
DATA STRUCTURES

1

UNIT-1

2

ALGORITHM

An algorithm is a step by step representation or a procedure

for solving a problem.

or

It is a method of finding a right solution to a problem or to a

different problem or to a different problem breaking into

simple cases.

3

PROPERTIES OF AN ALGORITHM

Finitness:

An algorithm should terminate at finite number of steps.

Definiteness:

Each step of an algorithm must be precisely stated.

Effectiveness:

It consists of basic instructions that are realizable.

This means that the instructions can be performed by using the
given inputs in a finite amount of time.

Input:

An algorithm accepts zero or more inputs.

Output:

It produces at least one output.

4

PSEUDOCODE

It is a representation of algorithm in which instruction sequence

can be given with the help of programming constructs.

or

Pseudo code, on the other hand, is not a programming language,

but simply an informal way of describing a program.

Because it is not an actual programming language, pseudo code

cannot be compiled into an executable program.

Therefore, pseudo code must be converted into a specific

programming language if it is to become an usable application.

5

http://www.techterms.com/definition/compile
http://www.techterms.com/definition/application

PSEUDOCODE CONVENTIONS
1. Algorithm is a procedure consisting of heading and body. The

heading consists of a name of the procedure and parameter list.
The syntax is

Algorithm name_of
_procedure(paramater1,parameter2,…..parameter n).

2.Using assignment operator:=an assignment statement can be
given. For instance: variable:=expression;

3. Boolean operators, logical operators, relational operators can
be used in pseudo code.

4. All different types of arrays can be used and array indices
stored in [and] brackets.

6

PSEUDOCODE CONVENTIONS

5. The beginning and end of block should be indicted by { and}

resp. the compound statements should be enclosed within {

and } brackets.

6. The delimiters ; are used at the end of each statement.

7. Single line comments are written using // as beginning of

comment.

8.The identifier should beginning by letter only.

9.No need to write data types explicitly for identifiers.

7

PSEUDOCODE CONVENTIONS

10. The inputting and outputting can be done using read and

write.

11. The conditional statements and the looping statements have

the same syntax as in C language.

8

EXAMPLES

1) write an algorithm to count the sum of n numbers

Algorithm sum(1,n)

{

Result:=0;

for i:=1 to n do i:=i+1

Result:=result+i;

}

9

EXAMPLES

2) write an algorithm to check whether given number is even or

odd

Algorithm events (val)

{

if (val%2==0) then

write(“given no is even”):

else

write(“given no is odd”);

}

10

EXAMPLES

3) write an algorithm to find factorial of n number.

Algorithm fact(n)

{

if n:=1 then

return 1;

else

return n*fact(n-1);

}

11

EXAMPLES

4) write an algorithm to perform multiplication of two matrices.

Algorithm Mul(A,B,n)

{

for i:=1 to n do

for j:=1 to n do

c[i,j]:=0

for k:=1 to n do

c[i,j]:=c[i,j]+a[i,k]*b[k,j];

}

12

RECURSIVE ALGORITHM

A recursive routine is one whose design includes a call to itself.

Or

A function that calls itself is known as recursive function and this

technique is known as recursion in C programming.

13

EXAMPLES

Factorial of a number

Algorithm factorial(a)

int a;

{

int fact=1

if(a>1)

Fact = a* factorial(a-1);

Return(fact);

}

14

DATA ABSTRACTION

Data abstraction refers to, providing only essential information

to the outside world and hiding their background details, i.e.,

to represent the needed information in program without

presenting the details.

Data abstraction is a programming (and design) technique that

relies on the separation of interface and implementation.

15

PERFORMANCE EVALUATION

The total effectiveness of a computer system, including

throughput , individual response time , and availability.

Performance evaluation can be loosely divided into 2 phases

1) A priori estimates which is known as performance analysis

1) A posterior testing which is known as performance

measurement.

16

http://searchcio-midmarket.techtarget.com/definition/throughput
http://searchnetworking.techtarget.com/definition/response-time
http://searchnetworking.techtarget.com/definition/response-time
http://searchnetworking.techtarget.com/definition/response-time

PERFORMANCE ANALYSIS

The efficiency of an algorithm can be decided by measuring

the performance of an algorithm.

The performance of an algorithm by computing amount of

time(time complexity)and storage requirement(space

complexity).

17

TIME COMPLEXITY
This is the amount of computing time required by an algorithm to

run to completion.

There are 2 types of computing time- compile time and run time.

The time complexity is generally computed using run time or

execution time.

The time complexity is given in terms of frequency count.

Frequency count is basically a count denoting number of times of

execution of statement.

18

TIME COMPLEXITY
The time complexity is computed using run time is calculated by

input size and asymptotic notations .

Input size: the input size of any instance of a problem is defined
as the number of words required to describe that instance of
problem.

Asymptotic notations: This is the shorthand way to represent the
time complexity.

Time complexity is given as fastest possible, slowest possible or
average time.

Notations such as Ω,θ,Ο are the asymptotic notations.

19

BIG OH NOTATION

It represents the upper bound of algorithms running time.

The longest amount of time taken by the algorithm to complete is

calculated by big oh (Ο).

Def: let f(n) and g(n) are two non-negative functions. And is there

exists an integer no and constant C such that C>0 and for all

integers n>n₀ ,f(n)<=c*g(n), then f(n) is big oh of g(n). It is also

denoted as “ f(n) = Ο(g(n))”.

20

BIG OH NOTATION

Various meanings associated with big-oh are

O(1)- constant computing time

O(n)- linear

O(n²)-quadratic

O(n³)-cubic

O(2n)-exponential

O(log n)-logarithmic

21

OMEGA NOTATION

It represents the lower bound of algorithms running time.

It is the shortest amount of time taken by algorithm to complete.

F(n)>C*g(n).

This is denoted by f(n)=Ωg(n).

22

THETA NOTATION

It represents the running time between upper bound and lower

bound.

c1g(n)<=f(n)<=c2g(n)

It is denoted by f(n)=θ g(n).

23

SPACE COMPLEXITY

This is the amount of memory required by an algorithm to run.

There are two factors to compute space complexity.

1) constant

2)instance

24

SPACE COMPLEXITY

The space requirement S(p) can be given as

S(p)= C+Sp

C is the constant

Sp is a space dependent upon instance characteristics.

25

DATA STRUCTURE

The data structure can be defined as the collection of elements

and all the possible operations which are required for those set

of elements.

Or

Data structure is a combination of a set of elements and

corresponding set of operations.

The data structures can be implemented by building the suitable

algorithms for them.

26

TYPES OF DATA STRUCTURES

The data structure can be divided into two basic types.

1) Preliminary data structures

1) Secondary data structures

27

TYPES OF DATA STRUCTURES

Data structures

Primitive data structures
Ex: int, char,float

linear data structures
Ex: lists, stack, queues

Non linear data structures
Ex : trees, graphs

Non primitive data structure

28

LIST

List is the collection of elements arranged in a sequential

manner.

There are two representations

1) list of sequentially stored elements----using arrays

2) list of elements with associated pointers---using linked list.

29

LIST REPRESENTATION

30

OPERATIONS ON AN ORDERED LIST

1)display of list.

2)search an element in the list.

3) insert an element into the list.

4) delete an element from the list.

31

SINGLY LINKED LIST

In the single linked list, a node is connected to the next node

by a single link.

In this list a node contains two types of fields-

data:

which holds a list element

next(pointer):

which holds a link to the next node in the list.

The head of the pointer is used to gain access to the list and

the end of the list is denoted by a NULL pointer

32

STRUCTURE OF A SINGLE LINKED LIST

struct node

{

int data;

struct node * next;

}

The list holds two members ,an integer type variable “data”

which holds the elements and another member of type “node”,

which has the variable next.

33

SINGLE LINKED LIST OPERATIONS

Creating a linked list

Inserting in a linked list

Deleting a linked list

Searching an element in the linked list

Display the elements

Merging two linked list

Sorting a linked list

Reversing a list

34

CREATING A LINKED LIST

List can be created by using pointers and dynamic memory

allocation function such as malloc.

The head pointer is used to create and access unnamed nodes.

35

CREATING A LINKED LIST

struct list

{

int no;

struct list *next;
};

typedef struct list node;

node *head;

head=(node*) malloc (size of(node));

36

CREATING A LINKED LIST

The statement obtains memory to store a node and assigns its

address to head which is a pointer variable.

To store values in the member fields :
headno=10;
headnext=NULL;

The second node can be added as:
headnext=(node*)malloc(size_of(node));
headnextnumber=20;
headnextnext=NULL;

37

INSERTING AN ELEMENT

Insertion is done in three ways:

Insertion at the beginning of the list.

Insertion after any specified node.

Inserting node at the end of the list.

38

INSERTING AN ELEMENT

Function to insert a node at the beginning of the list:

39

INSERTING AN ELEMENT

Function to insert a node at the beginning of the list:

void add_beg(struct node **q, int no)
{

struct node *temp; /*add new node*/

tempdata=no;

tempnext=*q;t

*q=temp;

}

here temp variable is take and space is allocated using “malloc”
function.

40

INSERTING AN ELEMENT

Insertion after any specified node:

Inserting a node in the middle of the list,

if you consider to insert a node after the element then the

process is as follows.

41

INSERTING AN ELEMENT

42

INSERTING AN ELEMENT

Function to insert a node at the middle of the list:

Void add_after(struct node *q, int loc, int no)

{

struct node *temp, *r;

int l;

temp=q;/*skip to desire portion*/

for(i=0;i<loc;i++)

{

temp=tempnext;

43

INSERTING AN ELEMENT

if(temp==NULL)
{

printf(“\n there are less than %d elements in list”,loc);
return;

}

} ?/*insert new node*/
r=malloc(sizeof(struct node));

rdata=n0;

rnext=tempnext;

tempnext=r;

44

INSERTING AN ELEMENT

Inserting node at the end of the list:

45

INSERTING AN ELEMENT

Inserting node at the end of the list:

void create(struct node **q, int no)

{

struct node *temp,*r;

if(*q==NULL) /*if the list is empty,create first node*/

{

temp=malloc(sizeof(struct node));

tempdata=no;

46

INSERTING AN ELEMENT

tempnext=NULL;

*q=temp;

}

else

{

temp=*q; /* go to last node*/

while(tempnext!=NULL)

47

INSERTING AN ELEMENT

temp=tempnext;

r=malloc(sizeof(struct node));

rdata=no;

rnext=NULL;

tempnext=r;

}

}

48

DELETING AN ELEMENT

49

DELETING AN ELEMENT

We traverse through the entire linked list to check each node

whether it has to be deleted.

if we want to delete the first node in the list then we shift the

structure type pointer variable to the next node and then delete

the entire node.

if the node is a intermediate node then the various pointers the

linked list before and after deletion should be taken care of

50

DISPLAYING THE CONTENTS OF THE

LINKED LIST

Displays the elements of the linked list contained in the data

part.

Function to display the contents of the linked list.

void display(struct node *start)

{

printf(“\n”);

51

DISPLAYING THE CONTENTS OF THE

LINKED LIST

/*traverse the entire list*/

while(start!=NULL)

{

printf(“%d”,startdata);

start=startnext;

}

}

52

OTHER OPERATIONS OF SINGLY

LINKED LIST

Searching the linked list:

Searching means finding information in a given linked list.

Reversing a linked list:

The reversing of the linked list that last node becomes the first

node and first becomes the last.

53

OTHER OPERATIONS OF SINGLY

LINKED LIST

Sorting the list:

In sorting function the node containing the largest element is

removed from the linked list and is appended to the new list in

the ascending order.

Merging the two linked list:

Merging two list pointed by two pointers into a third list.

While merging be ensure that the elements common to the lists

appear only once in the third list.

CREATING A LINKED LIST

54

CIRCULAR LINKED LIST

A linked list in which last node points to the header node is

called the circular linked list.

The list have neither a beginning nor an end.

In this list the last node contains a pointer back to the first

node rather than the NULL pointer.

55

CIRCULAR LINKED LIST

The structure defined for circular linked list

struct node

{

int data;

struct node *next;

}

56

CIRCULAR LINKED LIST

A circular linked list is represented as follows:

A circular linked list can be used to represent a stack and a queue.

57

OPERATION OF CIRCULAR LINKED LIST

Adding elements in the circular linked list.

Deleting element from the circular list.

Displaying elements from the circular list.

58

ADDING ELEMENTS IN THE CIRCULAR

LINKED LIST

Ciradd():

this function accepts three parameters:

receives the address of the pointer to the first node.

receives the address of the pointer to the last node.

holds the data items that need to add in the list.

59

DELETING ELEMENTS FROM THE

CIRCULAR LINKED LIST

delcirq():

this function receives two parameters.

the pointer to the front .

the pointer to the rear .

60

DELETING ELEMENTS FROM THE

CIRCULAR LINKED LIST

The condition is checked for the empty list.

If the list is not empty,

then it is checked whether the front and rear

point to the same node or not.

If they point to the same node,

then the memory occupied by the node

is released and front and rear are both

assigned a NULL value.

61

DISPLAYING THE CIRCULAR LIST

Cirq_disp():

the function receives the pointer to the first node in the list as

a parameter.

The q is also made to point to the first node in the list.

The entire list is traversed using q.

Another pointer p is set to NULL initially.

The circular list is traversed through a loop till the time it

reach the first node again.

It reach first node again when q equals p.

62

DOUBLY LINKED LIST

The doubly linked list uses double set of pointer‟s, one

pointing to the next item and the other pointing to the

preceding item.

It can traverse in two directions:

from the beginning of the list to the end

or

In the backward direction from the end of the list to the

beginning.

63

DOUBLY LINKED LIST

64

DOUBLY LINKED LIST

Each node contains three parts:

An information field which contains the data.

A pointer field next which contains the location of the next
node n the list.

A pointer field prev which contains the location of the
preceding node in the list.

Structure to define DLL:
struct node
{ int data;
struct node *next;
struct node *prev;

}

65

CREATING A DLL

To create DLL at the nodes to the existing list:

To create the list the function d_create can be used before

creating the list the function checks if the list is empty.

Here the function accepts two parameters.

s of type struct dnode ** which contains the address of the

pointer to the first node of the list.

parameter num is an integer which is to be added in the list.

66

CREATING A DLL

To create DLL at the nodes to the existing list:

To create the list the function d_create can be used before

creating the list the function checks if the list is empty.

Here the function accepts two parameters.

s of type struct dnode ** which contains the address of the

pointer to the first node of the list.

parameter num is an integer which is to be added in the list.

67

OPERATIONS OF DLL

Adding a node in the beginning of DLL:

To add the node at the beginning of the list the function

d_addatbeg() is used .

This function takes two parameters:

s of type dounode ** which contains the address of the pointer

to the first node .

num is an integer to be added in the list.

68

OPERATIONS OF DLL

The allocation of memory for the new node is done whose

address is stored in q.

The num is the data part of the node.

A NULL value is stored in the prev part of new node a this is

the first node in the list.

69

OPERATIONS OF DLL

Function to add a node at the beginning of list.

Void d_addatbeg(struct dnode **s,int num)

{

struct dnode *q;

q=malloc(sizeof(struct dnode));

qprev=NULL;

qdata=num;

qnext=*s;

(*s)prev=q;

*s=q;

}

70

OPERATIONS OF DLL

Adding a node in the middle of the list:

To add the node in the middle of the list we use the function

d_addafter().

The function accepts three parameters.

q points to the first node of the list.

loc specifies the node number after which new node must be

inserted.

num which is to be added to the list.

To reach to the position where node is to be inserted, a loop is

executed.

71

OPERATIONS OF DLL

Deleting a node from DLL:

This function deletes a node from the list if the data part

matches a with num.

The function receives two parameters

the address of the pointer to the first node.

the number to be deleted.

To traverse the list ,a loop is run.

The data part of each node is compared with the num.

If the num value matches the data part, then the position of the

node to be deleted is checked

72

OPERATIONS OF DLL

Display the contents of DLL.

to display the contents of the doubly linked list, we follow the

same algorithm that had used in the singly linked list.

Here q points to the first node in the list and the entire list is

traversed .

Function to display the DLL.

void d_disp(struct dnode *q)

{ printf(“\n”);

while(q!=NULL)

{ printf(“%2d”,qdata);

q=qnext;

}

}

73

ARRAYS

A collection of objects of the same type stored contiguously

in memory under one name.

May be type of any kind of variable

May even be collection of arrays!

The elements of the array are stored in consecutive memory

locations and are referenced by an index (subscript).

74

ARRAYS

To refer to an element, specify

―Array name

―Position number

Syntax:

array_name[position number]

75

ARRAYS

Array Declaration

When declaring arrays

– Name

– Type of data elements

– Number of elements

Syntax

Data_Type array_Name[Number_Of_Elements];

76

ARRAYS

Examples:

int c[10];

float myArray[3284];

Declaring multiple arrays of same type

– Format similar to regular variables

– Example:

int b[100], x[27];

77

ARRAYS

int c[12]

• An array of ten integers

• c[0], c[1], …, c[11]

double B[20]

• An array of twenty long floating

point numbers

• B[0], B[1], …, B[19]

78

Name of array (Note

that all elements of

this array have the

same name, c)

Position number of

the element within

array c

c[6]

-45

6

0

72

1543

-89

0

62

-3

1

6453

78

c[0]

c[1]

c[2]

c[3]

c[11]

c[10]

c[9]

c[8]

c[7]

c[5]

c[4]

-89

1

ARRAYS

Arrays of structs, unions,

pointers, etc., are also allowed

Array indexes always

start at zero in C

79

ARRAYS

Two Dimensional Array

• Syntax

Data_Type array_Name[Row_Elements][Column_Elements];

• Example

int D[10][20]

– An array of ten rows, each of which is an array of

twenty integers

– D[0][0], D[0][1], …, D[1][0], D[1][1], …, D[9][19]

– Not used so often as arrays of pointers

80

ARRAYS

Two Dimensional Array

• Multiple subscripted arrays as

– Tables with rows and columns (m×n array)

– Like matrices: specify row, then column

81

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

a[1][3]

a[2][3]

Row subscript

Array name

Column subscript

ARRAYS

Multi Dimensional Arrays

• Array declarations read right-to-left

• Syntax

Data_Type array_Name[Size][Size][Size] … Size];

• Example

int a[10][3][2];

“an array of ten arrays of three arrays of two elements”

in memory

82

3

10

...

2 2 2 2 2 22 2 2

3 3

SPARSE MATRIX

A sparse matrix is a matrix that allows special techniques to

take advantage of the large number of zero elements.

Sparse matrix is very useful in engineering field, when solving

the partial differentiation equations.

if there are maximum zeros then the matrix is known as

sparse. matrix.

if there are few zeros then the matrix is dense matrix.

83

http://eigen.tuxfamily.org/api/TutorialSparse.html
http://eigen.tuxfamily.org/api/TutorialSparse.html
http://eigen.tuxfamily.org/api/TutorialSparse.html
http://eigen.tuxfamily.org/api/TutorialSparse.html

CATEGORIES OF SPARSE MATRIX

Sparse matrix has

N² sparse matrix and

Triangular sparse matrix

A matrix with zero entries that form a square or a bar is N² sparse

matrix.

A matrix with zero entries in its diagonal either in the upper or

lower side is known as triangular sparse matrix.

84

REPRESENTATION OF SPARSE MATRIX

Sparse matrix can be represented in

Tuple method

Array representation

Linked list representation

Only non zero elements are stored in any of the above

representations.

85

TUPLE METHOD

consider a matrix Tuple matrix is

[15 0 0 21

22 11 0 0

0 19 35 16]

This is N² sparse matrix

row column value

1 1 15

1 4 21

2 1 22

2 2 11

3 2 19

3 3 35

3 4 16

86

TUPLE METHOD

consider a matrix Tuple matrix is

[4 0 0 0

3 11 0 0

1 22 33 0

7 45 41 22]

This is triangular matrix

row column value

1 1 4

2 1 3

2 2 11

3 1 1

3 2 22

3 3 33

4 1 7

4 2 45

4 3 41

4 4 22

87

ARRAY METHOD

consider a matrix

[15 0 0 21

22 11 0 0

0 19 35 15]

This is triangular matrix

The elements are represented as follows

1,1,15 1,4,21 2,1,22 2,2,11 3,2,11 3,2,19 3,3,35 3,4,16

88

SPARSE MATRIX OPERATIONS USING

ARRAYS

Addition of two sparse matrix:

The function addmat() carries addition

The function display() displays the result.

Multiplication of two sparse matrix:

89

SPARSE MATRIX OPERATIONS USING

ARRAYS

This holds three functions

Sparseprod() stores the result.

Search_nonzero()checks whether an non zero element is present

or not.

Searchinb()searches an element whose row number is equal to

column number.

Transpose of a sparse matrix:

Transpose() is used to allocate memory to store the elements.

90

REPRESENTATION OF SPARSE MATRIX

THROUGH LINKED LIST

The elements of sparse matrix consist of three integers.

Its row number

Its column number

Its value

The head node consist of three parts.

Row number indicates the row to which the “head” node is
pointing to the component element.

The head also points to another head the node for the next row.

91

REPRESENTATION OF SPARSE MATRIX

THROUGH LINKED LIST

The create_list() function stores the information in the form of

linked list.

Insert() accepts a pointer to the special node .

show_list() reads and displays the data stored in the linked list.

92

REPRESENTATION OF SPARSE MATRIX

THROUGH LINKED LIST

93

REPRESENTATION OF SPARSE MATRIX

THROUGH LINKED LIST

94

REPRESENTATION OF SPARSE MATRIX

THROUGH LINKED LIST

95

UNIT-II

96

UNIT-2

STACKS

A stack is a linear structures in which addition or deletion of
elements takes place at the same end.

Or

The stack is an ordered list in which insertion and deletion is
done at the same end.

The end is called the top of stack.

Insertion and deletion cannot be done from the middle.

A technique of Last In First Out is followed.

Stack can be implemented by using both arrays and linked
lists.

STACKS

STACK ADT

Stacks can also be defined as Abstract Data Types(ADT).

A stack of elements of any particular type is a finite sequence

of elements of that type together with specific operations.

Therefore, stacks are called LIFO lists.

STACK OPERATIONS

The primitive operations on stack are

To create a stack.

To insert an element on to the stack.

To delete an element from the stack.

To check which element is at the top of the stack.

To check whether a stack is empty or not.

STACK OPERATIONS

If Stack is not full ,

then add a new node at one end of the stack

this operation is called PUSH.

If the stack is not empty

then delete the node at its top.

This operation is called POP.

PUSH and POP are functions of stack used to fulfill the stack

operations.

TOP is the pointer locating the stack current position.

ARRAY IMPLEMENTATION IN C

Stacks can be represented in the memory arrays by

maintaining a linear array STACK and a pointer variable TOP

which contains the location of top element.

The Variable MAXSTACK gives

maximum number of elements held by the stack.

The TOP=NULL /0 will indicate that the stack is empty.

The operation of adding and removing an item in the stack can
be implemented using the PUSH and POP functions.

Figure shows the array representation

Pictorial depiction of pushing elements

in stack

Pictorial depiction of popping elements

in stack

DISADVANTAGE OF STACK USING ARRAYS

The array representation of stack suffers from the drawbacks of

the array‟s size, that cannot be increased or decreased once it

is declared .

The space is wasted, if not used , or, there is shortage of space

if needed.

LINKED IMPLEMENTATION IN C

The stack can be implemented using linked lists.

The stack as linked list is represented as a single linked list.

Each node in the list contains data and a pointer to the next node.

Pictorial depiction of stack in linked

list

APPLICATION OF STACKS

Reversing a list.

Conversion of Infix to Postfix Expression.

Evaluation of Postfix Expression.

Conversion of Infix to Prefix Expression.

Evaluation of Prefix Expression.

CONVERSION OF INFIX TO POSTFIX

EXPRESSION

While evaluating an infix expression,

operations are executed according to the order as follows:

Brackets / Parentheses.

Exponentiation.

Multiplication / Division.

Addition / Subtraction.

the operators with the same priority(e.g. * and /) are

evaluated from left to right.

STEPS TO CONVERT INFIX TO POSTFIX

EXPRESSION

Step 1: The actual evaluation is determined by inserting

braces.

Step 2: Convert the expression in the innermost braces into

postfix notation by putting the operator after the operands.

Step 3: Repeat the above step (2) until the entire expression is

converted into postfix notation.

EXAMPLE OF INFIX TO POSTFIX

CONVERSION

RECURSION IMPLEMENTATION

If a procedure contains either a call statement to itself/to a

second procedure that may eventually result in a cell statement

back to the original procedure. Then such a procedure is called

as recursive procedure.

Recursion may be useful in developing algorithms for specific

problems. The stack may be used to implement recursive

procedures.

QUEUE

Queue is a linear list of elements in which deletion of an

element can take place only at one end,

called the front

and insertion can take place only at the other end,

called the rear.

The first element in a queue will be the first one to be removed

from the list.

Therefore, queues are called FIFO lists.

QUEUE

QUEUE ADT

The definition of an abstract data type clearly states that for a

data structure to be abstract, it should have the two

characteristics as follows.

There should be a particular way in which components are

related to each other.

A statement of the operations that can be performed on

element of the abstract data type should specified.

QUEUE OPERATIONS

Queue overflow.

Insertion of the element into the queue.

Queue underflow.

Deletion of the element from the queue.

Display of the queue.

ARRAY IMPLEMENTATION IN C

Array is a data structure that stores a fixed number of

elements.

One of the major limitations of an array is that its size should

be fixed prior to using it.

The size of the queue keeps on changing as the elements are

either removed from the front end or added at the rear end.

The solution of this problem is to declare an array with a

maximum size.

FIGURE TO REPRESENT A QUEUE USING

ARRAY

INSERTION AND DELETION

OPERATIONS IN QUEUE USING ARRAYS

We consider two variables front and rear which are declared to

point to both the ends of the queue.

The array begins with index therefore , the maximum number

of elements that can be stored can be consider as MAX-1(n-1).

If the number of elements are already stored in the queue is

reported to be full.

If the elements are added then the rear is incremented using the

pointer and new item is stored in the array.

ADDING ELEMENTS IN A QUEUE

The front and rear variables are initially set to -1, which

denotes that the queue is empty.

If the item being added is the first element then as the item is

added, .the queue front is set to 0 indicating that the queue is

now full.

DELETING ELEMENTS IN A QUEUE

For deleting elements from the queue, the function first checks

if there are any elements for deletion. If not , the queue is said

to be empty otherwise an element is deleted.

LINKED IMPLEMENTATION IN C

The linked list representation of a queue does not have any

restrictions on the number of elements it can hold.

The elements are allocated dynamically , hence it can grow as

long as there is sufficient memory available for dynamic

allocation.

APPLICATION OF QUEUE

Job scheduling.

Categorizing data.

Random number generation.

TYPES OF QUEUES

Circular queue.

De queue (double ended queue).

Priority queue.

CIRCULAR QUEUE

Circular queues are implemented in circular form rather than

in a straight line.

This form over come the problem of unutilized space in linear

queue implemented as an array.

In the array implementation there is a possibility that the queue

is reported full even though slots of the queue are empty.

CIRCULAR QUEUE

Suppose an array x of n elements is used to implement a

circular queue. If we go on adding elements to the queue we

may reach x[n-1].

In a queue array if the elements reach the end then it reports

the queue is full even some slots are empty but in circular

queue ,it would not report as full until all the slots are

occupied.

REPRESENTATION OF CIRCULAR

QUEUE

ADDING ELEMENTS INTO CIRCULAR

QUEUE

The conditions that are checked before inserting the elements :

If the front and rear are in adjacent locations(i.e. rare following

front)the message „Queue is full‟ is displayed.

If the value of front is -1 then it denotes that the queue is

empty and that the element to be added would be the first

element in the queue . The value of front and rear in such a

case are set to 0 and new element gets placed at 0Th position.

ADDING ELEMENTS INTO CIRCULAR

QUEUE

Some of the positions at the front end of the array might be

empty .

This happens if we have deleted some elements from the queue
, when the value of rear is MAX-1 and the value of front is
greater than 0.

In such a case value of rear is set to 0 and the element to be
added is added to this position.

The element is added at the rear position in case the value of
front is either equal to or greater than 0 and the value of rear is
less than MAX-1.

ADDING ELEMENTS IN CIRCULAR

QUEUE

DELETING ELEMENTS INTO CIRCULAR

QUEUE

The conditions that are checked before deleting the elements :

First it is checked whether the queue is empty or not . The

elements at the front position will be deleted.

Now , it is checked if the value of front is equal to rear . If it is,

then the element which will be deleted is the only element in

the queue .

If the element is removes, the queue will be empty and front

and rear are set to -1.

DELETING ELEMENTS IN CIRCULAR

QUEUE
On Deleting an element from the queue the value of front is set

to 0 if it is equal to MAX-1 otherwise front is simply

incremented by 1.

DOUBLE ENDED QUEUE

A deque is a linear list in which elements can be added or

removed at either end but not in the middle.

There are two variations of a deque an input restricted deque

and an output restricted deque which are intermediate between

deque and a regular queue.

An input restricted deque is a deque which allows insertions

at only one end of the list , but allows deletions at both ends of

the list

DOUBLE ENDED QUEUE

The output restricted deque is a deque which allows deletions

at only one end of the list but allows insertions at both ends of

the list.

The two possibilities that must consider while inserting

/deleting elements into the queue are:

When an attempt is made to insert an element into a deque

which is already full, an overflow occurs.

When an attempt is made to delete an element from a deque

which is empty, underflow occurs.

REPRESENTATION OF DEQUE

UNIT - 3

Trees

138

Definition of Tree

 A tree is a finite set of one or more nodes
such that:

 There is a specially designated node called
the root.

 The remaining nodes are partitioned into
n>=0 disjoint sets T1, ..., Tn, where each of
these sets is a tree.

 We call T1, ..., Tn the subtrees of the root.

139

A

T
0

T
4 T

5

T
1

T
3

T
2

T
6

Fig.Tree 1

Representation of Tree
Level

1

2

3

140

A

E

B C

F H

D

G

A

Fig.Tree 2

Terminology

141

ROOT:
This is the unique node in the tree to which further subtrees are
attached.in the above fig node A is a root node.

Degree of the node:
The total number of sub-trees attached to the node is called the
degree of the node.
Node degree
A 3
E 0

Leaves:
These are terminal nodes of the tree.The nodes with degree 0 are
always the leaf nodes.In above given tree E,F,G,C and H are the leaf
nodes.

Internal nodes:
The nodes other than the root node and the leaves are called the
internal nodes.Here B and D are internal nodes.

142

Parent nodes:
The node which is having further sub-trees(branches)is called the
parent node of those sub-trees. In the given example node B is parent
node of E,F and G nodes.

Predecessor:
While displaying the tree ,if some particular node occurs previous to
some other node then that node is called the predecessor of the other
node.In above figure E is a predecessor of the node B.

successor:
The node which occurs next to some other node is a successor node.In
above figure B is successor of F and G.

Level of the tree:
The root node is always considered at level 0,then its adjacent children
are supposed to be at level 1 and so on.In above figure the node A is at
level 0,the nodes B,C,D are at level 1,the nodes E,F,G,H are at level 2.

143

Height of the tree:
The maximum level is the height of the tree.Here height of the
tree is 3.The height of the tree is also called depth of the tree.

Degree of tree:
The maximum degree of the node is called the degree of the
tree.

The degree of a node is the number of subtrees of the node

– The degree of A is 3; the degree of C is 1.

 The node with degree 0 is a leaf or terminal
node.

 A node that has subtrees is the parent of the
roots of the subtrees.

 The roots of these subtrees are the children of
the node.

 Children of the same parent are siblings.

 The ancestors of a node are all the nodes
along the path from the root to the node. 144

Binary Trees

 A binary tree is a finite set of nodes that is
either empty or consists of a root and two
disjoint binary trees called the left subtree
and the right subtree.

 Any tree can be transformed into binary
tree.

– by left child-right sibling representation

 The left subtree and the right subtree are
distinguished. 145

Types Of Binary Trees

There are three types of binary trees

•Left skewed binary tree

•Right skewed binary tree

•Complete binary tree
146

Left skewed binary tree

• If the right subtree is missing in every node of a tree
we cal it as left skewed tree.

A

B

C

147

Right skewed binary tree

• If the left subtree is missing in every node of a
tree we call it as right subtree.

A

B

C

148

Complete binary tree
• The tree in which degree of each node is at the most two is

called a complete binary tree.In a complete binary tree there
is exactly one node at level 0,twonodes at level 1 and four
nodes at level 2 and so on.so we can say that a complete
binary tree of depth d will contains exactly 2l nodes at each
level l,where l is from 0 to d.

E

CB

D F G

A

149

Abstract Data Type Binary_Tree
structure Binary_Tree(abbreviated BinTree) is

objects: a finite set of nodes either empty or
consisting of a root node, left Binary_Tree,
and right Binary_Tree.

functions:

for all bt, bt1, bt2 BinTree, item element

Bintree Create()::= creates an empty binary tree

Boolean IsEmpty(bt)::= if (bt==empty binary
tree) return TRUE else return FALSE

150

BinTree MakeBT(bt1, item, bt2)::= return a binary
tree

whose left subtree is bt1, whose right subtree is
bt2,

and whose root node contains the data item
Bintree Lchild(bt)::= if (IsEmpty(bt)) return error

else return the left subtree of bt
element Data(bt)::= if (IsEmpty(bt)) return error

else return the data in the root node
of bt
Bintree Rchild(bt)::= if (IsEmpty(bt)) return error

else return the right subtree of bt
151

Maximum Number of Nodes in BT

 The maximum number of nodes on level i of a
binary tree is 2i-1, i>=1.

 The maximum nubmer of nodes in a binary tree
of depth k is 2k-1, k>=1.

Prove by induction.

2 2 11

1

i

i

k
k

152

Binary Tree Representation

•Sequential(Arrays) representation

•Linked representation

153

Array Representation of Binary Tree

This representation uses only a single linear
array tree as follows:

i)The root of the tree is stored in tree[0].

ii)if a node occupies tree[i],then its left child is
stored in tree[2*i+1],its right child is stored in
tree[2*i+2],and the parent is stored in tree[(i-
1)/2].

154

Sequential Representation

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A

B

C

D

E

F

G

H

I

A

B C

GE

I

D

H

F

.

.

.

.

.

.

.

.

155

55

44 66

50

22

33

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

55

44

66

33

50

22

Sequential Representation

156

Advantages of sequential representation

The only advantage with this type of representation is that
the direct access to any node can be possible and finding the
parent or left right children of any particular node is fast
because of the random access.

157

Disadvantages of sequential representation

• The major disadvantage with this type of
representation is wastage of memory.

• The maximum depth of the tree has to be
fixed.

• The insertions and deletion of any node in the
tree will be costlier as other nodes has to be
adjusted at appropraite positions so that the
meaning of binary tree can be preserved.

158

Linked Representation

struct node

{

int data;

struct node * left_child, *right_child;

};

dataleft_child right_child

data

left_child right_child

159

Linked Representation

55

50

22

33

6644

X X X

XX

X X

root

55,44,66,33,50,22
160

Advantages of Linked representation

•This representation is superior to our
representation as there is no wastage of memory.
•Insertions and deletions which are the most
common operations can be done without moving the
other nodes.

161

Disadvantages of linked representation

• This representation does not provide direct
access to a node and special algorithms are
required.

• This representation needs additional space in
each node for storing the left and right sub-
trees.

162

Full BT VS Complete BT

 A binary tree with n nodes and depth k is
complete iff its nodes correspond to the nodes
numbered from 1 to n in the full binary tree of
depth k.

 A full binary tree of depth k is a binary tree of
depth k having 2 -1 nodes, k>=0.

k

A

B C

GE

I

D

H

F

A

B C

GE

K

D

J

F

IH ONML

Full binary tree of depth 4Complete binary tree
163

Binary Tree Traversals
The process of going through a tree in such a way that each node is

visted once is tree traversal.several method are used for tree

traversal.the traversal in a binary tree involves three kinds of basic

activities such as:

Visiting the root

Traverse left subtree

Traverse right subtree

164

We will use some notations to traverse a given binary
tree as follows:

L means move to the Left child.

R means move to the Right child.

D means the root/parent node.

The only difference among the methods is the order
in which these three operations are performed.

There are three standard ways of traversing a non
empty binary tree namely :

Preorder

Inorder

Postorder 165

Preorder(also known as depth-first order)

1.Visit the root(D)

2.Traverse the left subtree in preorder(L)

3.Traverse the right subtree in preorder(R)

Print 1st

Print 2nd

Print 3rd

A-B-C-D-E is the preorder traversal of the
above figure.

A

B D

EC

Print 4th

Print at the last

166

Inorder(also known as symmetric order)

1.Traverse the left subtree in Inorder(L)

2.Visit the root(D)

3.Traverse the right subtree in Inorder(R)

Print 3rd

Print 2nd

Print 1st

C-B-A-D-E is the Inorder traversal of the above
figure.

A

B D

EC

Print 4th

Print at the last

167

Postorder

1.Traverse the left subtree in postorder(L)

2.Traverse the right subtree in postorder(R)

3.Visit the root(D)

Print at the last

Print 3rd

Print 1st

C-D-B-E-A is the postorder traversal of the
above figure.

A

B D

EC

Print 4th

Print 2nd

168

Binary tree traversals
A

B C

GE

I

D

H

F

K
J

A

B C

GE

I

D

H

F

J

FIG(a) FIG(b)

Preorder:ABDHIECFJKG preorder :ABDHIEJCFG
Inorder:HDIBEAJFKCG inorder: HDIBJEAFCG
Postorder:HIDEBJKFGCA postorder:HIDJEBFGCA

169

Arithmetic Expression Using BT

+

*

A

*

/

E

D

C

B

inorder traversal
A / B * C * D + E
infix expression
preorder traversal
+ * * / A B C D E
prefix expression
postorder traversal
A B / C * D * E +
postfix expression
level order traversal
+ * E * D / C A B

170

Inorder Traversal (recursive version)

void inorder(tree_pointer ptr)

/* inorder tree traversal */

{

if (ptr) {

inorder(ptr->left_child);

printf(“%d”, ptr->data);

indorder(ptr->right_child);

}

}

A / B * C * D + E

171

Preorder Traversal (recursive version)

void preorder(tree_pointer ptr)

/* preorder tree traversal */

{

if (ptr) {

printf(“%d”, ptr->data);

preorder(ptr->left_child);

predorder(ptr->right_child);

}

}

+ * * / A B C D E

172

Postorder Traversal (recursive version)

void postorder(tree_pointer ptr)

/* postorder tree traversal */

{

if (ptr) {

postorder(ptr->left_child);

postdorder(ptr->right_child);

printf(“%d”, ptr->data);

}

}

A B / C * D * E +

173

Iterative Inorder Traversal
(using stack)

void iter_inorder(tree_pointer node)

{

int top= -1; /* initialize stack */

tree_pointer stack[MAX_STACK_SIZE];

for (;;) {

for (; node; node=node->left_child)

add(&top, node);/* add to stack */

node= delete(&top);

/* delete from stack */

if (!node) break; /* empty stack */

printf(“%D”, node->data);

node = node->right_child;

}

} O(n)
174

Trace Operations of Inorder Traversal

Call of inorder Value in root Action Call of inorder Value in root Action

1 + 11 C

2 * 12 NULL

3 * 11 C printf

4 / 13 NULL

5 A 2 * printf

6 NULL 14 D

5 A printf 15 NULL

7 NULL 14 D printf

4 / printf 16 NULL

8 B 1 + printf

9 NULL 17 E

8 B printf 18 NULL

10 NULL 17 E printf

3 * printf 19 NULL

175

Level Order Traversal
(using queue)

void level_order(tree_pointer ptr)

/* level order tree traversal */

{

int front = rear = 0;

tree_pointer queue[MAX_QUEUE_SIZE];

if (!ptr) return; /* empty queue */

addq(front, &rear, ptr);

for (;;) {

ptr = deleteq(&front, rear);

176

if (ptr) {

printf(“%d”, ptr->data);

if (ptr->left_child)

addq(front, &rear,

ptr->left_child);

if (ptr->right_child)

addq(front, &rear,

ptr->right_child);

}

else break;

}

}
+ * E * D / C A B

177

Copying Binary Trees
tree_poointer copy(tree_pointer original)

{

tree_pointer temp;

if (original) {

temp=(tree_pointer) malloc(sizeof(node));

if (IS_FULL(temp)) {

fprintf(stderr, “the memory is full\n”);

exit(1);

}

temp->left_child=copy(original->left_child);

temp->right_child=copy(original->right_child);

temp->data=original->data;

return temp;

}

return NULL;

}

postorder

178

void post_order_eval(tree_pointer node)
{

/* modified post order traversal to evaluate a propositional
calculus tree */

if (node) {
post_order_eval(node->left_child);

post_order_eval(node->right_child);
switch(node->data) {

case not: node->value =
!node->right_child->value;

break;

Post-order-eval function

179

case and: node->value =
node->right_child->value &&
node->left_child->value;
break;

case or: node->value =
node->right_child->value | |
node->left_child->value;
break;

case true: node->value = TRUE;
break;

case false: node->value = FALSE;
}

}
}

180

181

Threaded Binary Trees
 Two many null pointers in current representation

of binary trees
n: number of nodes
number of non-null links: n-1
total links: 2n
null links: 2n-(n-1)=n+1

 Replace these null pointers with some useful
“threads”.

Threaded Binary Trees (Continued)

182

If ptr->left_child is null,
replace it with a pointer to the node that would be
visited before ptr in an inorder traversal

If ptr->right_child is null,
replace it with a pointer to the node that would be
visited after ptr in an inorder traversal

183

A Threaded Binary Tree

A

B C

GE

I

D

H

F

root

dangling

dangling

inorder traversal:
H, D, I, B, E, A, F, C, G

TRUE FALSE

Data Structures for Threaded BT

typedef struct threaded_tree *threaded_pointer;

typedef struct threaded_tree {

short int left_thread;

threaded_pointer left_child;

char data;

threaded_pointer right_child;

short int right_thread; };

left_thread left_child data right_child right_thread

FALSE: childTRUE: thread

184

185

Memory Representation of A Threaded BT

f f--

f fA

f fCf fB

t tE t tF t tGf fD

t tIt tH

root

186

Next Node in Threaded BT

threaded_pointer insucc(threaded_pointer

tree)

{

threaded_pointer temp;

temp = tree->right_child;

if (!tree->right_thread)

while (!temp->left_thread)

temp = temp->left_child;

return temp;

}

187

Inorder Traversal of Threaded BT

void tinorder(threaded_pointer tree)

{

/* traverse the threaded binary tree

inorder */

threaded_pointer temp = tree;

for (;;) {

temp = insucc(temp);

if (temp==tree) break;

printf(“%3c”, temp->data);

}

}
O(n)(timecomplexity)

188

Inserting Nodes into Threaded BTs

 Insert child as the right child of node parent

– change parent->right_thread to FALSE

– set child->left_thread and child->right_thread
to TRUE

– set child->left_child to point to parent

– set child->right_child to parent->right_child

– change parent->right_child to point to child

189

Examples

root

parent

A

B

C D
child

root

parent

A

B

C D
child

empty

Insert a node D as a right child of B.

(1)

(2)

(3)

*Figure 5.24: Insertion of child as a right child of parent in a threaded binary tree (p.217)

nonempty

(1)

(3)

(4)

(2)

190

191

Right Insertion in Threaded BTs

void insert_right(threaded_pointer parent,

threaded_pointer child)

{

threaded_pointer temp;

child->right_child = parent->right_child;

child->right_thread = parent->right_thread;

child->left_child = parent; case (a)

child->left_thread = TRUE;

parent->right_child = child;

parent->right_thread = FALSE;

if (!child->right_thread) { case (b)
temp = insucc(child);

temp->left_child = child;

}

}

(1)

(2)

(3)

(4)

192

Heap
 A max tree is a tree in which the key value in

each node is no smaller than the key values in
its children. A max heap is a complete binary
tree that is also a max tree.

 A min tree is a tree in which the key value in
each node is no larger than the key values in
its children. A min heap is a complete binary
tree that is also a min tree.

 Operations on heaps

– creation of an empty heap

– insertion of a new element into the heap;

– deletion of the largest element from the heap

Sample max heaps

[4]

14

12 7

810 6

9

6 3

5

30

25

[1]

[2] [3]

[5] [6]

[1]

[2] [3]

[4]

[1]

[2]

Property:
The root of max heap contains
the largest .

193

2

7 4

810 6

10

20 83

50

11

21

[1]

[2] [3]

[5] [6]

[1]

[2] [3]

[4]

[1]

[2]

[4]

Sample min heaps

Property:
The root of min heap contains
the smallest.

194

195

ADT for Max Heap
structure MaxHeap
objects: a complete binary tree of n > 0 elements organized so that

the value in each node is at least as large as those in its children
functions:
for all heap belong to MaxHeap, item belong to Element, n,
max_size belong to integer

MaxHeap Create(max_size)::= create an empty heap that can
hold a maximum of max_size elements

Boolean HeapFull(heap, n)::= if (n==max_size) return TRUE
else return FALSE

MaxHeap Insert(heap, item, n)::= if (!HeapFull(heap,n)) insert
item into heap and return the resulting heap

else return error
Boolean HeapEmpty(heap, n)::= if (n>0) return FALSE

else return TRUE
Element Delete(heap,n)::= if (!HeapEmpty(heap,n)) return one

instance of the largest element in the heap
and remove it from the heap

else return error

196

Example of Insertion to Max Heap

20

15 2

14 10

initial location of new node

21

15 20

14 10 2

insert 21 into heap

20

15 5

14 10 2

insert 5 into heap

197

Insertion into a Max Heap

void insert_max_heap(element item, int *n)

{

int i;

if (HEAP_FULL(*n)) {

fprintf(stderr, “the heap is full.\n”);

exit(1);

}

i = ++(*n);

while ((i!=1)&&(item.key>heap[i/2].key)) {

heap[i] = heap[i/2];

i /= 2;

}

heap[i]= item;

}

2k-1=n ==> k=log2(n+1)

O(log2n)

198

Example of Deletion from Max Heap

20

remove

15 2

14 10

10

15 2

14

15

14 2

10

199

Deletion from a Max Heap
element delete_max_heap(int *n)

{

int parent, child;

element item, temp;

if (HEAP_EMPTY(*n)) {

fprintf(stderr, “The heap is empty\n”);

exit(1);

}

/* save value of the element with the
highest key */

item = heap[1];

/* use last element in heap to adjust heap */

temp = heap[(*n)--];

parent = 1;

child = 2;

200

while (child <= *n) {
/* find the larger child of the current

parent */
if ((child < *n)&&

(heap[child].key<heap[child+1].key))
child++;

if (temp.key >= heap[child].key) break;
/* move to the next lower level */
heap[parent] = heap[child];
child *= 2;

}
heap[parent] = temp;
return item;

}

Graphs

201

What is a graph?

• A data structure that consists of a set of nodes
(vertices) and a set of edges that relate the nodes
to each other

• The set of edges describes relationships among
the vertices

202

Formal definition of graphs

• A graph G is defined as follows:

G=(V,E)

V(G): a finite, nonempty set of vertices

E(G): a set of edges (pairs of vertices)

203

Directed vs. undirected graphs

• When the edges in a graph have no
direction, the graph is called undirected

204

Directed vs. undirected graphs (cont.)

• When the edges in a graph have a direction,
the graph is called directed (or digraph)

E(Graph2) = {(1,3) (3,1) (5,9) (9,11) (5,7)

Warning: if the graph is

directed, the order of the

vertices in each edge is

important !!

205

Trees vs graphs

• Trees are special cases of graphs!!

206

Graph terminology

• Adjacent nodes: two nodes are adjacent if
they are connected by an edge

• Path: a sequence of vertices that connect two
nodes in a graph

• Complete graph: a graph in which every vertex
is directly connected to every other vertex

5 is adjacent to 7
7 is adjacent from 5

207

Graph terminology (cont.)

• What is the number of edges in a complete
directed graph with N vertices?

N * (N-1)

2()O N

208

Graph terminology (cont.)

• What is the number of edges in a complete
undirected graph with N vertices?

N * (N-1) / 2

2()O N

209

Graph terminology (cont.)

• Weighted graph: a graph in which each edge
carries a value

210

Graph implementation

• Array-based implementation

– A 1D array is used to represent the vertices

– A 2D array (adjacency matrix) is used to
represent the edges

211

Array-based implementation

212

Graph implementation (cont.)

• Linked-list implementation

– A 1D array is used to represent the vertices

– A list is used for each vertex v which contains the

vertices which are adjacent from v (adjacency list)

213

Linked-list implementation

214

Adjacency matrix vs. adjacency list
representation

• Adjacency matrix
– Good for dense graphs --|E|~O(|V|2)

– Memory requirements: O(|V| + |E|) = O(|V|2)

– Connectivity between two vertices can be tested
quickly

• Adjacency list
– Good for sparse graphs -- |E|~O(|V|)

– Memory requirements: O(|V| + |E|)=O(|V|)

– Vertices adjacent to another vertex can be found
quickly

215

Depth-First-Search (DFS)

• What is the idea behind DFS?

– Travel as far as you can down a path

– Back up as little as possible when you reach a
"dead end" (i.e., next vertex has been "marked"
or there is no next vertex)

• DFS can be implemented efficiently using a
stack

216

Depth-First-Search (DFS) (cont.)

Set found to false
stack.Push(startVertex)
DO
stack.Pop(vertex)
IF vertex == endVertex
Set found to true

ELSE
Push all adjacent vertices onto stack

WHILE !stack.IsEmpty() AND !found

IF(!found)
Write "Path does not exist"

217

start end

(initialization)

218

219

220

template <class ItemType>

void DepthFirstSearch(GraphType<VertexType> graph, VertexType
startVertex, VertexType endVertex)

{

StackType<VertexType> stack;

QueType<VertexType> vertexQ;

bool found = false;

VertexType vertex;

VertexType item;

graph.ClearMarks();

stack.Push(startVertex);

do {

stack.Pop(vertex);

if(vertex == endVertex)

found = true;

(continues)

221

else {

if(!graph.IsMarked(vertex)) {

graph.MarkVertex(vertex);

graph.GetToVertices(vertex, vertexQ);

while(!vertexQ.IsEmpty()) {

vertexQ.Dequeue(item);

if(!graph.IsMarked(item))

stack.Push(item);

}

}

} while(!stack.IsEmpty() && !found);

if(!found)

cout << "Path not found" << endl;

}
(continues)

222

template<class VertexType>

void GraphType<VertexType>::GetToVertices(VertexType vertex,

QueTye<VertexType>& adjvertexQ)

{

int fromIndex;

int toIndex;

fromIndex = IndexIs(vertices, vertex);

for(toIndex = 0; toIndex < numVertices; toIndex++)

if(edges[fromIndex][toIndex] != NULL_EDGE)

adjvertexQ.Enqueue(vertices[toIndex]);

}

223

Breadth-First-Searching (BFS)

• What is the idea behind BFS?

– Look at all possible paths at the same depth
before you go at a deeper level

– Back up as far as possible when you reach a
"dead end" (i.e., next vertex has been
"marked" or there is no next vertex)

224

Breadth-First-Searching (BFS) (cont.)

• BFS can be implemented efficiently using a queue

Set found to false
queue.Enqueue(startVertex)
DO
queue.Dequeue(vertex)
IF vertex == endVertex
Set found to true

ELSE
Enqueue all adjacent vertices onto queue

WHILE !queue.IsEmpty() AND !found

• Should we mark a vertex when it is enqueued or
when it is dequeued ?

IF(!found)
Write "Path does not exist"

225

start end

(initialization)

226

next:

227

228

template<class VertexType>
void BreadthFirtsSearch(GraphType<VertexType> graph,

VertexType startVertex, VertexType endVertex);
{
QueType<VertexType> queue;
QueType<VertexType> vertexQ;//

bool found = false;
VertexType vertex;
VertexType item;

graph.ClearMarks();
queue.Enqueue(startVertex);
do {
queue.Dequeue(vertex);
if(vertex == endVertex)
found = true;

(continues)

229

else {

if(!graph.IsMarked(vertex)) {

graph.MarkVertex(vertex);

graph.GetToVertices(vertex, vertexQ);

while(!vertxQ.IsEmpty()) {

vertexQ.Dequeue(item);

if(!graph.IsMarked(item))

queue.Enqueue(item);

}

}

}

} while (!queue.IsEmpty() && !found);

if(!found)

cout << "Path not found" << endl;

}

230

Single-source shortest-path problem

• There are multiple paths from a source
vertex to a destination vertex

• Shortest path: the path whose total weight
(i.e., sum of edge weights) is minimum

• Examples:
– Austin->Houston->Atlanta->Washington: 1560

miles

– Austin->Dallas->Denver->Atlanta->Washington:
2980 miles

231

Single-source shortest-path problem
(cont.)

• Common algorithms: Dijkstra's algorithm,
Bellman-Ford algorithm

• BFS can be used to solve the shortest graph
problem when the graph is weightless or all
the weights are the same

(mark vertices before Enqueue)

232

UNIT- 4

233

UNIT-4
Sorting and Searching

"There's nothing in your head the sorting hat
can't see. So try me on and I will tell you where
you ought to be."

-The Sorting Hat, Harry Potter and the
Sorcerer's Stone

Sorting and Searching

• Fundamental problems in computer science
and programming

• Sorting done to make searching easier

• Multiple different algorithms to solve the
same problem
– How do we know which algorithm is "better"?

• Look at searching first

• Examples will use arrays of ints to illustrate
algorithms

Searching

Searching

• Given a list of data find the location of a
particular value or report that value is not
present

• linear search
– intuitive approach
– start at first item
– is it the one I am looking for?
– if not go to next item
– repeat until found or all items checked

• If items not sorted or unsortable this approach is
necessary

Linear Search/* pre: list != null

post: return the index of the first occurrence

of target in list or -1 if target not present in

list

*/

public int linearSearch(int[] list, int target) {

for(int i = 0; i < list.length; i++)

if(list[i] == target)

return i;

return -1;

}

Linear Search, Generic
/* pre: list != null, target != null

post: return the index of the first occurrence

of target in list or -1 if target not present in

list

*/

public int linearSearch(Object[] list, Object target) {

for(int i = 0; i < list.length; i++)

if(list[i] != null && list[i].equals(target))

return i;

return -1;

}

T(N)? Big O? Best case, worst case, average case?

Attendance Question 1

• What is the average case Big O of linear search
in an array with N items, if an item is present?

A. O(N)

B. O(N2)

C. O(1)

D. O(logN)

E. O(NlogN)

Searching in a Sorted List• If items are sorted then we can divide and conquer

• dividing your work in half with each step
– generally a good thing

• The Binary Search on List in Ascending order
– Start at middle of list

– is that the item?

– If not is it less than or greater than the item?

– less than, move to second half of list

– greater than, move to first half of list

– repeat until found or sub list size = 0

Binary Search
list

low item middle item high item
Is middle item what we are looking for? If not is it
more or less than the target item? (Assume lower)

list

low middle high
item item item

and so forth…

Binary Search in Action

2 3 5 7 11 13 17 19 23 29 31 37 41 4743 53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

public static int bsearch(int[] list, int target)

{ int result = -1;

int low = 0;

int high = list.length - 1;

int mid;

while(result == -1 && low <= high)

{ mid = low + ((high - low) / 2);

if(list[mid] == target)

result = mid;

else if(list[mid] < target)

low = mid + 1;

else

high = mid - 1;

}

return result;

}

// mid = (low + high) / 2; // may overflow!!!

// or mid = (low + high) >>> 1; using bitwise op

Trace When Key == 3
Trace When Key == 30

Variables of Interest?

Attendance Question 2
What is the worst case Big O of binary search in an array with N items, if an item is
present?
A. O(N)
B. O(N2)
C. O(1)
D. O(logN)
E. O(NlogN)

Generic Binary Search
public static int bsearch(Comparable[] list, Comparable target)

{ int result = -1;

int low = 0;

int high = list.length - 1;

int mid;

while(result == -1 && low <= high)

{ mid = low + ((high - low) / 2);

if(target.equals(list[mid]))

result = mid;

else if(target.compareTo(list[mid]) > 0)

low = mid + 1;

else

high = mid - 1;

}

return result;

}

Recursive Binary Searchpublic static int bsearch(int[] list, int target){

return bsearch(list, target, 0, list.length – 1);

}

public static int bsearch(int[] list, int target,

int first, int last){

if(first <= last){

int mid = low + ((high - low) / 2);

if(list[mid] == target)

return mid;

else if(list[mid] > target)

return bsearch(list, target, first, mid – 1);

else

return bsearch(list, target, mid + 1, last);

}

return -1;

}

Other Searching Algorithms

• Interpolation Search
– more like what people really do

• Indexed Searching

• Binary Search Trees

• Hash Table Searching

• Grover's Algorithm (Waiting for
quantum computers to be built)

• best-first

• A*

Sorting

Sorting Fun
Why Not Bubble Sort?

http://www.youtube.com/watch?v=k4RRi_ntQc8

Sorting• A fundamental application for computers

• Done to make finding data (searching) faster

• Many different algorithms for sorting

• One of the difficulties with sorting is working
with a fixed size storage container (array)
– if resize, that is expensive (slow)

• The "simple" sorts run in quadratic time O(N2)
– bubble sort

– selection sort

– insertion sort

Stable Sorting

• A property of sorts
• If a sort guarantees the relative order of equal

items stays the same then it is a stable sort
• [71, 6, 72, 5, 1, 2, 73, -5]

– subscripts added for clarity

• [-5, 1, 2, 5, 6, 71, 72, 73]
– result of stable sort

• Real world example:
– sort a table in Wikipedia by one criteria, then another
– sort by country, then by major wins

http://en.wikipedia.org/wiki/Golfers_with_most_PGA_Tour_wins

Selection sort
• Algorithm

– Search through the list and find the smallest element

– swap the smallest element with the first element

– repeat starting at second element and find the second
smallest element

public static void selectionSort(int[] list)

{ int min;

int temp;

for(int i = 0; i < list.length - 1; i++) {

min = i;

for(int j = i + 1; j < list.length; j++)

if(list[j] < list[min])

min = j;

temp = list[i];

list[i] = list[min];

list[min] = temp;

}

}

Selection Sort in Practice

What is the T(N), actual number of statements executed, of the selection sort
code, given a list of N elements? What is the Big O?

44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25

Generic Selection Sort
public void selectionSort(Comparable[] list)

{ int min; Comparable temp;

for(int i = 0; i < list.length - 1; i++) {

{ min = i;

for(int j = i + 1; j < list.length; j++)

if(list[min].compareTo(list[j]) > 0)

min = j;

temp = list[i];

list[i] = list[min];

list[min] = temp;

}

}

Best case, worst case, average case Big O?

Attendance Question 3
Is selection sort always stable?
A. Yes
B. No

Insertion Sort

• Another of the O(N^2) sorts

• The first item is sorted

• Compare the second item to the first

– if smaller swap

• Third item, compare to item next to it

– need to swap

– after swap compare again

• And so forth…

Insertion Sort Code
public void insertionSort(int[] list)

{ int temp, j;

for(int i = 1; i < list.length; i++)

{ temp = list[i];

j = i;

while(j > 0 && temp < list[j - 1])

{ // swap elements

list[j] = list[j - 1];

list[j - 1] = temp;

j--;

}

}

}

Best case, worst case, average case Big O?

Attendance Question 4

• Is the version of insertion sort shown always
stable?

A. Yes

B. No

Comparing Algorithms

• Which algorithm do you think will be faster
given random data, selection sort or insertion
sort?

• Why?

Sub Quadratic
Sorting Algorithms

Sub Quadratic means having a Big O
better than O(N2)

ShellSort

• Created by Donald Shell in 1959

• Wanted to stop moving data small distances
(in the case of insertion sort and bubble sort)
and stop making swaps that are not helpful (in
the case of selection sort)

• Start with sub arrays created by looking at
data that is far apart and then reduce the gap
size

ShellSort in practice46 2 83 41 102 5 17 31 64 49 18
Gap of five. Sort sub array with 46, 5, and 18
5 2 83 41 102 18 17 31 64 49 46
Gap still five. Sort sub array with 2 and 17
5 2 83 41 102 18 17 31 64 49 46
Gap still five. Sort sub array with 83 and 31
5 2 31 41 102 18 17 83 64 49 46
Gap still five Sort sub array with 41 and 64
5 2 31 41 102 18 17 83 64 49 46
Gap still five. Sort sub array with 102 and 49
5 2 31 41 49 18 17 83 64 102 46
Continued on next slide:

Completed Shellsort
5 2 31 41 49 18 17 83 64 102 46
Gap now 2: Sort sub array with 5 31 49 17 64 46
5 2 17 41 31 18 46 83 49 102 64
Gap still 2: Sort sub array with 2 41 18 83 102
5 2 17 18 31 41 46 83 49 102 64
Gap of 1 (Insertion sort)
2 5 17 18 31 41 46 49 64 83 102

Array sorted

Shellsort on Another Data Set
44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Initial gap = length / 2 = 16 / 2 = 8
initial sub arrays indices:

{0, 8}, {1, 9}, {2, 10}, {3, 11}, {4, 12}, {5, 13}, {6, 14}, {7, 15}
next gap = 8 / 2 = 4
{0, 4, 8, 12}, {1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}
next gap = 4 / 2 = 2
{0, 2, 4, 6, 8, 10, 12, 14}, {1, 3, 5, 7, 9, 11, 13, 15}
final gap = 2 / 2 = 1

ShellSort Codepublic static void shellsort(Comparable[] list)

{ Comparable temp; boolean swap;

for(int gap = list.length / 2; gap > 0; gap /= 2)

for(int i = gap; i < list.length; i++)

{ Comparable tmp = list[i];

int j = i;

for(; j >= gap &&

tmp.compareTo(list[j - gap]) < 0;

j -= gap)

list[j] = list[j - gap];

list[j] = tmp;

}

}

Comparison of Various Sorts
Num Items Selection Insertion Shellsort Quicksort

1000 16 5 0 0

2000 59 49 0 6

4000 271 175 6 5

8000 1056 686 11 0

16000 4203 2754 32 11

32000 16852 11039 37 45

64000 expected? expected? 100 68

128000 expected? expected? 257 158

256000 expected? expected? 543 335

512000 expected? expected? 1210 722

1024000 expected? expected? 2522 1550

times in milliseconds

Quicksort
• Invented by C.A.R. (Tony) Hoare

• A divide and conquer approach
that uses recursion

1. If the list has 0 or 1 elements it is sorted

2. otherwise, pick any element p in the list. This is called
the pivot value

3. Partition the list minus the pivot into two sub lists
according to values less than or greater than the pivot.
(equal values go to either)

4. return the quicksort of the first list followed by the
quicksort of the second list

Quicksort in Action
39 23 17 90 33 72 46 79 11 52 64 5 71
Pick middle element as pivot: 46
Partition list
23 17 5 33 39 11 46 79 72 52 64 90 71
quick sort the less than list
Pick middle element as pivot: 33
23 17 5 11 33 39
quicksort the less than list, pivot now 5
{} 5 23 17 11
quicksort the less than list, base case
quicksort the greater than list
Pick middle element as pivot: 17
and so on….

Quicksort on Another Data Set
44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Big O of Quicksort?

public static void swapReferences(Object[] a, int index1, int index2)
{ Object tmp = a[index1];

a[index1] = a[index2];
a[index2] = tmp;

}

public void quicksort(Comparable[] list, int start, int stop)
{ if(start >= stop)

return; //base case list of 0 or 1 elements

int pivotIndex = (start + stop) / 2;

// Place pivot at start position
swapReferences(list, pivotIndex, start);
Comparable pivot = list[start];

// Begin partitioning
int i, j = start;

// from first to j are elements less than or equal to pivot
// from j to i are elements greater than pivot
// elements beyond i have not been checked yet
for(i = start + 1; i <= stop; i++)
{ //is current element less than or equal to pivot

if(list[i].compareTo(pivot) <= 0)
{ // if so move it to the less than or equal portion

j++;
swapReferences(list, i, j);

}
}

//restore pivot to correct spot
swapReferences(list, start, j);
quicksort(list, start, j - 1); // Sort small elements
quicksort(list, j + 1, stop); // Sort large elements

}

Attendance Question 5

• What is the best case and worst case Big O of
quicksort?
Best Worst

A. O(NlogN) O(N2)

B. O(N2) O(N2)

C. O(N2) O(N!)

D. O(NlogN) O(NlogN)

E. O(N) O(NlogN)

Quicksort Caveats

• Average case Big O?

• Worst case Big O?

• Coding the partition step is usually the hardest
part

Attendance Question 6

• You have 1,000,000 items that you will be
searching. How many searches need to be
performed before the data is changed to make
sorting worthwhile?

A. 10

B. 40

C. 1,000

D. 10,000

E. 500,000

Merge Sort Algorithm

1. If a list has 1 element or 0
elements it is sorted

2. If a list has more than 2 split into
into 2 separate lists

3. Perform this algorithm on each of
those smaller lists

4. Take the 2 sorted lists and merge
them together

Don Knuth cites John von Neumann as the creator
of this algorithm

Merge Sort
When implementing
one temporary array
is used instead of
multiple temporary
arrays.

Why?

Merge Sort code/**

* perform a merge sort on the data in c

* @param c c != null, all elements of c

* are the same data type

*/

public static void mergeSort(Comparable[] c)

{ Comparable[] temp = new Comparable[c.length];

sort(c, temp, 0, c.length - 1);

}

private static void sort(Comparable[] list, Comparable[] temp,

int low, int high)

{ if(low < high){

int center = (low + high) / 2;

sort(list, temp, low, center);

sort(list, temp, center + 1, high);

merge(list, temp, low, center + 1, high);

}

}

Merge Sort Code
private static void merge(Comparable[] list, Comparable[] temp,

int leftPos, int rightPos, int rightEnd){

int leftEnd = rightPos - 1;

int tempPos = leftPos;

int numElements = rightEnd - leftPos + 1;

//main loop

while(leftPos <= leftEnd && rightPos <= rightEnd){

if(list[leftPos].compareTo(list[rightPos]) <= 0){

temp[tempPos] = list[leftPos];

leftPos++;

}

else{

temp[tempPos] = list[rightPos];

rightPos++;

}

tempPos++;

}

//copy rest of left half

while(leftPos <= leftEnd){

temp[tempPos] = list[leftPos];

tempPos++;

leftPos++;

}

//copy rest of right half

while(rightPos <= rightEnd){

temp[tempPos] = list[rightPos];

tempPos++;

rightPos++;

}

//Copy temp back into list

for(int i = 0; i < numElements; i++, rightEnd--)

list[rightEnd] = temp[rightEnd];

}

Final Comments

• Language libraries often have sorting algorithms
in them
– Java Arrays and Collections classes

– C++ Standard Template Library

– Python sort and sorted functions

• Hybrid sorts
– when size of unsorted list or portion of array is small

use insertion sort, otherwise use
O(N log N) sort like Quicksort of Mergesort

• Many other sorting algorithms exist.

Hash tables

• Keys and values

• O(1) lookup

• Hash function

– Good v fast

• Clustering

• Databases

Selection sort :-(

• O(n2)

• Algorithm:

– Find the minimum value

– Swap with 1st position value

– Repeat with 2nd position down

Insertion sort :-)

• O(n2)

• O(1) space

• Great with small number of elements
(becomes relevant later)

• Algorithm:

– Move element from unsorted to sorted list

Bubble sort :-(

• O(n2)

• Algorithm:

– Iterate through each n, and sort with n+1 element

• Maybe go n-1 steps every iteration?

• Great for big numbers, bad for small

• Totally useless?

Merge sort :-)

• O(nlogn)

• Requires O(n) extra space

• Parallelizable

• Algorithm:

– Break list into 2 sublists

– Sort sublist

– Merge

Quick sort :-)

• Average O(nlogn), worst O(n2)

• O(n) extra space (can optimized for O(logn))

• Algorithm:
– pick a pivot

– put all x < pivot in less, all x > pivot in more

– Concat and recurse through less, pivot, and more

• Advantages also based on caching, registry (single
pivot comparison)

• Variations: use fat pivot

Linear search :-(

• O(n)

• Examines every item

Binary search :-)

• Requires a sorted list

• O(log n)

• Divide and conquer

Trees

• Almost like linked lists!

• Traverse: Pre-order v. Post-order v. In-order

• Node, edge, sibling/parent/child, leaf

Binary trees

• 0, 1, or 2 children per node

• Binary Search Tree: a binary tree where

node.left_child < node.value and

node.right_child >= node.value

Balanced binary

trees

• Minimizes the level of nodes

• Compared with “bad” binary tree?

• Advantages:

– Lookup, insertion, removal: O(log n)

• Disadvantages:

– Overhead to maintain balance

Heaps (binary)

• Complete: all leafs are at n or n-1, toward the
left

• Node.value >= child.value

• In binary min/max heap

– Insert = O(logn) .. add to bottom, bubble-up

– deleteMax = O(logn) .. Move last to root and
bubble-down

Heapsort

• O(nlogn)

• Algorithm:

– Build a heap

– deleteMax (or Min) repeatedly

• O(1) overhead

Why bother?

• Tries (say trees)

– Position determines the key

– Great for lots of short words

– Prefix matching

• But..

– Long strings..

– Complex algorithms

Chess!

• Minimax:

• Alpha-beta pruning - pick a bag!
– ordering

B: B1 B: B2 B: B3

A: A1 +3 -2 +2

A: A2 -1 0 +4

A: A3 -4 -3 +1

UNIT- 5

295

Comparision Between Binary Tree &
Binary Search Tree

* A binary search tree is a binary

tree in which it has atmost two

children, the key values in the left

node is less than the root and the

key values in the right node is

greater than the root.

* It doesn't have any order.

Note : * Every binary search tree is

a binary tree.

* All binary trees need not be a

binary search tree.

Example of Binary Search Tree

A binary search tree Not a binary search tree

Binary Search Trees
The same set of keys may have different BSTs

DECLARATION ROUTINE FOR BINARY

SEARCH TREE

Struct TreeNode

{

int Element ;

SearchTree Left;

SearchTree Right;

};

BST Operations

•The 3 basic BST operations are: search,

insert, and delete; and develop

algorithms for searches, insertion, and

deletion.

•Searches

• Insertion

• Deletion

Three BST search algorithms:

• Find the smallest node

• Find the largest node

• Find a requested node

303

Find : -

• Check whether the root is NULL if

so then return NULL.

• Otherwise, Check the value X with

the root node value (i.e. T data)

• (1) If X is equal to T data, return T.

• (2) If X is less than T data, Traverse

the left of T recursively.

• (3) If X is greater than T data,

traverse the right of T recursively.

ROUTINE FOR FIND OPERATION
Int Find (int X, SearchTree T)

{

If T = = NULL)

Return NULL ;

If (X < T Element)

return Find (X, T →left);

else

If (X > T→ Element)

return Find (X, T →Right);

else

return T; // returns the position of

the search element.

}

Find Min :

• This operation returns the

position of the smallest element

in the tree.

• To perform FindMin, start at the

root and go left as long as there is

a left child. The stopping point is

the smallest element.

RECURISVE ROUTINE FOR FINDMIN
int FindMin (SearchTree T)

{

if (T = = NULL);

return NULL ;

else if (T →left = = NULL)

return T;

else

return FindMin (T → left);

Example : - Root T

(a) T! = NULL and T→left!=NULL,

(b) (b) T! = NULL and T→left!=NULL,

Traverse left Traverse left until Min T

(c) Since Tleft is Null, return T as a minimum
element.

NON - RECURSIVE ROUTINE FOR FINDMIN

int FindMin (SearchTree T)

{

if (T! = NULL)

while (T →Left ! = NULL)

T = T →Left ;

return T;

}

RECURSIVE ROUTINE FOR FINDMAX

int FindMax (SearchTree T)

{

if (T = = NULL)

return NULL ;

else if (T →Right = = NULL)

return T;

else FindMax (T →Right);

}

Example :- Root T

(a) T! = NULL and T→Right!=NULL, (b) T! = NULL

and T→Right!=NULL,

Traverse Right Traverse Right

Max

(c) Since T Right is NULL, return T as a

Maximum element.

FindMax

•FindMax routine return the

position of largest elements in

the tree.

•To perform a FindMax, start at

the root and go right as long as

there is a right child.

•The stopping point is the

largest element.

RECURSIVE ROUTINE FOR FINDMAX

int FindMax (SearchTree T)

{

if (T = = NULL)

return NULL ;

else if (T →Right = = NULL)

return T;

else FindMax (T →Right);

}

Example :- Root T

(a) T! = NULL and T→Right!=NULL, (b) T! =

NULL and T→Right!=NULL,

Traverse Right Traverse Right Max

(c) Since T Right is NULL, return T as a

Maximum element.

NON - RECURSIVE ROUTINE FOR
FINDMAX

int FindMax (SearchTree T)

{

if (T! = NULL)

while (T Right ! = NULL)

T = T →Right ;

return T ;

}

Make Empty :-
This operation is mainly for initialization

when the programmer prefer to initialize

the first element as a one - node tree.
ROUTINE TO MAKE AN EMPTY TREE :-
SearchTree MakeEmpty (SearchTree T)

{

if (T! = NULL)

{

MakeEmpty (T left);

MakeEmpty (T Right);

free (T);

}

return NULL ;

}

Insert operation: -
To insert the element X into the tree,

• Check with the root node T

• If it is less than the root,

• Traverse the left subtree recursively

until it reaches the T left equals to

NULL. Then X is placed in T left.

• If X is greater than the root.

• Traverse the right subtree

recursively until it reaches the T

right equals to NULL. Then x is

placed in TRight.

ROUTINE TO INSERT INTO A BINARY

SEARCH TREE

SearchTree Insert (int X, searchTree T)

{

if (T = = NULL)

{

T = malloc (size of (Struct TreeNode));

if(T! = NULL)// First element is placed in

the root.

{

T →Element = X;

T→ left = NULL;

T →Right = NULL;

}} }

else

if (X < T →Element)

T left = Insert (X, T →left);

else

if (X > T →Element)

T Right = Insert (X, T →Right);

// Else X is in the tree already.

return T;

30

30 30

30

Delete operation:
• Deletion operation is the complex operation in the

Binary search tree. To delete an element,

consider the following three possibilities.

• CASE 1 Node with no children (Leaf node)

If the node is a leaf node, it can be deleted

immediately.

• CASE 2 : - Node with one child

If the node has one child, it can be deleted by

adjustingits parent pointer that points to its child

node

• Case 3 : Node with two children

It is difficult to delete a node which has two

children. The general strategy is to replace the

data of the node to be deleted with its smallest

data of the right subtree and recursively delete

that node.

DELETION ROUTINE FOR BINARY
SEARCH TREES

SearchTree Delete (int X, searchTree T)

{

int Tmpcell ;

if (T = = NULL)

Error ("Element not found");

else

if (X < T →Element) // Traverse towards left

T →Left = Delete (X, T Left);

else

if (X > T Element) // Traverse towards right

T →Right = Delete (X, T →Right);

// Found Element tobe deleted

else // Two children
if (T→ Left && T→ Right)
{ // Replace with smallest data in right subtree
Tmpcell = FindMin (T→ Right);
T →Element = Tmpcell Element ;
T →Right = Delete (T →Element; T →Right);
}
else {// one or zero children
Tmpcell = T;
if (T →Left = = NULL)
T = T→ Right;
else if (T→ Right = = NULL)
T = T →Left ;
free (TmpCell);
}
return T; }

Delete node from BST

(continued)Delete node from BST

27 27

27 27

AVL Trees

These are self-adjusting, height-balanced binary
search trees and are named after the inventors:
Adelson-Velskii and Landis.

Definition:

The height of a binary tree is the maximum
path length from the root to a leaf. A single-
node binary tree has height 0, and an empty
binary tree has height -1

• An AVL tree is a binary search tree in which every node
is height balanced, that is, the difference in the heights
of its two subtrees is at most 1.

• The balance factor of a node is the height of its right
subtree minus the height of its left subtree. An
equivalent definition, then, for an AVL tree is that it is a
binary search tree in which each node has a balance
factor of -1, 0, or +1.

• Note :balance factor of -1 means that the subtree is
left-heavy, and

• a balance factor of +1 means that the subtree is right-
heavy.

AVL Trees

These are self-adjusting, height-balanced
binary search trees and are named after the
inventors: Adelson-Velskii and Landis.

Definition:

The height of a binary tree is the maximum
path length from the root to a leaf. A single-
node AVLtree has height 0, and an empty
AVL tree has height -1

AVL Tree

Definition

• Binary Search tree.

• If T is a nonempty binary Search tree with TL

and TR as its left and right subtrees, then T is
an AVL tree iff

1. TL and TR are AVL trees, and

2. |hL – hR| 1 where hL and hR are the heights of
TL and TR, respectively

AVL Tree

Definition

• Binary tree.

• If T is a nonempty binary tree with TL and TR

as its left and right subtrees, then T is an AVL
tree iff

1. TL and TR are AVL trees, and

2. |hL – hR| 1 where hL and hR are the heights of
TL and TR, respectively

Balance Factor

• AVL trees are normally represented using the linked
representation

• To facilitate insertion and deletion, a balance factor (bf) is
associated with each node.

• The balance factor bf(x) of a node x is defined as
height(xleftChild) – height(xrightChild)

• Balance factor of each node in an AVL tree must be –1, 0,
or 1

Eg with balance factors

7

3 12

2 10 20

9 11

00

0 0
0

11

-1
30

22 62

44 95

51 97

5

-1

0
0

-10
1

1 0

Not an AVL TREE

100

70
150

130 180
30

80

140
10 40

36

1

0

0

1

-1

0

2
1

-1
0

0

Inserting into an AVL Search Trees

• If we insert an element into an AVL search tree, the result may not
be an AVL tree

• That is, the tree may become unbalanced

• If the tree becomes unbalanced, we must adjust the tree to
restore balance - this adjustment is called rotation.

• There are Four Models of rotations:

• There are four models about the operation of AVL Tree:

1. LL: new node is in the left subtree of the left subtree of A

2. LR: new node is in the right subtree of the left subtree of A

3. RR: new node is in the right subtree of the right subtree of A

4. RL: new node is in the left subtree of the right subtree of A

Rotation

Definition

• To switch children and parents among two or
three adjacent nodes to restore balance of a
tree.

• A rotation may change the depth of some
nodes, but does not change their relative
ordering.

Single and Double Rotations

• Single rotations: the transformations done to correct LL and
RR imbalances

• Double rotations: the transformations done to correct LR
and RL imbalances

• The transformation to correct LR imbalance can be achieved
by an RR rotation followed by an LL rotation

• The transformation to correct RL imbalance can be achieved
by an LL rotation followed by an RR rotation

Left Rotation
Definition

• In a binary search tree, pushing a node A down and to the left
to balance the tree.

• A's right child replaces A, and the right child's left child
becomes A's right child.

Left Rotation

15

229

124

9

4 15

12 22

A

Right Rotation
Definition

• In a binary search tree, pushing a node A down and to the
right to balance the tree.

• A's left child replaces A, and the left child's right child
becomes A's left child.

9

4 15

12 22

Right Rotation

15

229

124

A

Single Rotation (LL)
• Let k2 be the first node on the path up violating AVL balance

property. Figure below is the only possible scenario that
allows k2 to satisfy the AVL property before the insertion but
violate it afterwards. Subtree X has grown an extra level (2
levels deeper than Z now). Y cannot be at the same level as X
(k2 then out of balance before insertion) and Y cannot be at
the same level as Z (then k1 would be the first to violate).

• Note that in single rotation inorder traversal orders of
the nodes are preserved.

• The new height of the subtree is exactly the same as
before. Thus no further updating of the nodes on the
path to the root is needed.

Single Rotation (RR)

• AVL property destroyed by insertion of 6,
then fixed by a single rotation.

• BST node structure needs an additional
field for height.

Single Rotation-Example I

Single Rotation-Example II
• Start with an initially empty tree and insert items 1

through 7 sequentially. Dashed line joins the two nodes
that are the subject of the rotation.

Insert 6.
Balance
problem at the
root. So a
single rotation
is performed.

Finally, Insert
7 causing
another
rotation.

Single Rotation-Example III

Double Rotation (LR, RL) - I
• The algorithm that works for cases 1 and 4 (LL, RR) does

not work for cases 2 and 3 (LR, RL). The problem is that
subtree Y is too deep, and a single rotation does not
make it any less deep.

• The fact that subtree Y has had an item inserted into it
guarantees that it is nonempty. Assume it has a root and
two subtrees.

Below are 4 subtrees connected by 3 nodes. Note that exactly
one of tree B or C is 2 levels deeper than D (unless all empty). To
rebalance, k3 cannot be root and a rotation between k1 and k3

was shown not to work. So the only alternative is to place k2 as
the new root. This forces k1 to be k2’s left child and k3 to be its
right child. It also completely determines the locations of all 4
subtrees. AVL balance property is now satisfied. Old height of
the tree is restored; so, all the balancing and and height
updating is complete.

Double Rotation (LR) - II

Double Rotation (RL) - III
In both cases (LR and RL), the effect is the same as rotating
between α’s child and grandchild and then between α and its
new child. Every double rotation can be modelled in terms of 2
single rotations. Inorder traversal orders are always preserved
between k1, k2, and k3.

Double RL = Single LL (α->right)+ Single RR (α)
Double LR = Single RR (α->left)+ Single LL (α)

Double Rotation Example - I
• Continuing our example, suppose keys 8 through

15 are inserted in reverse order. Inserting 15 is
easy but inserting 14 causes a height imbalance
at node 7. The double rotation is an RL type and
involves 7, 15, and 14.

Double Rotation Example - II
• insert 13: double rotation is RL that will involve

6, 14, and 7 and will restore the tree.

Double Rotation Example - III
• If 12 is now inserted, there is an imbalance at the

root. Since 12 is not between 4 and 7, we know
that the single rotation RR will work.

Double Rotation Example - IV
• Insert 11: single rotation LL; insert 10: single

rotation LL; insert 9: single rotation LL; insert 8:
without a rotation.

Definition

• In a binary search tree, pushing a node A down and to the
right to balance the tree.

• A's left child replaces A, and the left child's right child
becomes A's left child. 9

4 15

12 22

Right Rotation

15

229

124

A

examples

Inserting into an AVL Search Tree

29

Insert(29)
-1

1

0

0 0

0

1

1

-1 0

-1

0

0

10

40

30 45

20 35

25

60

7

3 8

1 5

• Where is 29 going to be inserted into?

- use the AVL-search-tree-insertion algorithm

in Figure 15.6)

• After the insertion, is the tree still an AVL

search tree? (i.e., still balanced?)

Inserting into an AVL Search Tree

• What are the new balance factors for 20,

25, 29?

• What type of imbalance do we have?

• RR imbalance new node is in the right

subtree of right subtree of node 20 (node

with bf = -2) what rotation do we need?

• What would the left subtree of 30 look like

after RR rotation?

-2

-1

029

-1

1

0

0 0

0

1

1

0

-1

0

10

40

30 45

20 35

25

60

7

3 8

1 5

After RR Rotation
-1

1

0

0 0

0

1

1

0

-1

0

10

40

30 45

35 60

7

3 8

1 5 0

00

25

20 29

• After the RR rotation, is the resulting tree an AVL search tree?

Deletion from an AVL Search Tree

Deletion procedure is more complex than insertion in 2 ways:

• 1)More number of cases for rebalancing may arise in
deletion;

• 2)In insertion there is only one reblancing,but in deletion
there can be as many rebalancing as the length of the path
from the deleted node to the root.

AVL Tree Example:

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

14

1711

7 53

4

AVL Tree Example:

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

14

177

4 5311

13

1

-1 -1

-10

AVL Tree Example:

• Now insert 12

14

177

4 5311

13

12

-2

AVL Tree Example:

• Now insert 12

14

177

4 5311

12

13

-2

AVL Tree Example:

• Now the AVL tree is balanced.

14

177

4 5312

1311

0

AVL Tree Example:

• Now insert 8

14

177

4 5312

1311

8

-2

AVL Tree Example:

• Now insert 8

14

177

4 5311

128

13

-2

AVL Tree Example:

• Now the AVL tree is balanced.

14

17

7

4

53

11

12

8 13

AVL Tree Example:

• Now remove 53

14

17

7

4

53

11

12

8 13

AVL Tree Example:

• Now remove 53, unbalanced

14

17

7

4

11

12

8 13

-2

AVL Tree Example:

• Balanced! Remove 11

14

17

7

4

11

128

13

AVL Tree Example:

• Remove 11, replace it with the largest in its left branch

14

17

7

4

8

12

13

AVL Tree Example:

• Remove 8, unbalanced

14

17

4

7

12

13

AVL Tree Example:

• Remove 8, unbalanced

14

17

4

7

12

13

AVL Tree Example:

• Balanced!!

14

174

7

12

13

Exercise

• Build an AVL tree with the following values:

15, 20, 24, 10, 13, 7, 30, 36, 25

15

15, 20, 24, 10, 13, 7, 30, 36, 25

20

24

15

20

24

10

13

15

20

24

13

10

13

20

24

1510

13

20

24

1510

15, 20, 24, 10, 13, 7, 30, 36, 25

7

13

20

2415

10

7

30

3613

20

3015

10

7

3624

13

20

3015

10

7

3624

15, 20, 24, 10, 13, 7, 30, 36, 25

25

13

20

30

15

10

7

36

24

2513

24

36

20

10

7

25

30

15

Remove 24 and 20 from the AVL tree.

13

24

36

20

10

7

25

30

15

13

20

36

15

10

7

25

30

13

15

36

10

7

25

30

13

30

36

10

7

25

15

B -TREE

B-tree of order n

• Every B-tree is of some "order n", meaning nodes
contain from n to 2n keys (so nodes are always at
least half full of keys), and n+1 to 2n+1 pointers,
and n can be any number.

• Keys are kept in sorted order within each node. A
corresponding list of pointers are effectively
interspersed between keys to indicate where to
search for a key if it isn't in the current node.

• A B-tree of order n is a multi-way search tree
with two properties:

• 1.All leaves are at the same level

• 2.The number of keys in any node lies
between n and 2n, with the possible
exception of the root which may have fewer
keys.

Other definition

A B-tree of order m is a m-way tree that satisfies the following
conditions.

• Every node has < m children.

• Every internal node (except the root) has <m/2 children.

• The root has >2 children.

• An internal node with k children contains (k-1) ordered keys.
The leftmost child contains keys less than or equal to the
first key in the node. The second child contains keys greater
than the first keys but less than or equal to the second key,

and so on.

B-tree of order n

• Every B-tree is of some "order n", meaning nodes
contain from n to 2n keys (so nodes are always at
least half full of keys), and n+1 to 2n+1 pointers,
and n can be any number.

• Keys are kept in sorted order within each node. A
corresponding list of pointers are effectively
interspersed between keys to indicate where to
search for a key if it isn't in the current node.

• A B-tree of order n is a multi-way search tree
with two properties:

• 1.All leaves are at the same level

• 2.The number of keys in any node lies
between n and 2n, with the possible
exception of the root which may have fewer
keys.

Other definition

A B-tree of order m is a m-way tree that satisfies the following
conditions.

• Every node has < m children.

• Every internal node (except the root) has <m/2 children.

• The root has >2 children.

• An internal node with k children contains (k-1) ordered keys.
The leftmost child contains keys less than or equal to the
first key in the node. The second child contains keys greater
than the first keys but less than or equal to the second key,

and so on.

A B-tree of order 2

• A multi-way (or m-way) search tree of order m is a tree in which

– Each node has at-most m subtrees, where the subtrees may be
empty.

– Each node consists of at least 1 and at most m-1 distinct keys

– The keys in each node are sorted.

• The keys and subtrees of a non-leaf node are ordered as:

T0, k1, T1, k2, T2, . . . , km-1, Tm-1 such that:

– All keys in subtree T0 are less than k1.

– All keys in subtree Ti , 1 <= i <= m - 2, are greater than ki but less
than ki+1.

– All keys in subtree Tm-1 are greater than km-1

km-2
. . .k3k2k1

T0 T1 T2 Tm-2 Tm-1

key < k1 k1 < key < k2 k2 < key < k3 km-2 < key < km-1 key > km-1

km-1

Multi-way tree

What is B-tree?

• B-tree of order m (or branching factor m), where m > 2, is either an
empty tree or a multiway search tree with the following
properties:

–The root is either a leaf or it has at least two non-empty
subtrees and at most m non-empty subtrees.

–Each non-leaf node, other than the root, has at least
m/2 non-empty subtrees and at most m non-empty
subtrees. (Note: x is the lowest integer > x).

–The number of keys in each non-leaf node is one less
than the number of non-empty subtrees for that node.

–All leaf nodes are at the same level; that is the tree is
perfectly balanced

What is a B-tree? • For a non-empty B-tree of order m:

Example: A B-tree of order 4

Example: A B-tree of order 5

Note:

• The data references are not shown.

• The leaf references are to empty subtrees

Height of B-Trees

• For n greater than or equal to one, the height
of an n-key b-tree T of height h with a
minimum degree t greater than or equal to 2

Operations of B-Trees

• B-Tree-Search(x, k)
– The search operation on a b-tree is similar to a search

on a binary tree. The B-Tree-search runs in time O(logt

n).

• B-Tree-Create(T)
–The B-Tree-Create operation creates an empty b-tree by

allocating a new root node that has no keys and is a leaf
node. Only the root node is permitted to have these
properties; all other nodes must meet the criteria
outlined previously. The B-Tree-Create operation runs in
time O(1).

Operations of B-Trees

• B-Tree-Split-Child(x, i, y)
–If is node becomes "too full," it is necessary to perform

a split operation. The split operation moves the median
key of node x into its parent y where x is the ith child of
y. A new node, z, is allocated, and all keys in x right of
the median key are moved to z. The keys left of the
median key remain in the original node x. The new
node, z, becomes the child immediately to the right of
the median key that was moved to the parent y, and the
original node, x, becomes the child immediately to the
left of the median key that was moved into the parent.
The B-Tree-Split-Child algorithm will run in time O(t) , T
is constrain

Operations of B-Trees
• B-Tree-Insert(T, k)

• B-Tree-Insert-Nonfull(x, k)

To perform an insertion on a b-tree, the appropriate

node for the key must be located using an algorithm

similiar to B-Tree-Search. Next, the key must be

inserted into the node.

 If the node is not full prior to the insertion, no

special action is required; however, if the node is

full, the node must be split to make room for the

new key. Since splitting the node results in moving

one key to the parent node, the parent node must

not be full or another split operation is required.

This process may repeat all the way up to the root

and may require splitting the root node.

 This approach requires two passes. The first pass

locates the node where the key should be inserted;

the second pass performs any required splits on the

ancestor nodes. runs in time O(t log
t
n)

 OVERFLOW CONDITION:
A root-node or a non-root node of a B-tree of order m overflows if,
after a key insertion, it contains m keys.

 Insertion algorithm:

If a node overflows, split it into two, propagate the "middle" key
to the parent of the node. If the parent overflows the process
propagates upward. If the node has no parent, create a new root
node.

 Note: Insertion of a key always starts at a leaf node.

Insertion in B-Trees

• Insertion in a B-tree of odd order

• Example: Insert the keys 78, 52, 81, 40, 33, 90, 85, 20, and 38 in this

order in an initially empty B-tree of order 3

Insertion

Insertion in B-Trees
• Insertion in a B-tree of even order

• right-bias: The node is split such that its right subtree has more keys than the

left subtree.

• left-bias: The node is split such that its left subtree has more keys than the

right subtree.

• Example: Insert the key 5 in the following B-tree of order 4:

Insertion

• Insert the keys in the folowing order into a B-tree of order 5.

• A, G, F, B, K, D, H, M, J, E, S, I, R, X, C, L, N, T, U, P.

Searching

Searching for an Item in a B-Tree:

1. Make a local variable, i, equal to the first index such that
data[i] >= target. If there is no such index, then set i equal to
data_count, indicating that none of the entries is greater than
or equal to the target.

2. if (we found the target at data[i])

return true;

else if (the root has no children)

return false;

else

return subset[i]->contains (target);

Searching (cont.)

• Example: target = 10

2 3

19 22

6 17

1610 18 20 25

12

5

4

Deletion form a B-Tree

• 1. detete h, r :

• s promote s and

• delete form leaf

j

c f

g i

d ea b k l n p

m r

g h i

t u x

s t u x

Deletion (cont.)

• 2. delete p :
•

• t pull s down;

• pull t up

j

g i n pk ld ea b

m sc f

t u x

n s

Deletion (cont.)

• 3. delete d:

• Combine:

j

c f

g id ea b k l n s u x

m t

Deletion (cont.)

• combine :

f

j

u xn sk lg i

g i k l n s u x

m t

a b c e

f j m t

a b c e

Deleting from a B-Tree

• To delete a key value x from a B-tree, first search to
determine the leaf node that contains x.

• If removing x leaves that leaf node with fewer
than the minimum number of keys, try to adopt a
key from a neighboring node. If that’s possible, then

you’re finished.

Deleting from a B-Tree (continued)

• If the neighboring node is already at its minimum,
combine the leaf node with its neighboring node,
resulting in one full leaf node.

• This will require restructuring the parent node since
it has lost a child

• If the parent now has fewer than the minimum keys,
adopt a key from one of its neighbors. If that’s not

possible, combine the parent with its neighbor.

Deleting from a B-Tree (continued)

• This process may percolate all the way to the
root.

• If the root is left with only one child, then
remove the root node and make its child the
new root.

• Both insertion and deletion are O(h), where h
is the height of the tree.

Delete 18

Delete 5

Delete 19

Delete 12

Deletion in B-Tree

• B-Tree-Delete

• UNDERFLOW CONDITION

• A non-root node of a B-tree of order m
underflows if, after a key deletion, it contains m /
2 - 2 keys

• The root node does not underflow. If it contains
only one key and this key is deleted, the tree
becomes empty.

Deletion in B-Tree

• There are five deletion cases:
1. The leaf does not underflow.

2. The leaf underflows and the adjacent right sibling has at least m / 2
keys.

perform a left key-rotation

3. The leaf underflows and the adjacent left sibling has at least m / 2
keys.

perform a right key-rotation

4. The leaf underflows and each of the adjacent right sibling and the
adjacent left sibling has at least m / 2 keys.

perform either a left or a right key-rotation& perform a merging

5. The leaf underflows and each adjacent sibling has m / 2 - 1 keys.

Deletion in B-Tree
• Case1: The leaf does not underflow.

• Example : B-tree of order 4

Delete 140

Deletion in B-Tree
• Case2: The leaf underflows and the adjacent right sibling has at least

m/2 keys.

• Example : B-tree of order 5

Delete 113

Deletion in B-Tree
• Case 3: The leaf underflows and the adjacent left sibling has at least m / 2 keys.

• Example : B-tree of order 5

Delete 135

An example B-Tree

51 6242

6 12

26

55 60 7064 9045

1 2 4 7 8 13 15 18 25

27 29 46 48 53

A B-tree of order 5
containing 26 items

Note that all the leaves are at the same level

• Suppose we start with an empty B-tree and keys
arrive in the following order:1 12 8 2 25 5 14
28 17 7 52 16 48 68 3 26 29 53 55 45

• We want to construct a B-tree of order 5
• The first four items go into the root:

• To put the fifth item in the root would violate
condition 5

• Therefore, when 25 arrives, pick the middle key
to make a new root

Constructing a B-tree

1 2 8 12

Constructing a B-tree (contd.)

1 2

8

12 25

6, 14, 28 get added to the leaf nodes:

1 2

8

12 146 25 28

Constructing a B-tree (contd.)

Adding 17 to the right leaf node would over-fill it, so we take the

middle key, promote it (to the root) and split the leaf

8 17

12 14 25 281 2 6

7, 52, 16, 48 get added to the leaf nodes

8 17

12 14 25 281 2 6 16 48 527

Constructing a B-tree (contd.)

Adding 68 causes us to split the right most leaf,
promoting 48 to the root, and adding 3 causes us to split
the left most leaf, promoting 3 to the root; 26, 29, 53, 55
then go into the leaves

3 8 17 48

52 53 55 6825 26 28 291 2 6 7 12 14 16

Adding 45 causes a split of 25 26 28 29

and promoting 28 to the root then causes the root to split

Constructing a B-tree (contd.)

17

3 8 28 48

1 2 6 7 12 14 16 52 53 55 6825 26 29 45

Inserting into a B-Tree

• Attempt to insert the new key into a leaf

• If this would result in that leaf becoming too big, split
the leaf into two, promoting the middle key to the
leaf’s parent

• If this would result in the parent becoming too big, split
the parent into two, promoting the middle key

• This strategy might have to be repeated all the way to
the top

• If necessary, the root is split in two and the middle key
is promoted to a new root, making the tree one level
higher

Exercise in Inserting a B-Tree

• Insert the following keys to a 5-way B-tree:

• 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4,
31, 35, 56

Removal from a B-tree

• During insertion, the key always goes into a leaf.
For deletion we wish to remove from a leaf.
There are three possible ways we can do this:

• 1 - If the key is already in a leaf node, and
removing it doesn’t cause that leaf node to have
too few keys, then simply remove the key to be
deleted.

• 2 - If the key is not in a leaf then it is guaranteed
(by the nature of a B-tree) that its predecessor or
successor will be in a leaf -- in this case we can
delete the key and promote the predecessor or
successor key to the non-leaf deleted key’s
position.

Removal from a B-tree (2)

• If (1) or (2) lead to a leaf node containing less than the
minimum number of keys then we have to look at the
siblings immediately adjacent to the leaf in question:
– 3: if one of them has more than the min. number of keys

then we can promote one of its keys to the parent and
take the parent key into our lacking leaf

– 4: if neither of them has more than the min. number of
keys then the lacking leaf and one of its neighbours can be
combined with their shared parent (the opposite of
promoting a key) and the new leaf will have the correct
number of keys; if this step leave the parent with too few
keys then we repeat the process up to the root itself, if
required

Type #1: Simple leaf deletion

12 29 52

2 7 9 15 22 56 69 7231 43

Delete 2: Since there are enough
keys in the node, just delete it

Assuming a 5-way
B-Tree, as before...

Type #2: Simple non-leaf deletion

12 29 52

7 9 15 22 56 69 7231 43

Delete 52

Borrow the predecessor
or (in this case) successor

56

Type #4: Too few keys in node and its
siblings

12 29 56

7 9 15 22 69 7231 43

Delete 72

Too few keys!

Join back together

Type #4: Too few keys in node and its
siblings

12 29

7 9 15 22 695631 43

Type #3: Enough siblings

12 29

7 9 15 22 695631 43

Demote root key and
promote leaf key

Type #3: Enough siblings

12

297 9 15

31

695643

Summary
• The B-tree is a tree-like structure that helps us to

organize data in an efficient way.

• The B-tree index is a technique used to minimize the disk
I/Os needed for the purpose of locating a row with a
given index key value.

• Because of its advantages, the B-tree and the B-tree
index structure are widely used in databases nowadays.

• In addition to its use in databases, the B-tree is also used
in file systems to allow quick random access to an
arbitrary block in a particular file. The basic problem is
turning the file block i address into a disk block.

Secondary Storages

MS/Dos - FAT (File allocation table)

•entry for each disk block
•entry identifies whether its block is used by a file
•which block (if any) is the next disk block of the same file
•allocation of each file is represented as a linked list in the table

Red-Black Trees

Red-Black Properties

The red-black properties:

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

Note: this means every “real” node has 2 children

3. If a node is red, both children are black

Note: can’t have 2 consecutive reds on a path

4. Every path from node to descendent leaf
contains the same number of black nodes

5. The root is always black

Red-Black Trees: An Example

● Color this tree: 7

5 9

1212

5 9

7

Red-black properties:

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

David Luebke

464

9/15/2015

● Insert 8

■ Where does it go?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

David Luebke

465

9/15/2015

● Insert 8

■ Where does it go?

■ What color
should it be?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

8

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

● Insert 8

■ Where does it go?

■ What color
should it be?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

8

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

Red-Black Trees:
The Problem With Insertion

● Insert 11

■ Where does it go?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

12

5 9

7

8

Red-Black Trees:
The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:
The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

○ Can’t be red! (#3)

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:
The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

○ Can’t be red! (#3)

○ Can’t be black! (#4)

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:
The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

○ Solution:
recolor the tree

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:
The Problem With Insertion

● Insert 10

■ Where does it go?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:
The Problem With Insertion

● Insert 10

■ Where does it go?

■ What color?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

10

Red-Black Trees:
The Problem With Insertion

● Insert 10

■ Where does it go?

■ What color?

○ A: no color! Tree
is too imbalanced

○ Must change tree structure
to allow recoloring

■ Goal: restructure tree in
O(lg n) time

12

5 9

7

8

11

10

RB Trees: Rotation

● Our basic operation for changing tree
structure is called rotation:

● Does rotation preserve inorder key ordering?

● What would the code for rightRotate()
actually do?

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)

rightRotate(y)

RB Trees: Rotation

● Answer: A lot of pointer manipulation

■ x keeps its left child

■ y keeps its right child

■ x’s right child becomes y’s left child

■ x’s and y’s parents change

● What is the running time?

y

x C

A B

x

A y

B C

Rotation Example

● Rotate left about 9:

12

5 9

7

8

11

Rotation Example

● Rotate left about 9:

5 12

7

9

118

Example Red-Black Tree

Splay Trees

Splay trees are binary search trees (BSTs) that:
– Are not perfectly balanced all the time

– Allow search and insertion operations to try to balance the tree so
that future operations may run faster

Based on the heuristic:
– If X is accessed once, it is likely to be accessed again.

– After node X is accessed, perform “splaying” operations to bring X
up to the root of the tree.

– Do this in a way that leaves the tree more or less balanced as a
whole.

Example

481

• Not only splaying with 12 makes the tree balanced,
subsequent accesses for 12 will take O(1) time.

• Active (recently accessed) nodes will move towards the root
and inactive nodes will slowly move further from the root

Initial tree

Root

15

6 18

3 12

9 14

14

Root

12

6 15

3 9 18

After splaying with 12

After Search(12)

Splay idea: Get 12
up to the root
using rotations

1

2

Splay Tree Terminology

482

• Let X be a non-root node, i.e., has at least 1 ancestor.

• Let P be its parent node.

• Let G be its grandparent node (if it exists)

• Consider a path from G to X:
– Each time we go left, we say that we “zig”

– Each time we go right, we say that we “zag”

• There are 6 possible cases:

P

X

G

P

X

G

P

X

G

P

X

G

P

X

P

X

1. zig 2. zig-zig 3. zig-zag 4. zag-zig 5. zag-zag 6. zag

Splay Tree Operations

483

• When node X is accessed, apply one of six
rotation operations:

– Single Rotations (X has a P but no G)

• zig, zag

– Double Rotations (X has both a P and a G)

• zig-zig, zig-zag

• zag-zig, zag-zag

Splay Trees: Zig Operation

484

• “Zig” is just a single rotation, as in an AVL tree
• Suppose 6 was the node that was accessed (e.g. using

Search)

15

6 18

3 12

• “Zig-Right” moves 6 to the root.

• Can access 6 faster next time: O(1)

• Notice that this is simply a right rotation in AVL tree
terminology.

15

6

18

3

12

Zig-Right

Splay Trees: Zig-Zig Operation

485

• “Zig-Zig” consists of two single rotations of the same type

• Suppose 3 was the node that was accessed (e.g., using Search)

• Due to “zig-zig” splaying, 3 has bubbled to the top!

• Note: Parent-Grandparent is rotated first.

15

6 18

3 12

1 4

12

6

18

3 15

1 4

12

6

18

3

15

1

4

Zig-RightZig-Right

Splay Trees: Zig-Zag Operation

486

• “Zig-Zag” consists of two rotations of the opposite type

• Suppose 12 was the node that was accessed (e.g., using Search)

• Due to “zig-zag” splaying, 12 has bubbled to the top!

• Notice that this is simply an LR imbalance correction in AVL tree
terminology (first a left rotation, then a right rotation)

15

6 18

3 12

10 14

Zag-Left 15

6

18

3

12

10

14

156

183

12

10 14

Zig-Right

Splay Trees: Zag-Zig Operation

487

• “Zag-Zig” consists of two rotations of the opposite type

• Suppose 17 was the node that was accessed (e.g., using Search)

• Due to “zag-zig” splaying, 17 has bubbled to the top!

• Notice that this is simply an RL imbalance correction in
AVL tree terminology (first a right rotation, then a
left rotation)

15

6 20

3017

16 18

Zig-Right
15

6

20

30

17

16

18

15

6

20

30

17

16 18

Zag-Left

Splay Trees: Zag-Zag Operation

488

• “Zag-Zag” consists of two single rotations of the same type

• Suppose 30 was the node that was accessed (e.g., using Search)

• Due to “zag-zag” splaying, 30 has bubbled to the top!

• Note: Parent-Grandparent is rotated first.

Zag-Left15

6 20

3017

25 40

15

6

20

30

17 25 40 15

6

20

30

17

25

40

Zag-Left

Splay Trees: Zag Operation

489

• “Zag” is just a single rotation, as in an AVL tree
• Suppose 15 was the node that was accessed (e.g., using

Search)

15

6 18

3 12

• “Zag-Left”moves 15 to the root.

• Can access 15 faster next time: O(1)

• Notice that this is simply a left rotation in AVL tree
terminology

15

6

18

3

12

Zag-Left

Splay Trees: Example – 40 is accessed

490

80

70 85

60 75

50 65

40 55

30 45

(a)

80

70 85

75

50

40

30

45

(b)

60

55 65

After Zig-zig

70

50

40

30

45 60

55 65

80

75 85

(c)
After Zig-zig

Splay Trees: Example – 60 is accessed

491

70

50

40

30

45 60

55 65

80

75 85

70

50

40

30

45

60

55

65 80

75 85

7050

40

30

45

60

55 65 80

75 85

(a) (b)

After Zig-zag

(c)
After zag

Splaying during other operations

492

• Splaying can be done not just after Search, but also after
other operations such as Insert/Delete.

• Insert X: After inserting X at a leaf node (as in a regular BST),
splay X up to the root

• Delete X: Do a Search on X and get X up to the root. Delete
X at the root and move the largest item in its left sub-tree,
i.e, its predecessor, to the root using splaying.

• Note on Search X: If X was not found, splay the leaf node
that the Search ended up with to the root.

Summary of Splay Trees

493

• Examples suggest that splaying causes tree to get balanced.

• The actual analysis is rather advanced and is in Chapter 11. Such
analysis is called “amortized analysis”

• Result of Analysis: Any sequence of M operations on a splay tree of size
N takes O(M log N) time. So, the amortized running time for one
operation is O(log N).

• This guarantees that even if the depths of some nodes get very large,
you cannot get a long sequence of O(N) searches because each search
operation causes a rebalance.

• Without splaying, total time could be O(MN).

Comparison of Search Trees

Tree
Worst Case Expected

Search Insert Remove Search Insert Remove

BST n n n log n log n log n

AVL tree log n log n log n log n log n log n

red-black tree log n log n log n log n log n log n

splay tree n n n log n log n log n

B-trees log n log n log n log n log n log n

Knuth-Morris-Pratt Algorithm

The problem of String Matching

Given a string ‘S’, the problem of string matching
deals with finding whether a pattern ‘p’ occurs
in ‘S’ and if ‘p’ does occur then returning
position in ‘S’ where ‘p’ occurs.

…. a O(mn) approach

One of the most obvious approach towards the string
matching problem would be to compare the first
element of the pattern to be searched ‘p’, with the
first element of the string ‘S’ in which to locate ‘p’. If
the first element of ‘p’ matches the first element of
‘S’, compare the second element of ‘p’ with second
element of ‘S’. If match found proceed likewise until
entire ‘p’ is found. If a mismatch is found at any
position, shift ‘p’ one position to the right and repeat
comparison beginning from first element of ‘p’.

How does the O(mn) approach work

Below is an illustration of how the previously
described O(mn) approach works.

String S a b c a b a a b c a b a c

a b a aPattern p

Step 1:compare p[1] with S[1]

S a b c a b a a b c a b a c

p a b a a

Step 2: compare p[2] with S[2]

S a b c a b a a b c a b a c

p a b a a

Step 3: compare p[3] with S[3]

S

a b a ap

Mismatch occurs here..

Since mismatch is detected, shift ‘p’ one position to the right and
repeat matching procedure.

a b c a b a a b c a b a c

S a b c a b a a b c a b a c

a b a ap

Finally, a match would be found after shifting ‘p’ three times to the right side.

Drawbacks of this approach: if ‘m’ is the length of pattern ‘p’ and ‘n’ the length of
string ‘S’, the matching time is of the order O(mn). This is a certainly a very slow
running algorithm.
What makes this approach so slow is the fact that elements of ‘S’ with which
comparisons had been performed earlier are involved again and again in
comparisons in some future iterations. For example: when mismatch is detected for
the first time in comparison of p*3+ with S*3+, pattern ‘p’ would be moved one
position to the right and matching procedure would resume from here. Here the first
comparison that would take place would be between p*0+=‘a’ and S*1+=‘b’. It should
be noted here that S*1+=‘b’ had been previously involved in a comparison in step 2.
this is a repetitive use of S[1] in another comparison.
It is these repetitive comparisons that lead to the runtime of O(mn).

The Knuth-Morris-Pratt Algorithm

Knuth, Morris and Pratt proposed a linear time
algorithm for the string matching problem.

A matching time of O(n) is achieved by avoiding
comparisons with elements of ‘S’ that have
previously been involved in comparison with
some element of the pattern ‘p’ to be
matched. i.e., backtracking on the string ‘S’
never occurs

Components of KMP algorithm

• The prefix function, Π
The prefix function,Π for a pattern encapsulates

knowledge about how the pattern matches against
shifts of itself. This information can be used to avoid
useless shifts of the pattern ‘p’. In other words, this
enables avoiding backtracking on the string ‘S’.

• The KMP Matcher
With string ‘S’, pattern ‘p’ and prefix function ‘Π’ as

inputs, finds the occurrence of ‘p’ in ‘S’ and returns
the number of shifts of ‘p’ after which occurrence is
found.

The prefix function, Π

Following pseudocode computes the prefix fucnction, Π:

Compute-Prefix-Function (p)
1 m length*p+ //’p’ pattern to be matched
2 Π[1] 0
3 k 0
4 for q 2 to m
5 do while k > 0 and p[k+1] != p[q]
6 do k Π[k]
7 If p[k+1] = p[q]
8 then k k +1
9 Π[q] k
10 return Π

Example: compute Π for the pattern ‘p’ below:

p a b a b a c a

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0

Initially: m = length[p] = 7
Π[1] = 0
k = 0

Step 1: q = 2, k=0
Π[2] = 0

Step 2: q = 3, k = 0,
Π[3] = 1

Step 3: q = 4, k = 1
Π[4] = 2

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1

q 1 2 3 4 5 6 7

p a b a b a c A

Π 0 0 1 2

Step 4: q = 5, k =2

Π[5] = 3

Step 5: q = 6, k = 3

Π[6] = 1

Step 6: q = 7, k = 1

Π[7] = 1

After iterating 6 times, the prefix
function computation is
complete:

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1 1

q 1 2 3 4 5 6 7

p a b A b a c a

Π 0 0 1 2 3 1 1

The KMP Matcher

The KMP Matcher, with pattern ‘p’, string ‘S’ and prefix function ‘Π’ as input, finds a
match of p in S.

Following pseudocode computes the matching component of KMP algorithm:
KMP-Matcher(S,p)
1 n length[S]
2 m length[p]
3 Π Compute-Prefix-Function(p)
4 q 0 //number of characters matched
5 for i 1 to n //scan S from left to right
6 do while q > 0 and p[q+1] != S[i]
7 do q Π[q] //next character does not match
8 if p[q+1] = S[i]
9 then q q + 1 //next character matches
10 if q = m //is all of p matched?
11 then print “Pattern occurs with shift” i – m
12 q Π[q] // look for the next match

Note: KMP finds every occurrence of a ‘p’ in ‘S’. That is why KMP does not terminate in
step 12, rather it searches remainder of ‘S’ for any more occurrences of ‘p’.

Illustration: given a String ‘S’ and pattern ‘p’ as follows:

S
b a c b a b a b a b a c a c a

a b a b a c ap

Let us execute the KMP algorithm to find whether
‘p’ occurs in ‘S’.

For ‘p’ the prefix function, Π was computed previously and is as follows:

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1 1

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

Initially: n = size of S = 15;
m = size of p = 7

Step 1: i = 1, q = 0
comparing p[1] with S[1]

S

p
P[1] does not match with S[1+. ‘p’ will be shifted one position to the right.

S

p

Step 2: i = 2, q = 0
comparing p[1] with S[2]

P[1] matches S[2]. Since there is a match, p is not shifted.

Step 3: i = 3, q = 1

b a c b a b a b a b a c a a b

a b a b a c a

Comparing p[2] with S[3]

S

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c ap

S

p

S

p

p[2] does not match with S[3]

Backtracking on p, comparing p[1] and S[3]

Step 4: i = 4, q = 0
comparing p[1] with S[4] p[1] does not match with S[4]

Step 5: i = 5, q = 0
comparing p[1] with S[5] p[1] matches with S[5]

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

a b a b a c a

Step 6: i = 6, q = 1

S

p

Comparing p[2] with S[6] p[2] matches with S[6]

S

p

Step 7: i = 7, q = 2
Comparing p[3] with S[7] p[3] matches with S[7]

Step 8: i = 8, q = 3
Comparing p[4] with S[8] p[4] matches with S[8]

S

p

Step 9: i = 9, q = 4

Comparing p[5] with S[9]

Comparing p[6] with S[10]

Comparing p[5] with S[11]

Step 10: i = 10, q = 5

Step 11: i = 11, q = 4

S

S

S

p

p

p

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

a b a b a c a

p*6+ doesn’t match with S*10+

Backtracking on p, comparing p[4] with S[10] because after mismatch q = Π[5] = 3

p[5] matches with S[9]

p[5] matches with S[11]

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

Step 12: i = 12, q = 5

Comparing p[6] with S[12]

Comparing p[7] with S[13]

S

S

p

p

Step 13: i = 13, q = 6

p[6] matches with S[12]

p[7] matches with S[13]

Pattern ‘p’ has been found to completely occur in string ‘S’. The total number of shifts
that took place for the match to be found are: i – m = 13 – 7 = 6 shifts.

Running - time analysis

• Compute-Prefix-Function (Π)
1 m length*p+ //’p’ pattern to be

matched
2 Π[1] 0
3 k 0
4 for q 2 to m
5 do while k > 0 and p[k+1] != p[q]
6 do k Π[k]
7 If p[k+1] = p[q]
8 then k k +1
9 Π[q] k
10 return Π

In the above pseudocode for computing the
prefix function, the for loop from step
4 to step 10 runs ‘m’ times. Step 1 to
step 3 take constant time. Hence the
running time of compute prefix
function is Θ(m).

• KMP Matcher
1 n length[S]
2 m length[p]
3 Π Compute-Prefix-Function(p)
4 q 0
5 for i 1 to n
6 do while q > 0 and p[q+1] != S[i]
7 do q Π[q]
8 if p[q+1] = S[i]
9 then q q + 1
10 if q = m
11 then print “Pattern occurs with shift” i

– m
12 q Π[q]

The for loop beginning in step 5 runs ‘n’
times, i.e., as long as the length of the
string ‘S’. Since step 1 to step 4 take
constant time, the running time is
dominated by this for loop. Thus running
time of matching function is Θ(n).

Tries

 Trie is a special structure to represent sets of
character strings.

 Can also be used to represent data types
that are objects of any type e.g. strings of
integers.

 The word “trie” is derived from the middle
letters of the word “retrieval”.

Tries: Example

One way to implement a spelling checker is

 Read a text file.

 Break it into words(character strings
separated by blanks and new lines).

 Find those words not in a standard
dictionary of words.

 Words in the text but not in the dictionary
are printed out as possible misspellings.

Tries: Example

It can be implemented by a set having
operations of :

 INSERT

 DELETE

 MAKENULL

 PRINT

A Trie structure supports these set operations
when the element of the set are words.

Tries: Example
T

H

E

$

$ $ $

$

$

$

N

I I

N

G

S

SNN

I

Tries: Example

 Tries are appropriate when many words begin with
the same sequence of letters.

 i.e; when the number of distinct prefixes among all
words in the set is much less than the total length
of all the words.

 Each path from the root to the leaf corresponds to
one word in the represented set.

 Nodes of the trie correspond to the prefixes of
words in the set.

Tries: Example

 The symbol $ is added at the end of each word so
that no prefix of a word can be a word itself.

 The Trie corresponds to the set {THE,THEN THIN,
TIN, SIN, SING}

 Each node has at most 27 children, one for each
letter and $

 Most nodes will have many fewer than 27 children.

 A leaf reached by an edge labeled $ cannot have
any children.

521

Tries
• Standard Tries

• Compressed Tries

• Suffix Tries

522

Text Processing
• We have seen that preprocessing the pattern speeds up pattern

matching queries

• After preprocessing the pattern in time proportional to the pattern
length, the Boyer-Moore algorithm searches an arbitrary English
text in (average) time proportional to the text length

• If the text is large, immutable and searched for often (e.g., works by
Shakespeare), we may want to preprocess the text instead of the
pattern in order to perform pattern matching queries in time
proportional to the pattern length.

• Tradeoffs in text
searching

523

Standard Tries
• The standard trie for a set of strings S is an ordered tree such that:

– each node but the root is labeled with a character

– the children of a node are alphabetically ordered

– the paths from the external nodes to the root yield the strings of S

• Example: standard trie for

the set of strings

S = { bear, bell, bid, bull,

buy, sell, stock, stop }

•A standard trie uses O(n) space. Operations (find, insert, remove) take time
O(dm) each, where:

-n = total size of the strings in S,

-m =size of the string parameter of the operation

-d =alphabet size,

524

Applications of Tries
• A standard trie supports the following operations on a preprocessed

text in time O(m), where m = |X|
-word matching: find the first occurence of word X in the text
-prefix matching: find the first occurrence of the longest prefix of
word X in the text

• Each operation is performed by tracing a path in the trie starting at
the root

525

Compressed Tries

• Trie with nodes of degree at least 2

• Obtained from standard trie by compressing chains of redundant
nodes

Compressed Trie:

Standard Trie:

526

Compact Storage of Compressed Tries

• A compressed trie can be stored in space O(s), where s = |S|, by using
O(1) space index ranges at the nodes

527

Insertion and Deletion
into/from a Compressed Trie

528

Suffix Tries
• A suffix trie is a compressed trie for all the suffixes of a text

Example:

Compact representation:

529

Properties of Suffix Tries
• The suffix trie for a text X of size n from an alphabet of size d

-stores all the n(n-1)/2 suffixes of X in O(n) space

-supports arbitrary pattern matching and prefix matching queries in
O(dm) time, where m is the length of the pattern

-can be constructed in O(dn) time

530

Tries and Web Search Engines

• The index of a search engine (collection of all searchable words) is stored
into a compressed trie

• Each leaf of the trie is associated with a word and has a list of pages (URLs)
containing that word, called occurrence list

• The trie is kept in internal memory

• The occurrence lists are kept in external memory and are ranked by
relevance

• Boolean queries for sets of words (e.g., Java and coffee) correspond to set
operations (e.g., intersection) on the occurrence lists

• Additional information retrieval techniques are used, such as
– stopword elimination (e.g., ignore “the” “a” “is”)

– stemming (e.g., identify “add” “adding” “added”)

– link analysis (recognize authoritative pages)

531

Tries and Internet Routers
• Computers on the internet (hosts) are identified by a unique 32-bit IP

(internet protocol) addres, usually written in “dotted-quad-decimal”
notation

• E.g., www.cs.brown.edu is 128.148.32.110

• Use nslookup on Unix to find out IP addresses

• An organization uses a subset of IP addresses with the same prefix, e.g.,
Brown uses 128.148.*.*, Yale uses 130.132.*.*

• Data is sent to a host by fragmenting it into packets. Each packet carries the
IP address of its destination.

• The internet whose nodes are routers, and whose edges are
communication links.

• A router forwards packets to its neighbors using IP prefix matching rules.
E.g., a packet with IP prefix 128.148. should be forwarded to the Brown
gateway router.

• Routers use tries on the alphabet 0,1 to do prefix matching.

