
INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

IV B. Tech I Semester

DESIGN PATTERNS

Prepared by: Mr. C.PRAVEEN KUMAR

Mr. R.M.NOORULLAH

Mr. M.RAKESH

Ms. J.HAREESHA

UNIT-I 2

DESIGN PATTERNS

IV B.Tech. I SEMESTER

UNIT 1

PPT SLIDES

TEXT BOOKS:

1. Design Pattern by Erich Gamma, Pearson Education
2. Pattern‘s in JAVA Vol-I BY Mark Grand, Wiley DreamTech

3. Pattern‘s in JAVA Vol-II BY Mark Grand, Wiley DreamTech

4. JAVA Enterprise Design Patterns Vol-III Mark Grand, Wiley

Dream Tech

5. Head First Design Patterns By Eric Freeman-Oreilly-spd..

6. Design Patterns Explained By Alan Shalloway,Pearson

Education

UNIT-I 3

S.NO. TOPIC. PPT Slides

1 What is Design Pattern? L1 3 – 9

2 Design Patterns in Smalltalk MVC L2 10 – 13

3 Describing Design Patterns L3 14 – 18

4 The catalog of Design Patterns L4 19 – 28

5 Organizing the catalog L5 29 – 30

6 How Design Patterns Solve Design Problems L6 31 – 59

7 How to select Design Patterns L7 60 – 61

8 How to Use a Design Pattern L8 62 – 63

9 Review Unit-I, Online resources L9 64 – 64

What is a Design Pattern?

• Each pattern Describes a problem which occurs over and
over again in our environment ,and then describes the
core of the problem

• Novelists, playwrights and other writers rarely invent new
stories.

• Often ideas are reused, such as the ―Tragic Hero‖ from
Hamlet or Macbeth.

• Designers reuse solutions also, preferably the ―good‖ ones
– Experience is what makes one an ‗expert‘

• Problems are addressed without rediscovering solutions
from scratch.
– ―My wheel is rounder‖

UNIT-I 4

L1

UNIT-I 5

Design Patterns

• Design Patterns are the best solutions for there
occurring problems in the application programming
environment.

• Nearly a universal standard

• Responsible for design pattern analysis in other areas,
including GUIs.

• Mainly used in Object Oriented programming

L1

Design Pattern Elements

1. Pattern Name

Handle used to describe the design problem

Increases vocabulary

Eases design discussions

Evaluation without implementation details

UNIT-I 6

L1

Design Pattern Elements

2. Problem

Describes when to apply a pattern

May include conditions for the pattern to be

applicable

Symptoms of an inflexible design or

limitation

UNIT-I 7

L1

Design Pattern Elements

3. Solution

Describes elements for the design

Includes relationships, responsibilities, and

collaborations

Does not describe concrete designs or

implementations

A pattern is more of a template

UNIT-I 8

L1

Design Pattern Elements

4. Consequences

Results and Trade Offs

Critical for design pattern evaluation

Often space and time trade offs

Language strengths and limitations

(Broken into benefits and drawbacks for this

discussion)

UNIT-I 9

L1

Design patterns can be subjective.

One person‘s pattern may be another

person‘s primitive building block.

The focus of the selected design patterns are:

Object and class communication

Customized to solve a general design

problem

Solution is context specific

UNIT-I 10

L1

UNIT-I 11

Design patterns in Smalltalk MVC

 The Model/View/Controller triad of classes is

used to build user interfaces in Smalltalk-80

 MVC consists of three kinds of objects.

 M->>MODEL is the Application object.

 V->>View is the screen presentation.

 C->>Controller is the way the user interface reacts to

user input.

MVC decouples to increase flexibility and reuse.

L2

Design patterns in Smalltalk MVC

• MVC decouples views and models by establishing a
subscribe/notify protocol between them.

 A view must ensure that its appearance must reflects
the state of the model.

 Whenever the model‘s data changes, the model
notifies views that depends on it.

 You can also create new views for a model without
Rewriting it.

UNIT-I 12

L2

Design Patterns in Smalltalk MVC

The below diagram shows a model and three views.

The model contains some data values, and the views

defining a spreadsheet, histogram, and pie chart display

these data in various ways.

The model communicates with it‘s values change, and the

views communicate with the model to access these values.

 Feature of MVC is that views can be nested.

 Easy to maintain and enhancement.

UNIT-I 13

L2

Design Patterns in Smalltalk MVC

UNIT-I 14

A=10%

B=40%

C=30%

D=20%

Application data

A

B

C

D

A DCB

Relative Percentages

Y 10 40 30 20

X 15 35 35 15

Z 10 40 30 20

A B C D

Change notification

Requests, modifications

L2

Describing Design Patterns

Graphical notations ,while important and useful, aren‘t

sufficient.

They capture the end product of the design process as

relationships between classes and objects.

By using a consistent format we describe the design

pattern .

Each pattern is divided into sections according to the

following template.

UNIT-I 15

L3

Describing Design Patterns

Pattern Name and Classification:

 it conveys the essence of the pattern succinctly good name is
vital, because it will become part of design vocabulary.

Intent: What does the design pattern do?

 What is it‘s rational and intend?

 What particular design issue or problem does it address?

Also Known As: Other well-known names for the pattern

Motivation: A scenario that illustrates a design problem and how the
class and object structures in the pattern solve the problem.

 The scenario will help understand the more abstract description of
the pattern that follows.

UNIT-I 16

L3

Describing Design Patterns
Applicability:

• Applicability: What are the situations in which the design
patterns can be applied?

• What are example of the poor designs that the pattern can
address?

• How can recognize situations?

• Structure: Graphical representation of the classes in the pattern
using a notation based on the object Modeling
Technique(OMT).

• Participants: The classes and/or objects participating in the
design pattern and their responsibilities.

Structure:

 Graphical representation of the classes in the pattern using a
notation based on the object Modeling Technique(OMT).

 Participants: The classes and/or objects participating in the
design pattern and their responsibilities.UNIT-I 17

L3

Describing Design Patterns
Collaborations:

 How the participants collaborate to carry out their
responsibilities.

Consequences:

How does the pattern support its objectives?

What are the trade-offs and result of using the
pattern ?

What aspect of the system structure does it let
vary independently?

Implementation:
 What Pitfalls, Hints, Techniques should be aware of when

implementing the pattern ?

 Are there language-specific issues?

UNIT-I 18

L3

Describing Design Patterns

Sample Code:

Code fragments that illustrate how might implement
the pattern in C++ or Smalltalk.

Known Uses:

Examples of the pattern found in real systems.

Related Patterns:

What design patterns are closely related to this one?
What are the imp differences?

With Which other patterns should this one be used?

UNIT-I 19

L3

The Catalog of Design Pattern

• Abstract Factory: Provide an interface for
creating families of related or dependent
objects without specifying their concrete
classes.

• Adapter: Convert the interface of a class into
another interface clients expect.

• Bridge: Decouple an abstraction from its
implementation so that two can vary
independently.

UNIT-I 20

L4

The Catalog of Design Pattern

• Builder: Separates the construction of the complex
object from its representation so that the same
constriction process can create different
representations.

• Chain of Responsibility: Avoid coupling the sender of
a request to it‘s receiver by giving more than one
object a chance to handle the request. Chain the
receiving objects and pass the request along the chain
until an objects handles it.

UNIT-I 21

L4

The Catalog of Design Pattern

• Command: Encapsulate a request as an object,
thereby letting parameterize clients with different
request, queue or log requests, and support undoable
operations.

• Composite: Compose objects into three objects to
represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of
objects uniformly.

UNIT-I 22

L4

The Catalog of Design Pattern

• Decorator: Attach additional responsibilities to an

object dynamically. Decorators provide a flexible

alternative to sub classing for extending

functionality.

• Façade: Provide a unified interface to a set of

interfaces in a subsystem's Facade defines a

higher-level interface that makes the subsystem

easier to use.

UNIT-I 23

L4

The Catalog of Design Pattern

• Factory Method: Defines an interface for creating an
object ,but let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to
subclasses.

• Flyweight: Use sharing to support large numbers of fine-
grained objects efficiently.

• Interpreter: Given a language, defining a representation of
its grammar along with an interpreter that uses the
representation to interpret sentences in the language.

UNIT-I 24

L4

The Catalog of Design Pattern

• Iterator: Provide a way to access the element of an

aggregate object sequentially without exposing its

underlying representation.

• Mediator: Define an object that encapsulate how a

set of objects interact. Mediator promotes loose

coupling by keeping objects from referring to each

other explicitly, and let‘s you very their interaction

independently.

UNIT-I 25

L4

The Catalog of Design Pattern

• Memento: Without violating encapsulation,
capture and externalize an object‘s internal
state so that object can be restored to this
state later.

• Observer: Define a one-to-many
dependency between objects so that when
one object changes state, all it‘s dependents
are notified and updated automatically.

UNIT-I 26

The Catalog of Design Pattern

• Prototype: Specify the kinds of objects to create using a

prototypical instance, and create new objects by copying

this prototype.

• Proxy: Provide a surrogate or placeholder for another object

to control access to it.

• Singleton: Ensure a class has only one instance, and provide

a point of access to it.

• State: Allow an object to alter its behavior when its internal

state changes. the object will appear to change its class.

UNIT-I 27

L4

The Catalog of Design Pattern

• Strategy: Define a family of algorithms, encapsulate each one, and

make them interchangeable. Strategy lets the algorithm vary

independently from clients that use it.

• Template Method: Define the Skelton of an operation, deferring

some steps to subclasses. Template method subclasses redefine

certain steps of an algorithm without changing the algorithms

structure.

UNIT-I 28

The Catalog of Design Pattern

• Visitor: Represent an operation to be

performed on the elements of an object

structure. Visitor lets you define a new

operation without changing the classes of the

elements on which it operates.

UNIT-I 29

L4

UNIT-I 30

•Two criteria

Purpose: what a pattern does

Creational: The process of object creation

Structural: The composition of classes or objects

Behavioral: Characterize the ways in which

classes or objects interact and distribute

responsibility

Scope: whether the pattern applies primarily to

classes or to objects

Organizing the Catalog
L5

Organizing the Catalog

Purpose

Creational Structural Behavioral

Scope Class Factory Method Adapter (class) Interpreter

Template Method

Object Abstract Factory

Builder

Prototype

Singleton

Adapter (object)

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Chain of

Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

UNIT-I 31

L5

How Design Patterns Solve Design Problems

• Finding Appropriate Objects

– Decomposing a system into objects is the hard part

– Object Oriented Designs often end up with classes with no
counterparts in real world (low-level classes like arrays)

– Strict modeling of the real world leads to a system that
reflects today‘s realities but not necessarily tomorrows

– Design patterns identify less-obvious abstractions

UNIT-I 32

L6

How Design Patterns Solve Design Problems

• Determining Object Granularity

– Objects can vary tremendously in size and number

– Facade pattern describes how to represent

subsystems as objects

– Flyweight pattern describes how to support huge

numbers of objects

UNIT-I 33

L6

UNIT-I 34

Design Pattern relationship

• Mapping

Builder

Proxy

saving state

of iteration

Memento

Adapter

Bridge

Command

Iterator

Composite

Decorator

Enumerating

children

adding

respnsibilities

to objects

composed

using

sharing

composites

Flyweight
defining

grammar

Interpreter

Visitor

Chain of

Responsibility

changing skin

versus guts

Strategy

State

sharing

strategies

Mediator Observer

Template Method

defining

algorithm´s

steps
Prototype

Abstract Factory

Singleton Facade

Factory Method

single

instance

single

instance

L6

Specifying Object Interfaces
• Interface:

– Set of all signatures defined by an object‘s operations

– Any request matching a signature in the objects interface
may be sent to the object

– Interfaces may contain other interfaces as subsets

• Type:
– Denotes a particular interfaces

– An object may have many types

– Widely different object may share a type

– Objects of the same type need only share parts of their
interfaces

– A subtype contains the interface of its super type

• Dynamic binding, polymorphism

UNIT-I 35

L6

UNIT-I 36

Specifying Object Interfaces

• An object‘s implementation is defined by its class

• The class specifies the object‘s internal data and

defines the operations the object can perform

• Objects is created by instantiating a class

– an object = an instance of a class

• Class inheritance

– parent class and subclass

L6

UNIT-I 37

Specifying Object Implementations (cont.)

• Abstract class versus concrete class

– abstract operations

• Override an operation

• Class versus type

– An object‘s class defines how the object is implemented

– An object‘s type only refers to its interface

– An object can have many types, and objects of different

classes can have the same type

L6

UNIT-I 38

Specifying Object Implementations (cont.)

• Class versus Interface Inheritance

– class inheritance defines an object‘s implementation in

terms of another object‘s implementation (code and

representation sharing)

– interface inheritance (or subtyping) describes when an

object can be used in place of another

• Many of the design patterns depend on this

distinction

L6

UNIT-I 39

Specifying Object Implementations (cont.)

• Programming to an Interface, not an

Implementation

• Benefits

– clients remain unaware of the specific types of

objects they use

– clients remain unaware of the classes that

implement these objects

L6

Program to an interface, not an Implementation

• Manipulate objects solely in terms of interfaces
defined by abstract classes!

• Benefits:
1. Clients remain unaware of the specific types of objects they

use.
2. Clients remain unaware of the classes that implement the

objects.
Clients only know about abstract class(es) defining the
interfaces

• Do not declare variables to be instances of particular
concrete classes

• Use creational patterns to create actual objects.

UNIT-I 40

L6

Favor object composition over class inheritance

• White-box reuse:
– Reuse by sub classing (class inheritance)

– Internals of parent classes are often visible to subclasses

– works statically, compile-time approach

– Inheritance breaks encapsulation

• Black-box reuse:
– Reuse by object composition

– Requires objects to have well-defined interfaces

– No internal details of objects are visible

UNIT-I 41

L6

UNIT-I 42

Putting Reuse Mechanisms to Work

• Inheritance versus Composition

• Delegation

• Inheritance versus Parameterized Types

L6

UNIT-I 43

Inheritance versus Composition

• Two most common techniques for reuse

– class inheritance

• white-box reuse

– object composition

• black-box reuse

• Class inheritance

– advantages

• static, straightforward to use

• make the implementations being reuse more easily

L6

UNIT-I 44

Inheritance versus Composition (cont.)

• Class inheritance (cont.)

– disadvantages

• the implementations inherited can‘t be changed at
run time

• parent classes often define at least part of their
subclasses‘ physical representation

– breaks encapsulation

• implementation dependencies can cause problems
when you‘re trying to reuse a subclass

L6

UNIT-I 45

Inheritance versus Composition (cont.)

• Object composition

– dynamic at run time

– composition requires objects to respect each
others‘ interfaces

• but does not break encapsulation

– any object can be replaced at run time

– Favoring object composition over class
inheritance helps you keep each class
encapsulated and focused on one task

L6

UNIT-I 46

Inheritance versus Composition (cont.)

• Object composition (cont.)

– class and class hierarchies will remain small

– but will have more objects

• Favor object composition over class

inheritance

• Inheritance and object composition should

work together

L6

UNIT-I 47

Delegation

• Two objects are involved in handling a

request: a receiving object delegates

operations to its delegate

Window

Area()

Rectangle

Area()

width

height

rectangle

L6

UNIT-I 48

Delegation (cont.)

• Makes it easy to compose behaviors at run-time and
to change the way they‘re composed

• Disadvantage:dynamic, highly parameterized
software is harder to understand than more static
software

• Delegation is a good design choice only when it
simplifies more than it complicates

• Delegation is an extreme example of object
composition

L6

UNIT-I 49

Inheritance versus Parameterized Types

• Let you define a type without specifying all the

other types it uses, the unspecified types are

supplied as parameters at the point of use

• Parameterized types, generics, or templates

• Parameterized types give us a third way to

compose behavior in object-oriented systems

L6

UNIT-I 50

Inheritance versus Parameterized Types (cont.)

• Three ways to compose

– object composition lets you change the behavior being

composed at run-time, but it requires indirection and

can be less efficient

– inheritance lets you provide default implementations

for operations and lets subclasses override them

– parameterized types let you change the types that a

class can use

L6

UNIT-I 51

Relating Run-Time and Compile-Time Structures

• An object-oriented program‘s run-time structure often
bears little resemblance to its code structure

• The code structure is frozen at compile-time

• A program‘s run-time structure consists of rapidly
changing networks of communicating objects

• aggregation versus acquaintance (association)

– part-of versus knows of

L6

UNIT-I 52

Relating Run-Time and Compile-Time Structures

• The distinction between acquaintance and

aggregation is determined more by intent

than by explicit language mechanisms

• The system‘s run-time structure must be

imposed more by the designer than the

language

L6

UNIT-I 53

Designing for Change

• A design that doesn‘t take change into
account risks major redesign in the future

• Design patterns help you avoid this by
ensuring that a system can change in
specific ways

– each design pattern lets some aspect of system
structure vary independently of other aspects

L6

UNIT-I 54

Common Causes of Redesign

• Creating an object by specifying a class
explicitly

• Dependence on specific operations

• Dependence on hardware and software
platform

• Dependence on object representations or
implementations

• Algorithmic dependencies

L6

UNIT-I 55

Common Causes of Redesign (cont.)

• Tight coupling

• Extending functionality by subclassing

• Inability to alter classes conveniently

L6

UNIT-I 56

Design for Change (cont.)

• Design patterns in application programs

– Design patterns that reduce dependencies can

increase internal reuse

– Design patterns also make an application more

maintainable when they‘re used to limit

platform dependencies and to layer a system

L6

UNIT-I 57

Design for Change (cont.)

• Design patterns in toolkits

– A toolkit is a set of related and reusable classes
designed to provide useful, general-purpose
functionality

– Toolkits emphasize code reuse. They are the
object-oriented equivalent of subroutine
libraries

– Toolkit design is arguably harder than
application design

L6

UNIT-I 58

Design for Change (cont.)

• Design patterns in framework

– A framework is a set of cooperating classes that make

up a reusable design for a specific class of software

– You customize a framework to a particular application

by creating application-specific subclasses of abstract

classes from the framework

– The framework dictates the architecture of your

application

L6

UNIT-I 59

Design for Change (cont.)

• Design patterns in framework (cont.)

– Frameworks emphasize design reuse over code reuse

– When you use a toolkit, you write the main body of the

application and call the code you want to reuse. When

you use a framework, you reuse the main body and

write the code it calls.

– Advantages: build an application faster, easier to

maintain, and more consistent to their users

L6

UNIT-I 60

Design for Change (cont.)

• Design patterns in framework (cont.)

– Mature frameworks usually incorporate several design

patterns

– People who know the patterns gain insight into the

framework faster

– differences between framework and design pattern

• design patterns are more abstract than frameworks

• design patterns are smaller architectural elements than frameworks

• design patterns are less specialized than frameworks

L6

How To Select a Design Pattern

 Consider how design patterns solve design Problems.

 Scan Intent sections.

 Study how patterns interrelate.

 Study patterns of like purpose.

 Examine a Cause of redesign.

 Consider what should be variable in your design.

UNIT-I 61

L7

UNIT-I
62

L7

How To Use a Design Pattern

 Read the pattern once through for an overview.

 Go Back and study the Structure, Participants ,and Collaborations
sections.

 Look At the Sample Code section to see a concrete

Example of the pattern in code.

 Choose names for pattern participants that are meaningful in the
application context.

 Define the classes.

 Define App’n-specific names for operations in the Pattern

 Implement the operations to carry out responsibilities in the
pattern.

UNIT-I 63

L8

UNIT-I 64

Design Aspects that

design patterns let

you vary

L8

UNIT-I 65

Online resources

• Pattern FAQ

• http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html

• Basic patterns

• http://exciton.cs.oberlin.edu/javaresources/DesignPa

tterns/default.htm

• Patterns home page

• http://hillside.net/patterns/

L9

Unit -II

A Case Study: Designing a Document Editor

66

UNIT-I 67

S.NO. TOPIC PPT Slides

1 Document structure L1 4 – 13

2 Formatting L2 14 – 20

3 Embellishment L3 21 – 25

4 Multiple look & feels L4 26 – 30

5 Multiple window systems L5 31 – 35

6 User operations L6 36 – 46

7 Spelling checking & hyphenation L7 47 – 60

8 Concluding Remarks L8 61 – 61

9 Pattern References L8 62 – 67

Design Problems:
• seven problems in Lexis's design:

Document Structure:

 The choice of internal representation for the document affects nearly every aspect
of Lexis's design. All editing , formatting, displaying, and textual analysis will
require traversing the representation.

Formatting:

 How does Lexi actually arrange text and graphics into lines and columns?

 What objects are responsible for carrying out different formatting policies?

 How do these policies interact with the document‘s internal representation?

Embellishing the user interface:

Lexis user interface include scroll bar, borders and drop shadows that embellish the
WYSIWYG document interface. Such embellishments are likely to change as Lexis
user interface evolves.

UNIT-II 68

L1

UNIT-I 69

Supporting multiple look-and-feel standards:

Lexi should adapt easily to different look-and-feel standards such as Motif and Presentation

Manager (PM) without major modification.

Supporting multiple window systems:

Different look-and-fell standards are usually implemented on different window system. Lexi‘s

design should be independent of the window system as possible.

User Operations:

User control Lexi through various interfaces, including buttons and pull-down menus. The

functionality beyond these interfaces is scattered throughout the objects in the application.

Spelling checking and hyphenation.:

How does Lexi support analytical operations checking for misspelled words and

determining hyphenation points? How can we minimize the number of classes we have to

modify to add a new analytical operation?

Part II: Application: Document Editor (Lexi)

UNIT-II 70

7 Design Problems

1. Document structure

2. Formatting

3. Embellishment

4. Multiple look & feels

5. Multiple window systems

6. User operations

7. Spelling checking &

hyphenation

L1

Document Structure

Goals:

– present document‘s visual aspects

– drawing, hit detection, alignment

– support physical structure
(e.g., lines, columns)

Constraints/forces:

– treat text & graphics uniformly

– no distinction between one & many

UNIT-II 71

L1

UNIT-II 72

Document Structure

• The internal representation for a document

• The internal representation should support

– maintaining the document‘s physical structure

– generating and presenting the document visually

– mapping positions on the display to elements in the

internal representations

L1

UNIT-II 73

Document Structure (cont.)

• Some constraints

– we should treat text and graphics uniformly

– our implementation shouldn‘t have to distinguish

between single elements and groups of elements in the

internal representation

• Recursive Composition

– a common way to represent hierarchically structured

information

L1

UNIT-II 74

L1

UNIT-II 75

Document Structure (cont.)

• Glyphs

– an abstract class for all objects that can appear
in a document structure

– three basic responsibilities, they know

• how to draw themselves, what space they occupy,
and their children and parent

• Composite Pattern

– captures the essence of recursive composition
in object-oriented terms

L1

UNIT-II 76

L1

UNIT-II 77

L1

UNIT-II 78

Formatting

• A structure that corresponds to a properly

formatted document

• Representation and formatting are distinct

– the ability to capture the document‘s physical structure

doesn‘t tell us how to arrive at a particular structure

• here, we‘ll restrict ―formatting‖ to mean breaking

a collection of glyphs in to lines

L2

UNIT-II 79

Formatting (cont.)

• Encapsulating the formatting algorithm

– keep formatting algorithms completely

independent of the document structure

– make it is easy to change the formatting

algorithm

– We‘ll define a separate class hierarchy for

objects that encapsulate formatting algorithms

L2

UNIT-II 80

Formatting (cont.)

• Compositor and Composition

– We‘ll define a Compositor class for objects that can

encapsulate a formatting algorithm

– The glyphs Compositor formats are the children of a

special Glyph subclass called Composition

– When the composition needs formatting, it calls its

compositor‘s Compose operation

– Each Compositor subclass can implement a different line

breaking algorithm

L2

UNIT-II 81

L2

UNIT-II 82

Formatting (cont.)

• Compositor and Composition (cont.)

– The Compositor-Composition class split ensures a

strong separation between code that supports the

document‘s physical structure and the code for different

formatting algorithms

• Strategy pattern

– intent: encapsulating an algorithm in an object

– Compositors are strategies. A composition is the

context for a compositor strategy

L2

UNIT-II 83

L2

UNIT-II 84

L2

UNIT-II 85

Embellishing the User Interface

• Considering adds a border around the text editing

area and scrollbars that let the user view the different

parts of the page here

• Transparent Enclosure

– inheritance-based approach will result in some problems

• Composition, ScollableComposition,

BorderedScrollableComposition, …

– object composition offers a potentially more workable and

flexible extension mechanism

L3

UNIT-II 86

Embellishing the User Interface

(cont.)

• Transparent enclosure (cont.)

– object composition (cont.)

• Border and Scroller should be a subclass of Glyph

– two notions

• single-child (single-component) composition

• compatible interfaces

L3

UNIT-II 87

Embellishing the User Interface

(cont.)

• Monoglyph

– We can apply the concept of transparent enclosure to all
glyphs that embellish other glyphs

– the class, Monoglyph

• Decorator Pattern

– captures class and

object relationships

that support

embellishment by

transparent enclosure

void MonoGlyph::Draw(Window* w) {

_component-> Draw(w);

}

void Border:: Draw(Window * w) {

MonoGlyph::Draw(w);

DrawBorder(w);

}

L3

UNIT-II 88

L3

UNIT-II 89

L3

UNIT-II 90

Supporting Multiple Look-and-

Feel Standards

• Design to support the look-and-feel changing at run-

time

• Abstracting Object Creation

– widgets

– two sets of widget glyph classes for this purpose

• a set of abstract glyph subclasses for each category of widget glyph

(e.g., ScrollBar)

• a set of concrete subclasses for each abstract subclass that

implement different look-and-feel standards (e.g., MotifScrollBar

and PMScrollBar)

L4

UNIT-II 91

Supporting Multiple Look-and-

Feel Standards (cont.)

• Abstracting Object Creation (cont.)

– Lexi needs a way to determine the look-and-
feel standard being targeted

– We must avoid making explicit constructor
calls

– We must also be able to replace an entire
widget set easily

– We can achieve both by abstracting the process
of object creation

L4

UNIT-II 92

Supporting Multiple Look-and-

Feel Standards (cont.)

• Factories and Product Classes

– Factories create product objects

– The example

• Abstract Factory Pattern

– capture how to create families of related

product objects without instantiating classes

directly

L4

UNIT-II 93

L4

UNIT-II 94

L4

UNIT-II 95

Supporting Multiple Window

Systems

• We‘d like Lexi to run on many existing window systems

having different programming interfaces

• Can we use an Abstract Factory?

– As the different programming interfaces on these existing

window systems, the Abstract Factory pattern doesn‘t work

– We need a uniform set of windowing abstractions that lets us

take different window system impelementations and slide any

one of them under a common interface

L5

UNIT-II 96

Supporting Multiple Window

Systems (cont.)

• Encapsulating Implementation Dependencies

– The Window class interface encapsulates the things

windows tend to do across window systems

– The Window class is an abstract class

– Where does the implementation live?

• Window and WindowImp

• Bridge Pattern

– to allow separate class hierarchies to work together even as

they evolve independently

L5

UNIT-I 97

UNIT-I 98

UNIT-II 99

L5

UNIT-II 100

User Operations

• Requirements

– Lexi provides different user interfaces for the

operations it supported

– These operations are implemented in many different

classes

– Lexi supports undo and redo

• The challenge is to come up with a simple and

extensible mechanism that satisfies all of these

needs

L6

UNIT-II 101

User Operations (cont.)

• Encapsulating a Request

– We could parameterize MenuItem with a function to

call, but that‘s not a complete solution

• it doesn‘t address the undo/redo problem

• it‘s hard to associate state with a function

• functions are hard to extent, and it‘s hard to reuse part of them

– We should parameterize MenuItems with an object, not

a function

L6

UNIT-II 102

User Operations (cont.)

• Command Class and Subclasses

– The Command abstract class consists of a
single abstract operation called ―Execute‖

– MenuItem can store a Command object that
encapsulates a request

– When a user choose a particular menu item, the
MenuItem simply calls Execute on its
Command object to carry out the request

L6

UNIT-II 103

L6

UNIT-I 104

UNIT-II 105

User Operations (cont.)

• Undoability

– To undo and redo commands, we add an Unexecute
operation to Command‘s interface

– A concrete Command would store the state of the
Command for Unexecute

– Reversible operation returns a Boolean value to
determine if a command is undoable

• Command History

– a list of commands that have been executed

L6

UNIT-II 106

Implementing a Command History

• The command history can be seen as a list of past

commands commands

• As new commands are executed they are added to

the front of the history

present
past commands

L6

UNIT-II 107

Undoing the Last Command

• To undo a command, unexecute() is called on the

command on the front of the list

• The ―present‖ position is moved past the last

command

present

unexecute()

present

L6

UNIT-II 108

Undoing the Previous Command

• To undo the previous command, unexecute() is

called on the next command in the history

• The present pointer is moved to point before that

command

present

unexecute()

present

L6

UNIT-II 109

Redoing the Next Command

• To redo the command that was just undone,

execute() is called on that command

• The present pointer is moved up past that

command

present

execute()

present

L6

UNIT-II 110

The Command Pattern

• Encapsulate a request as an object

• The Command Patterns lets you

– parameterize clients with different requests

– queue or log requests

– support undoable operations

• Also Known As: Action, Transaction

• Covered on pg. 233 in the book

L6

UNIT-II 111

Spelling Checking & Hyphenation

Goals:

– analyze text for spelling errors

– introduce potential hyphenation sites

Constraints/forces:

– support multiple algorithms

– don‘t tightly couple algorithms with document

structure

L7

UNIT-II 112

Spelling Checking & Hyphenation (cont‘d)

Solution: Encapsulate Traversal

Iterator
– encapsulates a

traversal algorithm
without exposing
representation details
to callers

– uses Glyph‘s child
enumeration
operation

– This is an example of
a ―preorder iterator‖

L7

UNIT-II 113

Spelling Checking & Hyphenation (cont‘d)

ITERATOR object behavioral

Intent

access elements of a container without exposing its representation

Applicability

– require multiple traversal algorithms over a container

– require a uniform traversal interface over different containers

– when container classes & traversal algorithm must vary independently

Structure

L7

UNIT-II 114

Spelling Checking & Hyphenation (cont‘d)

ITERATOR (cont‘d) object behavioral

int main (int argc, char *argv[]) {
vector<string> args;
for (int i = 0; i < argc; i++)

args.push_back (string (argv[i]));
for (vector<string>::iterator i (args.begin ());

i != args.end ();
i++)

cout << *i;
cout << endl;
return 0;

}

Iterators are used heavily in the C++ Standard
Template Library (STL)

The same iterator pattern can be
applied to any STL container!

for (Glyph::iterator i = glyphs.begin ();
i != glyphs.end ();
i++)

...

L7

UNIT-II 115

Spelling Checking & Hyphenation (cont‘d)

ITERATOR (cont‘d) object behavioral

Consequences

+ flexibility: aggregate & traversal are independent

+ multiple iterators & multiple traversal algorithms

– additional communication overhead between iterator & aggregate

Implementation

– internal versus external iterators

– violating the object structure‘s encapsulation

– robust iterators

– synchronization overhead in multi-threaded programs

– batching in distributed & concurrent programs

Known Uses

– C++ STL iterators

– JDK Enumeration, Iterator

– Unidraw Iterator

L7

UNIT-II 116

Spelling Checking & Hyphenation (cont‘d)

Visitor

• defines action(s) at each step of traversal

• avoids wiring action(s) into Glyphs

• iterator calls glyph‘s accept(Visitor) at each node

• accept() calls back on visitor (a form of ―static

polymorphism‖ based on method overloading by type)

void Character::accept (Visitor &v) { v.visit (*this); }

class Visitor {

public:

virtual void visit (Character &);

virtual void visit (Rectangle &);

virtual void visit (Row &);

// etc. for all relevant Glyph subclasses

};

L7

UNIT-II 117

Spelling Checking & Hyphenation (cont‘d)

SpellingCheckerVisitor

• gets character code from each character glyph

Can define getCharCode() operation just on Character()

class

• checks words accumulated from character glyphs

• combine with PreorderIterator

class SpellCheckerVisitor : public Visitor {

public:

virtual void visit (Character &);

virtual void visit (Rectangle &);

virtual void visit (Row &);

// etc. for all relevant Glyph subclasses

Private:

std::string accumulator_;

};

L7

UNIT-II 118

Spelling Checking & Hyphenation (cont‘d)

Accumulating Words

Spelling check

performed when a

nonalphabetic character

it reached

L7

UNIT-II 119

Spelling Checking & Hyphenation (cont‘d)

Interaction Diagram
• The iterator controls the order in which accept() is called on each glyph in

the composition

• accept() then ―visits‖ the glyph to perform the desired action

• The Visitor can be sub-classed to implement various desired actions

L7

UNIT-II 120

Spelling Checking & Hyphenation (cont‘d)

HyphenationVisitor

• gets character code from each character glyph

• examines words accumulated from character glyphs

• at potential hyphenation point, inserts a...

class HyphenationVisitor : public Visitor {

public:

void visit (Character &);

void visit (Rectangle &);

void visit (Row &);

// etc. for all relevant Glyph subclasses

};

L7

UNIT-II 121

Spelling Checking & Hyphenation (cont‘d)

Discretionary Glyph

• looks like a hyphen when at end of a line

• has no appearance otherwise

• Compositor considers its presence when determining

linebreaks

L7

UNIT-II 122

Spelling Checking & Hyphenation (cont‘d)

VISITOR object behavioral

Intent
centralize operations on an object structure so that they can vary

independently but still behave polymorphically

Applicability
– when classes define many unrelated operations

– class relationships of objects in the structure rarely change, but the
operations on them change often

– algorithms keep state that‘s updated during traversal

Structure

L7

UNIT-II 123

Spelling Checking & Hyphenation (cont‘d)

VISITOR (cont‘d) object behavioral

SpellCheckerVisitor spell_check_visitor;

for (Glyph::iterator i = glyphs.begin ();
i != glyphs.end ();
i++) {

(*i)->accept (spell_check_visitor);
}

HyphenationVisitor hyphenation_visitor;

for (Glyph::iterator i = glyphs.begin ();

i != glyphs.end ();

i++) {

(*i)->accept (hyphenation_visitor);

}

L7

124

Spelling Checking & Hyphenation (cont‘d)

VISITOR (cont‘d) object behavioral

Consequences
+ flexibility: visitor & object structure are independent

+ localized functionality

– circular dependency between Visitor & Element interfaces

– Visitor brittle to new ConcreteElement classes

Implementation
– double dispatch

– general interface to elements of object structure

Known Uses
– ProgramNodeEnumerator in Smalltalk-80 compiler

– IRIS Inventor scene rendering

– TAO IDL compiler to handle different backends

L8

UNIT-II 125

Part III: Wrap-Up

Concluding Remarks

• design reuse

• uniform design vocabulary

• understanding, restructuring, & team

communication

• provides the basis for automation

• a ―new‖ way to think about design

L8

UNIT-II 126

Pattern References
Books

Timeless Way of Building, Alexander, ISBN 0-19-502402-8

A Pattern Language, Alexander, 0-19-501-919-9

Design Patterns, Gamma, et al., 0-201-63361-2 CD version 0-201-63498-8

Pattern-Oriented Software Architecture, Vol. 1, Buschmann, et al.,

0-471-95869-7

Pattern-Oriented Software Architecture, Vol. 2, Schmidt, et al.,

0-471-60695-2

Pattern-Oriented Software Architecture, Vol. 3, Jain & Kircher,

0-470-84525-2

Pattern-Oriented Software Architecture, Vol. 4, Buschmann, et al.,

0-470-05902-8

L8

UNIT-II 127

Pattern References (cont‘d)

More Books

Analysis Patterns, Fowler; 0-201-89542-0

Concurrent Programming in Java, 2nd ed., Lea, 0-201-31009-0

Pattern Languages of Program Design

Vol. 1, Coplien, et al., eds., ISBN 0-201-60734-4

Vol. 2, Vlissides, et al., eds., 0-201-89527-7

Vol. 3, Martin, et al., eds., 0-201-31011-2

Vol. 4, Harrison, et al., eds., 0-201-43304-4

Vol. 5, Manolescu, et al., eds., 0-321-32194-4

AntiPatterns, Brown, et al., 0-471-19713-0

Applying UML & Patterns, 2nd ed., Larman, 0-13-092569-1

Pattern Hatching, Vlissides, 0-201-43293-5

The Pattern Almanac 2000, Rising, 0-201-61567-3

L8

UNIT-II 128

Pattern References (cont‘d)

Even More Books

Small Memory Software, Noble & Weir, 0-201-59607-5

Microsoft Visual Basic Design Patterns, Stamatakis, 1-572-31957-7

Smalltalk Best Practice Patterns, Beck; 0-13-476904-X

The Design Patterns Smalltalk Companion, Alpert, et al.,

0-201-18462-1

Modern C++ Design, Alexandrescu, ISBN 0-201-70431-5

Building Parsers with Java, Metsker, 0-201-71962-2

Core J2EE Patterns, Alur, et al., 0-130-64884-1

Design Patterns Explained, Shalloway & Trott, 0-201-71594-5

The Joy of Patterns, Goldfedder, 0-201-65759-7

The Manager Pool, Olson & Stimmel, 0-201-72583-5

L8

UNIT-II 129

Pattern References (cont‘d)

Early Papers

―Object-Oriented Patterns,‖ P. Coad; Comm. of the ACM, 9/92

―Documenting Frameworks using Patterns,‖ R. Johnson; OOPSLA ‘92

―Design Patterns: Abstraction & Reuse of Object-Oriented Design,‖

Gamma, Helm, Johnson, Vlissides, ECOOP ‘93

Articles

Java Report, Java Pro, JOOP, Dr. Dobb‘s Journal,

Java Developers Journal, C++ Report

L8

UNIT-II 130

Pattern-Oriented Conferences

PLoP 2007: Pattern Languages of Programs

October 2007, Collocated with OOPSLA

EuroPLoP 2007, July 2007, Kloster Irsee, Germany

…

See hillside.net/conferences/ for

up-to-the-minute info.

L8

UNIT-II 131

Mailing Lists

patterns@cs.uiuc.edu: present & refine patterns

patterns-discussion@cs.uiuc.edu: general discussion

gang-of-4-patterns@cs.uiuc.edu: discussion on Design Patterns

siemens-patterns@cs.uiuc.edu: discussion on

Pattern-Oriented Software Architecture

ui-patterns@cs.uiuc.edu: discussion on user interface patterns

business-patterns@cs.uiuc.edu: discussion on patterns for business processes

ipc-patterns@cs.uiuc.edu: discussion on patterns for distributed systems

See http://hillside.net/patterns/mailing.htm for an up-to-date list.

L8

UNIT-III 132

unit-2 part-2

S.NO. TOPIC
1 Creational Pattern Part-I Introduction

4 Factory Method

5 Prototype

6 Singleton

7 Repeated key points for Structural Patterns (Intent,

Motivation, Also Known As ……………)

8 (discussion of Creational patterns) Review

2 Abstract Factory

3 Builder

PPT Slides

L1 4 – 8

L2 9 – 28

L3 29 – 39

L4 40 – 47

L5 48 – 54

L6 55 – 66

UNIT-III 133

Creational Patterns

• Abstracts instantiation process

• Makes system independent of how its objects are

– created

– composed

– represented

• Encapsulates knowledge about which concrete

classes the system uses

• Hides how instances of these classes are created and

put together

L1

UNIT-III 134

Creational Patterns

• Abstract the instantiation process

– Make a system independent of how objects are created, composed,

and represented

• Important if systems evolve to depend more on object

composition than on class inheritance

– Emphasis shifts from hardcoding fixed sets of behaviors towards a

smaller set of composable fundamental behaviors

• Encapsulate knowledge about concrete classes a system

uses

• Hide how instances of classes are created and put together

L1

UNIT-III 135

What are creational patterns?

• Design patterns that deal with object creation

mechanisms, trying to create objects in a manner

suitable to the situation

• Make a system independent of the way in which

objects are created, composed and represented

• Recurring themes:

– Encapsulate knowledge about which concrete classes the

system uses (so we can change them easily later)

– Hide how instances of these classes are created and put

together (so we can change it easily later)

L1

UNIT-III 136

Benefits of creational patterns

• Creational patterns let you program to an
interface defined by an abstract class

• That lets you configure a system with
“product” objects that vary widely in
structure and functionality

• Example: GUI systems

– InterViews GUI class library

– Multiple look-and-feels

– Abstract Factories for different screen
components

L1

UNIT-III 137

Benefits of creational patterns

• Generic instantiation – Objects are instantiated

without having to identify a specific class type in

client code (Abstract Factory, Factory)

• Simplicity – Make instantiation easier: callers do not

have to write long complex code to instantiate and

set up an object (Builder, Prototype pattern)

• Creation constraints – Creational patterns can put

bounds on who can create objects, how they are

created, and when they are created

L1

UNIT-III 138

Abstract Factory Pattern

L2

UNIT-III 139

Abstract Factory

Provide an interface for creating families of related

or dependent objects without specifying their

concrete classes

L2

UNIT-III 140

ABSTRACT FACTORY

(Object Creational)

• Intent:

– Provide an interface for creating families of
related or dependent objects without specifying
their concrete classes

• Also Known As: Kit.

L2

UNIT-III 141

Motivation

• Motivation:

•User interface toolkit supports multiple look-

and-feel standards

(Motif, Presentation Manager)

•Different appearances and behaviors for UI

widgets

•Apps should not hard-code its widgets

L2

UNIT-III 142

Widget Factory

CreateScrollBar()

CreateWindow()

MotifWidgetFactory

CreateScrollBar()

CreateWindow()

PMWidgetFactory

CreateScrollBar()

CreateWindow()

Client

Windows

PMWindow MotifWindow

ScrollBar

PMScrollBar MotifScrollBar

ABSTRACT FACTORY

Motivation

L2

UNIT-III 143

• Solution:

•Abstract Widget Factory class

•Interfaces for creating each basic kind of

widget

•Abstract class for each kind of widgets,

•Concrete classes implement specific look-

and-feel.

Solution:
L2

UNIT-III 144

Operations:

 CreateProdA()

 CreateProcB()

AbstractFactory

Operations:

 CreateProdA()

 CreateProcB()

ConcreteFactory1

Operations:

 CreateProdA()

 CreateProcB()

ConcreteFactory2

AbstractProductA

ConcreteProductA1 ConcreteProductA2

AbstractProductB

ConcreteProductB1 ConcreteProductB2

client

Abstract Factory Structure L2

UNIT-III 145

Applicability

Use the Abstract Factory pattern when

– A system should be independent of how its products

are created, composed, and represented

– A system should be configured with one of multiple

families of produces

– A family of related product objects is designed to be

used together, and you need to enforce this constraint

– You want to provide a class library of products, and

you want to reveal just their interfaces, not their

implementations

L2

UNIT-III 146

ABSTRACT FACTORY

Participants
• AbtractFactory

– Declares interface for operations that create
abstract product objects

• ConcreteFactory

– Implements operations to create concrete product
objects

• AbstractProduct

– Declares an interface for a type of product object

L2

UNIT-III 147

• Concrete Product:

•Defines a product object to be created by concrete

factory

•Implements the abstract product interface

• Client:

•Uses only interfaces declared by Abstract Factory

and AbstractProduct classes

• ABSTRACT FACTORY

Participants(cont..)

L2

UNIT-III 148

Collaborators
• Usually only one ConcreteFactory instance is used for

an activation, matched to a specific application

context. It builds a specific product family for client

use -- the client doesn‘t care which family is used -- it

simply needs the services appropriate for the current

context.

• The client may use the AbstractFactory interface to

initiate creation, or some other agent may use the

AbstractFactory on the client‘s behalf.

L2

UNIT-III 149

Presentation Remark

• Here, we often use a sequence diagram

(event-trace) to show the dynamic

interactions between participants.

• For the Abstract Factory Pattern, the

dynamic interaction is simple, and a

sequence diagram would not add much new

information.

L2

UNIT-III 150

Consequences
• The Abstract Factory Pattern has the following

benefits:

– It isolates concrete classes from the client.

• You use the Abstract Factory to control the classes of objects the

client creates.

• Product names are isolated in the implementation of the

ConcreteFactory, clients use the instances through their abstract

interfaces.

– Exchanging product families is easy.

• None of the client code breaks because the abstract interfaces

don‘t change.

• Because the abstract factory creates a complete family of

products, the whole product family changes when the concrete

factory is changed.

L2

UNIT-III 151

Consequences

• More benefits of the Abstract Factory

Pattern

– It supports the imposition of constraints on

product families, e.g., always use A1 and B1

together, otherwise use A2 and B2 together.

L2

UNIT-III 152

Consequences

• The Abstract Factory pattern has the

following liability:

– Adding new kinds of products to existing

factory is difficult.

• Adding a new product requires extending the

abstract interface which implies that all of its

derived concrete classes also must change.

• Essentially everything must change to support and

use the new product family

– abstract factory interface is extended

– derived concrete factories must implement the extensions

– a new abstract product class is added

L2

UNIT-III 153

Implementation

• Concrete factories are often implemented as

singletons.

• Creating the products

– Concrete factory usually use the factory method.

• simple

• new concrete factory is required for each product family

– alternately concrete factory can be implemented using

prototype.

• only one is needed for all families of products

• product classes now have special requirements - they

participate in the creation

L2

UNIT-III 154

Implementation

• Concrete factories are often implemented as

singletons.

• Creating the products

– Concrete factory usually use the factory method.

• simple

• new concrete factory is required for each product family

– alternately concrete factory can be implemented using

prototype.

• only one is needed for all families of products

• product classes now have special requirements - they

participate in the creation

L2

UNIT-III 155

Implementation

• Defining extensible factories by using

create function with an argument

– only one virtual create function is needed for

the AbstractFactory interface

– all products created by a factory must have the

same base class or be able to be safely coerced

to a given type

– it is difficult to implement subclass specific

operations

L2

UNIT-III 156

Know Uses

• Interviews

– used to generate ―look and feel‖ for specific user

interface objects

– uses the Kit suffix to denote AbstractFactory classes,

e.g., WidgetKit and DialogKit.

• also includes a layoutKit that generates different

composite objects depending on the needs of the

current context

ET++

– another windowing library that uses the

AbstractFactory to achieve portability across different

window systems (X Windows and SunView).

• COM – Microsoft‘s Component Object Model

technology

L2

UNIT-III 157

Related Patterns

• Factory Method -- a ―virtual‖ constructor

• Prototype -- asks products to clone

themselves

• Singleton -- allows creation of only a single

instance

L2

UNIT-III 158

Code Examples

• Skeleton Example

– Abstract Factory Structure

– Skeleton Code

• Neural Net Example

– Neural Net Physical Structure

– Neural Net Logical Structure

– Simulated Neural Net Example

L2

SKELETON
NNAbsFact\NNet Structure.vsd
NNAbsFact\NNET.vsd
NNAbsFact

UNIT-III 159

BUILDER

(Object Creational)

• Intent:

Separate the construction of a complex object from
its representation so that the same construction
process can create different representations

• Motivation:

– RTF reader should be able to convert RTF to many
text format

– Adding new conversions without modifying the
reader should be easy

L3

UNIT-III 160

• Solution:

•Configure RTFReader class with a Text

Converter object

•Subclasses of Text Converter specialize in

different conversions and formats

•TextWidgetConverter will produce a

complex UI object and lets the user see and

edit the text

L3

UNIT-III 161

Implementation

• Concrete factories are often implemented as

singletons.

• Creating the products

– Concrete factory usually use the factory method.

• simple

• new concrete factory is required for each product family

– alternately concrete factory can be implemented using

prototype.

• only one is needed for all families of products

• product classes now have special requirements - they

participate in the creation

L2

UNIT-III 162

Implementation

• Defining extensible factories by using

create function with an argument

– only one virtual create function is needed for

the AbstractFactory interface

– all products created by a factory must have the

same base class or be able to be safely coerced

to a given type

– it is difficult to implement subclass specific

operations

L2

UNIT-III 163

Know Uses

• Interviews

– used to generate ―look and feel‖ for specific user

interface objects

– uses the Kit suffix to denote AbstractFactory classes,

e.g., WidgetKit and DialogKit.

• also includes a layoutKit that generates different

composite objects depending on the needs of the

current context

ET++

– another windowing library that uses the

AbstractFactory to achieve portability across different

window systems (X Windows and SunView).

• COM – Microsoft‘s Component Object Model

technology

L2

UNIT-III 164

Related Patterns

• Factory Method -- a ―virtual‖ constructor

• Prototype -- asks products to clone

themselves

• Singleton -- allows creation of only a single

instance

L2

UNIT-III 165

Code Examples

• Skeleton Example

– Abstract Factory Structure

– Skeleton Code

• Neural Net Example

– Neural Net Physical Structure

– Neural Net Logical Structure

– Simulated Neural Net Example

L2

SKELETON
NNAbsFact\NNet Structure.vsd
NNAbsFact\NNET.vsd
NNAbsFact

UNIT-III 166

BUILDER

(Object Creational)

• Intent:

Separate the construction of a complex object from
its representation so that the same construction
process can create different representations

• Motivation:

– RTF reader should be able to convert RTF to many
text format

– Adding new conversions without modifying the
reader should be easy

L3

UNIT-III 167

• Solution:

•Configure RTFReader class with a Text

Converter object

•Subclasses of Text Converter specialize in

different conversions and formats

•TextWidgetConverter will produce a

complex UI object and lets the user see and

edit the text

L3

UNIT-III 168

Why do we use Builder?

• Common manner

to Create an

Instance

– Constructor!

– Each Parts

determined by

Parameter of the

Constructor

public class Room {

private int area;

private int windows;

public String purpose;

Room() {

}

Room(int newArea, int newWindows,
String newPurpose){

area = newArea;

windows = newWindows;

purpose = newPurpose;

}

}
There are Only 2 different ways
to Create an Instance part-by-part.

L3

UNIT-III 169

Why do we use Builder?

• In the previous example,

– We can either determine all the arguments

or determine nothing and just construct.

We can‘t determine arguments partially.

– We can‘t control whole process to

Create an instance.

– Restriction of ways to Create an Object

☞ Bad Abstraction & Flexibility

L3

UNIT-III 170

Discussion

• Uses Of Builder

– Parsing Program(RTF converter)

– GUI

L3

UNIT-III 171

FACTORY METHOD

(Class Creational)
• Intent:

– Define an interface for creating an object, but let

subclasses decide which class to instantiate.

– Factory Method lets a class defer instantiation to

subclasses.

• Motivation:

– Framework use abstract classes to define and maintain

relationships between objects

– Framework has to create objects as well - must instantiate

classes but only knows about abstract classes - which it

cannot instantiate

L4

Motivation:

• Motivation: Factory method encapsulates
knowledge of which subclass to create -
moves this knowledge out of the framework

• Also Known As: Virtual Constructor

UNIT-III 172

L4

UNIT-III 173

docs
Document

Open()

Close()

Save()

Revert()

Application

MyDocument

CreateDocument()

NewDocument()

OpenDocument()

MyApplication

CreateDocument()

Document* doc=CreateDocument();

docs.Add(doc);

doc->Open();

return new MyDocument

FACTORY METHOD

Motivation

L4

UNIT-III 174

Applicability

• Use the Factory Method pattern when

– a class can´t anticipate the class of objects it must

create.

– a class wants its subclasses to specify the objects

it creates.

– classes delegate responsibility to one of several

helper subclasses, and you want to localize the

knowledge of which helper subclass is the

delegate.

L4

UNIT-III 175

Product

Creator

ConcreteProduct

FactoryMethod()

AnOperation()

ConcreteCreator

FactoryMethod()

...

product = FactoryMethod()

...

return new ConcreteProduct

FACTORY METHOD

Structure

L4

UNIT-III 176

Participants
• Product

– Defines the interface of objects the factory method

creates

• ConcreteProduct

– Implements the product interface

• Creator

– Declares the factory method which returns object of type

product

– May contain a default implementation of the factory

method

– Creator relies on its subclasses to define the factory

method so that it returns an instance of the appropriate

Concrete Product.

ConcreteCreator

L4

UNIT-III 177

Factory Method

Creator
Product createProduct()

Product

• Defer object instantiation to subclasses

• Eliminates binding of application-specific subclasses

• Connects parallel class hierarchies

• A related pattern is AbstractFactory

operation()

ConcreteCreator
Product createProduct()

ConcreteProduct
operation()

return new ConcreteProduct();

L4

UNIT-III 178

Factory Method (2)

• Example: creating manipulators on connectors

Figure
createManipulator()

0..1
Manipulator

attach(Figure)

ArcManipulator
attach(Figure)

BoundsManipulator
attach(Figure)

Connector
createManipulator()

RectFigure
createManipulator()

manip = new BoundsManipulator();

manip = new ArcManipulator();

Interactor

L4

UNIT-III 179

PROTOTYPE

(Object Creational)

• Intent:

– Specify the kinds of objects to create using a

prototypical instance, and create new objects by

copying this prototype.

• Motivation:

– Framework implements Graphic class for

graphical components and GraphicTool class for

tools manipulating/creating those components

L5

Motivation

– Actual graphical components are application-
specific

– How to parameterize instances of Graphic Tool
class with type of objects to create?

– Solution: create new objects in Graphic Tool by
cloning a prototype object instance

UNIT-III 180

L5

UNIT-III 181

Tool

Manipulate()

Rotate Tool

Manipulate()

Graphic Tool

Manipulate()

Graphic

Staff MusicalNote

WholeNote

Return copy of self

HalfNote
p = prototype ->Clone()

while(user drags mouse){

p ->Draw(new position)

}

Insert p into drawing

Draw(Position)

Clone()

Draw(Position)

Clone()

Draw(Position)

Clone()

Return copy of self

Draw(Position)

Clone()

prototype

PROTOTYPE

Motivation

L5

UNIT-III 182

Applicability

• Use the Prototype pattern when a system should

be independent of how its products are created,

composed, and represented;

– when the classes to instantiate are specified at run-

time, for example, by dynamic loading; or

– to avoid building a class hierarchy of factories that

parallels the class hierarchy of products; or

L5

Applicability

– when instances of a class can have one of only a
few different combinations of state. It may be
more convenient to install a corresponding
number of prototypes and clone them rather than
instantiating the class manually, each time with
the appropriate state.

UNIT-III 183

L5

UNIT-III 184

client

Operation()

p = prototype ->Clone()

Prototype

ConcretePrototype1

return copy of self

prototype

Clone()

return copy of self

Clone()

ConcretePrototype2

Clone()

PROTOTYPE

Structure

L5

UNIT-III 185

Participants:

• Prototype (Graphic)

– Declares an interface for cloning itself

• ConcretePrototype (Staff, WholeNote, HalfNote)

– Implements an interface for cloning itself

• Client (GraphicTool)

– Creates a new object by asking a prototype to clone itself

Collaborations:

• A client asks a prototype to clone Itself.

L5

Motivation

– Actual graphical components are application-
specific

– How to parameterize instances of Graphic Tool
class with type of objects to create?

– Solution: create new objects in Graphic Tool by
cloning a prototype object instance

UNIT-III 186

L5

UNIT-III 187

Tool

Manipulate()

Rotate Tool

Manipulate()

Graphic Tool

Manipulate()

Graphic

Staff MusicalNote

WholeNote

Return copy of self

HalfNote
p = prototype ->Clone()

while(user drags mouse){

p ->Draw(new position)

}

Insert p into drawing

Draw(Position)

Clone()

Draw(Position)

Clone()

Draw(Position)

Clone()

Return copy of self

Draw(Position)

Clone()

prototype

PROTOTYPE

Motivation

L5

UNIT-III 188

Applicability

• Use the Prototype pattern when a system should

be independent of how its products are created,

composed, and represented;

– when the classes to instantiate are specified at run-

time, for example, by dynamic loading; or

– to avoid building a class hierarchy of factories that

parallels the class hierarchy of products; or

L5

Applicability

– when instances of a class can have one of only a
few different combinations of state. It may be
more convenient to install a corresponding
number of prototypes and clone them rather than
instantiating the class manually, each time with
the appropriate state.

UNIT-III 189

L5

UNIT-III 190

client

Operation()

p = prototype ->Clone()

Prototype

ConcretePrototype1

return copy of self

prototype

Clone()

return copy of self

Clone()

ConcretePrototype2

Clone()

PROTOTYPE

Structure

L5

UNIT-III 191

Participants:

• Prototype (Graphic)

– Declares an interface for cloning itself

• Concrete Prototype (Staff, Whole Note, Half Note)

– Implements an interface for cloning itself

• Client (GraphicTool)

– Creates a new object by asking a prototype to clone itself

Collaborations:

• A client asks a prototype to clone Itself.

L5

UNIT-III 192

SINGELTON
• Intent:

– Ensure a class only has one instance, and provide

a global point of access to it.

• Motivation:

– Some classes should have exactly one instance

(one print spooler, one file system, one window

manager)

– A global variable makes an object accessible but

doesn‘t prohibit instantiation of multiple objects

– Class should be responsible for keeping track of

its sole interface

L6

UNIT-III 193

Applicability

• Use the Singleton pattern when

– there must be exactly one instance of a class, and

it must be accessible to clients from a well-known

access point.

– when the sole instance should be extensible by

subclassing, and clients should be able to use an

extended instance without modifying their code.

L6

UNIT-III 194

Singleton

return uniquelnstancestatic Instance()

SingletonOperation()

GetSingletonData()

Static uniquelnstance

singletonData

SINGLETON

Structure

L6

UNIT-III 195

Participants and Collaborations

• Singleton: Defines an instance operation that lets
clients access its unique interface

• Instance is a class operation (static in Java)

• May be responsible for creating its own unique
instance

• Collaborations: Clients access a Singleton instance
solely through Singleton‘s Instance operation.

L6

UNIT-III 196

Singleton

• Ensures a class has only one instance

• Provides a single point of reference

L6

UNIT-III 197

Singleton – Use When

• There must be exactly one instance of a
class.

• May provide synchronous access to avoid
deadlocks.

• Very common in GUI toolkits, to specify
the connection to the OS/Windowing
system

L6

UNIT-III 198

Singleton - Benefits

• Controls access to a scarce or unique resource

• Helps avoid a central application class with
various global object references

• Subclasses can have different implementations as
required. Static or global references don‘t allow
this

• Multiple or single instances can be allowed

L6

UNIT-III 199

Singleton – Example 1

• An Application class, where instantiating it makes
a connection to the base operating system and sets
up the rest of the toolkit‘s framework for the user
interface.

• In the Qt toolkit:

QApplication* app = new QApplication(argc, argv)

L6

UNIT-III 200

Singleton – Example 2

• A status bar is required for the application, and
various application pieces need to be able to
update the text to display information to the user.
However, there is only one status bar, and the
interface to it should be limited. It could be
implemented as a Singleton object, allowing only
one instance and a focal point for updates. This
would allow updates to be queued, and prevent
messages from being overwritten too quickly for
the user to read them.

L6

UNIT-III 201

Singleton Code [1]

class Singleton {

public:

static Singleton* Instance();

}

protected:

Singleton();

private:

Static Singleton* _instance

// Only one instance can ever be created.

// Creation hidden inside Instance().

// Cannot access directly.

L6

UNIT-III 202

Singleton Code [2]

Singleton* Singleton::_instance=0;

Singleton* Singleton:: Instance(){

if (_instance ==0) {

_instance=new Singleton;

}

Return _instance;

}
// Clients access the singleton

// exclusively via the Instance member

// function.

L6

UNIT-III 203

Implementation Points

• Generally, a single instance is held by the

object, and controlled by a single interface.

• Sub classing the Singleton may provide

both default and overridden functionality.

L6

UNIT-I 204

UNIT-III

Structural patterns part-1

Structural Pattern part-I introduction

Adaptor

Bridge

Composite

UNIT-IV 205

Repeated key points for Structural Patterns

(Intent, Motivation, Also Known As…)

Code Examples

Reference

1

2

3

4

5

6

7

S. No TOPIC PPT Slides

L1 3 – 18

L2 19 – 31

L3 32 – 37

L4 38 – 40

L5 41 – 42

L6 43 – 44

L7 45 – 45

UNIT-IV 206

Agenda

• Intent & Motivation

• Structure

• Applicability

• Consequences

• Known Uses

• Related Patterns

• References

UNIT-IV 207

What is Adapter?

• Intent:

Change the interface of a class

into another interface which is

expected by the client.

• Also Know As:

Wrapper

L1

UNIT-IV 208

Motivation

1 1

L1

UNIT-IV 209

Structure (Class)

L1

UNIT-IV 210

Structure (Object)

L1

UNIT-IV 211

Applicability

• Use an existing class whose interface does
not match the requirement

• Create a reusable class though the
interfaces are not necessary compatible
with callers

Want to use several existing subclasses,
but it is impractical to subclass
everyone. (Object Adapter Only)

L1

UNIT-IV 212

Class Adapter Pattern

• Pros

– Only 1 new object, no additional indirection

– Less code required than the object Adapter

– Can override Adaptee's behaviour as required

• Cons

– Requires sub-classing (tough for single

inheritance)

– Less flexible than object Adapter

L1

UNIT-IV 213

Object Adapter Pattern

• Pros

– More flexible than class Adapter

– Doesn't require sub-classing to work

– Adapter works with Adaptee and all of its

subclasses

• Cons

– Harder to override Adaptee behavior

– Requires more code to implement properly

L1

UNIT-IV 214

Pluggable Adapters

• implemented with abstract operations

L1

UNIT-IV 215

Pluggable Adapters

• implemented with delegate objects

L1

UNIT-IV 216

Two-way Adapters

class SquarePeg {

public:

void virtual squarePegOperation() {

blah }

}

class RoundPeg {

public:

void virtual roundPegOperation() { blah

}

}

class PegAdapter: public SquarePeg,

RoundPeg {

public:

void virtual roundPegOperation() {

add some corners;

squarePegOperation();

}

void virtual squarePegOperation() {

add some corners;

roundPegOperation();

}

}

L1

UNIT-IV 217

Adapting Local Classes to RMI

Comparison:

• Increases reusability of

local class

• Improves performance

of local class

• Doesn't use Java single

parent by subclassing

(uses composition)

L1

UNIT-IV 218

Related Patterns

• Adapter can be similar to the remote form

of Proxy. However, Proxy doesn't change

interfaces.

• Decorator enhances another object

without changing its interface.

• Bridge similar structure to Adapter, but

different intent. Separates interface from

implementation.

L1

UNIT-IV 219

Conclusions

• Allows collaboration between classes with

incompatible interfaces

• Implemented in either class-based

(inheritance) or object-based (composition &

delegation) manner

• Useful pattern which promotes reuse and

allows integration of diverse software

components

L1

UNIT-IV 220

Adapter

• You have

– legacy code

– current client

• Adapter changes interface of legacy code so client
can use it

• Adapter fills the gap b/w two interfaces

• No changes needed for either

– legacy code, or

– client

L1

UNIT-IV 221

Adapter (cont.)

class NewTime

{

public:

int GetTime() {

return m_oldtime.get_time() * 1000 + 8;

}

private:

OldTime m_oldtime;

};

L1

UNIT-IV 222

The Bridge Pattern

L2

UNIT-IV 223

Overview

• Intent

• Also Known As

• Motivation

• Participants

• Structure

• Applicability

• Benefits

• Drawbacks

• Related Pattern I

L2

BRIDGE (Object Structural)

• Intent: Decouple as abstraction from its

implementation so that the two can vary

independently.

• Also Known As: Handle/Body

UNIT-IV 224

L2

UNIT-IV 225

Motivation

Entry

oracleDBEntry FilesysEntry

L2

UNIT-IV 226

Motivation

Entry

Appointment

OracleDBTask

Task

OracleDBApp. FilesysApp. FilesysTask

L2

UNIT-IV 227

Motivation

Bridge

Entry
getText()

setText()

Destroy()

PersistentImp.
initialize()

store()

load()

Destroy()

Task
getPriority()

setPriority()

getText()

setText()

Destroy()

Appointment
getAlarm()

setAlarm()

getText()

setText()

Destroy()

OraclePImp
initialize()

store()

load()

destroy()

AccessPImp
initialize()

store()

load()

destroy()

impl

L2

UNIT-IV 228

Participants

• Abstraction (Entry):

- define the abstraction’s interface

- maintains a reference to an object of type

Implementor

• Refined Abstraction (Task):

- extends the interface defined by Abstraction

L2

UNIT-IV 229

Participants (continue)

• Implementor (persistentImp):

- defines an interface for implementation

classes. Typically, this Implementor’s

interface provides only primitive menthod

• ConcreteImplementor (oraclePImp, AccessPImp):

- implements the Implementor’s interface

L2

UNIT-IV 230

Structure

RefinedAbstraction ConcreteImplementerA ConcreteImplementerB

Implementer

OperationImp()

Client

Abstraction

impl

L2

UNIT-IV 231

Applicability

• Want to avoid a permanent binding

between an abstraction and

implementation.

• When abstractions and implementations

should be extensible through subclassing.

• When implementation changes should

not impact clients.

L2

UNIT-IV 232

Applicability (continue)

• When the implementation should be

completely hidden from the client. (C++)

• When you have a proliferation of classes.

• When, unknown to the client,

implementations are shared among

objects.

L2

UNIT-IV 233

Benefits

• Avoid permanent binding between an

abstraction and its implementation

• Avoid nested generalizations

• Ease adding new implementations

• Reduce code repetition

• Allow runtime switching of behavior

L2

UNIT-IV 234

Drawbacks

• Double indirection

- “entry‖ operation are implemented by

subclasses of PersistentImp class. Entry class

must delegate the message to a PersistentImp

subclass which implements the appropriate

method. This will have a slight impact on

performance.

L2

Composite Pattern

• Intent :

Compose objects into tree structures to

represent part-whole hierarchies. Composite

lets clients treat individual objects and

compositions of objects uniformly.

UNIT-IV 235

L2

UNIT-IV 236

Consequences

• decoupling interface & implementation

- implementation of abstraction - can be configured at run-
time

- eliminate compile time dependencies on implementation

- encourages layering

• improved extensibility

- Abstraction & Implementer - can be extended independently

• hiding implementation details from clients

L2

UNIT-IV 237

Composite Pattern

Facilitates the composition of objects into

tree structures that represent part-whole

hierarchies.

These hierarchies consist of both primitive

and composite objects.

L3

UNIT-IV 238

L3

UNIT-IV 239

Observations

• The Component (Graphic) is an abstract class that

declares the interface for the objects in the pattern.

As the interface, it declares methods (such as

Draw) that are specific to the graphical objects.

• Line, Rectangle, and Text are so-called Leafs,

which are subclasses that implement Draw to draw

lines, rectangles, and text, respectively.

L3

UNIT-IV 240

Observations (Continued)

• The Picture class represents a number of

graphics objects. It can call Draw on its

children and also uses children to compose

pictures using primitive objects.

L3

UNIT-IV 241

Concluding Considerations

• The Composite Pattern is used to represent part-

whole object hierarchies.

• Clients interact with objects through the

component class.

• It enables clients to to ignore the specifics of

which leaf or composite class they use.

• Can be used recursively, so that Display can show

both flares and stars.

• New components can easily be added to a design.

L3

BRIDGE (Object Structural)

• Intent: Decouple as abstraction from its

implementation so that the two can vary

independently.

• Also Known As: Handle/Body

UNIT-IV 242

L4

UNIT-IV 243

Motivation

Entry

oracleDBEntry FilesysEntry

L4

UNIT-IV 244

Motivation

Entry

Appointment

OracleDBTask

Task

OracleDBApp. FilesysApp. FilesysTask

L4

UNIT-IV 245

Two-way Adapters

class SquarePeg {

public:

void virtual squarePegOperation() {

blah }

}

class RoundPeg {

public:

void virtual roundPegOperation() { blah

}

}

class PegAdapter: public SquarePeg,

RoundPeg {

public:

void virtual roundPegOperation() {

add some corners;

squarePegOperation();

}

void virtual squarePegOperation() {

add some corners;

roundPegOperation();

}

}

L5

UNIT-IV 246

Adapting Local Classes to RMI

Comparison:

• Increases reusability of

local class

• Improves performance

of local class

• Doesn't use Java single

parent by subclassing

(uses composition)

L5

UNIT-IV 247

Motivation

Bridge

Entry
getText()

setText()

Destroy()

PersistentImp.
initialize()

store()

load()

Destroy()

Task
getPriority()

setPriority()

getText()

setText()

Destroy()

Appointment
getAlarm()

setAlarm()

getText()

setText()

Destroy()

OraclePImp
initialize()

store()

load()

destroy()

AccessPImp
initialize()

store()

load()

destroy()

impl

L6

UNIT-IV 248

Participants

• Abstraction (Entry):

- define the abstraction’s interface

- maintains a reference to an object of type

Implementor

• Refined Abstraction (Task):

- extends the interface defined by Abstraction

L6

UNIT-IV 249

References

• Becker, Dan. Design networked applications in RMI using the Adapter design pattern.
JavaWorld Magazine, May 1999. http://www.javaworld.com/javaworld/jw-05-1999/jw-
05-networked.html

• Buschmann et al. A System of Patterns: Pattern-Oriented Software Architecture. John
Wiley and Sons. Chichester. 1996

• Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley. Boston. 1995

• Nguyen, D.X. Tutorial 10: Stacks and Queues: The Adapter Pattern. Rice University.
1999. http://www.owlnet.rice.edu/~comp212/99-fall/tutorials/10/tutorial10.html

• Whitney, Roger. CS 635 Advanced Object-Oriented Design & Programming. San Diego
State University. 2001.
http://www.eli.sdsu.edu/courses/spring01/cs635/notes/proxy/proxy.html#Heading10

• Shalloway, Alan., and Trott, James R., Design Patterns Explained: A New Perspective on
Object-Oriented Design, Addison-Wesley, 2002.

• Rising, Linda., The Patterns Handbook: Techniques, Strategies, and Applications,
Cambridge university Press, 1998.

L7

Unit-3 part-2
Structural Design Patterns-2

Objectives

S. No Topic PPT Slides

To introduce structural design patterns

1. Decorator L1 3 – 20

2. Façade L2 21 – 27

3. Proxy L3 28 – 40

4. Flyweight L4 41 – 47

5. Repeated key points for Structural Patterns L5 48 – 52

6. (Intent, Motivation, Also Known As ……………) L6 53 – 57

7. Review Unit-3 part-2 L7 58 – 58

Decorator Design Pattern

• Design Purpose

• Add responsibilities to an object at runtime.

• Design Pattern Summary

– Provide for a linked list of objects, each

encapsulating responsibility.

L1

Decorator: Class Model

Decorator creates an aggregated linked list of

Decoration objects ending with the basic

Substance object.

L1

Pattern: Decorator

objects that wrap around other objects to add
useful features

L1

Decorator pattern

• decorator: an object that modifies behavior of, or adds
features to, another object

– decorator must maintain the common interface of the object it
wraps up

• used so that we can add features to an existing simple object
without needing to disrupt the interface that client code
expects when using the simple object

• examples in Java:

– multilayered input streams adding useful I/O methods

– adding designs, scroll bars and borders to GUI controls

L1

Decorator example: I/O

• normal InputStream class has only public int read() method
to read one letter at a time

• decorators such as BufferedReader or Scanner add
additional functionality to read the stream more easily

// InputStreamReader/BufferedReader decorate InputStream

InputStream in = new FileInputStream("hardcode.txt");

InputStreamReader isr = new InputStreamReader(in);

BufferedReader br = new BufferedReader(isr);

// because of decorator streams, I can read an

// entire line from the file in one call

// (InputStream only provides public int read())

String wholeLine = br.readLine();

L1

Decorator example: GUI

• normal GUI components don't have scroll bars

• JScrollPane is a container with scroll bars to which

you can add any component to make it scrollable

// JScrollPane decorates GUI components

JTextArea area = new JTextArea(20, 30);

JScrollPane scrollPane =

new JScrollPane(area);

contentPane.add(scrollPane);

L1

An example: Decorator

Intent:

Allow to attach responsibilities to objects, extend

their functionality, dynamically

Motivation:

Consider a WYSIWYG editor

The basic textWindow needs various decorations:

borders, tool bars, scroll bars, …

L1

An ―obvious‖ solution: sub-classing

• A sub-class for every option

Disadvantages:

• Sub-classing is static – compile-time

• # of sub-classes = # of combinations –

exponential

L1

The preferred solution: Use

decorator objects

• Each decorator adds one decoration – property,

behavior  Linear

• Can add more than one, to obtain

combinations of properties

• And, do it dynamically

L1

Structure, participants, collaborations:

• Component – an interface, describes the

operations of a (GUI) component

• ConcreteComponent (extends Component)

class of objects to which decorations can be

added (e.g. the original TextWindow)

• Decorator (extends Component)– a class of decorator

objects (there are several such classes)

L1

Implementation:

• Each decorator has a (private) reference to a

Component object (CC or D)

• For each operation, the decorator performs its

decoration job, & delegates Component

operations to the Component object it contains

• Decorator extends Component (can accept

Component requests)

L1

Decorators can perform all the operations of

Component, often more

Decorators can be combined :

(but some combinations may hide some functionalities)

D3 D2 D1 CC

L1

The decorator pattern

<<Interface>>
Component

Decorator ConcreteComponent

Various decorators

L1

Consequences :

• Decoration can be done dynamically, at run-

time

• When it makes sense, a decoration can be

added several times

• The # of decorators is smaller than the # of

sub-classes in original solution;

avoids lots of feature-heavy classes in the

inheritance hierarchy

L1

Issues to remember :

• A decorator and the Component object it

contains are not identical

• Many small objects; one has to learn their

roles, the legal connections, etc.

(but, still much better than sub-classing)

L1

Decorators in a java library:

Stream decorators

A byte stream – r or w bytes

Decorators add:

• Buffering (does not add services)

• r or w primitive types, objects,… (adds services)

L1

Lessons from Decorator

More dynamic, flexible, less expensive

Composition is (often) superior to sub-classing

Program to interfaces,
not to concrete classes

L1

Facade Design Pattern

• Design Purpose

• Provide an interface to a package of classes.

• Design Pattern Summary

– Define a singleton which is the sole means for

obtaining functionality from the package.

L1

Façade (2)

Entity

CompositeEntityAtomicEntity

PortRelation

BufferedRelation

Graph

SchematicEditor

• Example: graph interface to a simulation engine

Actor

Director

0..*
2

Token

L2

Facade:

Encapsulating Subsystems
Name: Facade design pattern

Problem description:

Reduce coupling between a set of related classes and the rest of

the system.

Solution:

A single Facade class implements a high-level interface for a

subsystem by invoking the methods of the lower-level classes.

Example. A Compiler is composed of several classes:

LexicalAnalyzer, Parser, CodeGenerator, etc. A caller, invokes

only the Compiler (Facade) class, which invokes the contained

classes.

L2

Facade:

Class Diagram

Facade

service()

Class1

service1()

Class2

service2()

Class3

service3()

Facade

L2

Facade:

Consequences

Consequences:

Shields a client from the low-level classes of a subsystem.

Simplifies the use of a subsystem by providing higher-level

methods.

Enables lower-level classes to be restructured without

changes to clients.

Note. The repeated use of Facade patterns yields a layered

system.

L2

Facade: Motivation

• Clients communicate with the package (subsystem
) by sending requests to Facade, which forwards
them to the appropriate package object(s).

L2

Facade: Applicability

• To provide simple interface to a complex

package, which is useful for most clients.

• To reduce the dependencies between the

client and the package, or dependencies

between various packages.

L2

Facade: Consequences

• It shields clients from package components,

thereby reducing the number of objects that

clients deal with and making the package

easier to use.

• It promotes weak coupling between the

package and its clients and other packages,

thereby promoting package independence

and portability.

L2

Proxy

• You want to

– delay expensive computations,

– use memory only when needed, or

– check access before loading an object into memory

• Proxy

– has same interface as Real object

– stores subset of attributes

– does lazy evaluation

L3

Proxy Design Pattern

• Design Purpose

• Avoid the unnecessary execution of expensive

functionality in a manner transparent to clients.

• Design Pattern Summary

– Interpose a substitute class which accesses the

expensive functionality only when required.

L3

Proxy: Class Model

L3

Proxy: Class Model

L3

Telephone Record Example

L3

Telephone Record Example (Cont’d)

L3

Proxy: Consequences

• Proxy promotes:

– Efficiency: avoids time-consuming operations when necessary.

– Correctness: separates design and code that are independent of retrieval/efficiency

from parts concerned with this issue.

– Reusability: design and code that are independent of retrieval efficiency are most

likely to be reusable.

– Flexibility: we can replace one module concerned with retrieval with another.

– Robustness: isolates parts that check for the validity of retrieved data.

• The penalties we pay can sometimes be too high:

– If the proxy forces us to keep very large amount of data in the memory and its use is

infrequent.

L3

Proxy:

Encapsulating Expensive Objects

Name: Proxy design pattern

Problem description:

Improve performance or security of a system by delaying

expensive computations, using memory only when needed, or

checking access before loading an object into memory.

Solution:

The ProxyObject class acts on behalf of a RealObject class. Both

implement the same interface. ProxyObject stores a subset of the

attributes of RealObject. ProxyObject handles certain requests,

whereas others are delegated to RealObject. After delegation, the

RealObject is created and loaded into memory.

L3

Proxy:

Class Diagram

Object

filename

op1()

op2()

RealObject

data:byte[]

op1()

op2()

ProxyObject

filename

op1()

op2()

1 0..1

Client

L3

Proxy:

Consequences

Consequences:

Adds a level of indirection between Client and RealObject.

The Client is shielded from any optimization for creating

RealObjects.

L3

Pattern Hatching

Proxy Pattern

Subject

request()

…

RealSubject

request()

…

Proxy

request()

…

realSubject

realSubject->request();

L3

Pattern Hatching

Proxy Pattern

We need to find a common structure for the

proxy pattern with our composite pattern

As we recognize, our common interface that we

still want to use for the file-system is Node

And because the Composite structure uses a

common interface already, we can combine the

Proxy ―Subject‖ Interface into our Node

Interface

L3

Pattern Hatching

Proxy

Pattern

Node

getName()

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Link

streamIn(istream)

streamOut(ostream)

getSubject()

File

streamIn(istream)

streamOut(ostream)

Directory

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

ch
il

d
re

n

su
b

je
ct

Composite Pattern

L3

Flyweight Design Pattern

• Design Purpose

• Manage a large number of objects without

constructing them all.

• Design Pattern Summary

– Share representatives for the objects; use context

to obtain the effect of multiple instances.

L4

Flyweight: Class Model

L4

Flyweight: Sequence Diagram

L4

Text Magnifier Example

L4

Text Magnifier Example (Cont’d)

L4

Text Magnifier Example (Cont’d)

L4

Flyweight: Consequences

• Space savings increase as more flyweights are

shared.

L4

UNIT-V 297

An example: Decorator

Intent:

Allow to attach responsibilities to objects, extend

their functionality, dynamically

Motivation:

Consider a WYSIWYG editor

The basic textWindow needs various decorations:

borders, tool bars, scroll bars, …

L5

UNIT-V 298

An ―obvious‖ solution: sub-classing

• A sub-class for every option

Disadvantages:

• Sub-classing is static – compile-time

• # of sub-classes = # of combinations –

exponential

L5

UNIT-V 299

The preferred solution: Use

decorator objects

• Each decorator adds one decoration – property,

behavior  Linear

• Can add more than one, to obtain

combinations of properties

• And, do it dynamically

L5

UNIT-V 300

Structure, participants, collaborations:

• Component – an interface, describes the

operations of a (GUI) component

• ConcreteComponent (extends Component)

class of objects to which decorations can be

added (e.g. the original TextWindow)

• Decorator (extends Component)– a class of

decorator objects (there are several such classes)

L5

UNIT-V 301

Implementation:

• Each decorator has a (private) reference to a

Component object (CC or D)

• For each operation, the decorator performs its

decoration job, & delegates Component

operations to the Component object it contains

• Decorator extends Component (can accept Component

requests)

L5

UNIT-V 302

Facade Design Pattern

• Design Purpose

• Provide an interface to a package of classes.

• Design Pattern Summary

– Define a singleton which is the sole means for

obtaining functionality from the package.

L6

UNIT-V 303

Façade (2)

Entity

CompositeEntityAtomicEntity

PortRelation

BufferedRelation

Graph

SchematicEditor

• Example: graph interface to a simulation engine

Actor

Director

0..*
2

Token

L6

UNIT-V 304

Facade:

Encapsulating Subsystems
Name: Facade design pattern

Problem description:

Reduce coupling between a set of related classes and the rest of

the system.

Solution:

A single Facade class implements a high-level interface for a

subsystem by invoking the methods of the lower-level classes.

Example. A Compiler is composed of several classes:

LexicalAnalyzer, Parser, CodeGenerator, etc. A caller, invokes

only the Compiler (Facade) class, which invokes the contained

classes.

L6

UNIT-V 305

Facade:

Class Diagram

Facade

service()

Class1

service1()

Class2

service2()

Class3

service3()

Facade

L6

UNIT-V 306

Facade:

Consequences

Consequences:

Shields a client from the low-level classes of a subsystem.

Simplifies the use of a subsystem by providing higher-level

methods.

Enables lower-level classes to be restructured without

changes to clients.

Note. The repeated use of Facade patterns yields a layered

system.

L6

Summary of Structural Design Patterns

• Structural Design Patterns relate objects (as trees,
lists etc.)

– Facade provides an interface to collections of objects

– Decorator adds to objects at runtime

– Composite represents trees of objects

– Adapter simplifies the use of external functionality

– Flyweight gains the advantages of using multiple instances
while minimizing space penalties

– Proxy avoids calling expensive operations unnecessarily

L7

Unit-4 part-1
behavioural patterns part-1

UNIT-VI 309

Behavioral Patterns Part-I introduction UNIT-4

Chain of Responsibility

Command

interpreter

Iterator

Reusable points in Behavioral Patterns

(Intent, Motivation, Also Known As ……………)

Review Unit-VI

S. No TOPIC PPT Slides

1

2

3

4

5

6

7

L1 2 – 3

L2 4 – 9

L3 10 – 12

L4 13 – 17

L5 18 – 21

L6 22 – 24

L7 25 – 25

UNIT-VI 310

Chain of Responsibility

Handler
handleRequest()

ConcreteHandler2
handleRequest()

Client
ContextInterface()

ConcreteHandler1
handleRequest()

• Decouple sender of a request from receiver

• Give more than one object a chance to handle

• Flexibility in assigning responsibility

• Often applied with Composite

successor

L1

UNIT-VI 311

Chain of Responsibility (2)

Figure
handleEvent(Event)

CompositeFigure

Interactor
children

0..*

If interactor != null

interactor.handle(event,this)

else

parent.handleEvent(event)

0..1

parent

• Example: handling events in a graphical hierarchy

handle(Event,Figure)

0..*

L1

UNIT-VI 312

Command:

Encapsulating Control Flow

Name: Command design pattern

Problem description:

Encapsulates requests so that they can be executed, undone, or

queued independently of the request.

Solution:

A Command abstract class declares the interface supported by all

ConcreteCommands. ConcreteCommands encapsulate a service

to be applied to a Receiver. The Client creates

ConcreteCommands and binds them to specific Receivers. The

Invoker actually executes a command.

L2

UNIT-VI 313

Command:

Class Diagram

Receiver

Command

execute()

ConcreteCommand1

execute()

Invoker
invokes

<<binds>>

ConcreteCommand2

execute()

L2

UNIT-VI 314

Command:

Class Diagram for Match

GameBoard

Move

play()

replay()

Game1Move

play()

replay()

Match
invokes

<<binds>>

Game1Move

play()

replay()

L2

UNIT-VI 315

Command:

Consequences

Consequences:

The object of the command (Receiver) and the algorithm of

the command (ConcreteCommand) are decoupled.

Invoker is shielded from specific commands.

ConcreteCommands are objects. They can be created and

stored.

New ConcreteCommands can be added without changing

existing code.

L2

UNIT-VI 316

Command

• You have commands that need to be

– executed,

– undone, or

– queued

• Command design pattern separates

– Receiver from Invoker from Commands

• All commands derive from Command and
implement do(), undo(), and redo()

L2

UNIT-VI 317

Command Design Pattern

• Separates command invoker and receiver

L2

UNIT-VI 318

Pattern: Interpreter

• Intent: Given a language, interpret sentences

• Participants: Expressions, Context, Client

• Implementation: A class for each expression type

An Interpret method on each class

A class and object to store the global state (context)

• No support for the parsing process

(Assumes strings have been parsed into exp trees)

L3

UNIT-VI 319

Pattern: Interpreter with Macros

• Example: Definite Clause Grammars

• A language for writing parsers/interpreters

• Macros make it look like (almost) standard BNF
Command(move(D)) -> ―go‖, Direction(D).

• Built-in to Prolog; easy to implement in Dylan, Lisp

• Does parsing as well as interpretation

• Builds tree structure only as needed

(Or, can automatically build complete trees)

• May or may not use expression classes

L3

UNIT-VI 320

Method Combination

• Build a method from components in different classes

• Primary methods: the ―normal‖ methods; choose the

most specific one

• Before/After methods: guaranteed to run;

No possibility of forgetting to call super

Can be used to implement Active Value pattern

• Around methods: wrap around everything;

Used to add tracing information, etc.

• Is added complexity worth it?

Common Lisp: Yes; Most languages: No

L3

UNIT-VI 321

Iterator pattern

• iterator: an object that provides a standard way to
examine all elements of any collection

• uniform interface for traversing many different data
structures without exposing their implementations

• supports concurrent iteration and element removal

• removes need to know about internal structure of
collection or different methods differentcollections

L4

UNIT-VI 322

Pattern: Iterator

objects that traverse collections

L4

UNIT-VI 323

Iterator interfaces in Java

public interface java.util.Iterator {

public boolean hasNext();

public Object next();

public void remove();

}

public interface java.util.Collection {

... // List, Set extend Collection

public Iterator iterator();

}

public interface java.util.Map {

...

public Set keySet(); // keys,values are Collections

public Collection values(); // (can call iterator() on them)

}

L4

UNIT-VI 324

Iterators in Java

• all Java collections have a method iterator that returns an

iterator for the elements of the collection

• can be used to look through the elements of any kind of

collection (an alternative to for loop)

List list = new ArrayList();

... add some elements ...

for (Iterator itr = list.iterator(); itr.hasNext()) {

BankAccount ba = (BankAccount)itr.next();

System.out.println(ba);

}

set.iterator()

map.keySet().iterator()

map.values().iterator()

L4

UNIT-VI 325

Adding your own Iterators

• when implementing your own collections, it can be
very convenient to use Iterators

– discouraged (has nonstandard interface):
public class PlayerList {

public int getNumPlayers() { ... }

public boolean empty() { ... }

public Player getPlayer(int n) { ... }

}

– preferred:
public class PlayerList {

public Iterator iterator() { ... }

public int size() { ... }

public boolean isEmpty() { ... }

}

L4

UNIT-VI 326

Command:

Encapsulating Control Flow

Name: Command design pattern

Problem description:

Encapsulates requests so that they can be executed, undone, or

queued independently of the request.

Solution:

A Command abstract class declares the interface supported by all

ConcreteCommands. ConcreteCommands encapsulate a service

to be applied to a Receiver. The Client creates

ConcreteCommands and binds them to specific Receivers. The

Invoker actually executes a command.

L5

UNIT-VI 327

Command:

Class Diagram

Receiver

Command

execute()

ConcreteCommand1

execute()

Invoker
invokes

<<binds>>

ConcreteCommand2

execute()

L5

UNIT-VI 328

Command:

Class Diagram for Match

GameBoard

Move

play()

replay()

Game1Move

play()

replay()

Match
invokes

<<binds>>

Game1Move

play()

replay()

L5

UNIT-VI 329

Command:

Consequences

Consequences:

The object of the command (Receiver) and the algorithm of

the command (ConcreteCommand) are decoupled.

Invoker is shielded from specific commands.

ConcreteCommands are objects. They can be created and

stored.

New ConcreteCommands can be added without changing

existing code.

L5

UNIT-VI 330

Pattern: Interpreter

• Intent: Given a language, interpret sentences

• Participants: Expressions, Context, Client

• Implementation: A class for each expression type

An Interpret method on each class

A class and object to store the global state (context)

• No support for the parsing process

(Assumes strings have been parsed into exp trees)

L6

UNIT-VI 331

Pattern: Interpreter with Macros

• Example: Definite Clause Grammars

• A language for writing parsers/interpreters

• Macros make it look like (almost) standard BNF
Command(move(D)) -> “go”, Direction(D).

• Built-in to Prolog; easy to implement in Dylan, Lisp

• Does parsing as well as interpretation

• Builds tree structure only as needed

(Or, can automatically build complete trees)

• May or may not use expression classes

L6

UNIT-VI 332

Method Combination

• Build a method from components in different classes

• Primary methods: the ―normal‖ methods; choose the

most specific one

• Before/After methods: guaranteed to run;

No possibility of forgetting to call super

Can be used to implement Active Value pattern

• Around methods: wrap around everything;

Used to add tracing information, etc.

• Is added complexity worth it?

Common Lisp: Yes; Most languages: No

L6

UNIT-VI 333

References

• Information about Design Patterns:

– http://msdn.microsoft.com/library/en-

us/dnpag/html/intpatt.asp

– http://www.patternshare.org/

– http://msdn.microsoft.com/architecture/

– http://msdn.microsoft.com/practices/

– http://www.dofactory.com/Patterns/Patterns.aspx

– http://hillside.net/

• Contact: alex@stonebroom.com

• Slides & code: http://www.daveandal.net/download/

• Article: http://www.daveandal.net/articles/

L7

Unit-4 part-2
behavioural patterns part-2

UNIT-VII 335

Behavioral patterns part-II introduction

Mediator

Memento

Observer

1

2

3

4

S. No TOPIC PPT Slides

L1 2 – 4

L2 5 – 12

L3 13 – 32

L4 33 – 54

UNIT-VII 336

Behavioral Patterns (1)

• Deal with the way objects interact and distribute

responsibility

• Chain of Responsibility: Avoid coupling the sender of arequest to

its receiver by giving more than one object achance to handle the

request. Chain the receiving objects an dpass the request along the

chain until anobject handles it.

• Command: Encapsulate a request as an object, therebyletting you

paramaterize clients with different requests,queue or log requests,

and support undoable operations.

• Interpreter: Given a language, define a representationfor its

grammar along with an interpreter that uses therepresentation to

interpret sentences in the language.23

L1

UNIT-VII 337

Behavioral Patterns (2)
• Iterator: Provide a way to access the elements of anaggregate

object sequentially without exposing itsunderlying

representation.

• Mediator: Define an object that encapsulates how a setof

objects interact. Mediator promotes loose coupling bykeeping

objects from referring to each other explicitly,and lets you vary

their interaction independently.

• Memento: Without violating encapsulation, capture

andexternalize an object‘s internal state so that the object

can be restored to this state later.

• Observer: Define a one-to-many dependency betweenobjects

so that when one object changes state, all itsdependents are

notified and updated automatically.

L1

UNIT-VII 338

Behavioral Patterns (3)
• State: Allow an object to alter its behavior when its

internal state changes. The object will appear to change

its class.

• Strategy: Define a family of algorithms, encapsulate

each one, and make them interchangeable. Strategy

lets the algorithm vary independently from clients that

use it.

• Template Method: Define the skeleton of an algorithm

in an operation, deferring some steps to subclasses.

Template Method lets subclasseses redefine certain

steps of an algorithm without changing the algorithm‘s

structure.

• Visitor: Represent an operation to be performed on the

elements of an object structure. Visitor lets you define a

new operation without changing the classes of the

elements on which it operates.

L1

UNIT-VII 339

The Mediator Pattern

• The Mediator pattern reduces coupling and

simplifies code when several objects must

negotiate a complex interaction.

• Classes interact only with a mediator class rather

than with each other.

• Classes are coupled only to the mediator where

interaction control code resides.

• Mediator is like a multi-way Façade pattern.

• Analogy: a meeting scheduler

L2

UNIT-VII 340

Using a Mediator

collaboratorA

mediator

collaboratorD

collaboratorC

collaboratorB
1: op1() 2.1: op2()

1.3: op3()

3: op4()

2: op2()

collaboratorA

collaboratorD

collaboratorC

collaboratorB

1.2: op2()
1.5: op2()
1.1: op1()

1.4: op4()

1: op()

Unmediated

Collaboration

Mediated

Collaboration

2.2: op3()

L2

UNIT-VII 341

Mediator Pattern Structure

Mediator Collaborator

ColleagueB

ColleagueA

ColleagueC

L2

UNIT-VII 342

Mediator as a Broker

«broker»

Mediator

Collaborator

«supplier»

ColleagueB

«client»

ColleagueA

«supplier»

ColleagueC

L2

UNIT-VII 343

Mediator Behavior

self:Mediator :ColleagueA

consult()

:ColleagueB :ColleagueC

consult()

consult()

notify()

sd requestService()

L2

UNIT-VII 344

When to Use a Mediator

• Use the Mediator pattern when a

complex interaction between

collaborators must be encapsulated to

– Decouple collaborators,

– Centralize control of an interaction, and

– Simplify the collaborators.

• Using a mediator may compromise

performance.

L2

UNIT-VII 345

Mediators, Façades, and Control
Styles

• The Façade and Mediator patterns

provide means to make control more

centralized.

• The Façade and Mediator patterns

should be used to move from a

dispersed to a delegated style, but

not from a delegated to a centralized

style.

L2

UNIT-VII 346

Summary

• Broker patterns use a Broker class to

facilitate the interaction between a Client

and a Supplier.

• The Façade pattern uses a broker (the

façade) to provide a simplified interface

to a complex sub-system.

• The Mediator pattern uses a broker to

encapsulate and control a complex

interaction among several suppliers.

L2

UNIT-VII 347

Memento Pattern

L3

UNIT-VII 348

References

• doFactory.com

– http://www.dofactory.com/Patterns/PatternMemento.as

px

• Marc Clifton‘s Blog

– http://www.marcclifton.com/tabid/99/Default.aspx

• Software Architecture, ETH, Zurich Switzerland

– http://se.ethz.ch/teaching/ss2005/0050/slides/60_softarc

h_patterns_6up.pdf

L3

http://www.dofactory.com/Patterns/PatternMemento.aspx
http://www.dofactory.com/Patterns/PatternMemento.aspx
http://www.marcclifton.com/tabid/99/Default.aspx
http://se.ethz.ch/teaching/ss2005/0050/slides/60_softarch_patterns_6up.pdf
http://se.ethz.ch/teaching/ss2005/0050/slides/60_softarch_patterns_6up.pdf

UNIT-VII 349

Intent

• Capture and externalize an object‘s state
without violating encapsulation.

• Restore the object‘s state at some later time.

– Useful when implementing checkpoints and
undo mechanisms that let users back out of
tentative operations or recover from errors.

– Entrusts other objects with the information it
needs to revert to a previous state without
exposing its internal structure and
representations.

L3

UNIT-VII 350

Forces

• Application needs to capture states at certain times
or at user discretion. May be used for:

– Undue / redo

– Log errors or events

– Backtracking

• Need to preserve encapsulation

– Don‘t share knowledge of state with other objects

• Object owning state may not know when to take
state snapshot.

L3

UNIT-VII 351

Motivation

• Many technical processes involve the
exploration of some complex data
structure.

• Often we need to backtrack when a
particular path proves unproductive.

– Examples are graph algorithms, searching
knowledge bases, and text navigation.

L3

UNIT-VII 352

Motivation

• Memento stores a snapshot of another object‘s internal

state, exposure of which would violate encapsulation and

compromise the application‘s reliability and extensibility.

• A graphical editor may encapsulate the connectivity

relationships between objects in a class, whose public

interface might be insufficient to allow precise reversal of

a move operation.

Move

Undo

L3

UNIT-VII 353

Motivation

Memento pattern solves this problem as
follows:

• The editor requests a memento from the
object before executing move operation.

• Originator creates and returns a memento.

• During undo operation, the editor gives the
memento back to the originator.

L3

UNIT-VII 354

Applicability

• Use the Memento pattern when:

– A snapshot of an object‘s state must be saved so

that it can be restored later, and

– direct access to the state would expose

implementation details and break

encapsulation.

L3

UNIT-VII 355

Structure

Attribute:

 state

Operation:

 SetMemento(Memento m)

 CreateMemento()

Originator

Attribute:

 state

Operation:

 GetState()

 SetState()

Memento

caretaker

return new Memento(state)

state = m->GetState()

L3

UNIT-VII 356

Participants

• Memento

– Stores internal state of the Originator object.

Originator decides how much.

– Protects against access by objects other than the

originator.

– Mementos have two interfaces:

• Caretaker sees a narrow interface.

• Originator sees a wide interface.

L3

UNIT-VII 357

Participants (continued)

• Originator

– Creates a memento containing a snapshot
of its current internal state.

– Uses the memento to restore its internal
state.

L3

UNIT-VII 358

Caretaker

• Is responsible for the memento’s
safekeeping.

• Never operates on or examines the
contents of a memento.

L3

UNIT-VII 359

Event Trace

CreateMemento()

SetMemento(aMemento)

anOriginatoraCaretaker aMemento

new Memento

SetState()

GetState()

L3

UNIT-VII 360

Collaborations

• A caretaker requests a memento from an

originator, holds it for a time, and passes it

back to the originator.

• Mementos are passive. Only the originator

that created a memento will assign or

retrieve its state.

L3

UNIT-VII 361

Consequences

• Memento has several consequences:

– Memento avoids exposing information that
only an originator should manage, but for
simplicity should be stored outside the
originator.

– Having clients manage the state they ask
for simplifies the originator.

L3

UNIT-VII 362

Consequences (continued)

• Using mementos may be expensive,
due to copying of large amounts of
state or frequent creation of mementos.

• A caretaker is responsible for deleting
the mementos it cares for.

• A caretaker may incur large storage
costs when it stores mementos.

L3

UNIT-VII 363

Implementation

• When mementos get created and passed

back to their originator in a predictable

sequence, then Memento can save just

incremental changes to originator‘s state.

L3

UNIT-VII 364

Known Uses

• Memento is a 2000
film about Leonard
Shelby and his quest
to revenge the brutal
murder of his wife.
Though Leonard is
hampered with short-
term memory loss, he
uses notes and tatoos
to compile .

L3

http://en.wikipedia.org/wiki/Memento
http://en.wikipedia.org/wiki/2000_in_film
http://en.wikipedia.org/wiki/2000_in_film
http://en.wikipedia.org/wiki/2000_in_film

UNIT-VII 365

Known Use of Pattern

• Dylan language uses memento to provide

iterators for its collection facility.

– Dylan is a dynamic object oriented language

using the functional style.

– Development started by Apple, but

subsequently moved to open source.

L3

UNIT-VII 366

Related Patterns

• Command

Commands can use mementos to maintain
state for undo mechanisms.

• Iterator

Mementos can be used for iteration.

L3

UNIT-VII 367

Observer Pattern

• Define a one-to-many dependency, all the
dependents are notified and updated
automatically

• The interaction is known as publish-
subscribe or subscribe-notify

• Avoiding observer-specific update protocol:
pull model vs. push model

• Other consequences and open issues

L4

UNIT-VII 368

Observer Pattern

• Intent:

– Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are
notified and updated automatically

• Key forces:

– There may be many observers

– Each observer may react differently to the same notification

– The subject should be as decoupled as possible from the
observers to allow observers to change independently of
the subject

L4

UNIT-VII 369

Observer

• Many-to-one dependency between objects

• Use when there are two or more views on the same ―data‖

• aka ―Publish and subscribe‖ mechanism

• Choice of ―push‖ or ―pull‖ notification styles

Observer
update()

Subject
attach(Observer)
detach(Observer)
notify()

ConcreteObserver
update()

ConcreteSubject
getState()

state=subject.getState();

forall o in observers

o.update()

L4

UNIT-VII 370

Observer:

Encapsulating Control Flow
Name: Observer design pattern

Problem description:

Maintains consistency across state of one Subject and many Observers.

Solution:

A Subject has a primary function to maintain some state (e.g., a data

structure). One or more Observers use this state, which introduces

redundancy between the states of Subject and Observer.

Observer invokes the subscribe() method to synchronize the state.

Whenever the state changes, Subject invokes its notify() method to

iteratively invoke each Observer.update() method.

L4

UNIT-VII 371

Observer:

Class Diagram

Subject

subscribe()

unsubscribe()

notify()

subscribers

ConcreteSubject

state

getstate()

setstate()

Observer

update()

ConcreteObserver

observeState

update()

1 *

L4

UNIT-VII 372

Observer:

Consequences

Consequences:

Decouples Subject, which maintains state, from Observers,

who make use of the state.

Can result in many spurious broadcasts when the state of

Subject changes.

L4

UNIT-VII 373

Collaborations in Observer Pattern

S 1 : C onc reteS ubjec t obs 1 : C onc reteO bs erv er obs 2 : C onc reteO bs erv er

s etS tate()

noti fy ()

update()

getS tate()

update()

getS tate()

L4

UNIT-VII 374

Observer Pattern [1]

• Need to separate presentational aspects with the data, i.e.
separate views and data.

• Classes defining application data and presentation can be

reused.

• Change in one view automatically reflected in other views.

Also, change in the application data is reflected in all views.

• Defines one-to-many dependency amongst objects so that

when one object changes its state, all its dependents are

notified.

L4

UNIT-VII 375

Observer Pattern [2]

A=10%

B=40%

C=30%

D=20%

Application data

A

B

C

D

A DCB

Relative Percentages

Y 10 40 30 20

X 15 35 35 15

Z 10 40 30 20

A B C D

Change notification

Requests, modifications

L4

UNIT-VII 376

Observer Pattern [3]

Subject

attach (Observer)

detach (Observer)

Notify ()

Observer

Update()

Concrete Observer

Update()

observerState

Concrete Subject

GetState()

SetState()

subjectState

observers

subject

For all x in observers{

x  Update(); }

observerState=

subject  getState();

L4

UNIT-VII 377

Class collaboration in Observer

:ConcreteSubject :ConcreteObserver-1 :ConcreteObserver-2

GetState()

Notify()

Update()

SetState()

GetState()

Update()

L4

UNIT-VII 378

Observer Pattern: Observer code

class Subject;

class observer {

public:

virtual ~observer;

protected:

virtual void Update (Subject* theChangedSubject)=0;

observer ();

Note the support for multiple subjects.

};

Abstract class defining

the Observer interface.

L4

UNIT-VII 379

Observer Pattern: Subject Code [1]

class Subject {

public:

virtual ~Subject;

protected:

Subject ();

virtual void Attach (observer*);

virtual void Detach (observer*) ;

virtual void Notify();

private:

List <Observer*> *_observers;

};

Abstract class defining

the Subject interface.

L4

UNIT-VII 380

Observer Pattern: Subject Code [2]

void Subject :: Attach (Observer* o){

_observers -> Append(o);

}

void Subject :: Detach (Observer* o){

_observers -> Remove(o);

}

void Subject :: Notify (){

ListIterator<Observer*> iter(_observers);

}

for (iter.First(); !iter.IsDone(); iter.Next()) {

iter.CurrentItem() -> Update(this);

}

L4

UNIT-VII 381

Observer Pattern: A Concrete Subject [1]

class ClockTimer : public Subject {

public:

virtual int GetHour();

}

virtual int GetMinutes();

virtual int GetSecond();

ClockTimer();

void Tick ();

L4

UNIT-VII 382

Observer Pattern: A Concrete Subject [2]

ClockTimer :: Tick {

// Update internal time keeping state.

// gets called on regular intervals by an internal timer.

}

Notify();

L4

UNIT-VII 383

Observer Pattern: A Concrete Observer [1]

class DigitalClock: public Widget, public Observer {

public:

DigitalClock(ClockTimer*);

virtual ~DigitalClock();

virtual void Draw();

private:

}

ClockTimer* _subject;

virtual void Update(Subject*);
Override Observer operation.

Override Widget operation.

L4

UNIT-VII 384

Observer Pattern: A Concrete Observer [2]

DigitalClock ::DigitalClock (ClockTimer* s) {

_subject = s;

}

_subjectAttach(this);

DigitalClock ::~DigitalClock() {

_subject->Detach(this);

}

L4

UNIT-VII 385

Observer Pattern: A Concrete Observer [3]

void DigitalClock ::Update (subject* theChangedSubject) {

If (theChangedSubject == _subject) {

}

Draw();

}

void DigitalClock ::Draw () {

int hour = _subject->GetHour();

}

int minute = _subject->GeMinute(); // etc.

Check if this is the clock’s subject.

// Code for drawing the digital clock.

L4

UNIT-VII 386

Observer Pattern: Main (skeleton)

ClockTimer* timer = new ClockTimer;

DigitalClock* digitalClock = new DigitalClock (timer);

L4

UNIT-VII 387

Observer Pattern: Consequences

• Abstract coupling between subject and observer. Subject has
no knowledge of concrete observer classes. (What design
principle is used?)

• Support for broadcast communication. A subject need not

specify the receivers; all interested objects receive the

notification.

• Unexpected updates: Observers need not be concerned about

when then updates are to occur. They are not concerned about

each other‘s presence. In some cases this may lead to

unwanted updates.

L4

UNIT-VII 388

When to use the Observer Pattern?

• When an abstraction has two aspects: one dependent on the
other. Encapsulating these aspects in separate objects allows
one to vary and reuse them independently.

• When a change to one object requires changing others and the

number of objects to be changed is not known.

• When an object should be able to notify others without

knowing who they are. Avoid tight coupling between objects.

L4

Unit-5 part-1
behavioural patterns part-2(contd)

UNIT-VII 390

STATE Pattern

By :

Raghavendar Japala

L5

UNIT-VII 391

General Description

• A type of Behavioral pattern.

• Allows an object to alter its behavior when its

internal state changes. The object will appear

to change its class.

• Uses Polymorphism to define different

behaviors for different states of an object.

L5

UNIT-VII 392

When to use STATE pattern ?

• State pattern is useful when
there is an object that can be
in one of several states, with
different behavior in each
state.

• To simplify operations that
have large conditional
statements that depend on
the object‘s state.

if (myself = happy) then

{

eatIceCream();

….

}

else if (myself = sad) then

{

goToPub();

….

}

else if (myself = ecstatic) then

{

….

L5

UNIT-VII 393

Example I

water StateOfWater

WaterVapor LiquidWater Ice

increaseTemp()

decreaseTemp()

state variable

Client
increaseTemp()

increaseTemp()

decreaseTemp()

increaseTemp()

decreaseTemp()

increaseTemp()

decreaseTemp()

increaseTemp()

decreaseTemp()

L5

UNIT-VII 394

How is STATE pattern

implemented ?
•―Context‖ class:

Represents the interface to the outside world.

•―State‖ abstract class:

Base class which defines the different states of

the ―state machine‖.

•―Derived‖ classes from the State class:

Defines the true nature of the state that the state

machine can be in.

Context class maintains a pointer to the current state. To

change the state of the state machine, the pointer needs to

be changed.

L5

UNIT-VII 395

Example II

MyMood MoodState

doSomething()

mad angry happy

doSomething() doSomething() doSomething()

state variable

Client
doSomething()

L5

UNIT-VII 396

Benefits of using STATE pattern

• Localizes all behavior associated with a particular state into one object.

 New state and transitions can be added easily by defining new subclasses.

 Simplifies maintenance.

• It makes state transitions explicit.

 Separate objects for separate states makes transition explicit rather than using

internal data values to define transitions in one combined object.

• State objects can be shared.

 Context can share State objects if there are no instance variables.

L5

UNIT-VII 397

Food for thought…

• To have a monolithic single class or many subclasses ?

 Increases the number of classes and is less compact.

 Avoids large conditional statements.

• Where to define the state transitions ?

 If criteria is fixed, transition can be defined in the context.

More flexible if transition is specified in the State subclass.

 Introduces dependencies between subclasses.

• Whether to create State objects as and when required or to
create-them-once-and-use-many-times ?
 First is desirable if the context changes state infrequently.

 Later is desirable if the context changes state frequently.

L5

UNIT-VII 398

Pattern: Strategy

objects that hold alternate algorithms to solve a
problem

L6

UNIT-VII 399

• pulling an algorithm out from the object that contains it, and

encapsulating the algorithm (the "strategy") as an object

• each strategy implements one behavior, one implementation of how to

solve the same problem

– how is this different from Command pattern?

• separates algorithm for behavior from object that wants to act

• allows changing an object's behavior dynamically without extending /

changing the object itself

• examples:

– file saving/compression

– layout managers on GUI containers

– AI algorithms for computer game players

Strategy pattern
L6

UNIT-VII 400

Strategy example: Card player

// Strategy hierarchy parent

// (an interface or abstract class)

public interface Strategy {

public Card getMove();

}

// setting a strategy

player1.setStrategy(new SmartStrategy());

// using a strategy

Card p1move = player1.move(); // uses strategy

L6

UNIT-VII 401

Strategy:

Encapsulating Algorithms

Name: Strategy design pattern

Problem description:

Decouple a policy-deciding class from a set of mechanisms, so

that different mechanisms can be changed transparently.

Example:

A mobile computer can be used with a wireless network, or

connected to an Ethernet, with dynamic switching between

networks based on location and network costs.

L6

UNIT-VII 402

Strategy:

Encapsulating Algorithms

Solution:

A Client accesses services provided by a Context.

The Context services are realized using one of several

mechanisms, as decided by a Policy object.

The abstract class Strategy describes the interface that is common

to all mechanisms that Context can use. Policy class creates a

ConcreteStrategy object and configures Context to use it.

L6

UNIT-VII 403

Strategy Example:

Class Diagram for Mobile Computer

NetworkConnection

send()

setNetworkInterface()

NetworkInterface

open()

close()

send()

Application LocationManager

Ethernet

open()

close()

send()

WirelessNet

open()

close()

send()

Note the

similarities to

Bridge pattern

L6

UNIT-VII 404

Strategy:

Class Diagram

Context

contextInterface()

Strategy

algorithmInterface()

Client

ConcreteStrategy2

Policy

ConcreteStrategy1

L6

UNIT-VII 405

Strategy:

Consequences

Consequences:

ConcreteStrategies can be substituted transparently

from Context.

Policy decides which Strategy is best, given the current

circumstances.

New policy algorithms can be added without modifying

Context or Client.

L6

UNIT-VII 406

Strategy

• You want to

– use different algorithms depending upon the context

– avoid having to change the context or client

• Strategy

– decouples interface from implementation

– shields client from implementations

– Context is not aware which strategy is being used;
Client configures the Context

– strategies can be substituted at runtime

– example: interface to wired and wireless networks

L6

UNIT-VII 407

Strategy

Strategy
Operation()

ConcreteStrategy2
Operation()

Context

• Make algorithms interchangeable---‖changing the guts‖

• Alternative to subclassing

• Choice of implementation at run-time

• Increases run-time complexity

ContextInterface()

ConcreteStrategy1
Operation()

L6

UNIT-VII 408

Design Patterns & Frameworks

Chapter 6 – Template Method

Conducted By Raghavendar Japala

L7

UNIT-VII 409

Topics – Template Method

• Introduction to Template Method

Design Pattern

• Structure of Template Method

• Generic Class and Concrete Class

• Plotter class and Plotter Function Class

L7

UNIT-VII 410

Introduction

The DBAnimationApplet illustrates the use of an abstract class

that serves as a template for classes with shared functionality.

An abstract class contains behavior that is common to all its

subclasses. This behavior is encapsulated in nonabstract methods,

which may even be declared final to prevent any modification.

This action ensures that all subclasses will inherit the same

common behavior and its implementation.

The abstract methods in such templates ensure the interface of the

subclasses and require that context specific behavior be

implemented for each concrete subclass.

L7

UNIT-VII 411

Hook Method and Template Method

The abstract method paintFrame() acts as a placeholder for the

behavior that is implemented differently for each specific context.

We call such methods, hook methods, upon which context specific

behavior may be hung, or implemented.

The paintFrame() hook is placed within the method update(),

which is common to all concrete animation applets. Methods

containing hooks are called template methods.

L7

UNIT-VII 412

The abstract method paintFrame() represents the behavior

that is changeable, and its implementation is deferred to the

concrete animation applets.

We call paintFrame() a hook method. Using the hook

method, we are able to define the update() method, which

represents a behavior common to all the concrete animation

applets.

Hook Method and Template Method (Con‘t)

L7

UNIT-VII 413

A template method uses hook methods to define a common

behavior.

Template method describes the fixed behaviors of a generic

class, which are sometimes called frozen spots.

Hook methods indicate the changeable behaviors of a

generic class, which are sometimes called hot spots.

Frozen Spots and Hot Spots

L7

UNIT-VII 414

The abstract method paintFrame() represents the behavior

that is changeable, and its implementation is deferred to the

concrete animation applets.

We call paintFrame() a hook method. Using the hook

method, we are able to define the update() method, which

represents a behavior common to all the concrete animation

applets.

Hook Method and Template Method (Con‘t)

L7

UNIT-VII 415

Structure of the Template Method Design Pattern

GenericClass

templateMethod()

hookMethod1()

hookMethod2()

ConcreteClass

hookMethod1()

hookMethod2()

…

hookMethod1()

…

hookMethod2()

…

L7

UNIT-VII 416

GenericClass (e.g., DBAnimationApplet), which defines

abstract hook methods (e.g., paintFrame()) that concrete

subclasses (e.g., Bouncing-Ball2) override to implement

steps of an algorithm and implements a template method

(e.g., update()) that defines the skeleton of an algorithm by

calling the hook methods;

ConcreteClass (e.g., Bouncing-Ball2) which

implements the hook methods (e.g., paintFrame()) to

carry out subclass specific steps of the algorithm

defined in the template method.

Structure of the Template Method Design Pattern (Con’t)

L7

UNIT-VII 417

In the Template Method design pattern, hook methods do

not have to be abstract.

The generic class may provide default implementations for

the hook methods.

Thus the subclasses have the option of overriding the hook

methods or using the default implementation.

The initAnimator() method in DBAnimationApplet is a

nonabstract hook method with a default implementation.

The init() method is another template method.

Structure of the Template Method Design Pattern (Con’t)

L7

UNIT-VII 418

The generic plotter should factorize all the behavior related to

drawing and leave only the definition of the function to be plotted

to its subclasses.

A concrete plotter PlotSine will be implemented to plot the function

y = sin x

A Generic Function Plotter

L8

UNIT-VII 419

Pattern Hatching

Visitor pattern

Visitor
Visited

instance

visited.accept(this);

v.visit(this);

L8

UNIT-VII 420

Pattern Hatching

Visitor Pattern

Class Visitor {

public:

Visitor();

void visit(File*);

void visit(Directory*);

void visit (Link*);

};

void Visitor::visit (File* f)

{f->streamOut(cout);}

void Visitor::visit (Directory* d)

{cerr << “no printout for a
directory”;}

void Visitor::visit (Link* l)

{l->getSubject()->accept(*this);}

Visitor cat;

node->accept(cat);

void File::accept (Visitor& v) {v.visit(this);}

void Directory::accept (Visitor& v) {v.visit(this);}

void Link::accept (Visitor& v) {v.visit(this);}

L8

UNIT-VII 421

References

• Java API pages

– http://java.sun.com/j2se/1.4.2/docs/api/java/util/Collection.html

– http://java.sun.com/j2se/1.4.2/docs/api/java/util/Iterator.html

– http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Container.html

– http://java.sun.com/j2se/1.4.2/docs/api/java/awt/LayoutManager.html

– http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JScrollPane.html

• Cunningham & Cunningham OO Consultancy, Inc.

– http://c2.com/cgi/wiki?IteratorPattern

– http://c2.com/cgi/wiki?DecoratorPattern

– http://c2.com/cgi/wiki?CompositePattern

• Design Patterns Java Companion

– http://www.patterndepot.com/put/8/JavaPatterns.htm

L9

Unit-5 part-1
behavioural patterns part-2(contd)

UNIT-VIII 423

What to Expect from Design Patterns

A Brief History

The Pattern Community An Invention

A Parting Thought.

Design Patterns advantageous

and disadvantageous

Scope of the design patterns in application

programming.

Review Unit-V

S. No TOPIC PPT Slides

1

2

3

4

5

6

7

UNIT-VIII 424

What to Expect from Design Patterns

• A Common Design Vocabulary

- A Documentation and Learning Aid

• An Adjunct to Existing Methods

• A Target for Refactoring

L1

UNIT-VIII 425

A common design vocabulary

1. Studies of expert programmers for conventional languages have shown that

knowledge and experience isn‘t organized simply around syntax but in larger

conceptual structures such as algorithms, data structures and idioms [AS85,

Cop92, Cur89, SS86], and plans for fulfilling a particular goal [SE84].

2. Designers probably don‘t think about the notation they are using for recording

the designing as much as they try to match the current design situation against

plans, data structures, and idioms they have learned in the past.

3. Computer scientists name and catalog algorithms and data structures, but we

don‘t often name other kinds of patterns. Design patterns provide a common

vocabulary for designers to use to communicate, document, and explore

design alternatives.

L1

UNIT-VIII 426

A document and learning aid
1. Knowing the design patterns makes it easier to understand

existing systems.

2. Most large object-oriented systems use this design patterns

people learning object-oriented programming often complain

that the systems they are working with use inheritance in

convoluted ways and that it is difficult to follow the flow of

control.

3. In large part this is because they do not understand the design

patterns in the system learning these design patterns will help

you understand existing object-oriented system.

L1

UNIT-VIII 427

An adjacent to existing methods

1. Object-oriented design methods are supposed to promote good design, to teach

new designers how to design well, and standardize the way designs are developed.

2. A design method typically defines a set of notations (usually graphical) for

modeling various aspects of design along with a set of rules that govern how and

when to use each notation.

3. Design methods usually describe problems that occur in a design, how to resolve

them and how to evaluate design. But then have not been able to capture the

experience of expert designers.

4. A full fledged design method requires more kinds of patterns than just design

patterns there can also be analysis patterns, user interface design patterns, or

performance tuning patterns but the design patterns are an essential part, one that‘s

been missing until now.

L1

A target for refactoring

1. One of the problems in developing reusable software is that
it often has to be recognized or refactored [OJ90].

2. Design patterns help you determine how to recognize a
design and they can reduce a amount of refactoring need to
later.

3. The life cycle of object-oriented software has several faces.
Brain Foote identifies these phases as the prototyping
expansionary, and consolidating phases [Foo92]

UNIT-VIII 428

L1

UNIT-VIII 429

Design Patterns Applied

Example: An Hierarchical File System

Tree Structure  Composite

Patterns Overview

Symbolic Links  Proxy

Extending Functionality  Visitor

Single User Protection  Template

Method

Multi User Protection  Singleton

User and Groups  Mediator

L1

UNIT-VIII 430

A Brief History of Design Patterns

• 1979--Christopher Alexander pens The Timeless
Way of Building

– Building Towns for Dummies

– Had nothing to do with software

• 1994--Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (the Gang of Four,
or GoF) publish Design patterns: Elements of
Reusable Object-Oriented Software

– Capitalized on the work of Alexander

– The seminal publication on software design patterns

L2

UNIT-VIII 431

What‘s In a Design Pattern--1994

• The GOF book describes a pattern using the
following four attributes:

• The name to describes the pattern, its solutions and
consequences in a word or two

• The problem describes when to apply the pattern

• The solution describes the elements that make up the
design, their relationships, responsibilities, and
collaborations

• The consequences are the results and trade-offs in
applying the pattern

• All examples in C++ and Smalltalk

L2

UNIT-VIII 432

What‘s In a Design Pattern - 2002

• Grand‘s book is the latest offering in the field and is
very Java centric. He develops the GOF attributes to a
greater granularity and adds the Java specifics
• Pattern name—same as GOF attribute

• Synopsis—conveys the essence of the solution

• Context—problem the pattern addresses

• Forces—reasons to, or not to use a solution

• Solution—general purpose solution to the problem

• Implementation—important considerations when using a solution

• Consequences—implications, good or bad, of using a solution

• Java API usage—examples from the core Java API

• Code example—self explanatory

• Related patterns—self explanatory

L2

UNIT-VIII 433

Grand‘s Classifications of

Design Pattern

• Fundamental patterns

• Creational patterns

• Partitioning patterns

• Structural patterns

• Behavioral patterns

• Concurrency patterns

L2

UNIT-VIII 434

The Pattern Community An Invention

Christopher Alexander is the architect who first

studied

Patterns in buildings and communities and developed

A PATTERN LANGUAGE for generating them.

His work has inspired time and again. So it‘s fitting worth

while To compare our work to his.

Then we‘ll look at other‘s work in software-related patterns.

L3

UNIT-VIII 435

What‘s In a Design Pattern--1994

• The GOF book describes a pattern using the
following four attributes:

• The name to describes the pattern, its solutions and
consequences in a word or two

• The problem describes when to apply the pattern

• The solution describes the elements that make up the
design, their relationships, responsibilities, and
collaborations

• The consequences are the results and trade-offs in
applying the pattern

• All examples in C++ and Smalltalk

L3

UNIT-VIII 436

What‘s In a Design Pattern - 2002

• Grand‘s book is the latest offering in the field and is
very Java centric. He develops the GOF attributes to a
greater granularity and adds the Java specifics
• Pattern name—same as GOF attribute

• Synopsis—conveys the essence of the solution

• Context—problem the pattern addresses

• Forces—reasons to, or not to use a solution

• Solution—general purpose solution to the problem

• Implementation—important considerations when using a solution

• Consequences—implications, good or bad, of using a solution

• Java API usage—examples from the core Java API

• Code example—self explanatory

• Related patterns—self explanatory

L3

UNIT-VIII 437

Alexander‘s Pattern Languages

There are many ways in which our work is like Alexander's

Both are based on observing existing systems and looking for patterns in them.

Both have templates for describing patterns although

our templates are quite different)..

But there are just as many ways in which our work different.

People have been making buildings for thousands of years, and there are many

classic examples to draw upon. We have been making Software systems for a

Relatively short time, and few are considered classics.

Alexander gives an order in which his patterns should be used; we have not.

L3

UNIT-VIII 438

Alexander‘s patterns emphasize the problems they adderss ,

where as design patterns describes the solutions in more detail.

Alexander claims his patterns will generate complete buildings.

We do not claim that our patterns will generate complete programs.

When Alexander claims you can design a house simply applying his patterns one after

Another ,he has goals similar to those of object-oriented design methodologies who

Gives step-by-step rules for design,

In fact ,we think it‘s unlikely that there will ever be a compete pattern language for soft

-ware.

But certainly possible to make one that is more complte.

L3

UNIT-V 439

A Parting Thought.

The best designs will use many design patterns that dovetail

And intertwine to produce a greater whole.

As Alexander says:

It is possible to make buildings by stringing together pattern‘s,

In a rather loose way,

A building made like this , is an assembly of patterns. it is not

Dense.

It is not profound. but it is also possible to put pattern‘s together

In such a way that many patterns overlap in the same physical

Space: the building is very dense; it has many meaning captured

In a small space; and through this density, it becomes profound.

L3

