“vz1 INSTITUTE OF AERONAUTICAL ENGINEERING

2 @ s (Autonomous)
. Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING
IV B. Tech | Semester

DESIGN PATTERNS

Prepared by: Mr. C.PRAVEEN KUMAR
Mr. R.M.NOORULLAH
Mr. M.RAKESH
Ms. JJHAREESHA

DESIGN PATTERNS

IV B.Tech. | SEMESTER
UNIT 1
PPT SLIDES

TEXT BOOKS:

1. Design Pattern by Erich Gamma, Pearson Education

2. Pattern’s in JAVA Vol-I1 BY Mark Grand, Wiley DreamTech

3. Pattern’s in JAVA VoI-11 BY Mark Grand, Wiley DreamTech

4. JAVA Enterprise Design Patterns Vol-I11 Mark Grand, Wiley
Dream Tech

5. Head First Design Patterns By Eric Freeman-Orelilly-spd..

6. Design Patterns Explained By Alan Shalloway,Pearson
Education

UNIT-I

S5.NO. TOPIC.

© 0O N O O b W DN B

What is Design Pattern?

Design Patterns in Smalltalk MVC
Describing Design Patterns

The catalog of Design Patterns

Organizing the catalog

How Design Patterns Solve Design Problems
How to select Design Patterns

How to Use a Design Pattern

Review Unit-I, Online resources

L1
L2
L3
L4
LS
L6
L7
L3

L9

PPT Slides

3-9

10-13
14 - 18
19 - 28
29-30
31-59
60 -61
62 — 63

64 — 64

L1

What is a Design Pattern?

Each pattern Describes a problem which occurs over and
over again in our environment ,and then describes the
core of the problem

Ntov_elists, playwrights and other writers rarely invent new
stories.

Often Ideas are reused, such as the “Tragic Hero” from
Hamlet or Macbeth.

Designers reuse solutions also, preferably the “good” ones
— Experience is what makes one an ‘expert’

Problems are addressed without rediscovering solutions
from scratch.

— “My wheel is rounder”

L1

Design Patterns

Design Patterns are the best solutions for there
occurring problems in the application programming
environment.

« Nearly a universal standard

» Responsible for design pattern analysis In other areas,
Including GUlIs.

« Mainly used in Object Oriented programming

Design Pattern Elements

1. Pattern Name
Handle used to describe the design problem
Increases vocabulary
Eases design discussions
Evaluation without implementation details

L1

Design Pattern Elements

2. Problem
Describes when to apply a pattern

May include conditions for the pattern to be
applicable

Symptoms of an inflexible design or
limitation

L1

Design Pattern Elements

3. Solution
Describes elements for the design

Includes relationships, responsibilities, and
collaborations

Does not describe concrete designs or
Implementations

A pattern i1s more of a template

L1

Design Pattern Elements

4. Conseguences
Results and Trade Offs
Critical for design pattern evaluation
Often space and time trade offs
Language strengths and limitations

(Broken into benefits and drawbacks for this
discussion)

L1

L1

Design patterns can be subjective.

One person’s pattern may be another
person’s primitive building block.

The focus of the selected design patterns are:
Object and class communication

Customized to solve a general design
problem

Solution i1s context specific

Design patterns in Smalltalk MVC

» The Model/View/Controller triad of classes Is
used to build user interfaces in Smalltalk-80

» MVC consists of three kinds of objects.

» M->>MODEL is the Application object.

» V->>View Is the screen presentation.

» C->>Controller Is the way the user interface reacts to
user input.

MV C decouples to increase flexibility and reuse.

UNIT-I 11

L2

Design patterns in Smalltalk MVC

MV C decouples views and models by establishing a
subscribe/notify protocol between them.

A view must ensure that its appearance must reflects
the state of the model.

Whenever the model’s data changes, the model
notifies views that depends on it.

You can also create new views for a model without
Rewriting It.

L2

Design Patterns in Smalltalk MVC

» The below diagram shows a model and three views.

» The model contains some data values, and the views
defining a spreadsheet, histogram, and pie chart display
these data In various ways.

» The model communicates with it’s values change, and the

L2

views communicate with the model to access these values.

» Feature of MV C Is that views can be nested.
» Easy to maintain and enhancement.

Design Patterns in Smalltalk MVC

Relative Percentages

ABCD
X 15 35 3515
Y 10 40 30 20

Z 10 40 3020

— Change notification
................... > Requests’ modificatlons

—Application data

UNIT-I 14

L2

Describing Design Patterns

» Graphical notations ,while important and useful, aren’t
sufficient.

» They capture the end product of the design process as
relationships between classes and objects.

» By using a consistent format we describe the design
pattern .

» Each pattern is divided into sections according to the
following template.

L3

L3

Describing Design Patterns

Pattern Name and Classification:

> It conveys the essence of the pattern succinctly good name is
vital, because it will become part of design vocabulary.

Intent: What does the design pattern do?

» What is 1t’s rational and intend?

» What particular design issue or problem does it address?
Also Known As: Other well-known names for the pattern

Motivation: A scenario that illustrates a design problem and how the
class and object structures in the pattern solve the problem.

» The scenario will help understand the more abstract description of
the pattern that follows.

L3

Describing Design Patterns

Applicability:

« Applicability: What are the situations in which the design
patterns can be applied?

« What are example of the poor designs that the pattern can
address?

e How can recognize situations?

 Structure: Graphical representation of the classes in the pattern
using a notation based on the object Modeling
Technique(OMT).

« Participants: The classes and/or objects participating in the
design pattern and their responsibilities.

Structure:

» Graphical representation of the classes in the pattern using a
notation based on the object Modeling Technique(OMT).

» Participants: The classes and/or objects participating in the
design pattern and their responsibilities.

Describing Design Patterns

Collaborations:

> How the participants collaborate to carry out their
responsibilities.

Consequences:
» How does the pattern support its objectives?

» What are the trade-offs and result of using the
pattern ?

» What aspect of the system structure does it let
vary independently?
Implementation:

» What Pitfalls, Hints, Techniques should be aware of when
Implementing the pattern ?

» Are there language-specific issues?

L3

L3

Describing Design Patterns

Sample Code:

» Code fragments that illustrate how might implement
the pattern in C++ or Smalltalk.

Known Uses:
» Examples of the pattern found in real systems.
Related Patterns:

» What design patterns are closely related to this one?
What are the imp differences?

» With Which other patterns should this one be used?

The Catalog of Design Pattern

« Abstract Factory: Provide an interface for
creating families of related or dependent
objects without specifying their concrete
classes.

« Adapter: Convert the interface of a class into
another interface clients expect.

* Bridge: Decouple an abstraction from its
Implementation so that two can vary
Independently.

L4

L4

The Catalog of Design Pattern

* Builder: Separates the construction of the complex
object from its representation so that the same
constriction ~ process can create different

representations.

* Chain of Responsmlllty Avoid coupling the sender of

a request to it’s receiver by giving more t

1an ONeE

object a chance to handle the request. Chain the

receiving objects and pass the request along t
until an objects handles it.

he chain

The Catalog of Design Pattern

« Command: Encapsulate a request as an object,
thereby letting parameterize clients with different
request, queue or log requests, and support undoable
operations.

« Composite: Compose objects into three objects to
represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of
objects uniformly.

L4

L4

The Catalog of Design Pattern

» Decorator: Attach additional responsibilities to an
object dynamically. Decorators provide a flexible
alternative to sub classing for extending
functionality.

» Facade: Provide a unified interface to a set of
Interfaces In a subsystem's Facade defines a
higher-level interface that makes the subsystem
easler to use.

L4

The Catalog of Design Pattern

 Factory Method: Defines an interface for creating an
object ,but let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to
subclasses.

* Flyweight: Use sharing to support large numbers of fine-
grained objects efficiently.

* Interpreter: Given a language, defining a representation of
Its grammar along with an interpreter that uses the
representation to Interpret sentences in the language.

L4

The Catalog of Design Pattern

* |terator: Provide a way to access the element of an
aggregate object sequentially without exposing its
underlying representation.

* Mediator: Define an object that encapsulate how a
set of objects interact. Mediator promotes loose
coupling by keeping objects from referring to each
other explicitly, and let’s you very their interaction
Independently.

The Catalog of Design Pattern

« Memento: Without violating encapsulation,
capture and externalize an object’s internal
state so that object can be restored to this
state later.

* Observer: Define a one-to-many
dependency between objects so that when
one object changes state, all 1t’s dependents
are notified and updated automatically.

L4

The Catalog of Design Pattern

Prototype: Specify the kinds of objects to create using a
prototypical instance, and create new objects by copying
this prototype.

Proxy: Provide a surrogate or placeholder for another object
to control access to It.

Singleton: Ensure a class has only one instance, and provide
a point of access to It.

State: Allow an object to alter its behavior when its internal
state changes. the object will appear to change its class.

The Catalog of Design Pattern

« Strategy: Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
Independently from clients that use it.

« Template Method: Define the Skelton of an operation, deferring
some steps to subclasses. Template method subclasses redefine
certain steps of an algorithm without changing the algorithms
structure.

The Catalog of Design Pattern

* Visitor: Represent an operation to be
performed on the elements of an object
structure. Visitor lets you define a new
operation without changing the classes of the
elements on which It operates.

L4

LS

Organizing the Catalog

*Two criteria
“*Purpose: what a pattern does
Creational: The process of object creation
Structural: The composition of classes or objects
Behavioral: Characterize the ways in which

classes or objects interact and distribute
responsibility

“s*Scope: whether the pattern applies primarily to
classes or to objects

Organizing the Catalog

LS

Purpose

Creational Structural Behavioral

Scope | Class Factory Method | Adapter (class) Interpreter
Template Method

Object | Abstract Factory | Adapter (object) | Chain of
Builder Bridge Responsibility

Prototype Composite Command

Singleton Decorator Iterator

Facade Mediator

Flyweight Memento

Proxy Observer

State
Strategy

Visitor

How Design Patterns Solve Design Problems

 Finding Appropriate Objects
— Decomposing a system into objects is the hard part

— Object Oriented Designs often end up with classes with no
counterparts in real world (low-level classes like arrays)

— Strict modeling of the real world leads to a system that
reflects today’s realities but not necessarily tomorrows

— Design patterns identify less-obvious abstractions

L6

How Design Patterns Solve Design Problems

* Determining Object Granularity
— ODbjects can vary tremendously in size and number

— Facade pattern describes how to represent
subsystems as objects

— Flyweight pattern describes how to support huge
numbers of objects

L6

Design Pattern relationship

« Mapping

UNIT-I

Memento
Proxy
saving state \
Build of iteration p Adapter
uilder _
Iterator i, Bridge
Vo8
1‘@(7[1,[S]S
COI); 2o .
Posmy Enumerating
° children
- _ composed Command
Composite
adding
Decorator < respn_sibilities sharing
to objects composites
changmgtskm Ervweight defining Chain of
versus guts yweig grammar — Responsibility
5, . Visitor
“a’{\“% [@]-O ll(?é) '&dd\“% O“S
. Ky 27 S O
Strat sharing Y 2y Interpreter 50°
rategy strategies % complex
Mediator | dependency Observer
State management
g defining
1 - ,
Prototype Ure rithm’s ft R
yp d«"llam,bal /f% steps Template Method LI > Factory Method
 single Abstract Factory im;;z
. ~Instance us single
Singleton < ST Facade

34

L6

Specifying Object Interfaces

* Interface:
— Set of all signatures defined by an object’s operations

— Any request matching a signature in the objects interface
may be sent to the object

— Interfaces may contain other interfaces as subsets
* Type:

— Denotes a particular interfaces

— An object may have many types

— Widely different object may share a type

— Objects of the same type need only share parts of their
Interfaces

— Asubtype contains the interface of its super type
« Dynamic binding, polymorphism

L6

Specifying Object Interfaces

An object’s implementation is defined by its class

The class specifies the object’s internal data and
defines the operations the object can perform

Objects Is created by Instantiating a class
— an object = an instance of a class

Class inheritance
— parent class and subclass

L6

Specifying Object Implementations (cont.)

e Abstract class versus concrete class
— abstract operations

* Qverride an operation

» Class versus type
— An object’s class defines how the object is implemented
— An object’s type only refers to its interface

— An object can have many types, and objects of different
classes can have the same type

UNIT-I

37

L6

L6

Specifying Object Implementations (cont.)

e Class versus Interface Inheritance

— class Inheritance defines an object’s implementation in
terms of another object’s implementation (code and
representation sharing)

— Interface inheritance (or subtyping) describes when an
object can be used in place of another

 Many of the design patterns depend on this
distinction

UNIT-I 38

L6

Specifying Object Implementations (cont.)

* Programming to an Interface, not an
Implementation

e Benefits

— clients remain unaware of the specific types of
objects they use

— clients remain unaware of the classes that
Implement these objects

UNIT-I 39

L6

Program to an interface, not an Implementation

« Manipulate ob{ects solely in terms of interfaces
defined by abstract classes!

* Benefits:

1. Clients remain unaware of the specific types of objects they
use.

2. Clients remain unaware of the classes that implement the
objects.

Clients only know about abstract class(es) defining the
Interfaces

Do not declare variables to be instances of particular
concrete classes

 Use creational patterns to create actual objects.

Favor object composition over class inheritance

White-box reuse:
— Reuse by sub classing (class inheritance)
— Internals of parent classes are often visible to subclasses
— works statically, compile-time approach
— Inheritance breaks encapsulation

Black-box reuse:
— Reuse by object composition

— Requires objects to have well-defined interfaces
— Nointernal details of objects are visible

L6

Putting Reuse Mechanisms to Work

 Inheritance versus Composition
» Delegation
* |nheritance versus Parameterized Types

UNIT-I

42

L6

Inheritance versus Composition

« Two most common techniques for reuse

— class inheritance
« white-box reuse
— 0bject composition
« black-box reuse

e Class inheritance

— advantages
« static, straightforward to use
« make the implementations being reuse more easily

UNIT-I

43

L6

Inheritance versus Composition (cont.)

» Class inheritance (cont.)
— disadvantages

 the implementations inherited can’t be changed at
run time

» parent classes often define at least part of their
subclasses’ physical representation
— breaks encapsulation

 implementation dependencies can cause problems
when you’re trying to reuse a subclass

UNIT-I

44

L6

Inheritance versus Composition (cont.)

 Object composition
— dynamic at run time

— composition requires objects to respect each
others °interfaces

* but does not break encapsulation
— any object can be replaced at run time

— Favoring object composition over class
Inheritance helps you keep each class
encapsulated and focused on one task

L6

Inheritance versus Composition (cont.)

 Object composition (cont.)
— class and class hierarchies will remain small
— but will have more objects

 Favor object composition over class
Inheritance

* |Inheritance and object composition should
work together

L6

Delegation

« Two objects are involved in handling a
request: a receiving object delegates
operations to Its delegate

rectangle

Area

UNIT-I

Delegation (cont.)

Makes It easy to compose behaviors at run-time and
to change the way they’re composed

Disadvantage:dynamic, highly parameterized
software 1s harder to understand than more static
software

Delegation is a good design choice only when it
simplifies more than it complicates

Delegation is an extreme example of object
composition

L6

Inheritance versus Parameterized Types

 Let you define a type without specifying all the
other types It uses, the unspecified types are
supplied as parameters at the point of use

« Parameterized types, generics, or templates

« Parameterized types give us a third way to
compose behavior in object-oriented systems

L6

Inheritance versus Parameterized Types (cont.)

» Three ways to compose

— object composition lets you change the behavior being
composed at run-time, but it requires indirection and
can be less efficient

— Inheritance lets you provide default implementations
for operations and lets subclasses override them

— parameterized types let you change the types that a
class can use

UNIT-I 50

L6

L6

Relating Run-Time and Compile-Time Structures

An object-oriented program’s run-time structure often
bears little resemblance to i1ts code structure

The code structure is frozen at compile-time

A program’s run-time structure consists of rapidly
changing networks of communicating objects

aggregation versus acquaintance (association)
— part-of versus knows of

Relating Run-Time and Compile-Time Structures

 The distinction between acquaintance and
aggregation is determined more by intent
than by explicit language mechanisms

* The system’s run-time structure must be

Imposed more by the designer than the
language

L6

Designing for Change

* A design that doesn’t take change into
account risks major redesign in the future

 Design patterns help you avoid this by
ensuring that a system can change In
specific ways

— each design pattern lets some aspect of system
structure vary independently of other aspects

L6

Common Causes of Redesign

Creating an object by specifying a class
explicitly
Dependence on specific operations

Dependence on hardware and software
nlatform

Dependence on object representations or
Implementations

Algorithmic dependencies

UNIT-I

54

L6

Common Causes of Redesign (cont.)

 Tight coupling
» Extending functionality by subclassing
* Inability to alter classes conveniently

UNIT-I

55

L6

Design for Change (cont.)

 Design patterns in application programs

— Design patterns that reduce dependencies can
Increase internal reuse

— Design patterns also make an application more
maintainable when they’re used to limit
platform dependencies and to layer a system

UNIT-I 56

L6

L6

Design for Change (cont.)

 Design patterns in toolkits

— Atoolkit is a set of related and reusable classes
designed to provide useful, general-purpose
functionality

— Toolkits emphasize code reuse. They are the
object-oriented equivalent of subroutine
libraries

— Toolkit design is arguably harder than
application design

Design for Change (cont.)

 Design patterns in framework

— A framework is a set of cooperating classes that make
up a reusable design for a specific class of software

— You customize a framework to a particular application
by creating application-specific subclasses of abstract
classes from the framework

— The framework dictates the architecture of your
application

UNIT-I 58

L6

Design for Change (cont.)

Design patterns in framework (cont.)
— Frameworks emphasize design reuse over code reuse

— When you use a toolkit, you write the main body of the
application and call the code you want to reuse. When
you use a framework, you reuse the main body and
write the code it calls.

— Advantages: build an application faster, easier to
maintain, and more consistent to their users

UNIT-I 59

L6

Design for Change (cont.)

Design patterns in framework (cont.)

— Mature frameworks usually incorporate several design
patterns

— People who know the patterns gain insight into the
framework faster

— differences between framework and design pattern
« design patterns are more abstract than frameworks
« design patterns are smaller architectural elements than frameworks
« design patterns are less specialized than frameworks

UNIT-I

60

L6

How To Select a Design Pattern

» Consider how design patterns solve design Problems.
» Scan Intent sections.

» Study how patterns interrelate.

» Study patterns of like purpose.

» Examine a Cause of redesign.

» Consider what should be variable in your design.

L7

//’——l Memento | Proxy |
saving state
_ of itergation | Adapter |
Builder

avoiding -

terator

creating
composites

enumeralting
chiidren

adding)
responsibilities—ﬁ

to objects

composed
using Command I

Composite

N\

Decorator | sharing \ i

composites defining definin
adding traversals g
operations the chain

i defining o
[rivwerane | gz,
changing skin
versus guls
adding
sharing | Interpreter l——/’ operations | Chain of Hesponsibilityl
strategies)
/ sharing J
terminal
Strategy sharing symbols -
states Mediator
compI%x
dependency |
managernent Observer J
algorithm’s
steps
i Template Method | often uses

Prototype I-\ H ' \

] Factory Method
configure factory
dynamically implement using

/I Abstract Factory

single

instan
e e . Facade
single
/ instance
| Singleton

Figure 1.1: Design pattern relationships

L7

62

How To Use a Design Pattern

» Read the pattern once through for an overview.

» Go Back and study the Structure, Participants ,and Collaborations
sections.

» Look At the Sample Code section to see a concrete
Example of the pattern in code.

» Choose names for pattern participants that are meaningful in the
application context.

» Define the classes.
» Define App’n-specific names for operations in the Pattern

» Implement the operations to carry out responsibilities in the
pattern.

L8

Purpose Design Pattern Aspect(s) That Can Vary
Creational | Abstract Factory (87) families of product objects
Builder (97) how a composite object gets created
Factory Method (107) subclass of object that is instantiated
Prototype (117) class of object that is instantiated
Singleton (127) the sole instance of a class
Structural | Adapter (139) interface to an object
Bridge (151) implementation of an object
Composite (163} structure and composition of an object
Decorator (175) responsibilities of an object
without subclassing
Facade (185) interface to a subsystem
Flyweight (195) storage costs of objects
Proxy (207) how an object is accessed; its location
Behavioral | Chain of Responsibility (223) | object that can fulfill a request

Command (233)

when and how a request is fulfilled

Interpreter (243) grammar and interpretation of a language

Tterator (257) how an aggregate’s elements are accessed,
traversed

Mediator (273) how and which objects interact with
each other

Memento (283) what private information is stored outside |
an object, and when

Observer (293) number of objects that depend on another
object; how the dependent objects stay
up to date

State (305) states of an object

Strategy (315) an algorithm

Template Method (325) steps of an algorithm

Visitor (331) operations that can be applied to object(s)

without changing their class(es)

Table 1.2: Design aspects that design patterns let you vary

L8

Online resources

o Pattern FAQ
* http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html

 Basic patterns

* http://exciton.cs.oberlin.edu/javaresources/DesignPa
tterns/default.ntm

 Patterns home page
o http://hillside.net/patterns/

UNIT-I 65

L9

Unit -1
A Case Study: Designing a Document Editor

66

S5.NO. TOPIC

O© 00O N O O &~ W DN -

Document structure

Formatting

Embellishment

Multiple look & feels

Multiple window systems

User operations L6
Spelling checking & hyphenation
Concluding Remarks

Pattern References

PPT Slides
L1 4—-13
|2 14 — 20
L3 21 -25
L4 26 — 30
L5 31-35
36 — 46

L7 47 — 60
L8 6l -061
L8 62 — 67

Design Problems:

« seven problems in Lexis's design:

Document Structure:

v The choice of internal representation for the document affects nearly every aspect
of Lexis's design. All editing , formatting, displaying, and textual analysis will
require traversing the representatlon

Formatting:

v" How does Lexi actually arrange text and graphics into lines and columns?
v" What objects are responsible for carrying out different formatting policies?
v How do these policies interact with the document’s internal representation?

Embellishing the user interface:

Lexis user interface include scroll bar, borders and drop shadows that embellish the
WYSIWYG document interface. Such embellishments are likely to change as Lexis
user interface evolves.

L1

Supporting multiple look-and-feel standards:
Lexi should adapt easily to different look-and-feel standards such as Motif and Presentation
Manager (PM) without major modification.

Supporting multiple window systems:
Different look-and-fell standards are usually implemented on different window system. Lexi’s
design should be independent of the window system as possible.

User Operations:
User control Lexi through various interfaces, including buttons and pull-down menus. The
functionality beyond these interfaces is scattered throughout the objects in the application.

Spelling checking and hyphenation.:

How does Lexi support analytical operations checking for misspelled words and
determining hyphenation points? How can we minimize the number of classes we have to
modify to add a new analytical operation?

Part ll: Application: Document Editor

lexi
File Edit Style Symbol

=) 30l

Align left

Center

Align right
Justify

¢ Roran
Boldface
Jralic
Typewriter
Sans serif

the inteznal representation of the TextWView. The draw
operation {which is not shown) simply calls deaw on the

BBox

The code that builds a TextView is similar 10 the
original draw code, except that instead of clling
functions to draw the characters, we build objects
that will dzaw thernselves whenever necessary. Using
objects solves the redraw problem because only those
objects that lie within the damaged region will get
draw calls. The progeararae does not bave to write the
code that decides what objects to redraw- that code i5
i the toolkit (i this example, in the irplemnentation
of the Box draw opexation). Indeed, the glyph-based
foplementation of TextView s even simpler than the
original code because the prograramer need only declare
what objects he wants-he does not need o specify dow
the objects should intezact.

2.2 Multiple fonts

Because we built TextView with glyphs, we can easily
extend it to add functionality that might otherwise be
difficult to fooplerent. Fox example, Figure 4 shows
a screen durap of 3 version of TextWiew that displays
EUC-encoded Japanese text. Adding this featuze t0 2
textview suchas the Athena Text Widget would zequire
a complete resrite. Here we only add two lines of code.
Figuze Sshows the change.

Character glyphs take an optional second constructor
pararneter that specifies the font to use when drawing
For ASCIT-encoded text we ceeate Characters that use
the 8-bit ASCIT-encoded *“a14™ font; for JIS-enroded

GNU s s gouios e sse

text, (kanfif and kana chazacters) we cxeate Charac
that use the 16-bit JI8 - encoded “k14™ font.

?.? Mixing text and graphics
We can put any glyph inside 3 composite glyph; th)
it is straightforward to extend TextView to displ]
exnbedded. gaphics. Figure 6, shows » screen dump
a whew that makes the whitespace characters in 3 fY
visible by drawing graphical representations of space
newlines, and forrafeeds. Figure T‘Ehnwi the aodifi
code that builds the view,

A Stencil is 2 glyph that displays 3 bitraap, an HE
draws a horizontal line, and VGlue represents vertid
blank space. The constructor parametess for Rule a

while {{c = getc(file}) != EOF) {
if o == "\n')

line = new LEBox();
+ } else if (lisascii(e)) {
+ line->append
new character
tojis(e, geto(file)), kid

} else
Line->append(
new charaoter(o, a14)

¥
H

Figute 5: Modified TextView that displays Japanese te

~NOoO Ok wWwDdN -

7 Design Problems

Document structure
Formatting
Embellishment

Multiple look & feels
Multiple window systems
User operations

Spelling checking &
hyphenation

UNIT-1I

(Lexi)

70

L1

Document Structure

Goals:
— present document’s visual aspects
— drawing, hit detection, alignment

— support physical structure
(e.g., lines, columns)

Constraints/forces:
— treat text & graphics uniformly
— no distinction between one & many

L1

Document Structure

 The internal representation for a document
 The Internal representation should support

— maintaining the document’s physical structure
— generating and presenting the document visually

— mapping positions on the display to elements in the
Internal representations

UNIT-1I

72

L1

L1

Document Structure (cont.)

« Some constraints
— we should treat text and graphics uniformly

— our implementation shouldn’t have to distinguish
between single elements and groups of elements in the
Internal representation

* Recursive Composition

— acommon way to represent hierarchically structured
Information

UNIT-1I 73

characters space image ' composite (row) I—l

£ S

composite (column)

Figure 2.2: Recursive composition of text and graphics

'(_:omposite '
{(column)
composite Y X B
(row) .

composite
(row)

Figure 2.3: Object structure for recursive comprosition of text and graphics

Document Structure (cont.)

* Glyphs

— an abstract class for all objects that can appear
In a document structure

— three basic responsibilities, they know

 how to draw themselves, what space they occupy,
and their children and parent

« Composite Pattern

— captures the essence of recursive composition
In object-oriented terms

UNIT-1I 75

L1

Glyph

Draw(Window)
Intersects(Point)
Insert(Glyph, int)

T

L1

Character

Draw(Window w) ©O- -
Intersects(Point p)

char ¢

---4---t-0

return true if point p |
intersects this character

e L e o Em am A dm Em Em mm me wm a

w~>DrawCharacte r(cw

Rectangle

Draw(...)
Intersects(...)

Row

Draw(Window w) O-----=---H---ou_-_-
Intersects(Pointp) O------1 .

Polygon

Draw(...)
Intersects(...)

Insert(Glyph g, int i) Q
]

insert g into
children at position |

children

for all ¢ in children
if c—>Intersects(p) return true

correctly;
c—>Draw(w)

forall ¢ in children _
ensure ¢ is positioned

A sy mm o o A ke mm e Em e o o mr o mA m wm am o e o

Figure 2.4: Partial Glyph class hierarchy

L1

Responsibility

| Operations
appearance | virtual void Draw (Window*)
virtual void Bounds (Rect&) |
hit detection | virtual bool Intersects(const Point&)
structure | virtual void Insert (Glyph*, int)
virtual void Remove (Glyph*) | |
virtual Glyph* Child(int)

virtual

Glyph* Parent () = -

Table 2.1: Basic glyph interface

L2

Formatting

 Astructure that corresponds to a properly
formatted document
» Representation and formatting are distinct

— the ability to capture the document’s physical structure
doesn’t tell us how to arrive at a particular structure

 here, we’ll restrict “formatting” to mean breaking
a collection of glyphs in to lines

Formatting (cont.)

 Encapsulating the formatting algorithm

— keep formatting algorithms completely
Independent of the document structure

— make It Is easy to change the formatting
algorithm

— We’ll define a separate class hierarchy for
objects that encapsulate formatting algorithms

L2

Formatting (cont.)

« Compositor and Composition

— We’ll define a Compositor class for objects that can
encapsulate a formatting algorithm

— The glyphs Compositor formats are the children of a
special Glyph subclass called Composition

— When the composition needs formatting, it calls its
compositor’s Compose operation

— Each Compositor subclass can implement a different line
breaking algorithm

L2

L2

Responsibility

Operations

what to format

void_SethmpOsition(Compoéition*)

when to format

virtual void Compose()

Table 2.2: Basic compositor interface

L2

Formatting (cont.)

» Compositor and Composition (cont.)

— The Compositor-Composition class split ensures a
strong separation between code that supports the
document’s physical structure and the code for different
formatting algorithms

« Strategy pattern
— Intent: encapsulating an algorithm in an object

— Compositors are strategies. A composition is the
context for a compositor strategy

L2

-—'—bJ G[yph .
' Insert(Glyph, int) |

2

children - compositor Compositor
—<> Composition <> : - Composay
Ihsert(G!yph g, inti) Q[compoéitior‘x SetCompqsition()
Glyphuinsert(g,) | 1 e |
.composator.Conqulse() ArrayCompositor TexCompositor SimpleCompositor
_Compose'() | | compose)y | | Compose(

Figure 2.5: Composition and Compositor class relationships

composition

compositor

Figure 2.6: Object structure reflecting compositor-directed linebreaking

L2

Embellishing the User Interface

« Considering adds a border around the text editing
area and scrollbars that let the user view the different
parts of the page here

 Transparent Enclosure

— Inheritance-based approach will result in some problems

« Composition, ScollableComposition,
BorderedScrollableComposition, ...

— object composition offers a potentially more workable and
flexible extension mechanism

UNIT-1I 85

L3

L3

Embellishing the User Interface
(cont.)

 Transparent enclosure (cont.)
— object composition (cont.)
 Border and Scroller should be a subclass of Glyph

— two notions
» single-child (single-component) composition
« compatible interfaces

UNIT-1I 86

L3

Embellishing the User Interface
(cont.)

« Monoglyph

— We can apply the concept of transparent enclosure to all
glyphs that embellish other glyphs

— the class, Monoglyph
 Decorator Pattern

— captures class and void MonoGlyph::Draw(Window™ w) {
object relationships _component-> Draw(w);
that support ¥

void Border:: Draw(Window * w) {
MonoGlyph::Draw(w);
DrawBorder(w);

embellishment by
transparent enclosure

= Glyph

Draw(Window)

A

<> MonoGlyph
component

Draw(Window)

A

Border Scroller

Draw(Window) | Draw(Window)
DrawBorder(Window) ' —
-

‘@

Figure 2.7: MonoGlyph class relationships |

L3

border

scroller

i W%

{i:m g:;a} %iwv

q,,w

Figure 2.8: Embellished object structure

Supporting Multiple Look-and-
Feel Standards

 Design to support the look-and-feel changing at run-
time

 Abstracting Object Creation
— widgets

— two sets of widget glyph classes for this purpose

« aset of abstract glyph subclasses for each category of widget glyph
(e.g., ScrollBar)

« a set of concrete subclasses for each abstract subclass that
iImplement different look-and-feel standards (e.g., MotifScrollBar
and PMScrollBar)

UNIT-1I 90

Supporting Multiple Look-and-
Feel Standards (cont.)

 Abstracting Object Creation (cont.)

— Lexi needs a way to determine the look-and-
feel standard being targeted

— We must avoid making explicit constructor
calls

— We must also be able to replace an entire
widget set easily

— We can achieve both by abstracting the process
of object creation

UNIT-1I 91

Supporting Multiple Look-and-
Feel Standards (cont.)

 Factories and Product Classes
— Factories create product objects
— The example

« Abstract Factory Pattern

— capture how to create families of related
product objects without instantiating classes
directly

UNIT-1I 92

L4

GUIFactory

CreateScrollBar()
CreateButton()
CreateMenu()

X

MotifFactory | PM Factory _ 1 MacFactory

CreateScrollBar() ©-f------ 1 CreateScroHBar'() O-f-=-ww= CreateScroliBar() ©O-f------1
CreateButton() O-r--- CreateButton() O~~~ | CreateButton() O-r---1
CreateMenu() o CreateMenu() o-r CreateMenu{) - ©O-f

[

i
1
1
1
1
1
1
L]

return new MotiftMenu

return new PMMenu return new MacMenu

il - e e o - - -

£ :
= W YR R O ER B W e AR TR TR R e

I return new PMButton

return new MotifButton return new MacButton

;[R I I]
- e mm mm mm o e W W M R Em mm o A W W R M

return new MotifScrollBar

return new PMScroliBar - return new MacScroliBar

Figure 2.9: GUIFactory class hierarchy

L4

Glyph
N
ScroilBar Button Menu
ScroliTo(int) Press() Popup()
N AN N AN
MotitScrollBar MacScrollBar MotifButton MacButton MotifMenu MacMenu
ScroliTo(int) ScroliTo(int) 1 Press() Press() Popup() _Popup()
PMScrollBar PMButton PMMenu
ScroliTo(int) Press() Popup()

Figure 2.10: Abstract product classes and concrete subclasses

Supporting Multiple Window v
Systems

« We’d like Lexi to run on many existing window systems
having different programming interfaces

« Can we use an Abstract Factory?

— As the different programming interfaces on these existing
window systems, the Abstract Factory pattern doesn ‘t work

— We need a uniform set of windowing abstractions that lets us
take different window system impelementations and slide any
one of them under a common interface

UNIT-1I 95

Supporting Multiple Window
Systems (cont.)

« Encapsulating Implementation Dependencies

— The Window class interface encapsulates the things
windows tend to do across window systems

— The Window class i1s an abstract class
— Where does the implementation live?

« Window and WindowImp

« Bridge Pattern

— to allow separate class hierarchies to work together even as
they evolve independently

UNIT-1I 96

LS

Responsibility

Operations

window management

virtual
virtual
virtual
virtual
virtual

void Redraw()-
vold Raisel()
void Lower ()

void Iconify ()
void Deiconify ()

graphics

virtual
virtual
virtual
virtual

void DrawLine(...)
void DrawRect (...)
void DrawPolygon{(...)
void DrawText (...)

Table 2.3:

Window class interface

Glyph st

glyph

Draw(Window)

Window

| Redraw(} O--

| DrawLine()

lconify()
Lower()

A

— e e e e e e

glyph—>Draw(this)

ApplicationWindow

lconWindow

lconify()

DialogWindow

owner

Lower() @

= = ot -

owner—>Lower()

ApplicationWindow |

Window
' imp
Raise() o
DrawRect(...)
DialogWindow |
AconWindow

Windowimp

DeviceRaise()
- DeviceRect(...)

AN

LS

DeviceRect(...)

DeviceRect(...)

MacWindowlmp PMWindowlmp XWindowimp
| DeviceRaise() DeviceRaise() DeviceRaise()

DeviceRect(...)

User Operations

» Requirements

— Lexi provides different user interfaces for the
operations it supported

— These operations are implemented in many different
classes

— Lexi supports undo and redo

» The challenge is to come up with a simple and
extensible mechanism that satisfies all of these
needs

L6

L6

User Operations (cont.)

« Encapsulating a Request

— We could parameterize Menultem with a function to
call, but that’s not a complete solution
* 1t doesn’t address the undo/redo problem
* 1t’s hard to associate state with a function
 functions are hard to extent, and 1t’s hard to reuse part of them

— We should parameterize Menultems with an object, not
a function

UNIT-1I 101

L6

User Operations (cont.)

« Command Class and Subclasses

— The Command abstract class consists of a
single abstract operation called “Execute”

— Menultem can store a Command object that
encapsulates a request

— When a user choose a particular menu item, the
Menultem simply calls Execute on its
Command object to carry out the request

Command

Execute()

A

L6

- o we .

PasteCommand

FOntCOmmand

Execute() @

buffer

Execute() @

e = o - - -

paste buffer
into document

newFont

I [

make sefected
text appear in
newkont

SaveCommand

-

save | quitcommand

Execute() 9

pop up a dialog

box that lets the

user name the

document, and
then save the
document under
that name

Execute() @

if (document is modified) {
save~->Execute()

quit the application

Figure 2.11: Partial Command class hierarchy

Glyph

command

Menuitem |~ » Command

Clicked() ¢ - Execute()

e - - -

-

command—:-Execute();%

Figure 2.12: MenuItém-Command rel'atio'nship N

User Operations (cont.)

« Undoability

— To undo and redo commands, we add an Unexecute
operation to Command’s interface

— A concrete Command would store the state of the
Command for Unexecute

— Reversible operation returns a Boolean value to
determine if a command is undoable

« Command History
— a list of commands that have been executed

L6

L6

Implementing a Command History

000

past commands

present

« The command history can be seen as a list of past
commands commands

* As new commands are executed they are added to
the front of the history

UNIT-1I 106

L6

Undoing the Last Command

unexecute()

o000

present

« To undo a command, unexecute() is called on the
command on the front of the list

* The “present” position 1s moved past the last
command

UNIT-1I 107

L6

Undoing the Previous Command

unexecute()

o000

present

 To undo the previous command, unexecute() IS
called on the next command in the history

« The present pointer is moved to point before that
command

UNIT-1I 108

L6

Redoing the Next Command

execute()

\

o000

present

 To redo the command that was just undone,
execute() Is called on that command

* The present pointer is moved up past that
command

UNIT-1I 109

The Command Pattern

Encapsulate a request as an object

The Command Patterns lets you

— parameterize clients with different requests
— queue or log requests

— support undoable operations

Also Known As: Action, Transaction
Covered on pg. 233 in the book

L6

L7

Spelling Checking & Hyphenation

Goals:
— analyze text for spelling errors
— Introduce potential hyphenation sites

Constraints/forces:
— support multiple algorithms

— don’t tightly couple algorithms with document
structure

UNIT-1I 111

Spelling Checking & Hyphenation (cont’d)
Solution: Encapsulate Traversal

Iterator

— encapsulates a
traversal algorithm
without exposing
representation details
to callers

— uses Glyph’s child
enumeration
operation

— This 1s an example of
a “preorder Iterator”

iterator
o

UNIT-1I

112

L7

L7

Spelling Checking & Hyphenation (cont’d)

ITERATOR object behavioral
Intent

access elements of a container without exposing its representation
Applicability

— require multiple traversal algorithms over a container
— require a uniform traversal interface over different containers
— when container classes & traversal algorithm must vary independently

Structure
Aggregate (Glyph) Iterator
createlterator() first()
next()
isDone()
Z& currentltem()

ConcreteAggregate

Concretelterator

createlterator() @

UNIT-1I 113

return new Concretelterator(this)

L7

Spelling Checking & Hyphenation (cont’d)
ITERATOR (cont’d) object behavioral

Iterators are used heavily in the C++ Standard
Template Library (STL)

int main (int argc, char *argv]]) {
vector<string> args;
for (inti=0; i <argc; i++)
args.push_back (string (argvl[i]));
for (vector<string>::iterator i (args.begin ());

| I= args.end ();
I++)
t *1; .
o The same iterator pattern can be
return O; applied to any STL container!

}
for (Glyph::iterator i =glyphs.begin ();
| 1= glyphs.end ();
I++)
UNIT-11 114

Spelling Checking & Hyphenation (cont’d)
ITERATOR (cont’d) object behavioral

Consequences
+ flexibility: aggregate & traversal are independent
+ multiple iterators & multiple traversal algorithms
— additional communication overhead between iterator & aggregate

Implementation
— internal versus external iterators
— violating the object structure’s encapsulation
— robust iterators
— synchronization overhead in multi-threaded programs
— batching in distributed & concurrent programs

Known Uses

— C++ STL iterators
— JDK Enumeration, Iterator
— Unidraw lterator UNIT-II

115

L7

Spelling Checking & Hyphenation (cont’d)
Visitor

« defines action(s) at each step of traversal
 avoids wiring action(s) into Glyphs
* Iterator calls glyph’s accept(Visitor) at each node

e accept() calls back on visitor (a form of “static
polymorphism™ based on method overloading by type)

void Character::accept (Visitor &v) { v.visit (*this); }

class Visitor {
public:
virtual void visit (Character &);
virtual void visit (Rectangle &);
virtual void visit (Row &);
Il etc. for all relevant Glyph subclasses

};

L7

Spelling Checking & Hyphenation (cont’d) L7

SpellingCheckerVisitor

» gets character code from each character glyph

Can define getCharCode() operation just on Character()
class

 checks words accumulated from character glyphs
« combine with Preorderlterator

class SpellCheckerVisitor : public Visitor {
public:

virtual void visit (Character &);

virtual void visit (Rectangle &);

virtual void visit (Row &);

// etc. for all relevant Glyph subclasses
Private:

std::string accumulator_;

}’ UNIT-II 117

Spelling Checking & Hyphenation (cont’d)
Accumulating Words

iterator

UNIT-1I

Spelling check
performed when a

nonalphabetic character
It reached

118

L7

Spelling Checking & Hyphenation (cont’d)

* accept() then “visits” the glyph to perform the desired action

Interaction Diagram

 The iterator controls the order in which accept() is called on each glyph in
the composition

* The Visitor can be sub-classed to implement various desired actions

aCharacter ("a") anotherCharacter ("_") aSpellingChecker
accept(aSpellingChecker)
visit(this)
-
‘|‘j|‘ getCharCode()
checks
accept(aSpellingChecker) o visit(this) -'I %r;ra;’)letea
1 getCharCode()
-1
7
f/,
T .

UNIT-1I

119

L7

Spelling Checking & Hyphenation (cont’d)

HyphenationVisitor

» gets character code from each character glyph
» examines words accumulated from character glyphs

* at potential hyphenation point, inserts a...

class HyphenationVisitor : public Visitor {
public:

void visit (Character &);

void visit (Rectangle &);

void visit (Row &);

/] etc. for all relevant Glyph subclasses
¥

UNIT-1I

120

L7

Spelling Checking & Hyphenation (cont’d)

Discretionary Glyph

 looks like a hyphen when at end of a line
 has no appearance otherwise

« Compositor considers its presence when determining
linebreaks

Ilall IIIII IIIII Iloll Ilyll

. or
_____________ 4 [[l

UNIT-1I || ____________ | 121

Spelling Checking & Hyphenation (cont’d)
VISITOR object behavioral

Intent
centralize operations on an object structure so that they can vary
independently but still behave polymorphically
Applicability
— when classes define many unrelated operations

— class relationships of objects in the structure rarely change, but the
operations on them change often

— algorithms keep state that’s updated during traversal

Structure
ObjectStructure W
accept(Visitor)
Visitor J\
visitConcreteElement1(ConcreteElement1)
visitConcreteElement2(ConcreteElement2) | |
ConcreteElement1 ConcreteElement2
4 accept(Visitor v) ‘I? accept(Visitor v) ?

ConcreteVisitor

visitConcreteElement1(ConcreteElement1) v.visitConcreteElement1(this) N v.visitConcreteElement2(this) ™
visitConcreteElement2(ConcreteElement2) U 122

L7

Spelling Checking & Hyphenation (cont’d) L7
VISITOR (cont’d) object behavioral

SpellCheckerVisitor spell_check_visitor;

for (Glyph::iterator i = glyphs.begin ();
| 1= glyphs.end ();
I++) {
(*1)->accept (spell_check_visitor);

}

HyphenationVisitor hyphenation_visitor;

for (Glyph::iterator i = glyphs.begin ();
| 1= glyphs.end ();
I++) {
(*1)->accept (hyphenation_visitor);

}

UNIT-1I 123

L8

Spelling Checking & Hyphenation (cont’d)
VISITOR (cont’d) object behavioral

Consequences
+ flexibility: visitor & object structure are independent

+ localized functionality
— circular dependency between Visitor & Element interfaces

— Visitor brittle to new ConcreteElement classes

Implementation

— double dispatch
— general interface to elements of object structure

Known Uses
— ProgramNodeEnumerator in Smalltalk-80 compiler

— IRIS Inventor scene rendering
— TAO IDL compiler to handle different backends

124

Part 111: Wrap-Up
Concluding Remarks

design reuse
uniform design vocabulary

understanding, restructuring, & team
communication

provides the basis for automation

a “new’” way to think about design

UNIT-1I

125

L8

Pattern References -

Books

Timeless Way of Building, Alexander, ISBN 0-19-502402-8

A Pattern Language, Alexander, 0-19-501-919-9

Design Patterns, Gamma, et al., 0-201-63361-2 CD version 0-201-63498-8

Pattern-Oriented Software Architecture, Vol. 1, Buschmann, et al.,
0-471-95869-7

Pattern-Oriented Software Architecture, Vol. 2, Schmidt, et al.,
0-471-60695-2

Pattern-Oriented Software Architecture, Vol. 3, Jain & Kircher,
0-470-84525-2

Pattern-Oriented Software Architecture, Vol. 4, Buschmann, et al.,
0-470-05902-8

UNIT-1I 126

Pattern References (cont’d)

More Books
Analysis Patterns, Fowler; 0-201-89542-0
Concurrent Programming in Java, 2" ed., Lea, 0-201-31009-0

Pattern Languages of Program Design
\ol. 1, Coplien, et al., eds., ISBN 0-201-60734-4
\ol. 2, Vlissides, et al., eds., 0-201-89527-7
\ol. 3, Martin, et al., eds., 0-201-31011-2
\ol. 4, Harrison, et al., eds., 0-201-43304-4

\ol. 5, Manolescu, et al., eds., 0-321-32194-4
AntiPatterns, Brown, et al., 0-471-19713-0
Applying UML & Patterns, 2" ed., Larman, 0-13-092569-1
Pattern Hatching, Vlissides, 0-201-43293-5
The Pattern Almanac 2000, Rising, 0-201-61567-3

UNIT-1I

127

L8

L8

Pattern References (cont’d)

Even More Books

Small Memory Software, Noble & Weir, 0-201-59607-5

Microsoft Visual Basic Design Patterns, Stamatakis, 1-572-31957-7
Smalltalk Best Practice Patterns, Beck; 0-13-476904-X

The Design Patterns Smalltalk Companion, Alpert, et al.,
0-201-18462-1

Modern C++ Design, Alexandrescu, ISBN 0-201-70431-5
Building Parsers with Java, Metsker, 0-201-71962-2

Core J2EE Patterns, Alur, et al., 0-130-64884-1

Design Patterns Explained, Shalloway & Trott, 0-201-71594-5
The Joy of Patterns, Goldfedder, 0-201-65759-7

The Manager Pool, Olson & Stimmel, 0-201-72583-5

UNIT-1I 128

L8

Pattern References (cont’d)

Early Papers
“Object-Oriented Patterns,” P. Coad; Comm. of the ACM, 9/92
“Documenting Frameworks using Patterns,” R. Johnson; OOPSLA °92

“Design Patterns: Abstraction & Reuse of Object-Oriented Design,”
Gamma, Helm, Johnson, Vlissides, ECOOP ’93

Articles

Java Report, Java Pro, JOOP, Dr. Dobb’s Journal,
Java Developers Journal, C++ Report

UNIT-1I 129

Pattern-Oriented Conferences

PLoP 2007: Pattern Languages of Programs
October 2007, Collocated with OOPSLA

EuroPLoP 2007, July 2007, Kloster Irsee, Germany

See hillside.net/conferences/ for
up-to-the-minute info.

UNIT-1I 130

L8

L8

Mailing Lists

patterns@cs.uiuc.edu: present & refine patterns
patterns-discussion@cs.uiuc.edu: general discussion
gang-of-4-patterns@cs.uiuc.edu: discussion on Design Patterns
siemens-patterns@cs.uiuc.edu: discussion on

Pattern-Oriented Software Architecture

ui-patterns@cs.uiuc.edu: discussion on user interface patterns
business-patterns@cs.uiuc.edu: discussion on patterns for business processes
Ipc-patterns@cs.uiuc.edu: discussion on patterns for distributed systems

See http://hillside.net/patterns/mailing.htm for an up-to-date list.

unit-2 part-2

S.NO. TOPIC
1 Creational Pattern Part-1 Introduction

2 Abstract Factory

3 Builder
4 Factory Method
5 Prototype
6 Singleton
7 Repeated key points for Structural Patterns (Intent,
Motivation, Also Known As)

8 (discussion of Creational patterns) Review

PPT Slides

L1

L2

L3
L4

L5

L6

4-8

9-28

29 - 39
40 — 47

48 — 54

55 — 66

Creational Patterns H

Abstracts instantiation process

Makes system independent of how Its objects are
— Ccreated

— composed

— represented

Encapsulates knowledge about which concrete
classes the system uses

Hides how instances of these classes are created and
put together

Creational Patterns

Abstract the instantiation process

— Make a system independent of how objects are created, composed,
and represented

Important If systems evolve to depend more on object
composition than on class inheritance

— Emphasis shifts from hardcoding fixed sets of behaviors towards a
smaller set of composable fundamental behaviors

Encapsulate knowledge about concrete classes a system
uses

Hide how instances of classes are created and put together

What are creational patterns!?

* Design patterns that deal with object creation
mechanisms, trying to create objects in a manner
suitable to the situation

* Make a system independent of the way in which
objects are created, composed and represented

* Recurring themes:

— Encapsulate knowledge about which concrete classes the
system uses (so we can change them easily later)

— Hide how instances of these classes are created and put
together (so we can change it easily later)

L1

Benefits of creational patterns

* Creational patterns let you program to an
interface defined by an abstract class

* That lets you configure a system with
“product” objects that vary widely in
structure and functionality

* Example: GUI systems
— InterViews GUI class library

— Multiple look-and-feels

— Abstract Factories for different screen
components

L1

L1

Benefits of creational patterns

* Generic instantiation — Objects are instantiated
without having to identify a specific class type in
client code (Abstract Factory, Factory)

* Simplicity — Make instantiation easier: callers do not
have to write long complex code to instantiate and
set up an object (Builder, Prototype pattern)

* Creation constraints — Creational patterns can put
bounds on who can create objects, how they are
created, and when they are created

Abstract Factory Pattern

L2

L2

Abstract Factory

Provide an interface for creating families of related
or dependent objects without specifying their
concrete classes

UNIT-111 139

ABSTRACT FACTORY
(Object Creational)

e Intent:

— Provide an interface for creating families of
related or dependent objects without specifying
their concrete classes

 Also Known As: KIt.

UNIT-111

140

L2

L2

Motivation

 Motivation:

*User interface toolkit supports multiple look-
and-feel standards
(Motif, Presentation Manager)

Different appearances and behaviors for Ul
widgets

* Apps should not hard-code Its widgets

ABSTRACT FACTORY
Motivation

Widget Factory | ¢

CreateScrollBar()
CreateWindow()

Client

Windows

A

A

PMW,indow

MotifWidgetFactory

PMWidgetFactory

CreateScrollBar()
CreateWindow()

CreateScrollBar()
CreateWindow()

MotifWindow

l— — =

ScrollBar

A

— o e o e

L PMScrollBar

UNIT-1

MotifScrollBar

142

L2

Solution:

« Solution:
« Abstract Widget Factory class
e|Interfaces for creating each basic kind of
widget
« Abstract class for each kind of widgets,

*Concrete classes implement specific look-
and-feel.

L2

Abstract Factory Structure 2

client

AbstractProductA <
AbstractFactory

Operations:
CreateProdA() <
CreateProcB()

ConcreteFactoryl

Operations:
CreateProdA()
CreateProcB()

ConcreteFactory2

Operations:
CreateProdA()
CreateProcB()

ConcreteProductAl

ConcreteProductA2

AbstractProductB '«

>

ConcreteProductB1

ConcreteProductB2

Applicability

Use the Abstract Factory pattern when

— A system should be independent of how its products
are created, composed, and represented

— Asystem should be configured with one of multiple
families of produces

— A family of related product objects is designed to be
used together, and you need to enforce this constraint

— You want to provide a class library of products, and
you want to reveal just their interfaces, not their
Implementations

L2

ABSTRACT FACTORY

Participants

 AbtractFactory

— Declares interface for operations that create
abstract product objects

» ConcreteFactory

— Implements operations to create concrete product
objects

 AbstractProduct
— Declares an interface for a type of product object

UNIT-111 146

L2

L2

« ABSTRACT FACTORY
Participants(cont..)

« Concrete Product:

*Defines a product object to be created by concrete
factory

*Implements the abstract product interface
» Client:

*Uses only interfaces declared by Abstract Factory
and AbstractProduct classes

UNIT-111 147

L2

Collaborators

« Usually only one ConcreteFactory instance is used fo
an activation, matched to a specific application
context. It builds a specific product family for client
use -- the client doesn’t care which family is used -- I
simply needs the services appropriate for the current
context.

* The client may use the AbstractFactory interface to
Initiate creation, or some other agent may use the
AbstractFactory on the client’s behalf.

Presentation Remark

» Here, we often use a sequence diagram
(event-trace) to show the dynamic
Interactions between participants.

 For the Abstract Factory Pattern, the
dynamic interaction is simple, and a
sequence diagram would not add much new

Information.

L2

Conseguences

» The Abstract Factory Pattern has the following
benefits:

— |t isolates concrete classes from the client.

 You use the Abstract Factory to control the classes of objects the
client creates.

« Product names are isolated in the implementation of the
ConcreteFactory, clients use the instances through their abstract
Interfaces.

— Exchanging product families is easy.

* None of the client code breaks because the abstract interfaces
don’t change.

 Because the abstract factory creates a complete family of
products, the whole product family changes when the concrete
factory is changed.

L2

Conseguences

» More benefits of the Abstract Factory
Pattern
— It supports the imposition of constraints on

product families, e.g., always use Al and B1
together, otherwise use A2 and B2 together.

L2

Conseguences

* The Abstract Factory pattern has the
following liability:

— Adding new kinds of products to existing
factory is difficult.

« Adding a new product requires extending the
abstract interface which implies that all of its
derived concrete classes also must change.

 Essentially everything must change to support and
use the new product family
— abstract factory interface is extended
— derived concrete factories must implement the extensions

L2

Implementation

« Concrete factories are often implemented as
singletons.

 Creating the products

— Concrete factory usually use the factory method.
 simple
* new concrete factory is required for each product family

— alternately concrete factory can be implemented using
prototype.
 only one is needed for all families of products

« product classes now have special requirements - they
narticinate 1N the creation

L2

Implementation

« Concrete factories are often implemented as
singletons.

 Creating the products

— Concrete factory usually use the factory method.
 simple
* new concrete factory is required for each product family

— alternately concrete factory can be implemented using
prototype.
 only one is needed for all families of products

« product classes now have special requirements - they
narticinate 1N the creation

L2

Implementation

 Defining extensible factories by using
create function with an argument

— only one virtual create function is needed for
the AbstractFactory interface

— all products created by a factory must have the
same base class or be able to be safely coerced
to a given type

— 1t 1s difficult to implement subclass specific
operations

L2

Know Uses

e |nterviews

— used to generate “look and feel” for specific user
Interface objects

— uses the Kit suffix to denote AbstractFactory classes,
e.g., WidgetKit and DialogKit.

« also includes a layoutKit that generates different
composite objects depending on the needs of the
current context

ET++

— another windowing library that uses the
AbstractFactory to achieve portability across different
window systems (X Windows and SunView).

e COM — Micro<oft’s Comnonent Obiect Model

L2

Related Patterns

 Factory Method -- a “virtual” constructor

 Prototype -- asks products to clone
themselves

 Singleton -- allows creation of only a single
Instance

UNIT-111

157

L2

Code Examples

» Skeleton Example

— Abstract Factory Structure
— Skeleton Code

» Neural Net Example
— Neural Net Physical Structure
— Neural Net Logical Structure
— Simulated Neural Net Example

UNIT-111

158

L2

SKELETON
NNAbsFact\NNet Structure.vsd
NNAbsFact\NNET.vsd
NNAbsFact

BUILDER
(Object Creational)

e Intent;

Separate the construction of a complex object from
Its representation so that the same construction
process can create different representations

« Motivation:

— RTF reader should be able to convert RTF to many
text format

— Adding new conversions without modifying the
reader should be easy

UNIT-111

159

L3

L3

e Solution:

«Configure RTFReader class with a Text
Converter object

*Subclasses of Text Converter specialize in
different conversions and formats

*TextWidgetConverter will produce a
complex Ul object and lets the user see and
edit the text

Implementation

« Concrete factories are often implemented as
singletons.

 Creating the products

— Concrete factory usually use the factory method.
 simple
* new concrete factory is required for each product family

— alternately concrete factory can be implemented using
prototype.
 only one is needed for all families of products

« product classes now have special requirements - they
narticinate 1N the creation

L2

Implementation

 Defining extensible factories by using
create function with an argument

— only one virtual create function is needed for
the AbstractFactory interface

— all products created by a factory must have the
same base class or be able to be safely coerced
to a given type

— 1t 1s difficult to implement subclass specific
operations

L2

Know Uses

e |nterviews

— used to generate “look and feel” for specific user
Interface objects

— uses the Kit suffix to denote AbstractFactory classes,
e.g., WidgetKit and DialogKit.

« also includes a layoutKit that generates different
composite objects depending on the needs of the
current context

ET++

— another windowing library that uses the
AbstractFactory to achieve portability across different
window systems (X Windows and SunView).

e COM — Micro<oft’s Comnonent Obiect Model

L2

Related Patterns

 Factory Method -- a “virtual” constructor

 Prototype -- asks products to clone
themselves

 Singleton -- allows creation of only a single
Instance

UNIT-111

164

L2

Code Examples

» Skeleton Example

— Abstract Factory Structure
— Skeleton Code

» Neural Net Example
— Neural Net Physical Structure
— Neural Net Logical Structure
— Simulated Neural Net Example

UNIT-111

165

L2

SKELETON
NNAbsFact\NNet Structure.vsd
NNAbsFact\NNET.vsd
NNAbsFact

BUILDER
(Object Creational)

e Intent;

Separate the construction of a complex object from
Its representation so that the same construction
process can create different representations

« Motivation:

— RTF reader should be able to convert RTF to many
text format

— Adding new conversions without modifying the
reader should be easy

UNIT-111

166

L3

L3

e Solution:

«Configure RTFReader class with a Text
Converter object

*Subclasses of Text Converter specialize in
different conversions and formats

*TextWidgetConverter will produce a
complex Ul object and lets the user see and
edit the text

Why do we use Builder?

Common manner
to Create an
Instance

— Constructor!

— Each Parts
determined by
Parameter of the
Constructor

public class Room {
private int area;
private int windows;
public String purpose;

L3

Room() {
b

Room(int newArea, int newWindows,
String newPurpose){

area = newArea;
windows = newWindows:
purpose = newPurpose;

UNIT-111 168

Why do we use Builder?

* |n the previous example,

— We can either determine all the arguments
or determine nothing and just construct.
We can’t determine arguments partially.

— We can’t control whole process to
Create an instance.

— Restriction of ways to Create an Object
= Bad Abstraction & Flexibility

UNIT-111

169

L3

Discussion

o Uses Of Builder

— Parsing Program(RTF converter)
— GUI

UNIT-111

170

L3

FACTORY METHOD a

(Class Creational)
* Intent:

— Define an interface for creating an object, but let
subclasses decide which class to instantiate.

— Factory Method lets a class defer instantiation to
subclasses.

« Motivation:

— Framework use abstract classes to define and maintain
relationships between objects

— Framework has to create objects as well - must instantiate
classes but only knows about abstract classes - which it
cannot instantiate

UNIT-111 171

Motivation:

* Motivation: Factory method encapsulates
knowledge of which subclass to create -
moves this knowledge out of the framework

e Also Known As: Virtual Constructor

L4

FACTORY METHOD
Motivation

docs
Document l—q—o Application
Open()
CreateDocument() Document* doc=CreateDocument();
Close() docs.Add(doc):
NewDocument B : ’
save() 0 e doc->Open();
OpenDocument
Revert() P y 0
............ MyApplication
MyDocument < YAPP
............. return new MyDocument

o -
CreateDocument()

UNIT-111 173

L4

Applicability

« Use the Factory Method pattern when

— a class can’t anticipate the class of objects it must
Create.

— a class wants its subclasses to specify the objects
It creates.

— classes delegate responsibility to one of several
helper subclasses, and you want to localize the
knowledge of which helper subclass is the
delegate.

FACTORY METHOD
Structure

Product

ConcreteProduct

Creator

FactoryMethod()
AnOperation()

product = FactoryMethod()

ConcreteCreator

FactoryMethod()

UNIT-111

return new ConcreteProduct

L4

Participants L
* Product

— Defines the interface of objects the factory method
creates

 ConcreteProduct
— Implements the product interface

e Creator

— Declares the factory method which returns object of type
product

— May contain a default implementation of the factory
method

— Creator relies on its subclasses to define the factory
method so that It returns an instance of the appropriate
Concrete Product.

L4

Factory Method

Defer object instantiation to subclasses

Eliminates binding of application-specific subclasses
Connects parallel class hierarchies

A related pattern is AbstractFactory

Product Creator
operation() Product createProduct()
ConcreteProduct «----- ConcreteCreator
operation() Product createProduct() O--:

UNIT-111

Factory Method (2)

« Example: creating manipulators on connectors

L4

Interactor
. 0..1 _
Figure K> Manipulator
createManipulator() attach(Figure)
RectFigure Connector |BoundsManipulator| | ArcManipulator
createManipulator() O createManipuIator()(;) attach(Figure) attach(Figure)

R manip = new ArcManipulator();

manip = new BoundsManipulator();

178

PROTOTYPE
(Object Creational)

e Intent:

— Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype.

« Motivation:

— Framework implements Graphic class for
graphical components and GraphicTool class for
tools manipulating/creating those components

UNIT-111 179

LS

Motivation

— Actual graphical components are application-
specific

— How to parameterize instances of Graphic Tool
class with type of objects to create?

— Solution: create new objects in Graphic Tool by
cloning a prototype object instance

LS

PROTOTYPE

Motivation

Tool

Manipulate()

prototype

LS

Graphic

Draw(Position)
Clone()

Staff

Rotate Tool

Graphic Tool

Manipulate()

Manipulate()

Draw(Position)

Clone()

MusicalNote

- -+

¥

p = prototype ->Clone()
while(user drags mouse){

p ->Draw(new position)

Insert p into drawing

UNIT-111

WholeNote

Draw(Position)

Clone()
|
[

1
HalfNote

Draw(Position)

Clone() o

Return copy of self

Return copy of self

181

LS

Applicability

 Use the Prototype pattern when a system should
be independent of how Its products are created,
composed, and represented,

— when the classes to instantiate are specified at run-
time, for example, by dynamic loading; or

— to avoid building a class hierarchy of factories that
parallels the class hierarchy of products; or

LS

Applicability

— when instances of a class can have one of only a
few different combinations of state. It may be
more convenient to install a corresponding
number of prototypes and clone them rather than

instantiating the class manually, each time with
the appropriate state.

PROTOTYPE

Structure

client prototype » Prototype
Operation() ¢ Clone()
I
I
|
I
1
p = prototype ->Clone()
ConcretePrototypel ConcretePrototype?2

Clone() ?
|
I
|
I
|

return copy of self

UNIT-111

Clone() *
|
I
|
I

return copy of self

LS

184

Participants:
 Prototype (Graphic)
— Declares an interface for cloning itself

« ConcretePrototype (Staff, WholeNote, HalfNote)
— Implements an interface for cloning itself

» Client (GraphicTool)
— Creates a new object by asking a prototype to clone itself

Collaborations:
 Aclient asks a prototype to clone Itself.

LS

Motivation

— Actual graphical components are application-
specific

— How to parameterize instances of Graphic Tool
class with type of objects to create?

— Solution: create new objects in Graphic Tool by
cloning a prototype object instance

LS

PROTOTYPE

Motivation

Tool

Manipulate()

prototype

LS

Graphic

Draw(Position)
Clone()

Staff

Rotate Tool

Graphic Tool

Manipulate()

Manipulate()

Draw(Position)

Clone()

MusicalNote

- -+

¥

p = prototype ->Clone()
while(user drags mouse){

p ->Draw(new position)

Insert p into drawing

UNIT-111

WholeNote

Draw(Position)

Clone()
|
[

1
HalfNote

Draw(Position)

Clone() o

Return copy of self

Return copy of self

187

LS

Applicability

 Use the Prototype pattern when a system should
be independent of how Its products are created,
composed, and represented,

— when the classes to instantiate are specified at run-
time, for example, by dynamic loading; or

— to avoid building a class hierarchy of factories that
parallels the class hierarchy of products; or

LS

Applicability

— when instances of a class can have one of only a
few different combinations of state. It may be
more convenient to install a corresponding
number of prototypes and clone them rather than

instantiating the class manually, each time with
the appropriate state.

PROTOTYPE

Structure

client prototype » Prototype
Operation() ¢ Clone()
I
I
|
I
1
p = prototype ->Clone()
ConcretePrototypel ConcretePrototype?2

Clone() ?
|
I
|
I
|

return copy of self

UNIT-111

Clone() *
|
I
|
I

return copy of self

LS

190

Participants:
 Prototype (Graphic)
— Declares an interface for cloning itself

« Concrete Prototype (Staff, Whole Note, Half Note)
— Implements an interface for cloning itself

» Client (GraphicTool)
— Creates a new object by asking a prototype to clone itself

Collaborations:
 Aclient asks a prototype to clone Itself.

LS

SINGELTON

e Intent;

— Ensure a class only has one instance, and provide
a global point of access to it.

« Motivation:

— Some classes should have exactly one instance
(one print spooler, one file system, one window
manager)

— A global variable makes an object accessible but
doesn’t prohibit instantiation of multiple objects

— Class should be responsible for keeping track of
Its sole interface

L6

L6

Applicability

 Use the Singleton pattern when

— there must be exactly one instance of a class, and
It must be accessible to clients from a well-known
access point.

— when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

SINGLETON

Singleton

static Instance()
SingletonOperation()
GetSingletonData()

o=

Static uniquelnstance

singletonData

UNIT-111

Structure

return uniquelnstance

194

Participants and Collaborations

Singleton: Defines an instance operation that lets
clients access Its unigue interface

Instance Is a class operation (static in Java)

May be responsible for creating its own unique
Instance

Collaborations: Clients access a Singleton instance
solely through Singleton’s Instance operation.

UNIT-111 195

L6

Singleton

» Ensures a class has only one instance

 Provides a single point of reference

UNIT-111

196

L6

Singleton — Use When

» There must be exactly one instance of a
class.

» May provide synchronous access to avoid
deadlocks.

* Very common in GUI toolkits, to specify
the connection to the OS/Windowing
system

L6

Singleton - Benefits

Controls access to a scarce or unique resource

Helps avoid a central application class with
various global object references

Subclasses can have different implementations as
required. Static or global references don’t allow

this

Multiple or single instances can be allowed

L6

L6

Singleton — Example 1

« An Application class, where instantiating it makes
a connection to the base operating system and sets
up the rest of the toolkit’s framework for the user
Interface.

 In the Qt toolKkit:
QApplication* app = new QApplication(argc, argv)

UNIT-111 199

Singleton — Example 2

 Astatus bar is required for the application, and
various application pieces need to be able to

update the text to display information to t
However, there Is only one status bar, and
Interface to it should be limited. It could

e user.
the

D€

Implemented as a Singleton object, allowing only

one Instance and a focal point for updates

. This

would allow updates to be queued, and prevent
messages from being overwritten too quickly for

the user to read them.

L6

Singleton Code [1]

class Singleton { // Only one instance can ever be created.

public:
static Singleton™* Instance();

protected: <

Singleton();

// Creation hidden inside Instance().

private:
Static Singleton* _instance

} // Cannot access directly.

UNIT-1 201

L6

Singleton Code [2]

Singleton* Singleton::_instance=0;

Singleton* Singleton:: Instance(){

iIf (_instance ==0) {
_Instance=new Singleton;

}
Return _instance;
1 I/ Clients access the singleton
I/ exclusively via the Instance member
// function.

UNIT-1

202

L6

Implementation Points

» Generally, a single instance is held by the
object, and controlled by a single interface.

 Sub classing the Singleton may provide
both default and overridden functionality.

UNIT-111 203

L6

UNIT-II

Structural patterns part-1

UNIT-I 204

Structural Pattern part-l introduction

S.No TOPIC
1 Adaptor
2 Bridge

3 Composite
4 Repeated key points for Structural Patterns
> (Intent, Motivation, Also Known As...)

6 Code Examples

7 Reference

PPT Slides

L1 3-18

L2 19-31
L3 32— 37
L4 38 -40
L5 41 — 42
L6 43 - 44
L7 45 — 45

Agenda

Intent & Motivation
Structure
Applicability
Consequences
Known Uses
Related Patterns
References

What Is Adapter?

#

e Intent:

Change the interface of a class
Into another interface which is
expected by the client.

* Also Know As:
Wrapper

L1

Motivation

L1

Shape
. +setLocalation
Client —4 +getLocation ()O
+undisplay()
+display()
i)
+sefColor()
/\

Point Line Square Circle
+display() +display() +display() +setLocalation()
+Hill() +Hill() +Hill() +getLocation()
+setColor() +setColor() +setColor() +undisplay ()

+dizplay()
+Hill()
+setColor()

XX Circle

+displayTt()
HillTt()
+undisplayTt()
+setLocalation()
+getLocation()
+setltsColor()

Structure (Class)

- lent

L1

—

Tarcet

Adap tee

Fequest(]

apecificKequest)

A

A

Adap ter

(protected or private)

Feguest) o}

UNIT-1V

- [SpecificE equest]) [:3::]|

209

Structure (Object)

i lient

—— Target — Adap tee
Feguesty) apecifick equest’)
)P adaptee
Adap ter
Fequest() o 1 - adaptee->Specifick equest() [3-“::]|

UNIT-1V

210

L1

L1

Applicability

« Use an existing class whose interface does
not match the requirement

 Create a reusable class though the
Interfaces are not necessary compatible
with callers
=7 Want to use several existing subclasses,
% but it is impractical to subclass
everyone. (Object Adapter Only)

L1

Class Adapter Pattern AR

Pros
- Only 1 new object, no additional indirection
- Less code required than the object Adapter
- Can override Adaptee's behaviour as required

cons

- Requires sub-classing (tough for single
Inheritance)

- Less flexible than object Adapter

UNIT-1V 212

Object Adapter Pattern

* Pros
— More flexible than class Adapter
— Doesn't require sub-classing to work

— Adapter works with Adaptee and all of its
subclasses

« Cons
— Harder to override Adaptee behavior
— Requires more code to implement properly

UNIT-1V

213

L1

Pluggable Adapters

TreeDisplay

& etChidreny)
CreateGraphic ode()

Dizplayi}

BuildTree{} @-—---- -7 -

/\

GetChildren(}

far each child {
- AddNade({CreateAraphicNade{child)}

Build Tree(child}
!

DirectoryTreeDlsplay

GetChildren(}
CreateSraphicNaded}

Directory Browser

» Implemented with abstract operations

Pluggable Adapters

TreeAccessorDelegsle
delegate etChidreny)
TreeDispiay Createiraphichodef)
SetDelegate|{Delegate)
Dizplay(}
g Directory Browser

BuildTree{} =
|
|
|

delegate-=GetChildrenithis}
far each child {
AddNade(
delegate->CreateGraphicNade({this, child}

}Buid Tree(child}
i

GetChildren(}
CreateGraphicNade(}
Create Filed)
DeleteFile(}

« Implemented with delegate objects

Two-way Adapters

class SquarePeqg { class PegAdapter: public SquarePeg,
oublic: RoundPeg {
void virtual squarePegOperation() { public:
blah }
) void virtual roundPegOperation() {

add some corners;

squarePegOperation();

}

void virtual squarePegOperation() {

class RoundPeg {
public:

void virtual roundPegOperation() { blah
} add some corners;

} roundPegOperation();

L1

Adapting Local Classes to RMI

Comparison:

* Increases reusability of

local class

 Improves performance

of local class

« Doesn't use Java single
parent by subclassing

(uses composition)

UNIT-1V

Ramotsa
Client

- — =] — -y

Femote

adaptes

Lacal
Class

localMaethod

217

Related Patterns

 Adapter can be similar to the remote form
of Proxy. However, Proxy doesn't change
Interfaces.

» Decorator enhances another object
without changing its interface.

 Bridge similar structure to Adapter, but
different intent. Separates interface from
Implementation.

L1

L1

Conclusions

e Allows collaboration between classes with
Incompatible interfaces

 Implemented In either class-based
(inheritance) or object-based (composition &
delegation) manner

« Useful pattern which promotes reuse and
allows integration of diverse software
components

Adapter

You have
— legacy code
— current client

Adapter changes interface of legacy code so client
can use It

Adapter fills the gap b/w two interfaces

No changes needed for either
— legacy code, or
— client

L1

Adapter (cont.)

class NewTime
{
public:
int GetTime () {
return m oldtime.get time() * 1000 + 8;

}

private:
OldTime m oldtime;

};

UNIT-1V

221

L1

The Bridge Pattern

L2

Overview

Intent

Also Known As
Motivation
Participants
Structure
Applicability
Benefits
Drawbacks
Related Pattern

L2

BRIDGE (Object Structural)

* Intent: Decouple as abstraction from its
Implementation so that the two can vary
Independently.

* Also Known As: Handle/Body

L2

Motivation

oracleDBENtry

UNIT-1V

" Fiesysenury

225

L2

L2

Motivation

Appointment

OracleDBApp. @FilesysApp. OracleDBTask m

UNIT-1V 226

L2

Motivation
— Persistentimp.
) iniiial ize()
setText() ?o(;rde (())
Destroy() B ri dge Destroy()

Task Appointment
getPriority() getAlarm()
setPriority() setAlarm()

OraclePImp § AccessPImp
initialize() initialize()
store() store()

getText() getText()
setText() setText()
Destroy() Destroy()

load()
destroy()

load()
destroy()

227

Participants

L2

Participants (continue)

L2

Structure

Client

/

Abstraction

N\

Implementer

Operationimp()

A

RefinedAbstraction

ConcretelmplementerA ConcretelmplementerB

UNIT-1V

230

L2

Want to

Applicability

L2

L2

When the implementation should be
completely hidden from the client. (C++)

When you have a proliferation of classes.

When, unknown to the client,
Implementations are shared among
objects.

Avoid permanent binding between an

abstraction and its implementation
Avoid nested generalizations

Ease adding new implementations
Reduce code repetition

Allow runtime switching of behavior

L2

Drawbacks

Persistentimp

Persistentimp

L2

Composite Pattern

e Intent:

Compose objects iInto tree structures to
represent part-whole hierarchies. Composite
lets clients treat iIndividual objects and
compositions of objects uniformly.

L2

L2

Conseqguences

 decoupling interface & implementation

- Implementation of abstraction - can be configured at run-
time

- eliminate compile time dependencies on implementation

- encourages layering

* Improved extensibility
- Abstraction & Implementer - can be extended independently

 hiding implementation details from clients

L3

Composite Pattern

s Facilitates the composition of objects into
tree structures that represent part-whole
hierarchies.

s These hierarchies consist of both primitive
and composite objects.

forall g in
Draw

8raphlc?%

Graphic -
Draw()

Add(Graphic)
Remove(Graphic)
GetChild(int)

I | I I graphics
Line Rectangle Text Picture e
Draw() Draw() Draw() Draw() O--====-=f=========-==-

Add(Graphicg) ©O-f----- !
Remove(Graphic) :
GetChild(int) S

add g to list of graphics %

UNIT-1V

238

L3

L3

Observations

» The Component (Graphic) Is an abstract class that
declares the interface for the objects in the pattern.
As the interface, It declares methods (such as
Draw) that are specific to the graphical objects.

« Line, Rectangle, and Text are so-called Leafs,
which are subclasses that implement Draw to draw
lines, rectangles, and text, respectively.

L3

Observations (Continued)

* The Picture class represents a number of
graphics objects. It can call Draw on its
children and also uses children to compose
pictures using primitive objects.

UNIT-1V 240

L3

Concluding Considerations

The Composite Pattern is used to represent part-
whole object hierarchies.

Clients interact with objects through the
component class.

It enables clients to to ignore the specifics of
which leaf or composite class they use.

Can be used recursively, so that Display can show
both flares and stars.

New components can easily be added to a design.

BRIDGE (Object Structural)

* Intent: Decouple as abstraction from its
Implementation so that the two can vary
Independently.

* Also Known As: Handle/Body

L4

Motivation

oracleDBENtry

UNIT-1V

" Fiesysenury

243

L4

L4

Motivation

Appointment

OracleDBApp. @FilesysApp. OracleDBTask m

UNIT-1V 244

Two-way Adapters

class SquarePeqg { class PegAdapter: public SquarePeg,
oublic: RoundPeg {
void virtual squarePegOperation() { public:
blah }
) void virtual roundPegOperation() {

add some corners;

squarePegOperation();

}

void virtual squarePegOperation() {

class RoundPeg {
public:

void virtual roundPegOperation() { blah
} add some corners;

} roundPegOperation();

LS

Adapting Local Classes to RMI

Comparison:

* Increases reusability of

local class

 Improves performance

of local class

« Doesn't use Java single
parent by subclassing

(uses composition)

UNIT-1V

Ramotsa
Client

- — =] — -y

Femote

adaptes

Lacal
Class

localMaethod

246

L6

Motivation
— Persistentimp.
) iniiial ize()
setText() ?o(;rde (())
Destroy() B ri dge Destroy()

Task Appointment
getPriority() getAlarm()
setPriority() setAlarm()

OraclePImp § AccessPImp
initialize() initialize()
store() store()

getText() getText()
setText() setText()
Destroy() Destroy()

load()
destroy()

load()
destroy()

247

Participants

L6

References

Becker, Dan. Design networked applications in RMI using the Adapter design pattern.
JavaWorld Magazine, May 1999. http://www.javaworld.com/javaworld/jw-05-1999/jw-
05-networked.html

Buschmann et al. A System of Patterns: Pattern-Oriented Software Architecture. John
Wiley and Sons. Chichester. 1996

Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley. Boston. 1995

Nguyen, D.X. Tutorial 10: Stacks and Queues: The Adapter Pattern. Rice University.
1999. http://www.owlnet.rice.edu/~comp212/99-fall/tutorials/10/tutorial10.html

Whitney, Roger. CS 635 Advanced Object-Oriented Design & Programming. San Diego
State University. 2001.
http://www.eli.sdsu.edu/courses/spring01/cs635/notes/proxy/proxy.html#Heading10

Shalloway, Alan., and Trott, James R., Design Patterns Explained: A New Perspective on
Object-Oriented Design, Addison-Wesley, 2002.

Rising, Linda., The Patterns Handbook: Techniques, Strategies, and Applications,
Cambridge university Press, 1998.

L7

Unit-3 part-2
Structural Design Patterns-2

Objectives

S. No Topic PPT Slides

To introduce structural design patterns

1. Decorator L1 3-20
2. Facade L2 21-27
3. Proxy L3 28-40
4. Flyweight L4 41 -47
5. Repeated key points for Structural Patterns L5 48 - 52

6. (Intent, Motivation, Also Known As) L6 53 -57

7. Review Unit-3 part-2 L7 58 - 58

Decorator Design Pattern

 Design Purpose

Add responsibilities to an object at runtime.

 Design Pattern Summary

— Provide for a linked list of objects, each
encapsulating responsibility.

L1

Decorator: Class Model

r————— 7 1
I
I

Component | 4

Client-4-—————- = add(Component) y
| doAction() !

Substance| Decoration| |

doAction() doAction() objDecorated

void doAction() "

{/0 do actions special to thig decoration
objDecorated.doAction(); / pass along

1

Decorator creates an aggregated linked list of
Decoration objects ending with the basic
Substance object.

L1

Pattern: Decorator

objects that wrap around other objects to add
useful features

L

Banm Aapplcainrs wookd bsrmbi
Irem peing abpscls o moosl sy
nepec] Ol lhar | imchansihy Eal
onch would ba
prohatulive by sapEansive

Far axarghs, el domyrenl ai-
Pors gl ubaras P) e insl-
| s sch g S Eled. G st
vl RO, vy raarabiy
wle =Ll NG
CTETH T |

al Enman| M e ims)

TR Te g T

il-“"l
[&) w3 prarets Saniohly

Hl Lhe Treal sgsl e
apphzaaan, Teel and graphics
e RHNITRIELCTH |,||'|h||||:,' wik

2l *

e

L1

Decorator pattern

 decorator: an object that modifies behavior of, or adds
features to, another object
— decorator must maintain the common interface of the object it
wraps up

* used so that we can add features to an existing simple object
without needing to disrupt the interface that client code
expects when using the simple object

« examples in Java:
— multilayered input streams adding useful 1/0O methods
— adding designs, scroll bars and borders to GUI controls

L1

Decorator example: 1/0

« normal InputStream class has only public int read() method
to read one letter at a time

e decorators such as BufferedReader or Scanner add
additional functionality to read the stream more easily

// InputStreamReader/BufferedReader decorate InputStream

InputStream in = new FilelInputStream("hardcode.txt");
InputStreamReader isr = new InputStreamReader (in);
BufferedReader br = new BufferedReader (isr):;

// because of decorator streams, I can read an
// entire line from the file in one call

// (InputStream only provides public int read())

String wholeline = br.readLine () ;

L1

Decorator example: GUI

« normal GUI components don't have scroll bars

« JScrollPane is a container with scroll bars to which
you can add any component to make it scrollable

Comer component

Scrollable
client Column header

// JScrollPane decorates GUI components

JTextArea area = new JTextArea (20, 30);

JScrollPane scrollPane =

new JScrollPane (area); 4HQ

contentPane.add (scrollPane) ; viewport border émm£

An example: Decorator

Intent;

Allow to attach responsibilities to objects, extend
their functionality, dynamically

Motivation:
Consider a WYSIWYG editor

The basic textWindow needs various decorations:
borders, tool bars, scroll bars, ...

L1

An “obvious” solution: sub-classing
« Asub-class for every option

Disadvantages:

 Sub-classing Is static — compile-time

e # of sub-classes = # of combinations —
exponential

L1

The preferred solution: Use
decorator objects

 Each decorator adds one decoration — property,
behavior =» Linear

« Can add more than one, to obtain
combinations of properties

« And, do it dynamically

L1

Structure, participants, collaborations:

- Component — an interface, describes the
operations of a (GUI) component

» ConcreteComponent (extends Component)

class of objects to which decorations can be
added (e.g. the original TextWindow)

« Decorator (extends Component)— a class of decorator
objects (there are several such classes)

L1

L1

Implementation:

« Each decorator has a (private) reference to a
Component object (CC or D)

 For each operation, the decorator performs Iits
decoration job, & delegates Component
operations to the Component object It contains

e Decorator extends component (can accept
Component requests)

=» Decorators can perform all the operations of
Ccomponent, often more

=» Decorators can be combined :

D3 D2 D1 CC

(but some combinations may hide some functionalities)

The decorator pattern

<<Interface>>
Component

/1

/

Decorator

Zﬁ
\

ConcreteComponent

Various decorators

L1

Consequences :

 Decoration can be done dynamically, at run-
time

 \When 1t makes sense, a decoration can be
added several times

e The # of decorators I1s smaller than the # of
sub-classes in original solution;

avolds lots of feature-heavy classes In the
Inheritance hierarchy

L1

Issues to remember :

« A decorator and the Component object it
contains are not identical

« Many small objects; one has to learn their
roles, the legal connections, etc.

(but, still much better than sub-classing)

L1

Decorators in a java library:
Stream decorators

A byte stream —r or w bytes
Decorators add:

« Buffering (does not add services)

* I Or wprimitive types, objects,

... (adds services)

L1

L1

|_essons from Decorator

More dynamic, flexible, less expensive
4 R

Composition is (often) superior to sub-classing

_ J

Program to interfaces,
not to concrete classes

Facade Design Pattern

 Design Purpose

Provide an interface to a package of classes.

 Design Pattern Summary

— Define a singleton which is the sole means for
obtaining functionality from the package.

L1

Facade (2)

Example: graph interface to a simulation engine

L2

SchematicEditor]
Graph
, Director
Relation port &= Entity
/\ /\
BufferedRelation | | AtomicEntity \CompositeEntity<>_

Joken

&

Actor

Facade: .
Encapsulating Subsystems

Name: Facade design pattern

Problem description:

Reduce coupling between a set of related classes and the rest of
the system.

Solution:

A single Facade class implements a high-level interface for a
subsystem by invoking the methods of the lower-level classes.

Example. A Compiler is composed of several classes:
LexicalAnalyzer, Parser, CodeGenerator, etc. A caller, invokes

only the Compiler (Facade) class, which invokes the contained
classes.

Facade:
Class Diagram

Facade
Facade
service()
Classl Class2
servicel() service2()

Class3

service3()

L2

Facade: .
Consequences

Consequences:
Shields a client from the low-level classes of a subsystem.

Simplifies the use of a subsystem by providing higher-level
methods.

Enables lower-level classes to be restructured without
changes to clients.

Note. The repeated use of Facade patterns yields a layered
system.

L2

Facade: Motivation

client classes

subsyslem classes

 Clients communicate with the package (subsystem
) by sending requests to Facade, which forwards
them to the appropriate package object(s).

Facade: Applicability

 To provide simple interface to a complex

package, which is useful for most clients.

 To reduce the dependencies between the
client and the package, or dependencies
between various packages.

L2

Facade: Consequences

* |t shields clients from package components,
thereby reducing the number of objects that
clients deal with and making the package
easler to use.

* |t promotes weak coupling between the
package and its clients and other packages,
thereby promoting package independence
and portability.

L2

Proxy

e You wantto
— delay expensive computations,
— use memory only when needed, or
— check access before loading an object into memory

* Proxy
— has same interface as Real object

— stores subset of attributes
— does lazy evaluation

L3

Proxy Design Pattern

 Design Purpose

Avoid the unnecessary execution of expensive

functionality in a manner transparent to clients.

 Design Pattern Summary

— Interpose a substitute class which accesses the
expensive functionality only when required.

L3

Proxy: Class Model

Client ~_

o

=
Y
S

Instantiate with > | BaseActiveClass
™ expensiveMethod()

Proxy object
anotherMethod()
/N
|
RealActiveClass realActiveObject Proxy
expensivelethod) <> expensivelMethod()
anotheriMlethod() J,,..e-*"""énotherlvlemod{]

One way to cheds if really needed:
if { realActiveObject == null} never referenced
[realActiveObject = getRealActiveObject();
realActiveObject.expensiveMethod();

]
else // try to aveid calling the real expensiveMethod()

Proxy: Class Model

Client ~_

o

=
Y
S

Instantiate with > | BaseActiveClass
™ expensiveMethod()

Proxy object
anotherMethod()
/N
|
RealActiveClass realActiveObject Proxy
expensivelethod) <> expensivelMethod()
anotheriMlethod() J,,..e-*"""énotherlvlemod{]

One way to cheds if really needed:
if { realActiveObject == null} never referenced
[realActiveObject = getRealActiveObject();
realActiveObject.expensiveMethod();

]
else // try to aveid calling the real expensiveMethod()

Telephone Record Example

Conzole

Flea=sze piclk a command from one of the following:

quit
middle
all

—————————————————— Fetrieving from the Internet
9049249 John Do=z=
9049250 James= Dos=evy

Flea==s pick a command from one of the following:

quit
middle
all

=== No need to retrieve from the Internet ===
9049249 John Dos=ss=
Q049250 James Dos=evw

Fleasse piclk a command from one of the following:

quit
middle
all

======== HNo nesed to retrieve from the Internet
20490321 John Dom
204903232 John Dol
20490232 John Don
9049034 John Dop
29049035 John Dor
Q049036 John Dos=s

L3

Telephone Record Example (cont'a)

Telephone App

display MiddleRecord()

display(TelNums) ———

TelNums
value: Vector
getTelNums(): Vector

showlMiddleRecord()

JAN

RemoteTelNums 1
getTelNums()

Setup -

Ensures that
TelephoneApp makes
calls with Te/lNumsProxy
instance

remoteTelNums TelNumsProxy
—<
getTelNums()

... // One way to check if really needed:
if (value ==null) // never referenced
remoteTelNums.getTelNums();

else //no need to call ‘getTe]Nlunf;{!‘

L3

L3

Proxy: Consequences

* Proxy promotes:

Efficiency: avoids time-consuming operations when necessary.

Correctness: separates design and code that are independent of retrieval/efficiency
from parts concerned with this issue.

Reusability: design and code that are independent of retrieval efficiency are most
likely to be reusable.

Flexibility: we can replace one module concerned with retrieval with another.
Robustness: isolates parts that check for the validity of retrieved data.

« The penalties we pay can sometimes be too high:

If the proxy forces us to keep very large amount of data in the memory and its use is

infrequent.

Proxy: -
Encapsulating Expensive Objects

Name: Proxy design pattern

Problem description:

Improve performance or security of a system by delaying
expensive computations, using memory only when needed, or
checking access before loading an object into memory.

Solution:

The ProxyObject class acts on behalf of a RealObject class. Both
Implement the same interface. ProxyObject stores a subset of the
attributes of RealObject. ProxyObject handles certain requests,
whereas others are delegated to RealObject. After delegation, the
RealObject is created and loaded into memory.

Proxy:
Class Diagram

Client
: Object
_____________ filename
op1()
0p2() T
ProxyObject 1 0.1 RealObject
filename data:byte[]
opl() opl()
0p2() op2()

L3

Proxy:
Consequences

Consequences:
Adds a level of indirection between Client and RealObject.

The Client is shielded from any optimization for creating
RealObjects.

L3

PROFESSIONELLE SOFTWAREENTWICKLUNG. John Viissides

Entwurfs-
muster
anwenden

Pattern Hatching

Proxy Pattern

PATTERN HATCHING
Design Patterns Applied

realSubject->request();

RealSubject

Proxy

realSubject

request()

A

request()

L3

OFESSIONELLE SOFTWAREENTWICKLUN

Entwurfs- PATTERN HATCHING

muster Design Patterns Applied
anwenden

Pattern Hatching

Ay ADDISON-WESLEY

Proxy Pattern

“5We need to find a common structure for the
proxy pattern with our composite pattern

“BAs we recognize, our common interface that we
still want to use for the file-system is Node

“JAnd because the Composite structure uses a
common interface already, we can combine the
Proxy “Subject” Interface into our Node
Interface

L3

Evitwnrtss Parrery Haremvg L3

muster Design Patterns Applied
anwenden

streamlIn(istream) streamlIn(istream) streamlIn(istream)
streamOut(ostream) streamOut(ostream) streamOut(ostream)

getSubject() getChild(int)
adopt(Node)

orphan(Node)

Flyweight Design Pattern

 Design Purpose

Manage a large number of objects without
constructing them all.

* Design Pattern Summary

— Share representatives for the objects; use context
to obtain the effect of multiple instances.

L4

Flyweight: Class Model

Client

-

Flweiqh‘ﬁ:acmw
getFlyweight(Characteristic)

Flyweight

1..n

.,

Flyweight
doAction(Contexf)

I

ConcreteFlyweight

doAction(Contexf)

L4

Flyweight: Sequence Diagram

-Client :FlyweightFactory flyweight
l ‘Flyweight
getFhyweight()
flyweight J‘
Get context
doAction(context)
I S 1

L4

Text Magnifier Example

Input

E

ABBRA CADABBRAA ARE THE FIRST TWO OF MANY WORDS IN
THIS FILE ...

Input color: RED Starting character: 2 ... Ending character: 3

Q> &=

Qutput
0 ¥ ¥ v ¥ ¥ v
0 0 v ') ') v
4] 0 v 1) 1) v
0 o -RED- RED- * * ¢« =«
O 00 00 v ') ')
0 0 v ') ') v

L4

Text Magnifier Example (cont’d)

Client Responsibilities

DP Responsibilities

Use string to
determine which

__~ ABBRA CADABBRA ...

flyweight. Use color

Make (shared)
BigA, BigB, ...
flyweight object

available to clients

information to form
the context ——— color “RED" begins 0 ...
(parameter value).
_r,,f-f"""r getMatrix("red”) —
Line vov v rov v
for output v v v
------ r £ d h I a ¢ h
v v v v .I‘H'"'"--—-___ _—

bigA:BigA
bigB:BigB

/

getMatrix(“black™)

|

Fhyweights (1 each)

L4

Text Magnifier Example (cont’d)

PagePrinter

Application of Fhiyweight

S— Bfgzhar
j:{:%s;r ﬁf?lgr) <>—26' constructionChar
=T -g-% getMatrix(String color)

I

faingletony | | tsingletons
)

BigA BigB

L4

Flyweight: Consequences

* Space savings increase as more flyweights are
shared.

L4

LS

An example: Decorator

Intent;

Allow to attach responsibilities to objects, extend
their functionality, dynamically

Motivation:
Consider a WYSIWYG editor

The basic textWindow needs various decorations:
borders, tool bars, scroll bars, ...

UNIT-V 297

An “obvious” solution: sub-classing
« Asub-class for every option

 Sub-classing Is static — compile-time

e # of sub-classes = # of combinations —
exponential

UNIT-V

298

LS

The preferred solution: Use
decorator objects

 Each decorator adds one decoration — property,
behavior =» Linear

« Can add more than one, to obtain
combinations of properties

« And, do it dynamically

LS

Structure, participants, collaborations:

e Component — an Interface, describes the
operations of a (GUI) component

e ConcreteComponent (extends Component)
class of objects to which decorations can be
added (e.g. the original TextWindow)

e Decorator (extends Component)— a class of
decorator objects (there are several such classes)

UNIT-V

300

LS

Implementation:
« Each decorator has a (private) reference to a
Component object (CC or D)

 For each operation, the decorator performs Iits
decoration job, & delegates Component
operations to the Component object It contains

- Decorator extends Component (can accept Component
requests)

UNIT-V 301

LS

Facade Design Pattern

 Design Purpose

Provide an interface to a package of classes.

 Design Pattern Summary

— Define a singleton which is the sole means for
obtaining functionality from the package.

UNIT-V

302

L6

Facade (2)

Example: graph interface to a simulation engine

L6

SchematicEditor]
Graph
, Director
Relation port &= Entity
/\ /\
BufferedRelation | | AtomicEntity \CompositeEntity<>_

Joken

&

Actor

Facade: 6
Encapsulating Subsystems

Name: Facade design pattern

Problem description:

Reduce coupling between a set of related classes and the rest of
the system.

Solution:

A single Facade class implements a high-level interface for a
subsystem by invoking the methods of the lower-level classes.

Example. A Compiler is composed of several classes:
LexicalAnalyzer, Parser, CodeGenerator, etc. A caller, invokes

only the Compiler (Facade) class, which invokes the contained
classes.

UNIT-V 304

Facade:
Class Diagram

Facade
Facade
service()
Classl Class2 Class3
servicel() service2() service3()

UNIT-V 305

Facade: 6
Consequences

Consequences:
Shields a client from the low-level classes of a subsystem.

Simplifies the use of a subsystem by providing higher-level
methods.

Enables lower-level classes to be restructured without
changes to clients.

Note. The repeated use of Facade patterns yields a layered
system.

UNIT-V 306

Summary of Structural Design Patterns

e Structural Design Patterns relate objects (as trees,
lists etc.)

provides an interface to collections of objects
adds to objects at runtime
represents trees of objects
simplifies the use of external functionality

gains the advantages of using multiple instances
while minimizing space penalties

avoids calling expensive operations unnecessarily

L7

Unit-4 part-1
behavioural patterns part-1

S. No

TOPIC

Behavioral Patterns Part-I introduction UNIT-4

Chain of Responsibility

Command

interpreter

Iterator

Reusable points in Behavioral Patterns

(Intent, Motivation, Also Known As

Review Unit-VI

PPT Slides

L1

L2

L3

L4

LS

L6

L7

10-12

13-17

18 -21

22 - 24

25—-25

Chain of Responsibility

Decouple sender of a request from receiver
Give more than one object a chance to handle
Flexibility in assigning responsibility

Often applied with Composite

v

Client £K>——

SUCCESSOr

Handler

Contextinterface() handleRequest()

/\

ConcreteHandler1

ConcreteHandler2

handleRequest()

handleRequest()

UNIT-VI

310

L1

Chain of Responsibility (2)

« Example: handling events in a graphical hierarchy

Interactor

0..1 0..*

L1

If interactor 1= null

| interactor.handle(event,this)
| else

parent.handleEvent(event)

N

handle(Event,Figure)

0..*
Flg ure children
handleEvent(Event) O
CompositeFigureK_>— parent

UNIT-VI

311

Command: 2
Encapsulating Control Flow

Name: Command design pattern

Problem description:

Encapsulates requests so that they can be executed, undone, or
queued independently of the request.

Solution:

A Command abstract class declares the interface supported by all
ConcreteCommands. ConcreteCommands encapsulate a service
to be applied to a Receiver. The Client creates
ConcreteCommands and binds them to specific Receivers. The
Invoker actually executes a command.

UNIT-VI 312

Command:
Class Diagram

Invoker Invokes Command
execute()
Z\
ConcreteCommandl
<<binds>>
e execute()
Receiver |
ConcreteCommand?2

UNIT-VI

execute()

313

Command:
Class Diagram for Match

Match

INvokes

Move

play()
replay()

[

GamelMove

<<pinds>>

GameBoard

play()
replay()

UNIT-VI

GamelMove

play()
replay()

314

Command:
Consequences

Consequences:

The object of the command (Receiver) and the algorithm of
the command (ConcreteCommand) are decoupled.

Invoker is shielded from specific commands.

ConcreteCommands are objects. They can be created and
stored.

New ConcreteCommands can be added without changing
existing code.

UNIT-VI 315

Command

* You have commands that need to be
— executed,
— undone, or
— queued
« Command design pattern separates
— Receiver from Invoker from Commands

« All commands derive from Command and
implement do(), undo(), and redo()

L2

Command Design Pattern

User Interaction User Interaction User Interaction
Command Command Command

Invokes ¢ Invokes Invokes
Command

- Handler -

- - - - - - -
" - -
r . [| . - .
¢ Receives ' Receives * Receives
Action Action Action

« Separates command invoker and receiver

UNIT-VI 317

Pattern: Interpreter

Intent: Given a language, interpret sentences
Participants: Expressions, Context, Client

Implementation: A class for each expression type
An Interpret method on each class
A class and object to store the global state (context)

No support for the parsing process
(Assumes strings have been parsed into exp trees)

L3

Pattern: Interpreter with Macros

Example: Definite Clause Grammars
A language for writing parsers/interpreters

Macros make it look like (almost) standard BNF
Command(move(D)) -> “go”, Direction(D).

Built-in to Prolog; easy to implement in Dylan, Lisp
Does parsing as well as interpretation

Builds tree structure only as needed
(Or, can automatically build complete trees)

May or may not use expression classes

L3

Method Combination

Build a method from components in different classes

Primary methods: the “normal” methods; choose the
most specific one

Before/After methods: guaranteed to run;
No possibility of forgetting to call super
Can be used to implement Active Value pattern

Around methods: wrap around everything;
Used to add tracing information, etc.

Is added complexity worth it?
Common Lisp: Yes; Most languages: No

L3

L4

lterator pattern

Iterator: an object that provides a standard way to
examine all elements of any collection

uniform interface for traversing many different data
structures without exposing their implementations

supports concurrent iteration and element removal

removes need to know about internal structure of
collection or different methods differentcollections

Pattern: Iterator

objects that traverse collections

UNIT-VI

322

L4

lterator Iinterfaces In Java

public interface java.util.Iterator {
public boolean hasNext () ;
public Object next();

public void remove () ;

public interface java.util.Collection {
// List, Set extend Collection

public Iterator iterator();

public interface java.util.Map {

public Set keySet (); // keys,values are Collections

public Collection values(); // (can call iterator ()

} UNIT-VI

on them)

323

L4

l[terators In Java

 all Java collections have a method iterator that returns an
iterator for the elements of the collection

* can be used to look through the elements of any kind of
collection (an alternative to for loop)

L4

set.iterator ()
List list = new ArrayList();

map.keySet () .iterator ()
. add some elements ...
map.values () .iterator ()
for (Iterator i1tr = list.iterator(); itr.hasNext ()) {
BankAccount ba = (BankAccount)itr.next () ;

System.out.println (ba);

UNIT-VI 324

L4

Adding your own lterators

« when implementing your own collections, it can be
very convenient to use Iterators

— discouraged (has nonstandard interface):

public class PlayerList {
public 1nt getNumPlayers() { ... }
public boolean empty () { ... }
public Player getPlayer(int n) { ... }

)
— preferred:

pU.blj_C class PlayerList { ginterfaces

DvdListlterator DvdList

public Iterator iterator() { ... } T
public int size() { ... } !

public boolean isEmpty () { ... } Inneriterator

}

UNIT-VI 325

Command: =
Encapsulating Control Flow

Name: Command design pattern

Problem description:

Encapsulates requests so that they can be executed, undone, or
queued independently of the request.

Solution:

A Command abstract class declares the interface supported by all
ConcreteCommands. ConcreteCommands encapsulate a service
to be applied to a Receiver. The Client creates
ConcreteCommands and binds them to specific Receivers. The
Invoker actually executes a command.

UNIT-VI 326

Command:
Class Diagram

Invoker Invokes Command
execute()
Z\
ConcreteCommandl
<<binds>>
e execute()
Receiver |
ConcreteCommand?2

UNIT-VI

execute()

327

Command:
Class Diagram for Match

Match

INvokes

Move

play()
replay()

[

GamelMove

<<pinds>>

GameBoard

play()
replay()

UNIT-VI

GamelMove

play()
replay()

328

Command:
Consequences

Consequences:

The object of the command (Receiver) and the algorithm of
the command (ConcreteCommand) are decoupled.

Invoker is shielded from specific commands.

ConcreteCommands are objects. They can be created and
stored.

New ConcreteCommands can be added without changing
existing code.

UNIT-VI 329

Pattern: Interpreter

Intent: Given a language, interpret sentences
Participants: Expressions, Context, Client

Implementation: A class for each expression type
An Interpret method on each class
A class and object to store the global state (context)

No support for the parsing process
(Assumes strings have been parsed into exp trees)

L6

Pattern: Interpreter with Macros

Example: Definite Clause Grammars
A language for writing parsers/interpreters

Macros make it look like (almost) standard BNF
Command (move (D)) -> “go”, Direction (D).

Built-in to Prolog; easy to implement in Dylan, Lisp
Does parsing as well as interpretation

Builds tree structure only as needed
(Or, can automatically build complete trees)

May or may not use expression classes

L6

Method Combination

Build a method from components in different classes

Primary methods: the “normal” methods; choose the
most specific one

Before/After methods: guaranteed to run;
No possibility of forgetting to call super
Can be used to implement Active Value pattern

Around methods: wrap around everything;
Used to add tracing information, etc.

Is added complexity worth it?
Common Lisp: Yes; Most languages: No

L6

References

 [nformation about Design Patterns:

— http://msdn.microsoft.com/library/en-
us/dnpag/html/intpatt.asp

— http://www.patternshare.org/

— http://msdn.microsoft.com/architecture/

— http://msdn.microsoft.com/practices/

— http://www.dofactory.com/Patterns/Patterns.aspx
— http://hillside.net/

 Contact: alex@stonebroom.com
 Slides & code: http://www.daveandal.net/download/
 Article: http://www.daveandal.net/articles/

UNIT-VI

333

L7

Unit-4 part-2
behavioural patterns part-2

S.No TOPIC PPT Slides

1 Behavioral patterns part-II introduction L1 2-4
2 Mediator L2 5_ 192
3 Memento L3 13- 32

4 Observer L4 33-54

L1

Behavioral Patterns (1)

» Deal with the way objects interact and distribute

responsibility

 Chain of Responsibility: Avoid coupling the sender of arequest to
Its receiver by giving more than one object achance to handle the
request. Chain the receiving objects an dpass the request along the
chain until anobject handles it.

« Command: Encapsulate a request as an object, therebyletting you
paramaterize clients with different requests,queue or log requests,
and support undoable operations.

 Interpreter: Given a language, define a representationfor Iits
grammar along with an interpreter that uses therepresentation to
Interpret sentences In the language.23

Behavioral Patterns (2)

* |terator: Provide a way to access the elements of anaggregate
object sequentially without exposing itsunderlying
representation.

« Mediator: Define an object that encapsulates how a setof
objects interact. Mediator promotes loose coupling bykeeping
objects from referring to each other explicitly,and lets you vary
their interaction independently:.

« Memento: Without violating encapsulation, capture
andexternalize an object’s Internal state so that the object

can be restored to this state later.

» Observer: Define a one-to-many dependency betweenobjects
so that when one object changes state, all itsdependents are
notified and updated automatically.

L1

Behavioral Patterns (3) L1
» State: Allow an object to alter its behavior when its
Internal state changes. The object will appear to change
Its class.

» Strategy: Define a family of algorithms, encapsulate
each one, and make them interchangeable. Strategy

lets the algorithm vary independently from clients that
use it.

» Template Method: Define the skeleton of an algorithm
In an operation, deferring some steps to subclasses.
Template Method lets subclasseses redefine certain
steps of an algorithm without changing the algorithm’s
structure.

* Visitor: Represent an operation to be performed on the
elements of an object structure. Visitor lets you define a
new operation without changing the classes of the
elements on which it operates.

The Mediator Pattern

The Mediator pattern reduces coupling and
simplifies code when several objects must
negotiate a complex interaction.

Classes interact only with a mediator class rather
than with each other.

Classes are coupled only to the mediator where
Interaction control code resides.

Mediator is like a multi-way Facade pattern.
Analogy: a meeting scheduler

L2

Using a Mediator

Unmediated
Collaboration

collaboratorB

1: OW WOpZO

2:0p2()
) collaboratorC

collaboratorA

3 om A op3()

collaboratorD

Mediated
Collaboration collaboratorB
1.1: opl()
1.5: op2()
1: op() 1.2: op2()
collaboratorA ——21 mediator ——= collaboratorC

1.3: 0p3()
1.4: op4()

collaboratorD

UNIT-VII

L2

340

Mediator Pattern Structure

Mediator

Collaborator

/\

> ColleagueA

> ColleagueB

> ColleagueC

UNIT-VII

341

L2

Mediator as a Broker

{> Collaborator <}

Y
«client» | «broker» | «supplier»
ColleagueA | Mediator ”| ColleagueB
| «supplier»
”| ColleagueC

UNIT-VII 342

Mediator Behavior

sd requestService() J

self:Mediator :ColleagueA :ColleagueB :ColleagueC
[
consult() |
I
I
>
notify()

I
I
>
consult() D
|
I
I
|

<
” consult()

UNIT-VII

343

L2

When to Use a Mediator

» Use the Mediator pattern when a
complex interaction between
collaborators must be encapsulated to
— Decouple collaborators,

— Centralize control of an interaction, and
— Simplify the collaborators.

 Using a mediator may compromise
performance.

L2

Mediators, Facades, and Control =
Styles

» The Facade and Mediator patterns
provide means to make control more
centralized.

» The Facade and Mediator patterns
should be used to move from a
dispersed to a delegated style, but
not from a delegated to a centralized
style.

L2

Summary

 Broker patterns use a Broker class to
facilitate the interaction between a Client

and a Supplier.

» The Facade pattern uses a broker (the
facade) to provide a simplified interface
to a complex sub-system.

« The Mediator pattern uses a broker to
encapsulate and control a complex
Interaction among several suppliers.

Memento Pattern

UNIT-VII

347

L3

References

» doFactory.com
— http://www.dofactory.com/Patterns/PatternMemento.as
pX
e Marc Clifton’s Blog
— http://www.marcclifton.com/tabid/99/Default.aspx

 Software Architecture, ETH, Zurich Switzerland
— http://se.ethz.ch/teaching/ss2005/0050/slides/60_softarc

h_patterns_6up.pdf

UNIT-VII

348

L3

http://www.dofactory.com/Patterns/PatternMemento.aspx
http://www.dofactory.com/Patterns/PatternMemento.aspx
http://www.marcclifton.com/tabid/99/Default.aspx
http://se.ethz.ch/teaching/ss2005/0050/slides/60_softarch_patterns_6up.pdf
http://se.ethz.ch/teaching/ss2005/0050/slides/60_softarch_patterns_6up.pdf

Intent

« Capture and externalize an object’s state
without violating encapsulation.

 Restore the object’s state at some later time.

— Useful when implementing checkpoints and
undo mechanisms that let users back out of
tentative operations or recover from errors.

— Entrusts other objects with the information it
needs to revert to a previous state without

exposing its internal structure and
representations.

L3

Forces

Application needs to capture states at certain times
or at user discretion. May be used for:

— Undue / redo
— Log errors or events
— Backtracking

Need to preserve encapsulation
— Don’t share knowledge of state with other objects

Object owning state may not know when to take
state snapshot.

L3

Motivation

e Many technical processes involve the
exploration of some complex data
structure.

e Often we need to backtrack when a

particu

— Exam
know

ar path proves unproductive.
ples are graph algorithms, searching

edge bases, and text navigation.

L3

Motivation

 Memento stores a snapshot of another object’s internal
state, exposure of which would violate encapsulation and
compromise the application’s reliability and extensibility.

« A graphical editor may encapsulate the connectivity
relationships between objects in a class, whose public
Interface might be insufficient to allow precise reversal of

a mave operation

Undo
= =

UNIT-VII

352

L3

L3

Motivation

Memento pattern solves this problem as
follows:

e The editor requests a memento from the
object before executing move operation.

e Originator creates and returns a memento.

e During undo operation, the editor gives the
memento back to the originator.

Applicability

» Use the Memento pattern when:

— A snapshot of an object’s state must be saved so
that It can be restored later, and

— direct access to the state would expose
Implementation details and break
encapsulation.

UNIT-VII

354

L3

Structure

Originator

Attribute:
state

Operation:

SetMemento(Memento m)
CreateMemento() o]

state = m->GetState()

return new Memento(state)

Memento

Attribute:
state

caretaker

Operation:
GetState()
SetState()

UNIT-VII

355

L3

Participants

« Memento

— Stores internal state of the Originator object.
Originator decides how much.

— Protects against access by objects other than the
originator.
— Mementos have two interfaces:

» Caretaker sees a narrow Interface.
 Originator sees a wide interface.

L3

Participants (continued)

e Originator

— Creates a memento containing a snapshot
of its current internal state.

— Uses the memento to restore its internal
state.

UNIT-VII

357

L3

Caretaker

e [s responsible for the memento’s
safekeeping.

e Never operates on or examines the
contents of a memento.

L3

aCaretaker

Event Trace

anOriginator

CreateMemento()——»

SetMemento(aMemento) —»,

UNIT-VII

aMemento

SetState()—»

GetState()——»

359

L3

Collaborations

« A caretaker requests a memento from an
originator, holds It for a time, and passes It
back to the originator.

 Mementos are passive. Only the originator
that created a memento will assign or
retrieve Its state.

L3

Consequences

e Memento has several consequences:

— Memento avoids exposing information that
only an originator should manage, but for
simplicity should be stored outside the
originator.

— Having clients manage the state they ask
for simplifies the originator.

L3

Consequences (continued)

e Using mementos may be expensive,
due to copying of large amounts of

state or frequent creation of mementos.

e A caretaker is responsible for deleting
the mementos it cares for.

e A caretaker may incur large storage
costs when it stores mementos.

L3

Implementation

 When mementos get created and passed
back to their originator in a predictable
sequence, then Memento can save just
Incremental changes to originator’s state.

UNIT-VII 363

L3

Known Uses

« Memento 1s a 2000
film about Leonard
Shelby and his quest
to revenge the brutal
murder of his wife.
Though Leonard Is
hampered with short-
term memory loss, he
uses notes and tatoos
to compile .

UNIT-VII 364

http://en.wikipedia.org/wiki/Memento
http://en.wikipedia.org/wiki/2000_in_film
http://en.wikipedia.org/wiki/2000_in_film
http://en.wikipedia.org/wiki/2000_in_film

Known Use of Pattern

» Dylan language uses memento to provide
Iterators for its collection facility.

— Dylan is a dynamic object oriented language
using the functional style.

— Development started by Apple, but
subsequently moved to open source.

L3

Related Patterns

e Command

Commands can use mementos to maintain
state for undo mechanisms.

e [terator
Mementos can be used for iteration.

UNIT-VII

366

L3

L4

Observer Pattern

Define a one-to-many dependency, all the
dependents are notified and updated
automatically

The Interaction Is known as publish-
subscribe or subscribe-notify

Avoiding observer-specific update protocol:
pull model vs. push model

Other consequences and open Issues

Observer Pattern

e |ntent:

— Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are
notified and updated automatically

« Key forces:
— There may be many observers
— Each observer may react differently to the same notification

— The subject should be as decoupled as possible from the
observers to allow observers to change independently of
the subject

L4

Observer

Many-to-one dependency between objects

Use when there are two or more views on the same “data”
aka “Publish and subscribe” mechanism

Choice of “push” or “pull” notification styles

Subject
attach(Observer) Observer
detach(Ob
ngz?fs()(oci(a_ry_eii)____ forall o in observers \ update()
A o.update() A

ConcreteSubject [«---------------

getState()

UNIT-VII

L4

'--| state=subject.getState():

up
d
«p

Observer: -
Encapsulating Control Flow

Name: Observer design pattern
Problem description:

Maintains consistency across state of one Subject and many Observers.

Solution:

A Subject has a primary function to maintain some state (e.g., a data
structure). One or more Observers use this state, which introduces
redundancy between the states of Subject and Observer.

Observer invokes the subscribe() method to synchronize the state.
Whenever the state changes, Subject invokes its notify() method to
Iteratively invoke each Observer.update() method.

UNIT-VII 370

Observer:
Class Diagram

Subject b subscribers Observer
subscribe() L update()
unsubscribe()
notify() A
ConcreteSubject | - ConcreteObserver
state observeState
getstate() update()

setstate()

UNIT-VII

371

L4

Observer:
Conseguences

Consequences:

Decouples Subject, which maintains state, from Observers,
who make use of the state.

Can result in many spurious broadcasts when the state of
Subject changes.

UNIT-VII

372

L4

Collaborations in Observer Pattern

S1 :ConcreteSubject

obsl : ConcreteObserver

obs2 : ConcreteObserver

|
|
setState()
¢
> notify () :
|
|
|
update() |
1
getState() ﬂ
¢ I
|update()
1
|
|
getState()
*‘ 1

UNIT-VII

373

L4

L4

Observer Pattern [1]

Need to separate presentational aspects with the data, 1.e.
separate views and data.

Classes defining application data and presentation can be
reused.

Change in one view automatically reflected in other views.
Also, change in the application data is reflected in all views.

Defines one-to-many dependency amongst objects so that
when one object changes its state, all its dependents are
notified.

UNIT-VII 374

L4

Observer Pattern [2]

Relative Percentages
A B CD A
X 15 35 3515 D
Y 10 40 30 20 =
Z 10 40 30 20
. A B C D
A=10%
B=40% o
h T C=30% —Application data
Change notification D=20%

................... > Requests, modifications
UNIT-VII -

Observer Pattern [3]

observers

Subject

attach (Observer)

®

Observer

Update()

detach (Observer)
Notify () ©

For all x in observers{

X = Update(); }

/\

Concrete Subject|

GetState()
SetState()

subjectState

subject

Concrete Observer

UNIT-VII

Update()

observerState

observerState= N
subject = getState();

376

Class collaboration in Observer

-ConcreteSubject

:ConcreteObserver-1

:ConcreteObserver-2

SetState()

| Notify()

Update()

GetState()

Update()

GetState()

UNIT-VII

377

L4

Observer Pattern: Observer code

class Subject;

class observer { —

virtual void Update (Subject* theChangedSubject)=0;

public:
virtual ~observer;
protected:
observer ();
¢

Abstract class defining
the Observer interface.

Note the support for multiple subjects.

UNIT-VII

378

L4

Observer Pattern: Subject Code [1]

class Subject { “— | Abstract class defining

the Subject interface.

public:

virtual ~Subject;

virtual void Attach (observer®);
virtual void Detach (observer*) ;
virtual void Notify();

protected:
Subject ();

private:

List <Observer*> *_observers;

UNIT-VII 379

Observer Pattern: Subject Code [2]

void Subject :: Attach (Observer* 0){

_observers -> Append(0);

¥
void Subject :: Detach (Observer* 0){

_observers -> Remove(0);

}
void Subject :: Notify (){

Listlterator<Observer*> iter(_observers);

for (iter.First(); liter.IsDone(); iter.Next()) {

iter.Currentltem() -> Update(this);

UNIT-VII

380

L4

Observer Pattern: A Concrete Subject [1]

class ClockTimer : public Subject {

public:
ClockTimer();
virtual int GetHour();
virtual int GetMinutes();
virtual int GetSecond();
void Tick ();

¥

UNIT-VII

381

L4

Observer Pattern: A Concrete Subject [2]

ClockTimer :: Tick {

// Update internal time keeping state.
Il gets called on regular intervals by an internal timer.

Notify();

UNIT-VII

382

L4

L4

Observer Pattern: A Concrete Observer [1]

class DigitalClock: public Widget, public Observer {

public:
DigitalClock(ClockTimer*);
virtual ~DigitalClock();

Override Observer operation.

virtual void Update(Subject*);

virtualvoid Draw(); .——— | verride Widget operation.

private:

ClockTimer* _subject;

}

UNIT-VII 383

Observer Pattern: A Concrete Observer [2]

DigitalClock ::DigitalClock (ClockTimer™* s) {
_Subject=s;

_subject-> Attach(this);

}

DigitalClock ::~DigitalClock() {

_Subject->Detach(this);

UNIT-VII

384

L4

Observer Pattern: A Concrete Observer [3]

void DigitalClock ::Update (subject* theChangedSubject) {
If (theChangedSubject == _subject) {

Draw(); \

} Check if this is the clock’s subject.

void DigitalClock ::Draw () {

int hour = _subject->GetHour();
int minute = _subject->GeMinute(); // etc.

/[Code for drawing the digital clock.
}

UNIT-VII 385

Observer Pattern: Main (skeleton)

ClockTimer* timer = new ClockTimer:;

DigitalClock* digitalClock = new DigitalClock (timer);

UNIT-VII

386

L4

L4

Observer Pattern: Consequences

» Abstract coupling between subject and observer. Subject has
no knowledge of concrete observer classes. (\What design
principle is used?)

 Support for broadcast communication. A subject need not
specify the receivers; all interested objects receive the
notification.

» Unexpected updates: Observers need not be concerned about
when then updates are to occur. They are not concerned about
each other’s presence. In some cases this may lead to
unwanted updates.

UNIT-VII 387

When to use the Observer Pattern?

» When an abstraction has two aspects: one dependent on the
other. Encapsulating these aspects in separate objects allows
one to vary and reuse them independently.

* When a change to one object requires changing others and the
number of objects to be changed is not known.

« When an object should be able to notify others without
knowing who they are. Avoid tight coupling between objects.

UNIT-VII 388

L4

Unit-5 part-1
behavioural patterns part-2(contd)

STATE Pattern

By :
Raghavendar Japala

IIIIIIII

L5

General Description

« Atype of Behavioral pattern.

 Allows an object to alter its behavior when its
Internal state changes. The object will appear
to change its class.

» Uses Polymorphism to define different
behaviors for different states of an object.

L5

LS

When to use STATE pattern ?

 State pattern is useful when if (myself = happy) then
there Is an object that can be

|n one Of Severf:_ll St_a’[eS, Wlth eaﬂceCream();
different behavior in each
State. }

_ _ _ else if (myself = sad) then
» To simplify operations that {

have large conditional
statements that depend on

goToPub();
the object’s state. &

\ .
else if (myself = ecstatic) then

{

UNIT-VII 392

water

state variable

| increaseTemp()

decreaseTemp()

Example |

StateOfWater

\ 4

increaseTemp()
decreaseTemp()

AN

L5

Client
increaseTemp()

WaterVapor

increaseTemp()
decreaseTemp()

LiquidWater

increaseTemp()
decreaseTemp()

Ice

UNIT-VII

increaseTemp()
decreaseTemp()

393

How is STATE pattern ”
Implemented ?

«““Context” class:
Represents the interface to the outside world.
«““‘State’ abstract class:
Base class which defines the different states of
the “state machine”.
*““Derived” classes from the State class:
Defines the true nature of the state that the state
machine can be iIn.

Context class maintains a pointer to the current state. To
change the state of the state machine, the pointer needs to
be changed.

UNIT-VII 394

MyMood

state variable

Example 11

MoodState

\ 4

doSomething()

Client
doSomething()

mad

5

9=\

doSomething()

L5

doSomething()

happy

UNIT-VII

N

doSomething()

395

Benefits of using STATE pattern

« Localizes all behavior associated with a particular state into one object.
» New state and transitions can be added easily by defining new subclasses.
» Simplifies maintenance.

« It makes state transitions explicit.

» Separate objects for separate states makes transition explicit rather than using
internal data values to define transitions in one combined object.

« State objects can be shared.
» Context can share State objects if there are no instance variables.

UNIT-VII

396

L5

L5

Food for thought...

To have a monolithic single class or many subclasses ?
» Increases the number of classes and is less compact.
» Avoids large conditional statements.

Where to define the state transitions ?
» If criteria is fixed, transition can be defined in the context.
» More flexible if transition is specified in the State subclass.
» Introduces dependencies between subclasses.

Whether to create State objects as and when required or to
create-them-once-and-use-many-times ?

» First is desirable if the context changes state infrequently.

» Later is desirable if the context changes state frequently.

Pattern: Strategy

objects that hold alternate algorithms to solve a

Context

Contextinterface()

Pro

strateqy

nlem

o

Strategy

Algorithminterface(}

AN

ConcreteStrategy A

ConcreteStrategyB

ConcreteStrategyC

Algorithminterface()

Algorithmirnterface()

Algorithminterface()

UNIT-VII

398

L6

L6

Strategy pattern

pulling an algorithm out from the object that contains it, and
encapsulating the algorithm (the "strategy") as an object

each strategy implements one behavior, one implementation of how to
solve the same problem
— how is this different from Command pattern?

separates algorithm for behavior from object that wants to act

allows changing an object's behavior dynamically without extending /
changing the object itself

examples:
— file saving/compression
— layout managers on GUI containers
— Al algorithms for computer game players

L6

Strategy example: Card player

// Strategy hierarchy parent
// (an interface or abstract class)
public interface Strategy {

public Card getMove () ;

// setting a strateqgy
playerl.setStrategy (new SmartStrategy());

// using a strategy

Card plmove = playerl.move(); // uses strategy

UNIT-VII 400

Strategy:
Encapsulating Algorithms

Name: Strategy design pattern
Problem description:

Decouple a policy-deciding class from a set of mechanisms, so
that different mechanisms can be changed transparently.

Example:

A mobile computer can be used with a wireless network, or
connected to an Ethernet, with dynamic switching between
networks based on location and network costs.

UNIT-VII 401

L6

Strategy: -
Encapsulating Algorithms

Solution:
A Client accesses services provided by a Context.

The Context services are realized using one of several
mechanisms, as decided by a Policy object.

The abstract class Strategy describes the interface that is common
to all mechanisms that Context can use. Policy class creates a
ConcreteStrategy object and configures Context to use It.

UNIT-VII 402

Strategy Example:

L6

Class Diagram for Mobile Computer

Application

LocationManager

v v NetworklInterface
NetworkConnection open()
send() < close()
setNetworkInterface() send()
I_Iot_e th_e_ Ethernet WirelessNet
similarities to
Bridge pattern | open() open()
close() close()
send() send()

UNIT-VII

403

Strategy:
Class Diagram
Client IPoIicy
: Context ’
S

contextinterface()

Strategy

algorithminterface()

|

ConcreteStrategyl

UNIT-VII

L6

ConcreteStrategy?2

404

L6

Strategy:
Consequences

Consequences:

ConcreteStrategies can be substituted transparently
from Context.

Policy decides which Strategy is best, given the current
circumstances.

New policy algorithms can be added without modifying
Context or Client.

UNIT-VII 405

Strategy

* You want to
— use different algorithms depending upon the context
— avoid having to change the context or client

o Strategy
— decouples interface from implementation
— shields client from implementations

— Context is not aware which strategy is being used,
Client configures the Context

— strategies can be substituted at runtime
— example: interface to wired and wireless networks

L6

Strategy

« Make algorithms interchangeable---"changing the guts”
« Alternative to subclassing

« Choice of implementation at run-time

 Increases run-time complexity

Context K>—— Strategy

Contextinterface() Operation()

/\

ConcreteStrategy1| |ConcreteStrategy?2

Operation() Operation()

UNIT-VII

407

L6

Design Patterns & Frameworks
Chapter 6 — Template Method

Conducted By Raghavendar Japala

UNIT-VII

408

L7

Topics — Template Method

Introduction to Template Method
Design Pattern

Structure of Template Method
Generic Class and Concrete Class
Plotter class and Plotter Function Class

UNIT-VII 409

L7

Introduction

The DBAnimationApplet illustrates the use of an abstract class
that serves as a template for classes with shared functionality.

An abstract class contains behavior that is common to all its
subclasses. This behavior is encapsulated in nonabstract methods,
which may even be declared final to prevent any modification.
This action ensures that all subclasses will inherit the same
common behavior and its implementation.

The abstract methods in such templates ensure the interface of the
subclasses and require that context specific behavior be
Implemented for each concrete subclass.

L7

L7

Hook Method and Template Method

The abstract method paintFrame() acts as a placeholder for the
behavior that is implemented differently for each specific context.

We call such methods, hook methods, upon which context specific
behavior may be hung, or implemented.

The paintFrame() hook is placed within the method update(),

which is common to all concrete animation applets. Methods
containing hooks are called template methods.

UNIT-VII 411

L7

Hook Method and Template Method (Con’t)

The abstract method paintFrame() represents the behavior
that Is changeable, and its implementation is deferred to the
concrete animation applets.

We call paintFrame() a hook method. Using the hook
method, we are able to define the update() method, which
represents a behavior common to all the concrete animation
applets.

UNIT-VII 412

Frozen Spots and Hot Spots

A template method uses hook methods to define a common
behavior.

Template method describes the fixed behaviors of a generic
class, which are sometimes called frozen spots.

Hook methods indicate the changeable behaviors of a
generic class, which are sometimes called hot spots.

UNIT-VII 413

L7

L7

Hook Method and Template Method (Con’t)

The abstract method paintFrame() represents the behavior
that Is changeable, and its implementation is deferred to the
concrete animation applets.

We call paintFrame() a hook method. Using the hook
method, we are able to define the update() method, which
represents a behavior common to all the concrete animation
applets.

UNIT-VII 414

Structure of the Template Method Design Pattern
GenericClass

templateMethod() |- hookMethod1()

hookMethod1()

hookMethod2() hookMethod2()
Z N\

ConcreteClass

hookMethod1()
hookMethod2()

UNIT-VII 415

Structure of the Template Method Design Pattern (Con’t)

GenericClass (e.g., DBAnimationApplet), which defines
abstract hook methods (e.g., paintFrame()) that concrete
subclasses (e.g., Bouncing-Ball2) override to implement
steps of an algorithm and implements a template method
(e.g., update()) that defines the skeleton of an algorithm by
calling the hook methods;

ConcreteClass (e.g., Bouncing-Ball2) which
Implements the hook methods (e.g., paintFrame()) to
carry out subclass specific steps of the algorithm
defined in the template method.

L7

L7

Structure of the Template Method Design Pattern (Con’t)

In the Template Method design pattern, hook methods do
not have to be abstract.

The generic class may provide default implementations for
the hook methods.

Thus the subclasses have the option of overriding the hook
methods or using the default implementation.

The initAnimator() method in DBAnimationApplet is a
nonabstract hook method with a default implementation.

The init() method is another template method.

L8

A Generic Function Plotter

The generic plotter should factorize all the behavior related to
drawing and leave only the definition of the function to be plotted
to its subclasses.

A concrete plotter PlotSine will be implemented to plot the function

y = sin X

UNIT-VII 418

PROFESSIONELLE SOFTWAREENTWICKLUNG John Vlissides

Entwurfs-
muster
anwenden

Pattern Hatching

Visitor pattern

visited.accept(this);

»
L

v.visit(this);

<
<

UNIT-VII

L8

PATTERN HATCHING
Design Patterns Applied

419

nnnnnnnnnn

Entwurfs-
muster
anwenden

LE SOFTWAREENTWICKLUNG.

Class Visitor {

Pattern Hatching

Visitor Pattern

PATTERN HATCHING
Design Patterns Applied

void Visitor::visit (File* f)

public: {f->streamOut(cout);}

Visitor();

void visit(File*); void Visitor::visit (Directory* d)

void visit(Directory™); {cerr << “no printout for a

void visit (Link®): directory”s}
g void Visitor::visit (Link* I)

{I->gm‘Q| |hjpr‘t()->m‘r‘ppf(*thiq);}
void File::accept (Visitor& v) {v.visit(this);}

Visitor cat; void Directory::accept (Visitor& v) {v.visit(this);}
node->accept(cat); void Link::accept (Visitor& v) {v.visit(this);}

UNIT-VII 420

L8

References

« Java API pages

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Collection.htmi
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Iterator.ntml
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Container.htmi
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/LayoutManager.htmi
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JScrollPane.html

« Cunningham & Cunningham OO Consultancy, Inc.

http://c2.com/cgi/wiki?lteratorPattern
http://c2.com/cgi/wiki?DecoratorPattern
http://c2.com/cgi/wiki?CompositePattern

« Design Patterns Java Companion

http://www.patterndepot.com/put/8/JavaPatterns.htm

L9

Unit-5 part-1
behavioural patterns part-2(contd)

S. No

TOPIC

What to Expect from Design Patterns

A Brief History

The Pattern Community An Invention
A Parting Thought.

Design Patterns advantageous
and disadvantageous

Scope of the design patterns in application
programming.

Review Unit-V

PPT Slides

What to Expect from Design Patterns

« A Common Design Vocabulary
- A Documentation and Learning Aid
« An Adjunct to Existing Methods

« A Target for Refactoring

UNIT-VII 424

L1

A common design vocabulary

1. Studies of expert programmers for conventional languages have shown that
knowledge and experience isn’t organized simply around syntax but in larger
conceptual structures such as algorithms, data structures and idioms [AS85,
Cop92, Cur89, SS86], and plans for fulfilling a particular goal [SE84].

2. Designers probably don’t think about the notation they are using for recording
the designing as much as they try to match the current design situation against
plans, data structures, and idioms they have learned in the past.

3. Computer scientists name and catalog algorithms and data structures, but we
don’t often name other kinds of patterns. Design patterns provide a common
vocabulary for designers to use to communicate, document, and explore
design alternatives.

L1

L1

A document and learning aid

1. Knowing the design patterns makes it easier to understand
existing systems.

2. Most large object-oriented systems use this design patterns
people learning object-oriented programming often complain
that the systems they are working with use inheritance in
convoluted ways and that it is difficult to follow the flow of

control.

3. In large part this is because they do not understand the design
patterns in the system learning these design patterns will help
you understand existing object-oriented system.

L1
An adjacent to existing methods

. Object-oriented design methods are supposed to promote good design, to teach
new designers how to design well, and standardize the way designs are developed.

. Adesign method typically defines a set of notations (usually graphical) for
modeling various aspects of design along with a set of rules that govern how and
when to use each notation.

Design methods usually describe problems that occur in a design, how to resolve
them and how to evaluate design. But then have not been able to capture the
experience of expert designers.

. Afull fledged design method requires more kinds of patterns than just design
patterns there can also be analysis patterns, user interface design patterns, or
performance tuning patterns but the design patterns are an essential part, one that’s
been missing until now.

A target for refactoring

One of the problems in developing reusable software is that
it often has to be recognized or refactored [0J90].

Design patterns help you determine how to recognize a
design and they can reduce a amount of refactoring need to
later.

The life cycle of object-oriented software has several faces.
Brain Foote identifies these phases as the prototyping
expansionary, and consolidating phases [Fo092]

L1

Design Patterns Applied

Example: An Hierarchical File System

Tree Structure — Composite
Patterns Overview
Symbolic Links — Proxy

Extending Functionality — Visitor

Single User Protection
Method

%

emplate

L1

A Brief History of Design Patterns

« 1979--Christopher Alexander pens The Timeless

Way of Building
— Building Towns for Dummies
— Had nothing to do with software

e 1994--Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (the Gang of Four,
or GoF) publish Design patterns: Elements of
Reusable Object-Oriented Software

— Capitalized on the work of Alexander
— The seminal publication on software design patterns

L2

What’s In a Design Pattern--1994

« The GOF book describes a pattern using the
following four attributes:

» The name to describes the pattern, its solutions and
consequences in a word or two

» The problem describes when to apply the pattern

» The solution describes the elements that make up the
design, their relationships, responsibilities, and
collaborations

 The consequences are the results and trade-offs in
applying the pattern

« All examples in C++ and Smalltalk

L2

What’s In a Design Pattern - 2002

* Grand’s book 1s the latest offering in the field and 1s
very Java centric. He develops the GOF attributes to a

greater granularity and adds the Java specifics

« Pattern name—same as GOF attribute

« Synopsis—conveys the essence of the solution

« Context—problem the pattern addresses

» Forces—reasons to, or not to use a solution

« Solution—general purpose solution to the problem

« Implementation—important considerations when using a solution
« Consequences—implications, good or bad, of using a solution

« Java API usage—examples from the core Java API

» Code example—self explanatory

» Related patterns—self explanatory

UNIT-VII

432

L2

Grand’s Classifications of
Design Pattern

Fundamental patterns
Creational patterns
Partitioning patterns
Structural patterns
Behavioral patterns
Concurrency patterns

UNIT-VII

433

L2

L3

The Pattern Community An Invention

Christopher Alexander is the architect who first
studied

Patterns in buildings and communities and developed
A PATTERN LANGUAGE for generating them.

(dHis work has inspired time and again. So it’s fitting worth
while To compare our work to his.

dThen we’ll look at other’s work in software-related patterns.

UNIT-VII 434

What’s In a Design Pattern--1994

« The GOF book describes a pattern using the
following four attributes:

» The name to describes the pattern, its solutions and
consequences in a word or two

» The problem describes when to apply the pattern

» The solution describes the elements that make up the
design, their relationships, responsibilities, and
collaborations

 The consequences are the results and trade-offs in
applying the pattern

« All examples in C++ and Smalltalk

L3

What’s In a Design Pattern - 2002

* Grand’s book 1s the latest offering in the field and 1s
very Java centric. He develops the GOF attributes to a

greater granularity and adds the Java specifics

« Pattern name—same as GOF attribute

« Synopsis—conveys the essence of the solution

« Context—problem the pattern addresses

» Forces—reasons to, or not to use a solution

« Solution—general purpose solution to the problem

« Implementation—important considerations when using a solution
« Consequences—implications, good or bad, of using a solution

« Java API usage—examples from the core Java API

» Code example—self explanatory

» Related patterns—self explanatory

UNIT-VII

436

L3

L3
Alexander’s Pattern Languages

There are many ways in which our work is like Alexander's
Both are based on observing existing systems and looking for patterns in them.

Both have templates for describing patterns although
our templates are quite different)..

But there are just as many ways in which our work different.

»People have been making buildings for thousands of years, and there are many
classic examples to draw upon. We have been making Software systems for a

Relatively short time, and few are considered classics.

» Alexander gives an order in which his patterns should be used; we have not.

» Alexander’s patterns emphasize the problems they adderss ,

»where as design patterns describes the solutions in more detail.

» Alexander claims his patterns will generate complete buildings.

We do not claim that our patterns will generate complete programs.

When Alexander claims you can design a house simply applying his patterns one after
Another ,he has goals similar to those of object-oriented design methodologies who
Gives step-by-step rules for design,

In fact ,we think 1t’s unlikely that there will ever be a compete pattern language for soft
-\Ware.

But certainly possible to make one that is more complte.

L3

A Parting Thought.

The best designs will use many design patterns that dovetail

And intertwine to produce a greater whole.
As Alexander says:

It is possible to make buildings by stringing together pattern’s,
In a rather loose way,

A building made like this , is an assembly of patterns. it is not

Dense.
It 1s not profound. but it is also possible to put pattern’s together

In such a way that many patterns overlap in the same physical

Space: the building is very dense; it has many meaning captured
In a small space; and through this density, it becomes profound.

L3

