0    0

1    1    1    0 1    1    1    1

1    1    1    1 0    0    1    0

0
1

8

7

6
5

4

3

2

9

10

11

14

15 12
13



 For the BCD counter design, if an 
invalid state is entered, return to a valid 
state occurs within two clock cycles

 Is this adequate?!

Synchronous BCD (continued)



Counting an arbitrary sequence



Unused states

 The examples shown so far have all had 2
n

states, and used n flip-flops. 
But sometimes you may have unused, leftover states.

 For example, here is a state table and diagram for a counter that 
repeatedly counts from 0 (000) to 5 (101).

 What should we put in the table for the two unused states?

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 0 0 0

1 1 0 ? ? ?

1 1 1 ? ? ?

001

010

011

100

101

000



Unused states can be don’t cares… 

 To get the simplest possible circuit, you can fill in don’t cares for the next 
states. This will also result in don’t cares for the flip-flop inputs, which can 
simplify the hardware.

 If the circuit somehow ends up in one of the unused states (110 or 111), 
its behavior will depend on exactly what the don’t cares were filled in 
with.

Present State Next State 

Q2 Q1 Q0 Q2 Q1 Q0 

0 0 0 0 0 1 

0 0 1 0 1 0 

0 1 0 0 1 1 

0 1 1 1 0 0 

1 0 0 1 0 1 

1 0 1 0 0 0 

1 1 0 x x x 

1 1 1 x x x 
 

001

010

011

100

101

000



…or maybe you do care

 To get the safest possible circuit, you can explicitly fill in next states for 
the unused states 110 and 111. 

 This guarantees that even if the circuit somehow enters an unused state, 
it will eventually end up in a valid state.

 This is called a self-starting counter.

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

001

010

011

100

101

000

111110



LogicWorks counters

 There are a couple of different counters 
available in LogicWorks.

 The simplest one, the Counter-4 Min, just 
increments once on each clock cycle.
◦ This is a four-bit counter, with values ranging 
from 0000 to 1111.

◦ The only “input” is the clock signal.



More complex counters

 More complex counters are also possible. The full-featured LogicWorks
Counter-4 device below has several functions.

◦ It can increment or decrement, by setting the UP input to 1 or 0.

◦ You can immediately (asynchronously) clear the counter to 0000 by 
setting CLR = 1.

◦ You can specify the counter’s next output by setting D3-D0 to any four-
bit value and clearing LD.

◦ The active-low EN input enables or disables the counter.

 When the counter is disabled, it continues to output the same value 
without incrementing, decrementing, loading, or clearing.

◦ The “counter out” CO is normally 1, but becomes 0

when the counter reaches its maximum value, 1111.



An 8-bit counter

 As you might expect by now, we 
can use these general counters 
to build other counters.

 Here is an 8-bit counter made 
from two 4-bit counters.
◦ The bottom device represents the 

least significant four bits, while the 
top counter represents the most 
significant four bits.

◦ When the bottom counter reaches 
1111 (i.e., when CO = 0), it enables 
the top counter for one cycle.

 Other implementation notes:
◦ The counters share clock and clear 

signals.



A restricted 4-bit counter

 We can also make a counter that “starts” at some value besides 0000.

 In the diagram below, when CO=0 the LD signal forces the next state to 
be loaded from D3-D0.

 The result is this counter wraps from 1111 to 0110 (instead of 0000).



Another restricted counter

 We can also make a circuit that counts up to only 1100, instead of 1111.

 Here, when the counter value reaches 1100, the NAND gate forces the 
counter to load, so the next state becomes 0000. 



Summary of Counters

 Counters serve many purposes in sequential 
logic design.

 There are lots of variations on the basic 
counter.
◦ Some can increment or decrement.
◦ An enable signal can be added.
◦ The counter’s value may be explicitly set.

 There are also several ways to make 
counters.
◦ You can follow the sequential design principles to 

build counters from scratch.
◦ You could also modify or combine existing counter 

devices.



Sequential Circuit 
Design

Creating a sequential circuit to address a design need.



Sequential Circuit Design

 Steps in the design process for sequential 
circuits

 State Diagrams and State Tables

 Examples



Sequential Circuit Design Process

 Steps in Design of a Sequential Circuit
◦ 1. Specification – A description of the sequential 

circuit.  Should include a detailing of the inputs, the 
outputs, and the operation.  Possibly assumes that 
you have knowledge of digital system basics.

◦ 2. Formulation:  Generate a state diagram and/or a 
state table from the statement of the problem.

◦ 3. State Assignment: From a state table assign 
binary codes to the states.

◦ 4. Flip-flop Input Equation Generation:  Select the 
type of flip-flop for the circuit and generate the 
needed input for the required state transitions



Sequential Circuit Design Process 
2

◦ 5. Output Equation Generation:  Derive output 
logic equations for generation of the output 
from the inputs and current state.

◦ 6. Optimization: Optimize the input and output 
equations.  Today, CAD systems are typically 
used for this in real systems.

◦ 7. Technology Mapping: Generate a logic 
diagram of the circuit using ANDs, ORs, 
Inverters, and F/Fs.

◦ 8. Verification: Use a HDL to verify the design.



Mealy and Moore

 Sequential machines are typically 
classified as either a Mealy machine or a 
Moore machine implementation.

 Moore machine: The outputs of the circuit 
depend only upon the current state of the 
circuit.

 Mealy machine:  The outputs of the circuit 
depend upon both the current state of the 
circuit and the inputs.



An example to go through the 
steps

 The specification:  The circuit will have 
one input, X, and one output, Z.  The 
output Z will be 0 except when the input 
sequence 1101 are the last 4 inputs 
received on X.  In that case it will be a 1.



Generation of a state diagram

 Create states and meaning for them.
◦ State A – the last input was a 0 and previous 
inputs unknown.  Can also be the reset state.

◦ State B – the last input was a 1 and the 
previous input was a 0.  The start of a new 
sequence possibly.

 Capture this in a state diagram





Notes on State diagrams

 Capture this in a state diagram
◦ Circles represent the states

◦ Lines and arcs represent the transition between 
state.

◦ The notation Input/Output on the line or arc 
specifies the input that causes this transition and 
the output for this change of state.





Continue to build up the diagram

 Add a state C
◦ State C – Have detected the input sequence 11 
which is the start of the sequence.



Continue

 Add a state D
◦ State D – have detected the 3rd input in the 
start of a sequence, a 0, now having 110.  
From State D, if the next input is a 1 the 
sequence has been detected and a 1 is output.



Add remaining transitions

 The previous diagram was incomplete.

 In each state the next input could be a 0 
or a 1.   This must be included.



Now generate a state table
 The state table

 This can be done directly from the state 
diagram. 

• Now need to do a state assignment



Select a state assignment

 Will select a gray encoding

 For this state A will be encoded 00,           
state B 01,  state C 11 and state D 10



Flip-flop input equations

 Generate the equations for the flip-flop 
inputs

 Generate the D0 equation

 Generate the D1 equation



The output equation

 The next step is to generate the equation 
for the output Z and what is needed to 
generate it.

 Create a K-map from the truth table.



Now map to a circuit

 The circuit has 2 D type F/Fs



UNIT-5

MEMORY



INTRODUCTION

 Memories are made up of registers
 Each register in the memory is one 

storage location also called memory 
location.

 Each storage element is called a cell .
 These cells are made up of flip-flops or 

capacitors in semiconductor memories.
 Data stored in a memory by a process 

called writing



Classification of memory

 Memory is mainly classified into 
Volatile memory
non-volatile memory

 In volatile memory data will be erased 
once the power is switched off

 In non-volatile memory data is retained 
even after the power is switched off

 RAM is volatile
 ROM is non-volatile



RAM (Random access memory)
RAM  is of two types

◦ SRAM (Static RAM) (flip-flop gates)

SRAM is made of flip-flops and the data is retained 
until the power is on

◦ DRAM (Dynamic RAM)

DRAM is made of capacitors and the data needs 
to be refreshed to retain the contents of the memory. For 
that purpose we need additional circuit called refresh 
circuitry to refresh the data after a particular time interval.



ROM (Read only memory)

 ROM is classified as 
◦ ROM

◦ PROM (programmable)

◦ EPROM (erasable programmable)

◦ EEPROM (electronically erasable programmable)



Block diagram of memory unit

k address lines：select one 

particular word

read, write：specify the direction 

of transfer

n data input line：provide the 

information to be stored in 

memory

n data output line：supplying the 

information coming out of 

memory



One bit memory cell



4x4 RAM



Coincident Decoding
( two-dimensional selection scheme)

 Decoder with k input and 2
k

output 
requires 2

k
AND gates with k input

 k input decoder can be implemented by 
two k/2 input decoders with one for 
column and another for row 

 e.g., 10×1024 decoder can be 
implemented by two 5×32 decoders 



Two dimensional decoding structure for a 
1k-word memory



Address multiplexing 
64K-word memory 



 Range of memory size

– 210~232 words

 bytes

– K=210、 M=220、 G=230 。

– 64K=216 、2M=221 、4G=232 。

 Memory 1K x 16

– 10 bits address，16 bits in each word

 Determine the no. of  bits for 
address

k: no. of address bits

m: total number of words



Control inputs to memory chip

Memory enable Read/write Memory operation

0 X None

1 0 Write to select word

1 1 Read from selected word



Memory cycle timing waveforms

 access time
◦ the time required to select a word and read it

 cycle time
◦ the time required to complete a write cycle

 access time 、 cycle time
◦ equal to a fixed number of CPU clock



SEQUENTIAL MEMORY-MAGNETIC 
TAPE

Mechanical configuration of a tape:



Surface organization of a tape



Physical layout of a magnetic disk



Surface organization of a disk



Creation and use of CD-ROM



CD-ROM format



Making a CD-R



Making a CD-RW



DVD capacities

DVD capacity:

Feature
---------------------------------
single-sided, single-layer
single-sided, dual-layer

double-sided, single-layer
double-sided, dual-layer

Capacity
------------

4.7 GB
8.5 GB
9.4 GB
17  GB



Cache memory



Cache Read Operation - Flowchart



Cache Design

 Size

 Mapping Function

 Replacement Algorithm

 Write Policy

 Block Size

 Number of Caches



Size does matter

 Cost
◦ More cache is expensive

 Speed
◦ More cache is faster (up to a point)

◦ Checking cache for data takes time



Typical Cache Organization



Mapping Function

 Cache of 64kByte

 Cache block of 4 bytes
◦ i.e. cache is 16k (214) lines of 4 bytes

 16MBytes main memory

 24 bit address 
◦ (224=16M)



Direct Mapping Cache 
Organization



Fully Associative Cache 
Organization



Two Way Set Associative Cache 
Organization



Types of PLD (Programmable 
Logic Device)



Programmable Logic Array (PLA)

 similar to PROM

 does not provide full decoding and does 
not generate all the minterms

 decoder is replaced by an array of AND 
gate



PLA with 3 inputs, 4 product terms, 
and two outputs



PLA Programming Table

 PLA Programming Table consists of three sections

– 1st, list the product terms numerically 

– 2nd, specify the required path between inputs and 
AND gates 

– 3rd, specifies the paths between the AND and OR 
gates 

 outputs 

inputs (T)       (C)  Product 

term A B C F1 F2 

BA   1 1 0 - 1 - 

AC  2 1 - 1 1 1 

BC  3 - 1 1 - 1 

CBA   4 0 1 0 

 

1 - 

 



Example

Implement the following two Boolean 
functions with a PLA: 

Simplified by K-map：







)7,6,5,0(),,(

)4,2,1,0(),,(

2

1

CBAF

CBAF

CBAACABF

BCACABF





2

1 )(



solution



Memory hierarchy



Memory hierarchy 



Memory hierarchy in a computer 
system


