DATA STRUCTURES

UNIT-1

ALGORITHM

An algorithm is a step by step representation or a procedure for solving a problem.
or

It is a method of finding a right solution to a problem or to a different problem or to a different problem breaking into simple cases.

PROPERTIES OF AN ALGORITHM

Finitness:
An algorithm should terminate at finite number of steps.
Definiteness:
Each step of an algorithm must be precisely stated.
Effectiveness:
It consists of basic instructions that are realizable.
This means that the instructions can be performed by using the given inputs in a finite amount of time.
Input:
An algorithm accepts zero or more inputs.
Output:
It produces at least one output.

PSEUDOCODE

It is a representation of algorithm in which instruction sequence can be given with the help of programming constructs.
or
Pseudo code, on the other hand, is not a programming language, but simply an informal way of describing a program.

Because it is not an actual programming language, pseudo code cannot be compiled into an executable program.

Therefore, pseudo code must be converted into a specific programming language if it is to become an usable application.

PSEUDOCODE CONVENTIONS

1. Algorithm is a procedure consisting of heading and body. The heading consists of a name of the procedure and parameter list. The syntax is
Algorithm name_of _procedure(paramater1, parameter2,.....parameter n).
2.Using assignment operator:=an assignment statement can be given. For instance: variable:=expression;
2. Boolean operators, logical operators, relational operators can be used in pseudo code.
3. All different types of arrays can be used and array indices stored in [and] brackets.

PSEUDOCODE CONVENTIONS

5. The beginning and end of block should be indicted by \{and \} resp. the compound statements should be enclosed within \{ and \} brackets.
6. The delimiters ; are used at the end of each statement.
7. Single line comments are written using // as beginning of comment.
8.The identifier should beginning by letter only.
9.No need to write data types explicitly for identifiers.

PSEUDOCODE CONVENTIONS

10. The inputting and outputting can be done using read and write.
11. The conditional statements and the looping statements have the same syntax as in C language.

EXAMPLES

1) write an algorithm to count the sum of n numbers Algorithm sum (1,n)
\{
Result:=0;
for $\mathrm{i}:=1$ to n do $\mathrm{i}:=\mathrm{i}+1$
Result:=result+i;
\}

EXAMPLES

2) write an algorithm to check whether given number is even or odd

Algorithm events (val)
\{
if (val\%2==0) then
write("given no is even"):
else
write("given no is odd");
\}

EXAMPLES

3) write an algorithm to find factorial of n number.

Algorithm fact(n)
\{
if $\mathrm{n}:=1$ then
return 1;
else
return $n * \operatorname{fact}(\mathrm{n}-1)$;
\}

EXAMPLES

4) write an algorithm to perform multiplication of two matrices. Algorithm $\operatorname{Mul}(A, B, n)$
\{
for $\mathrm{i}:=1$ to n do
for $\mathrm{j}:=1$ to n do
$c[i, j]:=0$
for $\mathrm{k}:=1$ to n do
$c[i, j]:=c[i, j]+a[i, k] * b[k, j] ;$
\}

RECURSIVE ALGORITHM

A recursive routine is one whose design includes a call to itself.

Or

A function that calls itself is known as recursive function and this technique is known as recursion in C programming.

EXAMPLES

Factorial of a number
Algorithm factorial(a) int a;

```
{
    int fact=1
        if(a>1)
            Fact = a* factorial(a-1);
            Return(fact);
    }
```


DATA ABSTRACTION

Data abstraction refers to, providing only essential information to the outside world and hiding their background details, i.e., to represent the needed information in program without presenting the details.

Data abstraction is a programming (and design) technique that relies on the separation of interface and implementation.

PERFORMANCE EVALUATION

The total effectiveness of a computer system, including throughput, individual response time, and availability.

Performance evaluation can be loosely divided into 2 phases

1) A priori estimates which is known as performance analysis
2) A posterior testing which is known as performance measurement.

PERFORMANCE ANALYSIS

The efficiency of an algorithm can be decided by measuring the performance of an algorithm.

The performance of an algorithm by computing amount of time(time complexity) and storage requirement(space complexity).

TIME COMPLEXITY

This is the amount of computing time required by an algorithm to run to completion.

There are 2 types of computing time- compile time and run time.

The time complexity is generally computed using run time or execution time.

The time complexity is given in terms of frequency count.

Frequency count is basically a count denoting number of times of execution of statement.

TIME COMPLEXITY

The time complexity is computed using run time is calculated by input size and asymptotic notations .

Input size: the input size of any instance of a problem is defined as the number of words required to describe that instance of problem.

Asymptotic notations: This is the shorthand way to represent the time complexity.

Time complexity is given as fastest possible, slowest possible or average time.

Notations such as $\Omega, \theta, \mathrm{O}$ are the asymptotic notations.

BIG OH NOTATION

It represents the upper bound of algorithms running time.

The longest amount of time taken by the algorithm to complete is calculated by big oh (O).

Def: let $f(n)$ and $g(n)$ are two non-negative functions. And is there exists an integer no and constant C such that $\mathrm{C}>0$ and for all integers $n>n_{0}, f(n)<=c^{*} g(n)$, then $f(n)$ is big oh of $g(n)$. It is also denoted as " $f(n)=O(g(n))$ ".

BIG OH NOTATION

Various meanings associated with big-oh are
$\mathrm{O}(1)$ - constant computing time
$\mathrm{O}(\mathrm{n})$ - linear
$\mathrm{O}\left(\mathrm{n}^{2}\right)$-quadratic
$\mathrm{O}\left(\mathrm{n}^{3}\right)$-cubic
$\mathrm{O}(2 \mathrm{n})$-exponential
$\mathrm{O}(\log \mathrm{n})$-logarithmic

OMEGA NOTATION

It represents the lower bound of algorithms running time.

It is the shortest amount of time taken by algorithm to complete.
$\mathrm{F}(\mathrm{n})>\mathrm{C}^{*} \mathrm{~g}(\mathrm{n})$.
This is denoted by $\mathrm{f}(\mathrm{n})=\Omega \mathrm{g}(\mathrm{n})$.

THETA NOTATION

It represents the running time between upper bound and lower bound.
$\operatorname{c} 1 \mathrm{~g}(\mathrm{n})<=\mathrm{f}(\mathrm{n})<=\mathrm{c} 2 \mathrm{~g}(\mathrm{n})$

It is denoted by $f(n)=\theta g(n)$.

SPACE COMPLEXITY

This is the amount of memory required by an algorithm to run.

There are two factors to compute space complexity.

1) constant
2)instance

SPACE COMPLEXITY

The space requirement $S(p)$ can be given as
$S(p)=C+S p$

C is the constant

Sp is a space dependent upon instance characteristics.

DATA STRUCTURE

The data structure can be defined as the collection of elements and all the possible operations which are required for those set of elements.

Or

Data structure is a combination of a set of elements and corresponding set of operations.

The data structures can be implemented by building the suitable algorithms for them.

TYPES OF DATA STRUCTURES

The data structure can be divided into two basic types.

1) Preliminary data structures
2) Secondary data structures

TYPES OF DATA STRUCTURES

LIST

List is the collection of elements arranged in a sequential manner.

There are two representations

1) list of sequentially stored elements----using arrays
2) list of elements with associated pointers---using linked list.

LIST REPRESENTATION

list of sequentiduly stored dements using arays

OPERATIONS ON AN ORDERED LIST

1)display of list.
2)search an element in the list.
3) insert an element into the list.
4) delete an element from the list.

SINGLY LINKED LIST

In the single linked list, a node is connected to the next node by a single link.

In this list a node contains two types of fieldsdata:
which holds a list element
next(pointer):
which holds a link to the next node in the list.

The head of the pointer is used to gain access to the list and the end of the list is denoted by a NULL pointer

STRUCTURE OF A SINGLE LINKED LIST

struct node
\{
int data;
struct node * next;
\}
The list holds two members ,an integer type variable "data" which holds the elements and another member of type "node", which h
node

SINGLE LINKED LIST OPERATIONS

Creating a linked list
Inserting in a linked list
Deleting a linked list
Searching an element in the linked list
Display the elements
Merging two linked list
Sorting a linked list
Reversing a list

CREATING A LINKED LIST

List can be created by using pointers and dynamic memory allocation function such as malloc.

The head pointer is used to create and access unnamed nodes.

CREATING A LINKED LIST

struct list
\{
int no;
struct list *next;
\};
typedef struct list node;
node *head;
head=(node*) malloc (size of(node));

CREATING A LINKED LIST

The statement obtains memory to store a node and assigns its address to head which is a pointer variable.

To store values in the member fields:
head \rightarrow no $=10$; head \rightarrow next=NULL;
The second node can be added as:
head \rightarrow next $=\left(\right.$ node ${ }^{*}$)malloc(size_of(node));
head \rightarrow next \rightarrow number $=20$;
head \rightarrow next \rightarrow next $=$ NULL;

INSERTING AN ELEMENT

Insertion is done in three ways:

Insertion at the beginning of the list.

Insertion after any specified node.

Inserting node at the end of the list.

INSERTING AN ELEMENT

Function to insert a node at the beginning of the list:

INSERTING AN ELEMENT

Function to insert a node at the beginning of the list: void add_beg(struct node $* * q$, int no) \{
struct node *temp; /*add new node*/
temp \rightarrow data $=$ no;
temp \rightarrow next $=* \mathrm{q} ; \mathrm{t}$
*q=temp;
\}
here temp variable is take and space is allocated using "malloc" function.

INSERTING AN ELEMENT

Insertion after any specified node:

Inserting a node in the middle of the list,
if you consider to insert a node after the element then the
process is as follows.

INSERTING AN ELEMENT

INSERTING AN ELEMENT

Function to insert a node at the middle of the list: Void add_after(struct node *q, int loc, int no)
\{
struct node *temp, *r;
int 1 ;
temp $=\mathrm{q} ; /$ *skip to desire portion*/
for $(\mathrm{i}=0 ; \mathrm{i}<\operatorname{loc} ; \mathrm{i}++)$
\{
temp=temp \rightarrow next;

INSERTING AN ELEMENT

if(temp==NULL)

\{
printf("\n there are less than \%d elements in list",loc); return;
\}
\}

```
            ?/*insert new node*/
    r=malloc(sizeof(struct node));
r}->\mathrm{ data=n0;
r}->\mathrm{ next=temp }->\mathrm{ next;
temp}->\mathrm{ next=r;
```


INSERTING AN ELEMENT

Inserting node at the end of the list:

before insertion

After insertion

INSERTING AN ELEMENT

Inserting node at the end of the list:
void create(struct node $* * \mathrm{q}$, int no)
\{
struct node *temp,*r;

```
if(*q==NULL) /*if the list is empty,create first node*/
{
temp=malloc(sizeof(struct node));
temp}->\mathrm{ data=no;
```


INSERTING AN ELEMENT

```
    temp}->\mathrm{ next=NULL;
    *q=temp;
    }
else
    {
temp=*q; /* go to last node*/
while(temp }->\mathrm{ next!=NULL)
```


INSERTING AN ELEMENT

```
temp=temp }->\mathrm{ next;
r=malloc(sizeof(struct node));
r}->\mathrm{ data=no;
r}->\mathrm{ next=NULL;
temp}->\mathrm{ next=r;
}
```

\}

DELETING AN ELEMENT

DELETING AN ELEMENT

We traverse through the entire linked list to check each node whether it has to be deleted.
if we want to delete the first node in the list then we shift the structure type pointer variable to the next node and then delete the entire node.
if the node is a intermediate node then the various pointers the linked list before and after deletion should be taken care of

DISPLAYING THE CONTENTS OF THE LINKED LIST

Displays the elements of the linked list contained in the data part.

Function to display the contents of the linked list.
void display(struct node *start)
\{
printf("\n");

DISPLAYING THE CONTENTS OF THE LINKED LIST

/*traverse the entire list*/
while(start!=NULL)
\{
printf("\%d",start \rightarrow data);
start=start \rightarrow next;
\}
\}

OTHER OPERATIONS OF SINGLY LINKED LIST

Searching the linked list:

Searching means finding information in a given linked list.

Reversing a linked list:

The reversing of the linked list that last node becomes the first node and first becomes the last.

OTHER OPERATIONS OF SINGLY LINKED LIST

Sorting the list:

In sorting function the node containing the largest element is removed from the linked list and is appended to the new list in the ascending order. CREATING A Linked List
Merging the two linked list:

Merging two list pointed by two pointers into a third list.
While merging be ensure that the elements common to the lists appear only once in the third list.

CIRCULAR LINKED LIST

A linked list in which last node points to the header node is called the circular linked list.

The list have neither a beginning nor an end.

In this list the last node contains a pointer back to the first node rather than the NULL pointer.

CIRCULAR LINKED LIST

The structure defined for circular linked list
struct node
\{
int data;
struct node *next;
\}

CIRCULAR LINKED LIST

A circular linked list is represented as follows:

A circular linked list can be used to represent a stack and a queue.

OPERATION OF CIRCULAR LINKED LIST

Adding elements in the circular linked list.

Deleting element from the circular list.

Displaying elements from the circular list.

ADDING ELEMENTS IN THE CIRCULAR LINKED LIST

Ciradd():
this function accepts three parameters:
receives the address of the pointer to the first node.
receives the address of the pointer to the last node.
holds the data items that need to add in the list.

DELETING ELEMENTS FROM THE CIRCULAR LINKED LIST

delcirq():
this function receives two parameters.
the pointer to the front .
the pointer to the rear .

DELETING ELEMENTS FROM THE CIRCULAR LINKED LIST

The condition is checked for the empty list.
If the list is not empty,
then it is checked whether the front and rear point to the same node or not.

If they point to the same node,
then the memory occupied by the node is released and front and rear are both assigned a NULL value.

DISPLAYING THE CIRCULAR LIST

Cirq_disp():
the function receives the pointer to the first node in the list as a parameter.
The q is also made to point to the first node in the list.
The entire list is traversed using q .
Another pointer p is set to NULL initially.

The circular list is traversed through a loop till the time it reach the first node again.
It reach first node again when q equals p .

DOUBLY LINKED LIST

The doubly linked list uses double set of pointer's, one pointing to the next item and the other pointing to the preceding item.

It can traverse in two directions:
from the beginning of the list to the end or
In the backward direction from the end of the list to the beginning.

DOUBLY LINKED LIST

DOUBLY LINKED LIST

Each node contains three parts: An information field which contains the data.
A pointer field next which contains the location of the next node n the list.

A pointer field prev which contains the location of the preceding node in the list.

Structure to define DLL: struct node
\{ int data;
struct node *next;
struct node *prev;
\}

CREATING A DLL

To create DLL at the nodes to the existing list:
To create the list the function d_create can be used before creating the list the function checks if the list is empty.

Here the function accepts two parameters.
s of type struct dnode ${ }^{* *}$ which contains the address of the pointer to the first node of the list.
parameter num is an integer which is to be added in the list.

CREATING A DLL

To create DLL at the nodes to the existing list:
To create the list the function d_create can be used before creating the list the function checks if the list is empty.

Here the function accepts two parameters.
s of type struct dnode ${ }^{* *}$ which contains the address of the pointer to the first node of the list.
parameter num is an integer which is to be added in the list.

OPERATIONS OF DLL

Adding a node in the beginning of DLL:

To add the node at the beginning of the list the function d_addatbeg() is used .

This function takes two parameters:
s of type dounode ** which contains the address of the pointer to the first node .
num is an integer to be added in the list.

OPERATIONS OF DLL

The allocation of memory for the new node is done whose address is stored in q.

The num is the data part of the node.

A NULL value is stored in the prev part of new node a this is the first node in the list.

OPERATIONS OF DLL

Function to add a node at the beginning of list.

Void d_addatbeg(struct dnode **s,int num)
\{
struct dnode *q;
$\mathrm{q}=$ malloc(sizeof(struct dnode));
$\mathrm{q} \rightarrow \mathrm{prev}=\mathrm{NULL}$;
$q \rightarrow$ data=num;
$\mathrm{q} \rightarrow$ next $=*$ s;
$(* \mathrm{~s}) \rightarrow \mathrm{prev}=\mathrm{q}$;
*s=q;
\}

OPERATIONS OF DLL

Adding a node in the middle of the list:
To add the node in the middle of the list we use the function d_addafter().

The function accepts three parameters.
q points to the first node of the list.
loc specifies the node number after which new node must be inserted.
num which is to be added to the list.

To reach to the position where node is to be inserted, a loop is executed.

OPERATIONS OF DLL

Deleting a node from DLL:

This function deletes a node from the list if the data part matches a with num.
The function receives two parameters the address of the pointer to the first node. the number to be deleted.
To traverse the list , a loop is run.
The data part of each node is compared with the num.
If the num value matches the data part, then the position of the node to be deleted is checked

OPERATIONS OF DLL

Display the contents of DLL.
to display the contents of the doubly linked list, we follow the same algorithm that had used in the singly linked list.
Here q points to the first node in the list and the entire list is traversed.
Function to display the DLL. void d_disp(struct dnode *q)
\{ printf("\n");
while(q!=NULL)
\{ printf("\%2d",q \rightarrow data); $\mathrm{q}=\mathrm{q} \rightarrow$ next;
\}
\}

ARRAYS

A collection of objects of the same type stored contiguously in memory under one name.

May be type of any kind of variable
May even be collection of arrays!
The elements of the array are stored in consecutive memory locations and are referenced by an index (subscript).

ARRAYS

To refer to an element, specify
-Array name
-Position number
Syntax:
array_name[position number]

ARRAYS

Array Declaration
When declaring arrays

- Name
- Type of data elements
- Number of elements

Syntax
Data_Type array_Name[Number_Of_Elements];

ARRAYS

Examples: int c[10];
float myArray[3284];
Declaring multiple arrays of same type

- Format similar to regular variables
- Example:
int b[100], x[27];

ARRAYS

int c[12]

- An array of ten integers
- c[0], c[1], ..., c[11]
double $\mathrm{B}[20]$
- An array of twenty long floating ${ }_{c}^{[5]}[4]$ point numbers
- B[0], B[1], ..., B[19]

```
Name of array (Note
that all elements of
this array have the
same name, c)
```

-45
6
0
72
1543
-89
0
62
-3
1
6453
78

ARRAYS

Arrays of structs, unions,
pointers, etc., are also allowed

Array indexes always
start at zero in C

ARRAYS

Two Dimensional Array

- Syntax

Data_Type array_Name[Row_Elements][Column_Elements];

- Example
int D[10][20]
- An array of ten rows, each of which is an array of twenty integers
$-\mathrm{D}[0][0], \mathrm{D}[0][1], \ldots, \mathrm{D}[1][0], \mathrm{D}[1][1], \ldots, \mathrm{D}[9][19]$
- Not used so often as arrays of pointers

ARRAYS

Two Dimensional Array

- Multiple subscripted arrays as
- Tables with rows and columns ($\mathrm{m} \times \mathrm{n}$ array)
- Like matrices: specify row, then column

ARRAYS

Multi Dimensional Arrays

- Array declarations read right-to-left
- Syntax

Data_Type array_Name[Size][Size][Size] ... Size];

- Example
int a[10][3][2];
"an array ${ }_{3}$ of ten arrçays of three arrays of two elements" in memory

SPARSE MATRIX

A sparse matrix is a matrix that allows special techniques to take advantage of the large number of zero elements.

Sparse matrix is very useful in engineering field, when solving the partial differentiation equations.
if there are maximum zeros then the matrix is known as sparse. matrix.
if there are few zeros then the matrix is dense matrix.

CATEGORIES OF SPARSE MATRIX

Sparse matrix has
N^{2} sparse matrix and

Triangular sparse matrix

A matrix with zero entries that form a square or a bar is N^{2} sparse matrix.

A matrix with zero entries in its diagonal either in the upper or lower side is known as triangular sparse matrix.

REPRESENTATION OF SPARSE MATRIX

Sparse matrix can be represented in

Tuple method

Array representation

Linked list representation

Only non zero elements are stored in any of the above representations.

TUPLE METHOD

consider a matrix

$[15$	0	0	21
22	11	0	0
0	19	35	$16]$

This is N^{2} sparse matrix

Tuple matrix is

row	column	value
1	1	15
1	4	21
2	1	22
2	2	11
3	2	19
3	3	35
3	4	16

TUPLE METHOD

consider a matrix

$[4$	0	0	0
3	11	0	0
1	22	33	0
7	45	41	$22]$

This is triangular matrix

Tuple matrix is

row	column	value
1	1	4
2	1	3
2	2	11
3	1	1
3	2	22
3	3	33
4	1	7
4	2	45
4	3	41
4	4	22

ARRAY METHOD

consider a matrix

$[15$	0	0	21
22	11	0	0
0	19	35	$15]$

This is triangular matrix
The elements are represented as follows

$1,1,15$	$1,4,21$	$2,1,22$	$2,2,11$	$3,2,11$	$3,2,19$	$3,3,35$	$3,4,16$

SPARSE MATRIX OPERATIONS USING ARRAYS

Addition of two sparse matrix:

The function addmat() carries addition
The function display() displays the result.

Multiplication of two sparse matrix:

SPARSE MATRIX OPERATIONS USING ARRAYS

This holds three functions
Sparseprod() stores the result.
Search_nonzero()checks whether an non zero element is present or not.

Searchinb()searches an element whose row number is equal to column number.

Transpose of a sparse matrix:
Transpose() is used to allocate memory to store the elements.

REPRESENTATION OF SPARSE MATRIX THROUGH LINKED LIST

The elements of sparse matrix consist of three integers.
Its row number
Its column number
Its value

The head node consist of three parts.
Row number indicates the row to which the "head" node is pointing to the component element.
The head also points to another head the node for the next row.

REPRESENTATION OF SPARSE MATRIX THROUGH LINKED LIST

The create_list() function stores the information in the form of linked list.

Insert() accepts a pointer to the special node.
show_list() reads and displays the data stored in the linked list.

REPRESENTATION OF SPARSE MATRIX THROUGH LINKED LIST

neut ropr	row number	elements in this row

parts of head node for a row

REPRESENTATION OF SPARSE MATRIX THROUGH LINKED LIST

next element in this column	row number	column number	value	elements in this row

structure for an element

REPRESENTATION OF SPARSE MATRIX THROUGH LINKED LIST

UNIT-II

UNIT-2

W||'i|

STACKS

A stack is a linear structures in which addition or deletion of elements takes place at the same end.

> Or

The stack is an ordered list in which insertion and deletion is done at the same end.

The end is called the top of stack.
Insertion and deletion cannot be done from the middle.

A technique of Last In First Out is followed.
Stack can be implemented by using both arrays and linked lists.

STACKS

STACK ADT

Stacks can also be defined as Abstract Data Types(ADT).

A stack of elements of any particular type is a finite sequence of elements of that type together with specific operations.

Therefore, stacks are called LIFO lists.

STACK OPERATIONS

The primitive operations on stack are

To create a stack.
To insert an element on to the stack.
To delete an element from the stack.
To check which element is at the top of the stack.
To check whether a stack is empty or not.

STACK OPERATIONS

If Stack is not full, then add a new node at one end of the stack this operation is called PUSH.

If the stack is not empty then delete the node at its top.
This operation is called POP.

PUSH and POP are functions of stack used to fulfill the stack operations.
TOP is the pointer locating the stack current position.

ARRAY IMPLEMENTATION IN C

Stacks can be represented in the memory arrays by maintaining a linear array STACK and a pointer variable TOP which contains the location of top element.

The Variable MAXSTACK gives maximum number of elements held by the stack.

The TOP=NULL /0 will indicate that the stack is empty.

The operation of adding and removing an item in the stack can be implemented using the PUSH and POP functions.

Figure shows the array representation

Pictorial depiction of pushing elements in stack

Pictorial depiction of popping elements in stack

Pop D

Popping Elements from stack

DISADVANTAGE OF STACK USING ARRAYS

The array representation of stack suffers from the drawbacks of the array's size, that cannot be increased or decreased once it is declared.

The space is wasted, if not used, or, there is shortage of space if needed.

LINKED IMPLEMENTATION IN C

The stack can be implemented using linked lists.

The stack as linked list is represented as a single linked list.

Each node in the list contains data and a pointer to the next node.

Pictorial depiction of stack in linked

 list

APPLICATION OF STACKS

Reversing a list.

Conversion of Infix to Postfix Expression.
Evaluation of Postfix Expression.

Conversion of Infix to Prefix Expression.
Evaluation of Prefix Expression.

CONVERSION OF INFIX TO POSTFIX EXPRESSION

While evaluating an infix expression, operations are executed according to the order as follows:

Brackets / Parentheses.
Exponentiation.
Multiplication / Division.
Addition / Subtraction.
the operators with the same priority(e.g. * and /) are evaluated from left to right.

STEPS TO CONVERT INFIX TO POSTFIX EXPRESSION

Step 1: The actual evaluation is determined by inserting braces.

Step 2: Convert the expression in the innermost braces into postfix notation by putting the operator after the operands.

Step 3: Repeat the above step (2) until the entire expression is converted into postfix notation.

EXAMPLE OF INFIX TO POSTFIX CONVERSION

minx	Postix
$\left\lvert\, \begin{aligned} & A+B \\ & 12+60-23 \\ & (A+B+(C-D) \\ & A B+C D+E F \end{aligned}\right.$	

RECURSION IMPLEMENTATION

If a procedure contains either a call statement to itself/to a second procedure that may eventually result in a cell statement back to the original procedure. Then such a procedure is called as recursive procedure.

Recursion may be useful in developing algorithms for specific problems. The stack may be used to implement recursive procedures.

QUEUE

Queue is a linear list of elements in which deletion of an element can take place only at one end,
called the front
and insertion can take place only at the other end, called the rear.
The first element in a queue will be the first one to be removed from the list.

Therefore, queues are called FIFO lists.

QUEUE

QUEUE ADT

The definition of an abstract data type clearly states that for a data structure to be abstract, it should have the two characteristics as follows.

There should be a particular way in which components are related to each other.

A statement of the operations that can be performed on element of the abstract data type should specified.

QUEUE OPERATIONS

Queue overflow.

Insertion of the element into the queue.

Queue underflow.

Deletion of the element from the queue.

Display of the queue.

ARRAY IMPLEMENTATION IN C

Array is a data structure that stores a fixed number of elements.

One of the major limitations of an array is that its size should be fixed prior to using it.

The size of the queue keeps on changing as the elements are either removed from the front end or added at the rear end.

The solution of this problem is to declare an array with a maximum size.

FIGURE TO REPRESENT A QUEUE USING ARRAY

$\mathrm{X}[0]$	X[1]	X[2]	X[3]	X[4]	X[5]	X[6]	X[7]
48	95	62	-8	1	2	4	6
\uparrow							

INSERTION AND DELETION OPERATIONS IN QUEUE USING ARRAYS

We consider two variables front and rear which are declared to point to both the ends of the queue.

The array begins with index therefore, the maximum number of elements that can be stored can be consider as MAX-1(n-1).

If the number of elements are already stored in the queue is reported to be full.

If the elements are added then the rear is incremented using the pointer and new item is stored in the array.

ADDING ELEMENTS IN A QUEUE

The front and rear variables are initially set to -1 , which denotes that the queue is empty.
If the item being added is the first element then as the item is added, the queue front is set to 0 indicating that the queue is now full.

DELETING ELEMENTS IN A QUEUE

For deleting elements from the queue, the function first checks if there are any elements for deletion. If not, the queue is said to be empty otherwise an element is deleted.

Before deleting elements

Front
Rear

After deleting elements

LINKED IMPLEMENTATION IN C

The linked list representation of a queue does not have any restrictions on the number of elements it can hold.

The elements are allocated dynamically, hence it can grow as long as there is sufficient memory available for dynamic allocation.

APPLICATION OF QUEUE

Job scheduling.

Categorizing data.

Random number generation.

TYPES OF QUEUES

Circular queue.

De queue (double ended queue).

Priority queue.

CIRCULAR QUEUE

Circular queues are implemented in circular form rather than in a straight line.

This form over come the problem of unutilized space in linear queue implemented as an array.

In the array implementation there is a possibility that the queue is reported full even though slots of the queue are empty.

CIRCULAR QUEUE

Suppose an array x of n elements is used to implement a circular queue. If we go on adding elements to the queue we may reach $\mathrm{x}[\mathrm{n}-1]$.

In a queue array if the elements reach the end then it reports the queue is full even some slots are empty but in circular queue , it would not report as full until all the slots are occupied.

REPRESENTATION OF CIRCULAR QUEUE

Circular queue

ADDING ELEMENTS INTO CIRCULAR QUEUE

The conditions that are checked before inserting the elements :

If the front and rear are in adjacent locations(i.e. rare following front)the message 'Queue is full' is displayed.

If the value of front is -1 then it denotes that the queue is empty and that the element to be added would be the first element in the queue. The value of front and rear in such a case are set to 0 and new element gets placed at $0^{\text {Th }}$ position.

ADDING ELEMENTS INTO CIRCULAR QUEUE

Some of the positions at the front end of the array might be empty.
This happens if we have deleted some elements from the queue , when the value of rear is MAX-1 and the value of front is greater than 0 .

In such a case value of rear is set to 0 and the element to be added is added to this position.

The element is added at the rear position in case the value of front is either equal to or greater than 0 and the value of rear is less than MAX-1.

ADDING ELEMENTS IN CIRCULAR QUEUE

Circular queue after adding 6 elements

DELETING ELEMENTS INTO CIRCULAR QUEUE

The conditions that are checked before deleting the elements :

First it is checked whether the queue is empty or not. The elements at the front position will be deleted.

Now , it is checked if the value of front is equal to rear . If it is, then the element which will be deleted is the only element in the queue.

If the element is removes, the queue will be empty and front and rear are set to -1 .

DELETING ELEMENTS IN CIRCULAR QUEUE

On Deleting an element from the queue the value of front is set to 0 if it is equal to MAX-1 otherwise front is simply incremented by 1 .

Circular queue After deleting 2 elements

DOUBLE ENDED QUEUE

A deque is a linear list in which elements can be added or removed at either end but not in the middle.

There are two variations of a deque an input restricted deque and an output restricted deque which are intermediate between deque and a regular queue.

An input restricted deque is a deque which allows insertions at only one end of the list, but allows deletions at both ends of the list

DOUBLE ENDED QUEUE

The output restricted deque is a deque which allows deletions at only one end of the list but allows insertions at both ends of the list.

The two possibilities that must consider while inserting /deleting elements into the queue are:

When an attempt is made to insert an element into a deque which is already full, an overflow occurs.

When an attempt is made to delete an element from a deque which is empty, underflow occurs.

REPRESENTATION OF DEQUE

UNIT - 3

Trees

Definition of Tree

- A tree is a finite set of one or more nodes such that:
- There is a specially designated node called the root.
- The remaining nodes are partitioned into $\mathrm{n}>=0$ disjoint sets T1, ..., Tn, where each of these sets is a tree.
■ We call T1, ..., Tn the subtrees of the root.

Representation of Tree

Fig.Tree 1

Terminology

Fig.Tree 2

>ROOT:

This is the unique node in the tree to which further subtrees are attached.in the above fig node A is a root node.
$>$ Degree of the node:
The total number of sub-trees attached to the node is called the degree of the node.

Node	degree
A	3
E	0

>Leaves:

These are terminal nodes of the tree. The nodes with degree 0 are always the leaf nodes.In above given tree E,F,G,C and H are the leaf nodes.
> Internal nodes:
The nodes other than the root node and the leaves are called the internal nodes.Here B and D are internal nodes.

Parent nodes:

The node which is having further sub-trees(branches)is called the parent node of those sub-trees. In the given example node B is parent node of E, F and G nodes.

Predecessor:

While displaying the tree ,if some particular node occurs previous to some other node then that node is called the predecessor of the other node. In above figure E is a predecessor of the node B.

successor:

The node which occurs next to some other node is a successor node.In above figure B is successor of F and G.

Level of the tree:

The root node is always considered at level 0 , then its adjacent children are supposed to be at level 1 and so on. In above figure the node A is at level 0 , the nodes B, C, D are at level 1 ,the nodes E, F, G, H are at level 2.

Height of the tree:

The maximum level is the height of the tree. Here height of the tree is 3 .The height of the tree is also called depth of the tree.

Degree of tree:

The maximum degree of the node is called the degree of the tree.
The degree of a node is the number of subtrees of the node

- The degree of A is 3 ; the degree of C is 1 .
- The node with degree 0 is a leaf or terminal node.
- A node that has subtrees is the parent of the roots of the subtrees.
- The roots of these subtrees are the children of the node.
- Children of the same parent are siblings.
- The ancestors of a node are all the nodes along the path from the root to the node.

Binary Trees

- A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtree and the right subtree.
- Any tree can be transformed into binary tree.
- by left child-right sibling representation
- The left subtree and the right subtree are distinguished.

Types Of Binary Trees

There are three types of binary trees
-Left skewed binary tree
-Right skewed binary tree
-Complete binary tree

Left skewed binary tree

- If the right subtree is missing in every node of a tree we cal it as left skewed tree.

Right skewed binary tree

- If the left subtree is missing in every node of a tree we call it as right subtree.

Complete binary tree

- The tree in which degree of each node is at the most two is called a complete binary tree.In a complete binary tree there is exactly one node at level 0,twonodes at level 1 and four nodes at level 2 and so on.so we can say that a complete binary tree of depth d will contains exactly 2^{\prime} nodes at each level I, where I is from 0 to d.

Abstract Data Type Binary_Tree

structure Binary_Tree(abbreviated BinTree) is objects: a finite set of nodes either empty or consisting of a root node, left Binary_Tree, and right Binary_Tree.
functions:
for all $b t, b t 1, b t 2 \in$ BinTree, item \in element Bintree Create()::= creates an empty binary tree Boolean IsEmpty(bt)::= if (bt==empty binary tree) return TRUE else return FALSE

BinTree MakeBT(bt1, item, bt2)::= return a binary tree
whose left subtree is bt1, whose right subtree is bt2,
and whose root node contains the data item Bintree Lchild(bt)::= if (IsEmpty(bt)) return error else return the left subtree of $b t$ element $\operatorname{Data}(b t)::=$ if (IsEmpty $(b t))$ return error else return the data in the root node
of $b t$
Bintree Rchild(bt)::= if (IsEmpty(bt)) return error else return the right subtree of $b t$

Maximum Number of Nodes in BT

- The maximum number of nodes on level i of a binary tree is $2^{i-1}, i>=1$.
- The maximum nubmer of nodes in a binary tree of depth k is $2^{k}-1, k>=1$.

Prove by induction.

$$
\sum_{i=1}^{k} i^{i-1}=2^{k}-1
$$

Binary Tree Representation

-Sequential(Arrays) representation
-Linked representation

Array Representation of Binary Tree

This representation uses only a single linear array tree as follows:
i)The root of the tree is stored in tree[0].
ii)if a node occupies tree[i],then its left child is stored in tree[$2 * i+1]$, its right child is stored in tree[$2 * i+2$], and the parent is stored in tree[($i-$ 1)/2].

Sequential Representation

A
B
C
D
E
F
G
H
1

Sequential Representation

[0]	55
[1]	44
[2]	66
[3]	33
[4]	50
[5]	
[6]	
[7]	22
[8]	

Advantages of sequential representation

The only advantage with this type of representation is that the direct access to any node can be possible and finding the parent or left right children of any particular node is fast because of the random access.

Disadvantages of sequential representation

- The major disadvantage with this type of representation is wastage of memory.
- The maximum depth of the tree has to be fixed.
- The insertions and deletion of any node in the tree will be costlier as other nodes has to be adjusted at appropraite positions so that the meaning of binary tree can be preserved.

Linked Representation

struct node
\{ int data;
struct node * left_child, *right_child;
\};

Linked Representation

55,44,66,33,50,22

Advantages of Linked representation

- This representation is superior to our representation as there is no wastage of memory. - Insertions and deletions which are the most common operations can be done without moving the other nodes.

Disadvantages of linked representation

- This representation does not provide direct access to a node and special algorithms are required.
- This representation needs additional space in each node for storing the left and right subtrees.

Full BT VS Complete BT

- A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.
- A full binary tree of depth k is a binary tree of depth k having 2-1 nodes, $k>=0$.

Complete binary tree

Full binary tree of depth 4

Binary Tree Traversals

The process of going through a tree in such a way that each node is visted once is tree traversal.several method are used for tree traversal.the traversal in a binary tree involves three kinds of basic activities such as:

> Visiting the root

Traverse left subtree
Traverse right subtree

We will use some notations to traverse a given binary tree as follows:
L means move to the Left child.
R means move to the Right child.
D means the root/parent node.

The only difference among the methods is the order in which these three operations are performed.
There are three standard ways of traversing a non empty binary tree namely :
Preorder
Inorder
Postorder

Preorder(also known as depth-first order)

1.Visit the root(D)
2.Traverse the left subtree in preorder(L)
3.Traverse the right subtree in preorder(R)

A-B-C-D-E is the preorder traversal of the above figure.

Inorder(also known as symmetric order)
1.Traverse the left subtree in Inorder(L)
2.Visit the root(D)
3.Traverse the right subtree in Inorder(R)

C-B-A-D-E is the Inorder traversal of the above figure.

Postorder

1.Traverse the left subtree in postorder(L)
2.Traverse the right subtree in postorder(R)
3.Visit the root(D)

C-D-B-E-A is the postorder traversal of the above figure.

Binary tree traversals

FIG(a)

FIG(b)

Preorder:ABDHIECFJKG Inorder:HDIBEAJFKCG Postorder:HIDEBJKFGCA
preorder :ABDHIEJCFG inorder: HDIBJEAFCG postorder:HIDJEBFGCA

Arithmetic Expression Using BT

inorder traversal
A/B * ${ }^{*}$ D $+E$ infix expression preorder traversal $+* * / A B C D E$ prefix expression postorder traversal AB/C * D * E + postfix expression level order traversal $+{ }^{*} E * D / C A B$

Inorder Traversal (recursive version)

void inorder(tree_pointer ptr)
/* inorder tree traversal */
\{
if (ptr) \{

$$
A / B * C * D+E
$$

inorder (ptr->left_child); printf("\%d", ptr->data); indorder (ptr->right_child) ;
\}
\}

Preorder Traversal (recursive version)

 void preorder(tree_pointer ptr) /* preorder tree traversal */$\{$
if (ptr) \{
$+* * / A B C D E$
printf("\%d", ptr->data); preorder(ptr->left_child); predorder(ptr->right_child); \}

Postorder Traversal (recursive version)

 void postorder(tree_pointer ptr) /* postorder tree traversal */if (ptr) \{
AB/C * D * E +
postorder(ptr->left_child); postdorder(ptr->right_child); printf("\%d", ptr->data);
\}

Iterative Inorder Traversal

(using stack) void iter_inorder(tree_pointer node) \{
int top= -1; /* initialize stack */ tree_pointer stack[MAX_STACK_SIZE]; for (; ;) \{
for (; node; node=node->left_child) add(\&top, node) ;/* add to stack */ node= delete(\&top);
/* delete from stack */
if (!node) break; /* empty stack */ printf("\%D", node->data); node $=$ node->right_child;

Trace Operations of Inorder Traversal

Call of inorder	Value in root	Action	Call of inorder	Value in root	Action
1	+		11	C	
2	$*$		12	NULL	
3	$*$		11	Crintf	
4	$/$	13	NULL		
5	A		$*$	printf	
6	NULL		14	D	
5	A	printf	15	NULL	
7	NULL		14	D	printf
4	/	printf	16	NULL	
8	NULL		1	+	printf
9	B	printf	17	E	
8	NULL		17	NULL	
10	$*$	printf	19	E	printf
3				NULL	

Level Order Traversal (using queue)

void level_order(tree_pointer ptr)
/* level order tree traversal */
\{
int front $=$ rear $=0$;
tree_pointer queue[MAX_QUEUE_SIZE];
if (!ptr) return; /* empty queue */ addq(front, \&rear, ptr);
for (;i) \{

$$
\text { ptr }=\text { deleteq(\&front, rear); }
$$

if (ptr) $\{$

printf("\%d", ptr->data); if (ptr->left_child) addq(front, \&rear, ptr->left_child); if (ptr->right_child) addq(front, \&rear, ptr->right_child);
\}
else break;

$$
+* E * D / C A B
$$

Copying Binary Trees

tree_poointer copy(tree_pointer original)
\{
tree_pointer temp;

if (original) \{

temp=(tree_pointer) malloc(sizeof(node)); if (IS_FULL(temp)) \{ fprintf(stderr, "the memory is full\n"); exit(1);
\}
temp->left_child=copy (original->left_child) ; temp->right_child=copy (original->righ̄t_child) temp->data=original->data;
return temp;
\}
return NULL;
\}

Post-order-eval function

void post_order_eval(tree_pointer node)
/* modified post order traversal to evaluate a propositional calculus tree */ if (node) \{ post_order_eval(node->left_child); post_order_eval(node->right_child); switch(node->data) \{
case not: node->value = !node->right_child->value; break;

```
case and: node->value =
        node->right_child->value &&
        node->left_child->value;
        break;
    case or: node->value =
        node->right_child->value | |
        node->left_child->value;
        break;
        case true: node->value = TRUE;
        break;
        case false: node->value = FALSE;
        }
    }
}
```


Threaded Binary Trees

■ Two many null pointers in current representatior of binary trees
n : number of nodes
number of non-null links: n-1
total links: $2 n$
null links: $2 n-(n-1)=n+1$

- Replace these null pointers with some useful "threads".

Threaded Binary Trees (continued)

If ptr->left_child is null,

 replace it with a pointer to the node that would be visited before ptr in an inorder traversalIf ptr->right_childis null, replace it with a pointer to the node that would be visited after ptr in an inorder traversal

A Threaded Binary Tree

typedef struct threaded_tree *threaded_pointer;
typedef struct threaded_tree \{
short int left_thread;
threaded_pointer left_child;
char data;
threaded_pointer right_child;
short int right_thread; \};

Memory Representation of A Threaded BT

Next Node in Threaded BT

threaded_pointer insucc(threaded_pointer tree)
\{
threaded_pointer temp; temp $=$ tree->right_child;
if (!tree->right_thread)
 while (!temp->left_thread)

$$
\text { temp }=\text { temp->left_child; }
$$

return temp;

Inorder Traversal of Threaded BT

 void tinorder (threaded_pointer tree) \{/* traverse the threaded binary tree inorder */ threaded_pointer temp $=$ tree; for (; ;) \{ temp $=$ insucc (temp); if (temp==tree) break; printf("\%3c", temp->data);
\}
$\mathrm{O}(\mathrm{n})$ (timecomplexity)

Inserting Nodes into Threaded BTs

- Insert child as the right child of node parent
- change parent->right_thread to FALSE
- set child->left_thread and child->right_threac to TRUE
- set child->left_child to point to parent
- set child->right_child to parent->right_child
- change parent->right_child to point to child

Examples

Insert a node D as a right child of B.

*Figure 5.24: Insertion of child as a right child of parent in a threaded binary tree (p.217)

Right Insertion in Threaded BTs

void insert_right(threaded_pointer parent, threaded_pointer child)
\{ threaded_pointer temp;
(1) Child->right_child = parent->right_child; child->right_thread $=$ parent->right_thread
(2) child->left_child = parent; case (a) child->left thread = TRUE;
(3) parent->right_child = child; parent->right_thread = FALSE;
if (!child->right thread) \{ case
(4) temp $=$ insucc (child);
temp->left_child = child;
\}

- A max tree is a tree in which the key value in each node is no smaller than the key values in its children. A max heap is a complete binary tree that is also a max tree.
- A min tree is a tree in which the key value in each node is no larger than the key values in its children. A min heap is a complete binary tree that is also a min tree.
- Operations on heaps
- creation of an empty heap
- insertion of a new element into the heap;
- deletion of the largest element from the heap ${ }^{192}$

Sample max heaps

Property:
The root of max heap contains the largest.

Sample min heaps

Property:

The root of min heap contains the smallest.

ADT for Max Heap

structure MaxHeap
objects: a complete binary tree of $n>0$ elements organized so that the value in each node is at least as large as those in its children functions:
for all heap belong to MaxHeap, item belong to Element, n, max_size belong to integer
MaxHeap Create(max_size)::= create an empty heap that can hold a maximum of max_size elements
Boolean HeapFull(heap, n)::= if ($n==$ max_size) return TRUE else return FALSE
MaxHeap Insert(heap, item, n)::= if (!HeapFull(heap,n)) insert item into heap and return the resulting heap else return error
Boolean HeapEmpty(heap, n)::= if ($n>0$) return FALSE else return TRUE
Element Delete(heap,n)::= if (!HeapEmpty(heap,n)) return one instance of the largest element in the heap and remove it from the heap
else return error

Example of Insertion to Max Heap

initial location of new node

insert 5 into heap

insert 21 into heap

Insertion into a Max Heap

void insert_max_heap (element item, int *n) \{
int i;
if (HEAP_FULL(*n)) \{ fprintf(stderr, "the heap is full. ${ }^{n}$ "); exit(1);
\}
i $=++\left({ }^{n}\right)$;
while ((i!=1)\&\&(item.key>heap[i/2].key)) \{ heap[i] $=$ heap[i/2];
$i /=2 ; \quad 2^{\mathrm{k}}-1=\mathrm{n}=\Rightarrow \mathrm{k}=\left\lceil\log _{2}(\mathrm{n}+1)\right\rceil$
\}
heap $[i]=$ item; $O\left(\log _{2} n\right)$

Example of Deletion from Max Heap

Deletion from a Max Heap

element delete_max_heap (int *n)
\{
int parent, child;
element item, temp;
if (HEAP_EMPTY(*n)) \{
fprintf(stderr, "The heap is empty $\backslash n^{\prime \prime}$); exit(1);
\}
/* save value of the element with the highest key */
item = heap[1];
/* use last element in heap to adjust heap
temp $=$ heap [(*n)--];
parent $=1$;
child = 2;

while (child <= *n) \{

/* find the larger child of the current parent */

```
    if ((child < *n)&&
            (heap[child] . key<heap[child+1].key))
```

 child++;
 if (temp.key >= heap[child].key) break;
 /* move to the next lower level */
 heap[parent] = heap[child];
 child *= 2;
 \}
 heap[parent] = temp;
 return item;
 \}

Graphs

What is a graph?

- A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices

Formal definition of graphs

- A graph G is defined as follows:

$$
G=(V, E)
$$

$V(G)$: a finite, nonempty set of vertices
$E(G)$: a set of edges (pairs of vertices)

Directed vs. undirected graphs

- When the edges in a graph have no direction, the graph is called undirected

Directed vs. undirected graphs (cont.)

- When the edges in a graph have a direction, the graph is called directed (or digraph)
(b) Graph2 is a directed graph.

Trees vs graphs

- Trees are special cases of graphs!!

(c) Graph3 is a directed graph.

Graph terminology

- Adjacent nodes: two nodes are adjacent if they are connected by an edge

5 is adjacent to 7
7 is adjacent from 5

- Path: a sequence of vertices that connect two nodes in a graph
- Complete graph: a graph in which every vertex is directly connected to every other vertex

Graph terminology (cont.)

- What is the number of edges in a complete directed graph with N vertices?

(a) Complete directed graph.

Graph terminology (cont.)

- What is the number of edges in a complete undirected graph with N vertices?

$$
\begin{gathered}
N^{*}(N-1) / 2 \\
O\left(N^{2}\right)
\end{gathered}
$$

(b) Complete undirected graph.

Graph terminology (cont.)

- Weighted graph: a graph in which each edge carries a value

Graph implementation

- Array-based implementation
- A 1D array is used to represent the vertices
- A 2D array (adjacency matrix) is used to represent the edges

graph
.numVertices 7
.vertices

[0]	"Atlanta
[1]	"Austin
[2]	"Chicago
[3]	"Dallas
[4]	"Denver
[5]	"Houston
[6]	"Washington
[7]	
[8]	
[9]	

.edges

Graph implementation (cont.)

- Linked-list implementation
- A 1D array is used to represent the vertices
- A list is used for each vertex v which contains the vertices which are adjacent from v (adjacency list)

(a)

Adjacency matrix vs. adjacency list representation

- Adjacency matrix
- Good for dense graphs -- $|E|^{\sim} O\left(|V|^{2}\right)$
- Memory requirements: $O(|\mathrm{~V}|+|E|)=O\left(|V|^{2}\right)$
- Connectivity between two vertices can be tested quickly
- Adjacency list
- Good for sparse graphs -- $|E| \sim O(|V|)$
- Memory requirements: $O(|V|+|E|)=O(|V|)$
- Vertices adjacent to another vertex can be found quickly

Depth-First-Search (DFS)

- What is the idea behind DFS?
- Travel as far as you can down a path
- Back up as little as possible when you reach a "dead end" (i.e., next vertex has been "marked" or there is no next vertex)
- DFS can be implemented efficiently using a
stack

Depth-First-Search (DFS) (cont.)

Set found to false
stack.Push(startVertex)
DO
stack.Pop(vertex)
IF vertex == endVertex
Set found to true
ELSE
Push all adjacent vertices onto stack
WHILE !stack.IsEmpty() AND !found
IF(!found)
Write "Path does not exist"


```
template <class ItemType>
void DepthFirstSearch(GraphType<VertexType> graph, VertexType
    startVertex, VertexType endVertex)
{
StackType<VertexType> stack;
QueType<VertexType> vertexQ;
bool found = false;
VertexType vertex;
VertexType item;
graph.ClearMarks();
stack.Push(startVertex);
do {
    stack.Pop(vertex);
    if(vertex == endVertex)
        found = true;
```

```
else {
    if(!graph.IsMarked(vertex)) {
        graph.MarkVertex(vertex);
        graph.GetToVertices(vertex, vertexQ);
        while(!vertexQ.IsEmpty()) {
        vertexQ.Dequeue(item);
        if(!graph.IsMarked(item))
        stack.Push(item);
        }
    }
    } while(!stack.IsEmpty() && !found);
    if(!found)
    cout << "Path not found" << endl;
}
```

```
template<class VertexType>
void GraphType<VertexType>::GetToVertices(VertexType vertex,
                                    QueTye<VertexType>& adjvertexQ)
{
int fromIndex;
int tolndex;
fromIndex = IndexIs(vertices, vertex);
for(tolndex = 0; tolndex < numVertices; toIndex++)
    if(edges[fromIndex][tolndex] != NULL_EDGE)
        adjvertexQ.Enqueue(vertices[tolndex]);
}
```


Breadth-First-Searching (BFS)

- What is the idea behind BFS?
- Look at all possible paths at the same depth before you go at a deeper level
- Back up as far as possible when you reach a "dead end" (i.e., next vertex has been
"marked" or there is no next vertex)

Breadth-First-Searching (BFS) (cont.)

- BFS can be implemented efficiently using a queue

Set found to false queue.Enqueue(startVertex) DO
queue.Dequeue(vertex)
IF vertex == endVertex
Set found to true
ELSE
Enqueue all adjacent vertices onto queue
WHILE !queue.IsEmpty() AND !found

- Should we mark a vertex when it is enqueued or when it is dequeued ?

template<class VertexType> void BreadthFirtsSearch(GraphType<VertexType> graph, VertexType startVertex, VertexType endVertex);

```
{
```

QueType<VertexType> queue;
QueType<VertexType> vertexQ;//
bool found = false; VertexType vertex; VertexType item;
graph.ClearMarks();
queue.Enqueue(startVertex);
do \{
queue.Dequeue(vertex);
if(vertex == endVertex)
found = true;

```
else {
        if(!graph.IsMarked(vertex)) {
            graph.MarkVertex(vertex);
            graph.GetToVertices(vertex, vertexQ);
            while(!vertxQ.IsEmpty()) {
                vertexQ.Dequeue(item);
                if(!graph.IsMarked(item))
                    queue.Enqueue(item);
            }
        }
    }
} while (!queue.IsEmpty() && !found);
if(!found)
    cout << "Path not found" << endl;
}
```


Single-source shortest-path problem

- There are multiple paths from a source vertex to a destination vertex
- Shortest path: the path whose total weight (i.e., sum of edge weights) is minimum
- Examples:
- Austin->Houston->Atlanta->Washington: 1560 miles
- Austin->Dallas->Denver->Atlanta->Washington: 2980 miles

Single-source shortest-path problem (cont.)

- Common algorithms: Dijkstra's algorithm, Bellman-Ford algorithm
- BFS can be used to solve the shortest graph problem when the graph is weightless or all the weights are the same
(mark vertices before Enqueue)

UNIT- 4

UNIT-4

Sorting and Searching

"There's nothing in your head the sorting hat can't see. So try me on and I will tell you where you ought to be."
-The Sorting Hat, Harry Potter and the
Sorcerer's Stone

Sorting and Searching

- Fundamental problems in computer science and programming
- Sorting done to make searching easier
- Multiple different algorithms to solve the same problem
- How do we know which algorithm is "better"?
- Look at searching first
- Examples will use arrays of ints to illustrate algorithms

Searching

Google

recursive backtracking|
Google Search I'm Feeling Lucky

Language Tools

$\theta \Theta \theta$	Grep in Project
Grep in Project	/Ltbrary/Application Suppor/TextMate/Support
Searching for "automatic"	
11 matching lines:	
//bin/Cocoadialog-license.txt:175	void, and will automatically terminate your rights under this License.
//bin/Cocoadialog-license.txt:190	Program), the recipient automatically receives a license from the
Binary file ,/bin/CocoaOialog.app/Contents/MacOS/CocoaDialos	
//bin/CocoaOialog, app/Contents/Resources/COPYING:175	void, and will automatically terminate your rights under this License.
./bin/Cocoadialog.app/Contents/Resources/COPYING:190	Program), the recipient automatically receives a license from the
//bin/SmartyPants-license.txt:93	filter automatically applies SmartyPants to the bodies of your entries;
./bin/smartyPants-license.txt:101	automatically. Textile i \cdots web text generator',
./bin/SmartyPants-license.txt:166	3. That's it. The entries in your weblog should now automatically have
. $\mathrm{bin} / \mathrm{smartyPants-license.txt:572}$	- Added a new option to automatically convert 'Equot;' entities into
./bin/SmartyPants.pl:1070	+ Added a new option to automatically convert \" entities into
./lib/Builder.rb:282	\# itgt; and famp; automatically. Use the <tts<<</tt> operation to

Searching

- Given a list of data find the location of a particular value or report that value is present
- linear search
- intuitive approach
- start at first item
- is it the one I am looking for?
- if not go to next item

- repeat until found or all items checked
- If items not sorted or unsortable this approach is necessary

```
/* pre: list !Eimear Search
post: return the index of the first occurrence
of target in list or -1 if target not present in
list
*/
public int linearSearch(int[] list, int target) {
for(int i = 0; i < list.length; i++)
            if( list[i] == target )
                return i;
    return -1;
}
```

```
/* pre: Linear Search, Generic
post: return the index of the first occurrence
of target in list or -1 if target not present in
list
*/
public int linearSearch(Object[] list, Object target)
    for(int i = 0; i < list.length; i++)
        if( list[i] != null && list[i].equals(target) )
        return i;
    return -1;
}
```

$\mathrm{T}(\mathrm{N})$? Big O? Best case, worst case, average case?

Attendance Question 1

- What is the average case Big O of linear search in an array with N items, if an item is present?
A. $\mathrm{O}(\mathrm{N})$
B. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
C. $\mathrm{O}(1)$
D. $\mathrm{O}(\log \mathrm{N})$
E. O(NlogN)
- If items Searchingin sarted Sorted List conquer
- dividing your work in half with each step
- generally a good thing
- The Binary Search on List in Ascending order
- Start at middle of list
- is that the item?
- If not is it less than or greater than the item?
- less than, move to second half of list
- greater than, move to first half of list
- repeat until found or sub list size $=0$

Binary Search

list

low item
middle item
high item
Is middle item what we are looking for? If not is it more or less than the target item? (Assume lower)
list

Binary Search in Action

```
0}10223445% 7 8 9 101112131415
```

2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53

public static int bsearch(int[] list, int target)
int result $=-1$;
int low $=0$;
int high = list.length - 1;
int mid;
while(result == -1 \&\& low <= high)
mid = low + ((high - low) / 2);
if (list[mid] == target)
result = mid;
else if(list[mid] < target)
low = mid + 1;
else
high = mid - 1;
\}
return result;
\}
// mid $=$ (low + high) / 2; // may overflow!!!
// or mid $=$ (low + high) >>> 1; using bitwise op

Trace When Key == 3
 Trace When Key == 30

Variables of Interest?

Attendance Question 2
 What is the worst case Big O of binary search in an array with N items, if an item is

 present?A. $\quad \mathrm{O}(\mathrm{N})$
B. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
C. $\quad \mathrm{O}(1)$
D. $\quad \mathrm{O}(\log \mathrm{N})$
E. $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

```
        Generic Binaary Search_{\mp@code{Comparable target)}
    int result = -1;
    int low = 0;
    int high = list.length - 1;
    int mid;
    while( result == -1 && low <= high )
    { mid = low + ((high - low) / 2);
    if( target.equals(list[mid]) )
    result = mid;
    else if(target.compareTo(list[mid]) > 0)
    low = mid + 1;
    else
        high = mid - 1;
    }
    return result;
}
```



```
return bsearch(list, target, 0, list.length - 1);
}
public static int bsearch(int[] list, int target,
                                int first, int last){
    if( first <= last ) {
        int mid = low + ((high - low) / 2);
        if( list[mid] == target )
        return mid;
    else if( list[mid] > target )
            return bsearch(list, target, first, mid - 1);
        else
        return bsearch(list, target, mid + 1, last);
}
return -1;
```


Other Searching Algorithms

- Interpolation Search
- more like what people really do
- Indexed Searching
- Binary Search Trees
- Hash Table Searching
- Grover's Algorithm (Waiting for quantum computers to be built)
- best-first
- A^{*}

As of $4 / 24 / 08$

Women

Sorting

1	1	$2: 19: 36$	Deena Kastor nee Drossin
2		$2: 21: 16$	Drossin (2)
3	2	$2: 21: 21$	Joan Benoit Samuelson
4		$2: 21: 25$	Kastor (3)
5		$2: 22: 43 a$	Benoit (2)
6		$2: 24: 52 a$	Benoit (3)
7		$2: 26: 11$	Benoit (4)
8	3	$2: 26: 26 a$	Julie Brown
9	4	$2: 26: 40 a$	Kim Jones

			-				
	Song Name		Time	Track \# A	Artist		Album
	\square Letters from the Wasteland	\bigcirc	4:29	1 of 10	The Wallflowers	\bigcirc	Breach
	\square When You're On Top	\bigcirc	3:54	1 of 13	The Wallflowers	\bigcirc	Red Letter Days
	\triangle Hand Me Down	\bigcirc	3:35	2 of 10	The Wallflowers	\bigcirc	Breach
	\triangle How Good It Can Get	-	4:11	2 of 13	The Wallflowers	\bigcirc	Red Letter Days
	\checkmark Sleepwalker	Θ	3:31	3 of 10	The Wallflowers	\bigcirc	Breach
	\square Closer To You	\bigcirc	3:17	3 of 13	The Wallflowers	\bigcirc	Red Letter Days
	\checkmark I've Been Delivered	-	5:01	4 of 10	The Wallflowers	\bigcirc	Breach
	\square Everybody Out Of The Water	\bigcirc	3:42	4 of 13	The Wallflowers	\odot	Red Letter Days
	\triangle Witness	\bigcirc	3:34	5 of 10	The Wallflowers	\bigcirc	Breach
	\square Three Ways	\bigcirc	4:19	5 of 13	The Wallflowers	\bigcirc	Red Letter Days
	\square Some Flowers Bloom Dead	\bigcirc	4:43	6 of 10	The Wallflowers	\bigcirc	Breach
	T0o Late to Quit	\bigcirc	3:54	6 of 13	The Wallflowers	\bigcirc	Red Letter Days
	\triangle Mourning Train	-	4:04	7 of 10	The Wallflowers	\bigcirc	Breach
	\triangle If You Never Got Sick	\bigcirc	3:44	7 of 13	The Wallflowers	\bigcirc	Red Letter Days
	\triangle Up from Under	$\stackrel{\ominus}{\bullet}$	3:38	8 of 10	The Wallflowers	\bigcirc	Breach
	\square Health and Happiness	\bigcirc	4:03	8 of 13	The Wallflowers	\bigcirc	Red Letter Days
	\checkmark Murder 101	\bullet	2:31	9 of 10	The Wallflowers	\bigcirc	Breach
	\checkmark See You When I Get There	\bigcirc	3:09	9 of 13	The Wallflowers	\bigcirc	Red Letter Days
	\triangle Birdcage	\bullet	7:42	10 of 10	The Wallflowers	\bigcirc	Breach
	\square Feels Like Summer Again	\bigcirc	3:48	10 of 13	The Wallflowers	\bigcirc	Red Letter Days
	\square Everything I Need	\bigcirc	3:37	11 of 13	The Wallflowers	\bigcirc	Red Letter Days
4)	0 Here in Pleasantville	\bigcirc	3:40	12 of 13	The Wallflowers	\oplus	Red Letter Days
	\square Empire in My Mind (Bonus Track)	\bigcirc	3:31	13 of 13	The Wallflowers	\bigcirc	Red Letter Days

Sorting Fun Why Not Bubble Sort?

- A fundamental appRerating ar computers
- Done to make finding data (searching) faster
- Many different algorithms for sorting
- One of the difficulties with sorting is working with a fixed size storage container (array)
- if resize, that is expensive (slow)
- The "simple" sorts run in quadratic time $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- bubble sort
- selection sort
- insertion sort

Stable Sorting

- A property of sorts
- If a sort guarantees the relative order of equal items stays the same then it is a stable sort
- $\left[7{ }_{1}, 6,7_{2}, 5,1,2,7_{3},-5\right]$
- subscripts added for clarity
- $\left[-5,1,2,5,6,7,7_{2}, 7_{3}\right]$
- result of stable sort
- Real world example:
- sort a table in Wikipedia by one criteria, then another
- sort by country, then by major wins
- Algorithm

Selection sort

- Search through the list and find the smallest element
- swap the smallest element with the first element
- repeat starting at second element and find the second smallest element

```
public static void selectionSort(int[] list)
{ int min;
    int temp;
    for(int i = 0; i < list.length - 1; i++) {
    min = i;
    for(int j = i + 1; j < list.length; j++)
    if( list[j] < list[min] )
        min = j;
    temp = list[i];
    list[i] = list[min];
    list[min] = temp;
    }
```


What is the $\mathrm{T}(\mathrm{N})$, actual number of statements executed, of the selection sort code, given a list of N elements? What is the Big O ?

Generic Selection Sort

public void selectionSort (Comparable[] list)
\{ int min; Comparable temp;
for(int $i=0 ; i<l i s t . l e n g t h-1 ; i++) ~\{$
\{ min = i;
for(int $j=i+1 ; j<$ list.length; j++)
if(list[min].compareTo(list[j]) > 0) min $=j$;
temp = list[i];
list[i] = list[min];
list[min] = temp;
\}
\}

- Best case, worst case, average case Big O?

Issection of oftentamdance Question 3
A. Yes
B. No

Insertion Sort

- Another of the $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$ sorts
- The first item is sorted
- Compare the second item to the first
- if smaller swap
- Third item, compare to item next to it
- need to swap
- after swap compare again
- And so forth...

Insertion Sort Code

```
public void insertionSort(int[] list)
    int temp, j;
    for(int i = 1; i < list.length; i++)
    { temp = list[i];
        j = i;
        while( j > 0 && temp < list[j - 1])
        // swap elements
        list[j] = list[j - 1];
        list[j - 1] = temp;
        j--;
        }
    }
}
' Best case, worst case, average case Big O?
```


Attendance Question 4

- Is the version of insertion sort shown always stable?
A. Yes
B. No

Comparing Algorithms

- Which algorithm do you think will be faster given random data, selection sort or insertion sort?
- Why?

Sub Quadratic Sorting Algorithms

Sub Quadratic means having a Big O better than $\mathrm{O}\left(\mathrm{N}^{2}\right)$

ShellSort

- Created by Donald Shell in 1959
- Wanted to stop moving data small distances (in the case of insertion sort and bubble sort) and stop making swaps that are not helpful (in the case of selection sort)
- Start with sub arrays created by looking at data that is far apart and then mndinn thn rap size
 528341102181731644946
Gap still five. Sort sub array with 2 and 17
528341102181731644946
Gap still five. Sort sub array with 83 and 31
523141102181783644946
Gap still five Sort sub array with 41 and 64
523141102181783644946
Gap still five. Sort sub array with 102 and 49
523141491817836410246
Continued on next slide:

Completed Shellsort
 523141491817836410246

Gap now 2: Sort sub array with 53149176446
521741311846834910264
Gap still 2: Sort sub array with 2411883102
521718314146834910264
Gap of 1 (Insertion sort)
251718314146496483102

Array sorted

Initial gap $=$ length $/ 2=16 / 2=8$
initial sub arrays indices:
$\{0,8\},\{1,9\},\{2,10\},\{3,11\},\{4,12\},\{5,13\},\{6,14\},\{7,15\}$
next gap $=8 / 2=4$
$\{0,4,8,12\},\{1,5,9,13\},\{2,6,10,14\},\{3,7,11,15\}$
next gap $=4 / 2=2$
$\{0,2,4,6,8,10,12,14\},\{1,3,5,7,9,11,13,15\}$
final gap $=2 / 2=1$
public static vo Shell Sort (Code $\mathrm{Cl}_{\text {bile (] list) }}$
\{ Comparable temp; boolean swap;
for(int gap $=$ list. length / 2; gap > 0; gap /= 2)
for (int $i=g a p ; i<l i s t . l e n g t h ; ~ i++)$
\{ Comparable tmp = list[i];
int $j=i ;$
for (; j >= gap \&\&
tmp.compareTo(list [j - gap]) < 0;
j -= gap)
list[j] = list[j - gap];
list[j] = top;
\}

Num Items	ariction	$\text { Of } \underset{\text { Insertion }}{V a r}$	Sutis Sert	ts Quicksort
1000	16	5	0	0
2000	59	49	0	6
4000	271	175	6	5
8000	1056	686	11	0
16000	4203	2754	32	11
32000	16852	11039	37	45
64000	expected?	expected?	100	68
128000	expected?	expected?	257	158
256000	expected?	expected?	543	335
512000	expected?	expected?	1210	722
1024000	expected?	expected?	2522	1550

times in milliseconds

- luicksort
- Invented by C.A.R. (Tony) Hoare
- A divide and conquer approach that uses recursion

1. If the list has 0 or 1 elements it is sorted
2. otherwise, pick any element p in the list. This is called the pivot value
3. Partition the list minus the pivot into two sub lists according to values less than or greater than the pivot. (equal values go to either)
4. return the quicksort of the first list followed by the quicksort of the second list

Quicksort in Action

3923179033724679115264571
Pick middle element as pivot: 46
Partition list
$23175333911 \quad 46 \quad 797252649071$
quick sort the less than list
Pick middle element as pivot: 33
$2317511 \quad 33 \quad 39$
quicksort the less than list, pivot now 5
\{\} $\quad 5 \quad 231711$
quicksort the less than list, base case
quicksort the greater than list
Pick middle element as pivot: 17
and so on....

44	68	191	119	119	37	83	82	191	45	158	130	76	153	39	25

Big O of Quicksort?

```
public static void swapReferences( Object[] a, int indexl, int index2 )
{ Object tmp = a[indexl];
    a[index1] = a[index2];
    a[index2] = tmp;
}
public void quicksort( Comparable[] list, int start, int stop )
{ if(start >= stop)
            return; //base case list of 0 or 1 elements
    int pivotIndex = (start + stop) / 2;
    // Place pivot at start position
    swapReferences(list, pivotIndex, start);
    Comparable pivot = list[start];
    // Begin partitioning
    int i, j = start;
    // from first to j are elements less than or equal to pivot
    // from j to i are elements greater than pivot
    // elements beyond i have not been checked yet
    for(i = start + 1; i <= stop; i++ )
    { //is current element less than or equal to pivot
        if(list[i].compareTo(pivot) <= 0)
        { // if so move it to the less than or equal portion
                j++;
                swapReferences(list, i, j);
        }
    }
    //restore pivot to correct spot
    swapReferences(list, start, j);
    quicksort( list, start, j - 1 ); // Sort small elements
    quicksort( list, j + 1, stop ); // Sort large elements
}
```


Attendance Question 5

- What is the best case and worst case Big O of quicksort?

Best
A. $\mathrm{O}(\mathrm{Nlo}$
B. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
$\mathrm{O}\left(\mathrm{N}^{2}\right)$
C. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
D. $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
E. O(N)

Worst
$\mathrm{O}\left(\mathrm{N}^{2}\right)$
O(N!)

O(NlogN)
O(NlogN)

Quicksort Caveats

- Average case Big O?
- Worst case Big O?
- Coding the partition step is usually the hardest part

Attendance Question 6

- You have 1,000,000 items that you will be searching. How many searches need to be performed before the data is changed to make sorting worthwhile?
A. 10
B. 40
C. 1,000
D. 10,000
E. 500,000
oon kumb toses, MMerge Sort Algorithm of this algorithm

1. If a list has 1 element or 0 elements it is sorted
2. If a list has more than 2 split into into 2 separate lists
3. Perform this algorithm on each of those smaller lists
4. Take the 2 sorted lists and merge them together

Merge Sort

When implementing one temporary array is used instead of multiple temporary arrays.

Why?

```
\** perform a merge Merge Sort code
    * @param c c != null, all elements of c
    * are the same data type
    */
public static void mergeSort(Comparable[] c)
{ Comparable[] temp = new Comparable[ c.length ];
    sort(c, temp, 0, c.length - 1);
}
private static void sort(Comparable[] list, Comparable[] temp,
                                    int low, int high)
    if( low < high){
        int center = (low + high) / 2;
        sort(list, temp, low, center);
        sort(list, temp, center + 1, high);
        merge(list, temp, low, center + 1, high);
    }
}
```


Merge Sort Code

```
private static void merge( Comparable[] list, Comparable[] temp,
                            int leftPos, int rightPos, int rightEnd){
int leftEnd = rightPos - 1;
int tempPos = leftPos;
int numElements = rightEnd - leftPos + 1;
//main loop
while( leftPos <= leftEnd && rightPos <= rightEnd){
    if( list[ leftPos ].compareTo(list[rightPos]) <= 0) {
                        temp[ tempPos ] = list[ leftPos ];
                            leftPos++;
    }
    else{
                        temp[ tempPos ] = list[ rightPos ];
                        rightPos++;
    }
    tempPos++;
}
//copy rest of left half
while( leftPos <= leftEnd) {
    temp[ tempPos ] = list[ leftPos ];
    tempPos++;
    leftPos++;
}
//copy rest of right half
while( rightPos <= rightEnd){
    temp[ tempPos ] = list[ rightPos ];
    tempPos++;
    rightPos++;
}
//Copy temp back into list
for(int i = 0; i < numElements; i++, rightEnd--)
    list[ rightEnd ] = temp[ rightEnd ];

\section*{Final Comments}
- Language libraries often have sorting algorithms in them
- Java Arrays and Collections classes
- C++ Standard Template Library
- Python sort and sorted functions
- Hybrid sorts
- when size of unsorted list or portion of array is small use insertion sort, otherwise use \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) sort like Quicksort of Mergesort
- Many other sorting algorithms exist.

\section*{Hash tables}
- Keys and values
- O(1) lookup
- Hash function
- Good v fast
- Clustering
- Databases


\section*{Selection sort :-(}
- \(O\left(n^{2}\right)\)
- Algorithm:
- Find the minimum value
- Swap with 1st position value
- Repeat with 2nd position down

\section*{Insertion sort :-)}
- \(O\left(n^{2}\right)\)
- O(1) space
- Great with small number of elements
(becomes relevant later)
- Algorithm:
- Move element from unsorted to sorted list


\section*{Bubble sort :-i}
- \(O\left(n^{2}\right)\)
- Algorithm:
- Iterate through each \(n\), and sort with \(n+1\) element
- Maybe go \(n-1\) steps every iteration?
- Great for big numbers, bad for small
- Totally useless?

\section*{Merge sort :-)}
- O(nlogn)
- Requires O(n) extra space
- Parallelizable
- Algorithm:
- Break list into 2 sublists
- Sort sublist
- Merge

\section*{Quick sort :-)}
- Average O(nlogn), worst \(O\left(n^{2}\right)\)
- \(O(n)\) extra space (can optimized for \(O(\operatorname{logn})\) )
- Algorithm:
- pick a pivot
- put all \(x<\) pivot in less, all \(x>\) pivot in more
- Concat and recurse through less, pivot, and more
- Advantages also based on caching, registry (single pivot comparison)
- Variations: use fat pivot

\section*{Linear search :-(}
- O(n)
- Examines every item

\section*{Binary search :-)}
- Requires a sorted list
- O(log n)
- Divide and conquer

\section*{Tre}
- Almost like linked lists!
- Traverse: Pre-order v. Post-order v. In-order
- Node, edge, sibling/parent/child, leaf


\section*{Binary trees}
- 0,1 , or 2 children per node
- Binary Search Tree: a binary tree where node.left_child < node.value and node.right_child >= node.value


\section*{Balanced bi trees}

- Minimizes the level of nodes
- Compared with "bad" binary tree?
- Advantages:
- Lookup, insertion, removal: O( log n)
- Disadvantages:
- Overhead to maintain balance

\section*{Heaps (binary)}
- Complete: all leafs are at n or \(\mathrm{n}-\mathrm{I}, \ldots . .\). left
- Node.value >= child.value
- In binary min/max heap
- Insert = O(logn) .. add to bottom, bubble-up
- deleteMax = O(logn) .. Move last to root and bubble-down

\section*{Heapsort}
- O(nlogn)
- Algorithm:
- Build a heap
- deleteMax (or Min) repeatedly
- O(1) overhead

\section*{Why bother?}
- Tries (say trees)
- Position determines the key
- Great for lots of short words
- Prefix matching
- But..
- Long strings..
- Complex algorithms

- Minimax:

\begin{tabular}{|l|l|l|l|}
\hline & \(B: B 1\) & \(B: B 2\) & \(B: B 3\) \\
\hline\(A: A 1\) & +3 & -2 & +2 \\
\hline\(A: A 2\) & -1 & 0 & +4 \\
\hline\(A: A 3\) & -4 & -3 & +1 \\
\hline
\end{tabular}
- Alpha-beta pruning - pick a bag!
- ordering

\section*{UNIT- 5}

\section*{Binary Search Trees (BST)}
1. Hierarchical data structure with a single pointer to root node
2. Each node has at most two child nodes (a left and a right child)
3. Nodes are organized by the Binary Search property:
- Every node is ordered by some key data field(s)
- For every node in the tree, its key is greater than its left child's key and less than its right child's key


\section*{Some BST Terminology}
1. The Root node is the top node in the hierarchy
2. A Child node has exactly one Parent node, a Parent node has at most two child nodes, Sibling nodes share the same Parent node (ex. node 22 is a child of node 15)
3. A Leaf node has no child nodes, an Interior node has at least one child node (ex. 18 is a leaf node)
4. Every node in the BST is a Subtree of the BST rooted at that node


\title{
Comparision Between Binary Tree \&
}

\section*{Binary Search Tree}
* A binary search tree is a binary tree in which it has atmost two children, the key values in the left node is less than the root and the key values in the right node is greater than the root. * It doesn't have any order. Note : * Every binary search tree is a binary tree.
* All binary trees need not be a hilnery enerob tren

\section*{Example of Binary Search Tree}


A binary search tree


Not a binary search tree

\section*{Binary Search Trees}

The same set of keys may have different BSTs


\title{
DECLARATION ROUTINE FOR BINARY SEARCH TREE
}

\section*{Struct TreeNode}
\{
int Element;
SearchTree Left;
SearchTree Right;
\};

\section*{BST Operations}
-The 3 basic BST operations are: search, insert, and delete; and develop algorithms for searches, insertion, and deletion.
-Searches
- Insertion
- Deletion

\section*{Three BST search algorithms:}
- Find the smallest node
- Find the largest node
- Find a requested node

\section*{Find : -}
- Check whether the root is NULL if so then return NULL.
- Otherwise, Check the value \(X\) with the root node value (i.e. \(T\) data)
- (1) If \(X\) is equal to \(T\) data, return \(T\).
- (2) If \(X\) is less than \(T\) data, Traverse the left of \(T\) recursively.
- (3) If \(X\) is greater than \(T\) data, traverse the right of \(T\) recursively.

\section*{ROUTINE FOR FIND OPERATION} Int Find (int X, SearchTree T) \{ If \(\mathbf{T}=\mathbf{=}\) NULL)
Return NULL;
If (X < T Element)
return Find (X, T \(\rightarrow\) left);
else
If (X > T \(\rightarrow\) Element)
return Find (X, T \(\rightarrow\) Right);
else
return T; I/ returns the position of the search element.

\section*{ALGORITHM}

\section*{Search BST}

Algorithm searchBST (root, targetKey)
Search a binary search tree for a given value. Pre root is the root to a binary tree or targetKey is the key value requested
Return the node address if the value is foun null if the node is not in the tree
1 if (empty tree)
Not found
1 return null
2 end if
3 if (targetKey < root)
1 return searchBST (left subtree, targetKey 4 else if (targetKey > root)

1 return searchBST (right subtree, targetKe
5 else
Found target key
1 return root
6 end if
end searchBST

\section*{Find Min :}
- This operation returns the position of the smallest element in the tree.
- To perform FindMin, start at the root and go left as long as there is a left child. The stopping point is the smallest element.

\section*{RECURISVE ROUTINE FOR FINDMIN} int FindMin (SearchTree T)
\{
if ( \(\mathrm{T}=\mathbf{=}\) NULL);
return NULL ;
else if ( \(\mathbf{T} \rightarrow\) left \(==\) NULL \()\)
return T;
else
return FindMin ( \(T \rightarrow\) left);

Example : - Root T
(a) T! = NULL and T \(\rightarrow\) left! \(=\) NULL,
(b) (b) T! = NULL and T \(\rightarrow\) left!=NULL,

Traverse left Traverse left until Min T
(c) Since Tleft is Null, return T as a minimum element.

\section*{NON - RECURSIVE ROUTINE FOR FINDMIN}
int FindMin (SearchTree T)
\{
if (T! = NULL) while (T \(\rightarrow\) Left! = NULL) \(\mathbf{T}=\mathbf{T} \rightarrow\) Left ; return T;
\}

RECURSIVE ROUTINE FOR FINDMAX
int FindMax (SearchTree T)
\{
if ( \(\mathbf{T}==\mathbf{N U L L}\) )
return NULL;
else if ( \(\mathbf{T} \rightarrow\) Right \(=\mathbf{=}\) NULL)
return T;
else FindMax ( \(\mathbf{T} \rightarrow\) Right);
\}
Example :- Root T
(a) T! = NULL and T \(\rightarrow\) Right!=NULL, (b) T! = NULL and \(\mathbf{T} \rightarrow\) Right! \(=\) NULL,
Traverse Right Traverse Right Max
(c) Since T Right is NULL, return \(T\) as a Maximum element.

\section*{FindMax}
-FindMax routine return the position of largest elements in the tree.
-To perform a FindMax, start at the root and go right as long as there is a right child. -The stopping point is the largest element.

RECURSIVE ROUTINE FOR FINDMAX
```

int FindMax (SearchTree T)
{
if (T = = NULL)
return NULL;
else if (T }->\mathrm{ Right = = NULL)
return T;
else FindMax (T }->\mathrm{ Right);
}
Example :- Root T
(a) T! = NULL and T }->\mathrm{ Right!=NULL, (b) T! =
NULL and T }->\mathrm{ Right!=NULL,
Traverse Right Traverse Right Max
(c) Since T Right is NULL, return T as a Maximum element.

```

\section*{NON - RECURSIVE ROUTINE FOR FINDMAX}
int FindMax (SearchTree T)
\{
if (T! = NULL)
while (T Right ! = NULL)
\(\mathbf{T}=\mathbf{T} \rightarrow\) Right ;
return \(\mathbf{T}\);
\}

\section*{Find a Node into the BST}
- Use the search key to direct a recursive binary

\section*{search for a matching node}
1. Start at the root node as current node
2. If the search key's value matches the current node's key then found a match
3. If search key's value is greater than current node's
1. If the current node has a right child, search right
2. Else, no matching node in the tree
4. If search key is less than the current node's
1. If the current node has a left child, search left

2 Flse no matching node in the tree

\section*{Example: search for 45 in the tree:}
1. start at the root, 45 is greater than 25 , search in right subtree
2. 45 is less than 50 , search in 50 's left subtree
3. 45 is greater than 35 , search in 35 's right subtree
4. 45 is greater than 44 , but 44 has no right subtree so 45 is not in the BST


\section*{ALGORTHM \\ Find Smallest Node in a BST}

Algorithn findSmallestBST (root)
This algorithm finds the smallest node in a BST.
Pre root is a pointer to a nonempty BST or subtree
Return address of smallest node
1 if (left subtree empty)
1 return (root)
2 end if
3 return findSmallestBST (left subtree)
end findSmallestBST

\section*{ALGORITHM Find Largest Node in a BST}
```

Algorithm findLargestBST (root)
This algorithm finds the largest node in a BST.
Pre root is a pointer to a nonempty BST or subtree
Return address of largest node returned
1 if (right subtree empty)
1 return (root)
2 end if
3 return findLargestBST (right subtree)
end findLargestBST

```

Make Empty :-
This operation is mainly for initialization when the programmer prefer to initialize the first element as a one - node tree.
ROUTINE TO MAKE AN EMPTY TREE :SearchTree MakeEmpty (SearchTree T)

\section*{\{}
if (T! = NULL)
\{
MakeEmpty (T left); MakeEmpty (T Right); free (T);
 return NULL ;
\}

\section*{Insert operation: -}

To insert the element \(X\) into the tree,
- Check with the root node \(\mathbf{T}\)
- If it is less than the root,
- Traverse the left subtree recursively until it reaches the \(T\) left equals to NULL. Then \(X\) is placed in \(T\) left.
- If \(X\) is greater than the root.
- Traverse the right subtree recursively until it reaches the \(T\) right equals to NULL. Then \(x\) is placed in TRight.

\section*{ROUTINE TO INSERT INTO A BINARY SEARCH TREE}

SearchTree Insert (int X, searchTree T) \{
if (T = = NULL)
\{
T = malloc (size of (Struct TreeNode)); if(T! = NULL)// First element is placed in the root.
\{
\(\mathbf{T} \rightarrow\) Element \(=\mathbf{X ;}\)
T \(\rightarrow\) left = NULL;
\(\mathbf{T} \rightarrow\) Right \(=\) NULL;
\}\} \}
else
if ( \(\mathbf{X}<\mathbf{T} \rightarrow\) Element)
T left = Insert ( \(\mathrm{X}, \mathrm{T} \rightarrow\) left);
else
if ( \(\mathbf{X} \boldsymbol{>} \mathbf{T} \rightarrow\) Element)
T Right = Insert (X, T \(\rightarrow\) Right);
II Else \(X\) is in the tree already. return T;


Trace of Recursive BST Insert

\section*{Example: insert 60 in the tree:}
1. start at the root, 60 is greater than 25 , search in right subtree
2. 60 is greater than 50 , search in 50 's right subtree
3. 60 is less than 70 , search in 70 's left subtree
4. 60 is less than 66 , add 60 as 66 's left child


(a) Before inserting 19

(c) Before inserting 38

(b) After inserting 19

(d) After inserting 38

\section*{Add Node to BST}

\section*{Algorithm addBSI (root, newNode)}

Insert node containing new data into BST using recursion.
Pre root is address of current node in a BST newWode is address of node containing data
Post newilode inserted into the tree
Return address of potential new tree root
1 if (empty tree)
1 set root to newlode
2 return newNode
2 end if

\section*{ALGORTHM Add Node to BST (continued)}

Locate null subtree for insertion
3 if (newNode < root)
1 return addBST (left subtree, newNode)
4 else
1 return addBST (right subtree, newNode)
5 end if
end addBST

\section*{Delete operation:}
- Deletion operation is the complex operation in the Binary search tree. To delete an element, consider the following three possibilities.
- CASE 1 Node with no children (Leaf node) If the node is a leaf node, it can be deleted immediately.
- CASE 2:- Node with one child

If the node has one child, it can be deleted by adjustingits parent pointer that points to its child node
- Case 3 : Node with two children

It is difficult to delete a node which has two children. The general strategy is to replace the data of the node to be deleted with its smallest data of the right subtree and recursively delete that node.

\section*{DELETION ROUTINE FOR BINARY}

\section*{SEARCH TREES}

SearchTree Delete (int \(X\), searchTree T)
\{
int Tmpcell ;
if (T = = NULL)
Error ("Element not found");
else
if (X < T \(\rightarrow\) Element) // Traverse towards left
\(\mathbf{T} \rightarrow\) Left = Delete (X, T Left);
else
if (X > T Element) // Traverse towards right
T \(\rightarrow\) Right = Delete (X, T \(\rightarrow\) Right);
// Found Element tobe deleted
if ( \(\mathrm{T} \rightarrow\) Left \& \& \(\mathrm{T} \rightarrow\) Right)
\{ // Replace with smallest data in right subtree
Tmpcell = FindMin (T \(\rightarrow\) Right);
\(\mathrm{T} \rightarrow\) Element = Tmpcell Element ;
\(\mathrm{T} \rightarrow\) Right = Delete ( \(\mathrm{T} \rightarrow\) Element; \(\mathrm{T} \rightarrow\) Right);
\}
else \{// one or zero children
Tmpcell = T;
if \((T \rightarrow\) Left \(==\) NULL)
T = T \(\rightarrow\) Right;
else if ( \(\mathrm{T} \rightarrow\) Right \(==\) NULL)
T = T \(\rightarrow\) Left ;
free (TmpCell);
\}
return T; \}

\section*{Delete node from BST}
```

Algorithm deleteBST (root, dltKey)
This algorithm deletes a node from a BST.
Pre root is reference to node to be deleted
dltKey is key of node to be deleted
Post node deleted
if dltKey not found, root unchanged
Return true if node deleted, false if not found
1 if (empty tree)
1 return false
2 end if
3 if (dltKey < root)
1 return deleteBST (left subtree, dltKey)
4 else if (dltKey > root)
1 return deleteBST (right subtree, dltKey)
5 else
Delete node found--test for leaf node
1 If (no left subtree)
1 make right subtree the root
2 return true

```

\section*{Delete node from BST (continued)}
```

 2 else if (no right subtree)
 1 make left subtree the root
 2 return true
 3 else
 Node to be deleted not a leaf. Find largest node on
 left subtree.
 1 save root in deleteNode
 2 \text { set largest to largestBST (left subtree)}
 3 move data in largest to deleteNode
 4 \text { return deleteBST (left subtree of deleteNode,}
 key of largest
 4 end if
 6 end if
end deleteBST

```

(a) Find dltKey

(c) Move largest data

(b) Find largest

(d) Delete largest node

\section*{AVL Trees}

These are self-adjusting, height-balanced binary search trees and are named after the inventors: Adelson-Velskii and Landis.

\section*{Definition:}

The height of a binary tree is the maximum path length from the root to a leaf. A singlenode binary tree has height 0 , and an empty binary tree has height -1
- An AVL tree is a binary search tree in which every node is height balanced, that is, the difference in the heights of its two subtrees is at most 1 .
- The balance factor of a node is the height of its right subtree minus the height of its left subtree. An equivalent definition, then, for an AVL tree is that it is a binary search tree in which each node has a balance factor of \(-1,0\), or +1 .
- Note :balance factor of -1 means that the subtree is left-heavy, and
- a balance factor of +1 means that the subtree is rightheavy.

\section*{AVL Trees}

These are self-adjusting, height-balanced binary search trees and are named after the inventors: Adelson-Velskii and Landis.

\section*{Definition:}

The height of a binary tree is the maximum path length from the root to a leaf. A singlenode AVLtree has height 0 , and an empty AVL tree has height -1

\section*{AVL Tree}

\section*{Definition}
- Binary Search tree.
- If T is a nonempty binary Search tree with \(\mathrm{T}_{\mathrm{L}}\) and \(T_{R}\) as its left and right subtrees, then \(T\) is an AVL tree iff
1. \(\mathrm{T}_{\mathrm{L}}\) and \(\mathrm{T}_{\mathrm{R}}\) are AVL trees, and
2. \(\left|h_{L}-h_{R}\right| \leq 1\) where \(h_{L}\) and \(h_{R}\) are the heights of \(T_{L}\) and \(T_{R}\), respectively

\section*{AVL Tree}

\section*{Definition}
- Binary tree.
- If \(T\) is a nonempty binary tree with \(T_{L}\) and \(T_{R}\) as its left and right subtrees, then \(T\) is an AVL tree iff
1. \(T_{L}\) and \(T_{R}\) are AVL trees, and
2. \(\left|h_{L}-h_{R}\right| \leq 1\) where \(h_{L}\) and \(h_{R}\) are the heights of \(T_{L}\) and \(T_{R}\), respectively

\section*{Balance Factor}
- AVL trees are normally represented using the linked representation
- To facilitate insertion and deletion, a balance factor (bf) is associated with each node.
- The balance factor \(b f(x)\) of a node \(x\) is defined as height( \(x \rightarrow\) leftChild) - height( \(x \rightarrow\) rightChild)
- Balance factor of each node in an AVL tree must be -1, 0 , or 1

\section*{Eg with balance factors}


Not an AVL TREE


\section*{AVL tree structure in C}

\section*{For each node, the difference of height between left and right are no more than 1. struct AVLnode_s \{ \\ Datatype element; \\ struct AVLnode *left; \\ struct AVLnode *right; \\ \}; \\ typedef struct AVLnode_s AVLnode;}

\section*{Inserting into an AVL Search Trees}
- If we insert an element into an AVL search tree, the result may not be an AVL tree
- That is, the tree may become unbalanced
- If the tree becomes unbalanced, we must adjust the tree to restore balance - this adjustment is called rotation.
- There are Four Models of rotations:
- There are four models about the operation of AVL Tree:
1. LL: new node is in the left subtree of the left subtree of \(A\)
2. LR: new node is in the right subtree of the left subtree of \(A\)
3. RR: new node is in the right subtree of the right subtree of \(A\)
4. RL: new node is in the left subtree of the right subtree of \(A\)

\section*{Rotation}

\section*{Definition}
- To switch children and parents among two or three adjacent nodes to restore balance of a tree.
- A rotation may change the depth of some nodes, but does not change their relative ordering.

\section*{Single and Double Rotations}
- Single rotations: the transformations done to correct LL and RR imbalances
- Double rotations: the transformations done to correct LR and RL imbalances
- The transformation to correct LR imbalance can be achieved by an RR rotation followed by an LL rotation
- The transformation to correct RL imbalance can be achieved by an LL rotation followed by an RR rotation

\section*{Left Rotation}

\section*{Definition}
- In a binary search tree, pushing a node A down and to the left to balance the tree.
- A's right child replaces \(A\), and the right child's left child becomes A's right child.


\section*{Right Rotation}

\section*{Definition}
- In a binary search tree, pushing a node A down and to the right to balance the tree.
- A's left child replaces A, and the left child's right child becomes A's left child.


\section*{Single Rotation (LL)}
- Let \(k_{2}\) be the first node on the path up violating AVL balance property. Figure below is the only possible scenario that allows \(\boldsymbol{k}_{2}\) to satisfy the AVL property before the insertion but violate it afterwards. Subtree \(X\) has grown an extra level (2 levels deeper than \(Z\) now). \(Y\) cannot be at the same level as \(X\) ( \(k_{2}\) then out of balance before insertion) and \(Y\) cannot be at the same level as \(Z\) (then \(k_{1}\) would be the first to violate).


\section*{Single Rotation (RR)}
- Note that in single rotation inorder traversal orders of the nodes are preserved.
- The new height of the subtree is exactly the same as before. Thus no further updating of the nodes on the path to the root is needed.


\section*{Single Rotation-Example I}
- AVL property destroyed by insertion of 6, then fixed by a single rotation.
- BST node structure needs an additional field for height.


\section*{Single Rotation-Example II}
- Start with an initially empty tree and insert items 1 through 7 sequentially. Dashed line joins the two nodes that are the subject of the rotation.


\section*{Single Rotation-Example III}


Finally, Insert 7 causing another rotation.


\section*{Double Rotation (LR, RL) - I}
- The algorithm that works for cases 1 and 4 (LL, RR) does not work for cases 2 and 3 (LR, RL). The problem is that subtree \(Y\) is too deep, and a single rotation does not make it any less deep.
- The fact that subtree \(Y\) has had an item inserted into it guarantees that it is nonempty. Assume it has a root and two subtrees.


\section*{Double Rotation (LR) - II}

Below are 4 subtrees connected by 3 nodes. Note that exactly one of tree \(B\) or \(\boldsymbol{C}\) is \(\mathbf{2}\) levels deeper than \(D\) (unless all empty). To rebalance, \(k_{3}\) cannot be root and a rotation between \(k_{1}\) and \(k_{3}\) was shown not to work. So the only alternative is to place \(k_{2}\) as the new root. This forces \(k_{1}\) to be \(\boldsymbol{k}_{2}\) 's left child and \(\boldsymbol{k}_{3}\) to be its right child. It also completely determines the locations of all 4 subtrees. AVL balance property is now satisfied. Old height of the tree is restored; so, all the balancing and and height updating is complete.


\section*{Double Rotation (RL) - III}

In both cases (LR and RL), the effect is the same as rotating between \(\alpha\) 's child and grandchild and then between \(\alpha\) and its new child. Every double rotation can be modelled in terms of 2 single rotations. Inorder traversal orders are always preserved between \(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\), and \(\boldsymbol{k}_{3}\).

Double RL = Single LL ( \(\alpha\)->right)+ Single RR ( \(\alpha\) ) Double LR = Single RR ( \(\alpha->\) left)+ Single LL ( \(\alpha\) )


\section*{Double Rotation Example - I}
- Continuing our example, suppose keys 8 through 15 are inserted in reverse order. Inserting 15 is easy but inserting 14 causes a height imbalance at node 7. The double rotation is an RL type and involves 7, 15, and 14.


\section*{Double Rotation Example - II}
- insert 13: double rotation is RL that will involve 6,14 , and 7 and will restore the tree.


\section*{Double Rotation Example - III}
- If \(\mathbf{1 2}\) is now inserted, there is an imbalance at the root. Since 12 is not between 4 and 7, we know that the single rotation RR will work.


\section*{Double Rotation Example - IV}
- Insert 11: single rotation LL; insert 10: single rotation LL; insert 9: single rotation LL; insert 8: without a rotation.

after

Case 1: insertion to right subtree of right child
Solution: Left rotation


Case 3: insertion to right subtree of left child
Solution: Left-right rotation


Case 2: insertion to le subtree of left child
Solution: Right rotatio


Case 4: insertion to le subtree of right child
Solution: Right-left rot


Case 1: insertion to right

\section*{examples} Left-Rotation subtree of right child Solution: Left rotation




\section*{Left-Rotation}

Case 1: insertion to right subtree of right child
Solution: Left rotation


\section*{Right-Rotation}

\section*{Case 2: insertion to left} subtree of left child
Solution: Right rotation


\section*{Right-Rotation}

\section*{Case 2: insertion to left subtree of left child \\ Solution: Right rotation}


\section*{Left-Right Rotation}

Case 3: insertion to right subtree of left child

\section*{Solution: Left-right rotation}


\section*{Left-Right Rotation}

Case 3: insertion to right subtree of left child
Solution: Left-right rotation


\section*{Right-Left Rotation}

Case 4: insertion to left subtree of right child
Solution: Right-left rotation


\section*{Right-Left Rotation}

Case 4: insertion to left subtree of right child

Solution: Right-left rotation


\section*{How to identify rotations?}

- First find the node that cause the imbalance (balance factor)
- Then find the corresponding child of the imbalanced node (left node or right node)
- Finally find the corresponding subtree of that child (left or right)

\section*{How to identify rotations?}



\section*{Inserting into an AVL Search Tree}

Insert(29)

- Where is 29 going to be inserted into?
- use the AVL-search-tree-insertion algorithm in Figure 15.6)
- After the insertion, is the tree still an AVL search tree? (i.e., still balanced?)

\section*{Inserting into an AVL Search Tree}

- What are the new balance factors for 20, 25, 29?
-What type of imbalance do we have?
- RR imbalance \(\rightarrow\) new node is in the right subtree of right subtree of node 20 (node
 with \(\mathrm{bf}=-2\) ) \(\rightarrow\) what rotation do we need?
- What would the left subtree of 30 look like after RR rotation?

After RR Rotation

- After the RR rotation, is the resulting tree an AVL search tree?

\section*{Balancing an AVL tree after an insertion}
- Begin at the node containing the item which was just inserted and move back along the access path toward the root.\{
For each node determine its height and check the balance condition. \{
- If the tree is AVL balanced and no further nodes need be considered.
- else If the node has become unbalanced, a rotation is needed to balance it. \}
\} we proceed to the next node on the access path.
```

AVLnode *insert(Datatype x, AVLnode *t) \{
if ($\mathbf{t}==\mathrm{NULL}$) \{
/* CreateNewNode */
\}
else if (x < t->element) \{
$t->$ left $=$ insert($\mathbf{x}, \mathrm{t}->$ left);
/* DoLeft */
\}
else if ($x>t$->element) $\{$
$t->$ right $=$ insert($x, t->$ right);
/* DoRight */
\}
\}

```

\section*{AVL tree}

\section*{CreateNewNode}
```

t = malloc(sizeof(struct AVLnode);
t ->element $=\mathrm{x}$;
t->left = NULL;
t->right = NULL;

```

\section*{AVL tree}

\section*{DoLeft}

\section*{if (height(t->>eft) - height \((t->\) right \()=2\) )} if ( \(x\) < \(t\)->left->element) \(\mathrm{t}=\) singleRotateWithLeff(t); / / LL else
\(\mathrm{t}=\) doubleRotateWithLeft(t); // LR

\section*{AVL tree}

\section*{DoRight}

\section*{if (height( \((-\)-right) \()\) height(t \(->\) left) \(==2\) )} if ( \(x>t \rightarrow\) right->element) \(\mathrm{t}=\) singleRotateWithRight(t); // RR else \(\mathrm{t}=\) doubleRotateWithRight(t); // RL

\section*{Deletion from an AVL Search Tree}

Deletion procedure is more complex than insertion in \(\mathbf{2}\) ways:
- 1)More number of cases for rebalancing may arise in deletion;
- 2)In insertion there is only one reblancing,but in deletion there can be as many rebalancing as the length of the path from the deleted node to the root.

AVL Tree Example:
- Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree


AVL Tree Example:
- Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree


AVL Tree Example:
- Now insert 12


AVL Tree Example:
- Now insert 12


AVL Tree Example:
- Now the AVL tree is balanced.


AVL Tree Example:
- Now insert 8


AVL Tree Example:
- Now insert 8


AVL Tree Example:
- Now the AVL tree is balanced.


AVL Tree Example:
- Now remove 53


AVL Tree Example:
- Now remove 53, unbalanced


AVL Tree Example:
- Balanced! Remove 11


AVL Tree Example:
- Remove 11, replace it with the largest in its left branch


AVL Tree Example:
- Remove 8, unbalanced

AVL Tree Example:
- Remove 8, unbalanced


AVL Tree Example:
- Balanced!!


\section*{Exercise}
- Build an AVL tree with the following values: \(15,20,24,10,13,7,30,36,25\)
\(15,20,24,10,13,7,30,36,25\)

\(15,20,24,10,13,7,30,36,25\)

\(15,20,24,10,13,7,30,36,25\)


Remove 24 and 20 from the AVL tree.


\section*{B -TREE}

\section*{B-tree of order \(n\)}
- Every B-tree is of some "order n ", meaning nodes contain from n to \(\mathbf{2 n}\) keys (so nodes are always at least half full of keys), and \(n+1\) to \(2 n+1\) pointers, and n can be any number.
- Keys are kept in sorted order within each node. A corresponding list of pointers are effectively interspersed between keys to indicate where to search for a key if it isn't in the current node.
- A B-tree of order \(\mathbf{n}\) is a multi-way search tree with two properties:
- 1.All leaves are at the same level
2.The number of keys in any node lies between \(n\) and \(2 n\), with the possible exception of the root which may have fewer keys.

\section*{Other definition}

A B-tree of order \(m\) is a m-way tree that satisfies the following conditions.
- Every node has \(\leq\) m children.
- Every internal node (except the root) has \(\leq m / 2\) children.
- The root has \(\geq 2\) children.
- An internal node with \(k\) children contains ( \(k-1\) ) ordered keys. The leftmost child contains keys less than or equal to the first key in the node. The second child contains keys greater than the first keys but less than or equal to the second key, and so on.

\section*{B-tree of order \(n\)}
- Every B-tree is of some "order n ", meaning nodes contain from n to \(\mathbf{2 n}\) keys (so nodes are always at least half full of keys), and \(n+1\) to \(2 n+1\) pointers, and n can be any number.
- Keys are kept in sorted order within each node. A corresponding list of pointers are effectively interspersed between keys to indicate where to search for a key if it isn't in the current node.
- A B-tree of order \(\mathbf{n}\) is a multi-way search tree with two properties:
- 1.All leaves are at the same level
2.The number of keys in any node lies between \(n\) and \(2 n\), with the possible exception of the root which may have fewer keys.

\section*{Other definition}

A B-tree of order \(m\) is a m-way tree that satisfies the following conditions.
- Every node has \(\leq\) m children.
- Every internal node (except the root) has \(\leq m / 2\) children.
- The root has \(\geq 2\) children.
- An internal node with \(k\) children contains ( \(k-1\) ) ordered keys. The leftmost child contains keys less than or equal to the first key in the node. The second child contains keys greater than the first keys but less than or equal to the second key, and so on.

\section*{A B-tree of order 2}

- A multi-way (or m-way) search tree of order \(m\) is a tree in which
- Each node has at-most \(m\) subtrees, where the subtrees may be empty.
- Each node consists of at least 1 and at most m-1 distinct keys
- The keys in each node are sorted.
- The keys and subtrees of a non-leaf node are ordered as:
\[
T_{0}, k_{1}, T_{1}, k_{2}, T_{2}, \ldots, k_{m-1}, T_{m-1} \quad \text { such that: }
\]
- All keys in subtree TO are less than k1.
- All keys in subtree \(T_{i}, 1<=i<=m-2\), are greater than \(k_{i}\) but less than \(\mathrm{k}_{\mathrm{i}+1}\).
- All keys in subtree \(\mathrm{T}_{\mathrm{m}-1}\) are greater than \(\mathrm{k}_{\mathrm{m}-1}\)

\section*{Multi-way tree}


\section*{What is B-tree?}
- B-tree of order \(m\) (or branching factor \(m\) ), where \(m>2\), is either an empty tree or a multiway search tree with the following properties:
-The root is either a leaf or it has at least two non-empty subtrees and at most \(m\) non-empty subtrees.
-Each non-leaf node, other than the root, has at least \(\mathrm{m} / 2\rceil\) non-empty subtrees and at most \(m\) non-empty subtrees. (Note: \(\lceil x\rceil\) is the lowest integer \(>x\) ).
-The number of keys in each non-leaf node is one less than the number of non-empty subtrees for that node.
-All leaf nodes are at the same level; that is the tree is perfectly balanced
- For a non-empty \(B\)-tree of \(\mathfrak{\text { @rdermand }}\) tree?
\begin{tabular}{|l|l|l|}
\hline & Root node & Non-root node \\
\hline Minimum number of keys & 1 & \(\lceil\mathrm{~m} / 27-1\) \\
\hline Minimum number of non-empty subtrees & 2 & \(\lceil\mathrm{~m} / 2\rceil\) \\
\hline Maximum number of keys & \(\mathrm{m}-1\) & \(\mathrm{~m}-1\) \\
\hline Maximum number of non-empty subtrees & m & m \\
\hline
\end{tabular}

\section*{Example: A B-tree of order 4}


Example: A B-tree of order 5


Note:
- The data references are not shown.
- The leaf references are to empty subtrees

\section*{Height of B-Trees}
- For \(n\) greater than or equal to one, the height of an \(n\)-key b-tree T of height \(h\) with a minimum degree \(t\) greater than or equal to 2
\[
h \leq \log _{t} \frac{n+1}{2}
\]

\section*{Operations of B-Trees}
- B-Tree-Search(x, k)
- The search operation on a b-tree is similar to a search on a binary tree. The \(B\)-Tree-search runs in time \(O\left(\log _{t}\right.\) \(n)\).
- B-Tree-Create(T)
-The \(B\)-Tree-Create operation creates an empty b-tree by allocating a new root node that has no keys and is a leaf node. Only the root node is permitted to have these properties; all other nodes must meet the criteria outlined previously. The B-Tree-Create operation runs in time \(O(1)\).

\section*{Operations of B-Trees}
- B-Tree-Split-Child(x, i, y)
-If is node becomes "too full," it is necessary to perform a split operation. The split operation moves the median key of node \(x\) into its parent \(y\) where \(x\) is the ith child of y . A new node, z , is allocated, and all keys in x right of the median key are moved to \(z\). The keys left of the median key remain in the original node \(x\). The new node, \(z\), becomes the child immediately to the right of the median key that was moved to the parent \(y\), and the original node, x , becomes the child immediately to the left of the median key that was moved into the parent. The B-Tree-Split-Child algorithm will run in time \(\mathrm{O}(\mathrm{t}), \mathrm{T}\) is constrain

\section*{Operations of B-Trees}
- B-Tree-Insert(T, k)
- B-Tree-Insert-Nonfull( \(x, \mathbf{k}\) )

To perform an insertion on a b-tree, the appropriate node for the key must be located using an algorithm similiar to B-Tree-Search. Next, the key must be inserted into the node.
- If the node is not full prior to the insertion, no special action is required; however, if the node is full, the node must be split to make room for the new key. Since splitting the node results in moving one key to the parent node, the parent node must not be full or another split operation is required. This process may repeat all the way up to the root and may require splitting the root node.
- This approach requires two passes. The first pass locates the node where the key should be inserted; the second pass performs any required splits on the ancestor nodes. runs in time \(O\left(t \log _{t} n\right)\)
- OVERFLOW CONDITION:

A root-node or a non-root node of a B-tree of order m overflows if, after a key insertion, it contains \(m\) keys.
- Insertion algorithm:

If a node overflows, split it into two, propagate the "middle" key to the parent of the node. If the parent overflows the process propagates upward. If the node has no parent, create a new root node.
- Note: Insertion of a key always starts at a leaf node.

Insertion
- Insertion in a B-tree of odd order
- Example: Insert the keys 78, 52, 81, 40, 33, 90, 85, 20, and 38 in this order in an initially empty B-tree of order 3

insert 20


\section*{Insertion in B-Trees}
- Insertion in a B-tree of even order
- right-bias: The node is split such that its right subtree has more keys than the left subtree.
- left-bias: The node is split such that its left subtree has more keys than the right subtree.
- Example: Insert the key 5 in the following B-tree of order 4:


\section*{Insertion}
- Insert the keys in the folowing order into a B-tree of order 5.
- A, G, F, B, K, D, H, M, J, E, S, I, R, X, C, L, N, T, U, P.
(1) Insert A, G, \(F\) and \(B\).
\(\triangle \mathrm{AFG}\)
(2) Insert K.

(3) Insert \(\mathrm{D}, \mathrm{H}\) and M .

(4) Insert J

(5) Insert E, G, I and R

(6) Insert X.

(7) Insert \(C\)

(8) Insert L, N, T and U.

(9) Insert P.


\section*{Searching}

Searching for an Item in a B-Tree:
1. Make a local variable, i, equal to the first index such that data[i] >= target. If there is no such index, then set i equal to data_count, indicating that none of the entries is greater than or equal to the target.
2. if (we found the target at data[i]) return true;
else if (the root has no children)
return false;
else
return subset[i]->contains (target);

\section*{Searching (cont.)}
- Example: target = 10


\section*{Deletion form a B-Tree}
- 1. detete h, r:


\section*{Deletion (cont.)}
- 2. delete p :


\section*{Deletion (cont.)}
- 3. delete d:
- Combine:


\section*{Deletion (cont.)}
- combine :


\section*{Deleting from a B-Tree}
- To delete a key value \(x\) from a B-tree, first search to determine the leaf node that contains \(x\).
- If removing \(x\) leaves that leaf node with fewer than the minimum number of keys, try to adopt a key from a neighboring node. If that's possible, then you're finished.

\section*{Deleting from a B-Tree (continued)}
- If the neighboring node is already at its minimum, combine the leaf node with its neighboring node, resulting in one full leaf node.
- This will require restructuring the parent node since it has lost a child
- If the parent now has fewer than the minimum keys, adopt a key from one of its neighbors. If that's not possible, combine the parent with its neighbor.

\section*{Deleting from a B-Tree (continued)}
- This process may percolate all the way to the root.
- If the root is left with only one child, then remove the root node and make its child the new root.
- Both insertion and deletion are \(O(h)\), where \(h\) is the height of the tree.

\section*{Delete 18}


\section*{Delete 5}


\section*{Delete 19}


\section*{Delete 12}


\section*{Deletion in B-Tree}
- B-Tree-Delete
- UNDERFLOW CONDITION
- A non-root node of a B-tree of order m underflows if, after a key deletion, it contains \(\lceil\mathbf{m} /\) 27-2 keys
- The root node does not underflow. If it contains only one key and this key is deleted, the tree becomes empty.

\section*{Deletion in B-Tree}
- There are five deletion cases:
1. The leaf does not underflow.
2. The leaf underflows and the adjacent right sibling has at least \(\lceil\mathrm{m} / 2\rceil\) keys.

> perform a left key-rotation
3. The leaf underflows and the adjacent left sibling has at least \(\lceil\mathrm{m} / 2\rceil\) keys.
perform a right key-rotation
4. The leaf underflows and each of the adjacent right sibling and the adjacent left sibling has at least \(\lceil\mathrm{m} / 2\rceil\) keys.
perform either a left or a right key-rotation\& perform a merging
5. The leaf underflows and each adjacent sibling has \(\lceil\mathrm{m} / 2\rceil-1\) keys.
- Case1: The leaf does not underflow.
- Example : b-tree oforder4tiOn in B-Tree


\section*{Delete 140}

- Case2: The leaf underflows and the adjacent right sibling has at least「m/27 keys. Deletion \|ी B-Iree
- Example : B-tree of order 5

node with underflow


Delete 113

\section*{Deletion in B-Tree}
- Case 3: The leaf underflows and the adjacent left sibling has at least \(\lceil\mathrm{m} / 27\) keys.
- Example : B-tree of order 5


Delete 135


\section*{An example B-Tree}


Note that all the leaves are at the same level

\section*{Constructing a B-tree}
- Suppose we start with an empty B-tree and keys arrive in the following order:1 \(\begin{array}{llllll}12 & 8 & 25 & 5 & 14\end{array}\) 281775216486832629535545
- We want to construct a B-tree of order 5
- The first four items go into the root:
\begin{tabular}{|l|l||l||l|}
\hline 1 & 2 & 8 & 12 \\
\hline
\end{tabular}
- To put the fifth item in the root would violate condition 5
- Therefore, when 25 arrives, pick the middle key to make a new root

\section*{Constructing a B-tree (contd.)}

\(6,14,28\) get added to the leaf nodes:


\section*{Constructing a B-tree (contd.)}

Adding 17 to the right leaf node would over-fill it, so we take the middle key, promote it (to the root) and split the leaf

\(7,52,16,48\) get added to the leaf nodes


\section*{Constructing a B-tree (contd.)}

Adding 68 causes us to split the right most leaf, promoting 48 to the root, and adding 3 causes us to split the left most leaf, promoting 3 to the root; 26, 29, 53, 55 then go into the le


Adding 45 causes a split of \begin{tabular}{|l|l|l|l|}
\hline 25 & 26 & 28 & 29 \\
\hline
\end{tabular} and promoting 28 to the root then causes the root to split

\section*{Constructing a B-tree (contd.)}


\section*{Inserting into a B-Tree}
- Attempt to insert the new key into a leaf
- If this would result in that leaf becoming too big, split the leaf into two, promoting the middle key to the leaf's parent
- If this would result in the parent becoming too big, split the parent into two, promoting the middle key
- This strategy might have to be repeated all the way to the top
- If necessary, the root is split in two and the middle key is promoted to a new root, making the tree one level higher

\section*{Exercise in Inserting a B-Tree}
- Insert the following keys to a 5-way B-tree:
- 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 31, 35, 56

\section*{Removal from a B-tree}
- During insertion, the key always goes into a leaf. For deletion we wish to remove from a leaf. There are three possible ways we can do this:
- 1 - If the key is already in a leaf node, and removing it doesn't cause that leaf node to have too few keys, then simply remove the key to be deleted.
- 2 - If the key is not in a leaf then it is guaranteed (by the nature of a B-tree) that its predecessor or successor will be in a leaf -- in this case we can delete the key and promote the predecessor or successor key to the non-leaf deleted key's position.

\section*{Removal from a B-tree (2)}
- If (1) or (2) lead to a leaf node containing less than the minimum number of keys then we have to look at the siblings immediately adjacent to the leaf in question:
- 3: if one of them has more than the min. number of keys then we can promote one of its keys to the parent and take the parent key into our lacking leaf
- 4: if neither of them has more than the min. number of keys then the lacking leaf and one of its neighbours can be combined with their shared parent (the opposite of promoting a key) and the new leaf will have the correct number of keys; if this step leave the parent with too few keys then we repeat the process up to the root itself, if required

\section*{Type \#1: Simple leaf deletion}


Delete 2: Since there are enough keys in the node, just delete it

\section*{Type \#2: Simple non-leaf deletion}


\section*{Type \#4: Too few keys in node and its siblings}


\section*{Type \#4: Too few keys in node and its siblings}


\section*{Type \#3: Enough siblings}


\section*{Type \#3: Enough siblings}


\section*{Summary}
- The B-tree is a tree-like structure that helps us to organize data in an efficient way.
- The B-tree index is a technique used to minimize the disk I/Os needed for the purpose of locating a row with a given index key value.
- Because of its advantages, the B-tree and the B-tree index structure are widely used in databases nowadays.
- In addition to its use in databases, the B-tree is also used in file systems to allow quick random access to an arbitrary block in a particular file. The basic problem is turning the file block \(i\) address into a disk block.

\section*{MS/Dos - FAT (File allocation table)}
-entry for each disk block
-entry identifies whether its block is used by a file
-which block (if any) is the next disk block of the same file -allocation of each file is represented as a linked list in the table


\section*{Secondary Storages}

Red-Black Trees

\section*{Red-Black Properties}

The red-black properties:
1. Every node is either red or black
2. Every leaf (NULL pointer) is black Note: this means every "real" node has \(\mathbf{2}\) children
3. If a node is red, both children are black

Note: can't have \(\mathbf{2}\) consecutive reds on a path
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

\section*{Red-Black Trees: An Example}
- Color this tree:

Red-black properties:
1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 8
- Where does it go?

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5.

David Luebke
5. The root is always black

\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 8
- Where does it go?
- What color should it be?

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. \({ }^{\text {Da }}\)

The root is always black

\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 8
- Where does it go?
- What color should it be?

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 11
- Where does it go?

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 11
- Where does it go?
- What color?


\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 11
- Where does it go?
- What color?
- Can't be red! (\#3)


\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 11
- Where does it go?
- What color?
- Can't be red! (\#3)
- Can't be black! (\#4)
1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 11
- Where does it go?
- What color?
- Solution:
recolor the tree

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 10
- Where does it go?


\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 10
- Where does it go?
- What color?


\section*{Red-Black Trees:}

\section*{The Problem With Insertion}
- Insert 10
- Where does it go?
- What color?
- A: no color! Tree is too imbalanced
- Must change tree structure to allow recoloring
■ Goal: restructure tree in O(lg n) time


\section*{RB Trees: Rotation}
- Our basic operation for changing tree structure is called rotation:

- Does rotation preserve inorder key ordering?
- What would the code for rightRotate () actually do?

\section*{RB Trees: Rotation}

- Answer: A lot of pointer manipulation
- x keeps its left child
- y keeps its right child
- x's right child becomes y's left child
- x's and y's parents change
- What is the running time?

\section*{Rotation Example}
- Rotate left about 9:


\section*{Rotation Example}
- Rotate left about 9:


\section*{Example Red-Black Tree}


\section*{Splay Trees}

Splay trees are binary search trees (BSTs) that:
- Are not perfectly balanced all the time
- Allow search and insertion operations to try to balance the tree so that future operations may run faster

Based on the heuristic:
- If \(X\) is accessed once, it is likely to be accessed again.
- After node X is accessed, perform "splaying" operations to bring X up to the root of the tree.
- Do this in a way that leaves the tree more or less balanced as a whole.

\section*{Example}


After Search(12)
Splay idea: Get 12 up to the root using rotations


After splaying with 12

\section*{Initial tree}
- Not only splaying with 12 makes the tree balanced, subsequent accesses for 12 will take \(O\) (1) time.
- Active (recently accessed) nodes will move towards the root and inactive nodes will slowly move further from the root

\section*{Splay Tree Terminology}
- Let X be a non-root node, i.e., has at least 1 ancestor.
- Let \(\mathbf{P}\) be its parent node.
- Let \(\mathbf{G}\) be its grandparent node (if it exists)
- Consider a path from G to X :
- Each time we go left, we say that we "zig"
- Each time we go right, we say that we "zag"
- There are 6 possible cases:


\section*{Splay Tree Operations}

When node \(X\) is accessed, apply one of six rotation operations:
- Single Rotations (X has a P but no G)
- zig, zag
- Double Rotations (X has both a P and a G)
- zig-zig, zig-zag
- zag-zig, zag-zag

\section*{Splay Trees: Zig Operation}
- "Zig" is just a single rotation, as in an AVL tree
- Suppose 6 was the node that was accessed (e.g. using Search)

- "Zig-Right" moves 6 to the root.
- Can access 6 faster next time: \(O(1)\)
- Notice that this is simply a right rotation in AVL tree terminology.

\section*{Splay Trees: Zig-Zig Operation}
- "Zig-Zig" consists of two single rotations of the same type
- Suppose 3 was the node that was accessed (e.g., using Search)

- Due to "zig-zig" splaying, 3 has bubbled to the top!
- Note: Parent-Grandparent is rotated first.

\section*{Splay Trees: Zig-Zag Operation}
- "Zig-Zag" consists of two rotations of the opposite type
- Suppose 12 was the node that was accessed (e.g., using Search)

- Due to "zig-zag" splaying, 12 has bubbled to the top!
- Notice that this is simply an LR imbalance correction in AVL tree terminology (first a left rotation, then a right rotation)

\section*{Splay Trees: Zag-Zig Operation}
- "Zag-Zig" consists of two rotations of the opposite type
- Suppose 17 was the node that was accessed (e.g., using Search)

- Due to "zag-zig" splaying, 17 has bubbled to the top!
- Notice that this is simply an RL imbalance correction in AVL tree terminology (first a right rotation, then a leftrotation)

\section*{Splay Trees: Zag-Zag Operation}
- "Zag-Zag" consists of two single rotations of the same type
- Suppose 30 was the node that was accessed (e.g., using Search)

- Due to "zag-zag" splaying, 30 has bubbled to the top!
- Note: Parent-Grandparent is rotated first.

\section*{Splay Trees: Zag Operation}
- "Zag" is just a single rotation, as in an AVL tree
- Suppose 15 was the node that was accessed (e.g., using Search)

- "Zag-Left"moves 15 to the root.
- Can access 15 faster next time: O(1)
- Notice that this is simply a left rotation in AVL tree terminology

\section*{Splay Trees: Example - 40 is accessed}


\section*{Splay Trees: Example - 60 is accessed}


\section*{Splaying during other operations}
- Splaying can be done not just after Search, but also after other operations such as Insert/Delete.
- Insert X: After inserting \(X\) at a leaf node (as in a regular BST), splay \(X\) up to the root
- Delete \(X\) : Do a Search on \(X\) and get \(X\) up to the root. Delete \(X\) at the root and move the largest item in its left sub-tree, i.e, its predecessor, to the root using splaying.
- Note on Search X: If \(X\) was not found, splay the leaf node that the Search ended up with to the root.

\section*{Summary of Splay Trees}
- Examples suggest that splaying causes tree to get balanced.
- The actual analysis is rather advanced and is in Chapter 11. Such analysis is called "amortized analysis"
- Result of Analysis: Any sequence of \(M\) operations on a splay tree of size N takes \(\mathrm{O}(\mathrm{M} \log \mathrm{N})\) time. So, the amortized running time for one operation is \(\mathrm{O}(\log \mathrm{N})\).
- This guarantees that even if the depths of some nodes get very large, you cannot get a long sequence of \(O(N)\) searches because each search operation causes a rebalance.
- Without splaying, total time could be O(MN).

\section*{Comparison of Search Trees}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Tree }} & \multicolumn{3}{|c|}{ Worst Case } & \multicolumn{3}{c|}{ Expected } \\
\cline { 2 - 7 } & Search & Insert & Remove & Search & Insert & Remove \\
\hline BST & n & n & n & \(\log \mathrm{n}\) & \(\log \mathrm{n}\) & \(\log \mathrm{n}\) \\
\hline AVL tree & \(\log \mathrm{n}\) \\
\hline red-black tree & \(\log \mathrm{n}\) \\
\hline splay tree & n & n & n & \(\log \mathrm{n}\) & \(\log \mathrm{n}\) & \(\log \mathrm{n}\) \\
\hline B-trees & \(\log \mathrm{n}\) \\
\hline
\end{tabular}

\section*{Knuth-Morris-Pratt Algorithm}

\section*{The problem of String Matching}

Given a string ' S ', the problem of string matching deals with finding whether a pattern ' \(p\) ' occurs in ' \(S\) ' and if ' \(p\) ' does occur then returning position in ' \(S\) ' where ' \(p\) ' occurs.

\section*{.... a O(mn) approach}

One of the most obvious approach towards the string matching problem would be to compare the first element of the pattern to be searched ' \(p\) ', with the first element of the string ' \(\delta\) ' in which to locate ' \(p\) '. If the first element of ' \(p\) ' matches the first element of ' \(S\) ', compare the second element of ' \(p\) ' with second element of ' \(S\) '. If match found proceed likewise until entire ' \(p\) ' is found. If a mismatch is found at any position, shift ' \(p\) ' one position to the right and repeat comparison beginning from first element of ' \(p\) '.

\section*{How does the \(\mathrm{O}(\mathrm{mn})\) approach work}

Below is an illustration of how the previously described \(\mathrm{O}(\mathrm{mn})\) approach works.

String \(S\)


Pattern p \begin{tabular}{|l|l|l|}
\hline\(a\) & \(b\) & \(a\) \\
\hline
\end{tabular}

\section*{Step 1:compare p[1] with S[1]}


Step 2: compare p[2] with S[2]


\section*{Step 3: compare p[3] with S[3]}

S


Mismatch occurs here..

Since mismatch is detected, shift ' \(p\) ' one position to the right and repeat matching procedure.


Finally, a match would be found after shifting ' \(p\) ' three times to the right side.
Drawbacks of this approach: if ' \(m\) ' is the length of pattern ' \(p\) ' and ' \(n\) ' the length of string ' \(S\) ', the matching time is of the order \(O(\mathrm{mn})\). This is a certainly a very slow running algorithm.
What makes this approach so slow is the fact that elements of ' \(S\) ' with which comparisons had been performed earlier are involved again and again in comparisons in some future iterations. For example: when mismatch is detected for the first time in comparison of \(p\) [3] with S[3], pattern ' \(p\) ' would be moved one position to the right and matching procedure would resume from here. Here the first comparison that would take place would be between \(p[0]=‘ a\) ' and \(S[1]=' b\) '. It should be noted here that \(S[1]=' b\) ' had been previously involved in a comparison in step 2. this is a repetitive use of \(S[1]\) in another comparison.
It is these repetitive comparisons that lead to the runtime of \(O(\mathrm{mn})\).

\section*{The Knuth-Morris-Pratt Algorithm}

Knuth, Morris and Pratt proposed a linear time algorithm for the string matching problem.
A matching time of \(\mathrm{O}(\mathrm{n})\) is achieved by avoiding comparisons with elements of ' \(S\) ' that have previously been involved in comparison with some element of the pattern ' \(p\) ' to be matched. i.e., backtracking on the string ' S ' never occurs

\section*{Components of KMP algorithm}
- The prefix function, \(\Pi\)

The prefix function, \(\Pi\) for a pattern encapsulates knowledge about how the pattern matches against shifts of itself. This information can be used to avoid useless shifts of the pattern ' \(p\) '. In other words, this enables avoiding backtracking on the string ' S '.
- The KMP Matcher

With string ' \(S\) ', pattern ' \(p\) ' and prefix function ' \(\Pi\) ' as inputs, finds the occurrence of ' \(p\) ' in ' \(s\) ' and returns the number of shifts of ' \(p\) ' after which occurrence is found.

\section*{The prefix function, \(\Pi\)}

Following pseudocode computes the prefix fucnction, \(\Pi\) :
Compute-Prefix-Function (p)
\(1 \mathrm{~m} \leftarrow\) length[p] //'p' pattern to be matched
\(2 \Pi[1] \leftarrow 0\)
\(3 \mathrm{k} \leftarrow 0\)
\(4 \quad\) for \(\mathrm{q} \leftarrow 2\) to \(m\)
\(5 \quad\) do while \(k>0\) and \(p[k+1]!=p[q]\)
6 do \(k \leftarrow \Pi[k]\)
\(7 \quad\) If \(p[k+1]=p[q]\)
\(8 \quad\) then \(k \leftarrow k+1\)
\(9 \quad \Pi[q] \leftarrow k\)
10 return \(\Pi\)

Example: compute \(\Pi\) for the pattern ' \(p\) ' below:
\(p\)
2
1
a b
\begin{tabular}{l|l|l} 
& \(a\) & \(a\) \\
\hline
\end{tabular}

Initially: \(\mathrm{m}=\) length[p] = 7
\[
\Pi[1]=0
\]
\[
k=0
\]

Step 1: \(q=2, k=0\)
\[
\Pi[2]=0
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(q\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline\(p\) & \(a\) & \(b\) & \(a\) & \(b\) & \(a\) & \(c\) & \(a\) \\
\hline\(\Pi\) & 0 & 0 & & & & & \\
\hline
\end{tabular}

Step 2: \(q=3, k=0\),
\[
\Pi[3]=1
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(q\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline\(p\) & \(a\) & \(b\) & \(a\) & \(b\) & \(a\) & \(c\) & \(a\) \\
\hline\(\Pi\) & 0 & 0 & 1 & & & & \\
\hline
\end{tabular}

Step 3: \(\mathrm{q}=4, \mathrm{k}=1\)
\[
\Pi[4]=2
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(q\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline\(p\) & \(a\) & \(b\) & \(a\) & \(b\) & \(a\) & \(c\) & \(A\) \\
\hline\(\Pi\) & 0 & 0 & 1 & 2 & & & \\
\hline
\end{tabular}

Step 4: \(q=5, k=2\)
\[
\Pi[5]=3
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(q\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline\(p\) & \(a\) & \(b\) & \(a\) & \(b\) & \(a\) & \(c\) & \(a\) \\
\hline\(\square\) & 0 & 0 & 1 & 2 & 3 & & \\
\hline
\end{tabular}

Step 5: \(q=6, k=3\)
\[
\Pi[6]=1
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(q\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline\(p\) & \(a\) & \(b\) & \(a\) & \(b\) & \(a\) & \(c\) & \(a\) \\
\hline\(\square\) & 0 & 0 & 1 & 2 & 3 & 1 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(q\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline\(p\) & \(a\) & \(b\) & \(a\) & \(b\) & \(a\) & \(c\) & \(a\) \\
\hline\(\square\) & 0 & 0 & 1 & 2 & 3 & 1 & 1 \\
\hline
\end{tabular}

After iterating 6 times, the prefix function computation is complete: \(\rightarrow\)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(q\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline\(p\) & \(a\) & \(b\) & \(A\) & \(b\) & \(a\) & \(c\) & \(a\) \\
\hline\(\square\) & 0 & 0 & 1 & 2 & 3 & 1 & 1 \\
\hline
\end{tabular}

\section*{The KMP Matcher}

The KMP Matcher, with pattern ' \(p\) ', string ' \(\delta\) ' and prefix function ' \(\Pi\) ' as input, finds a match of \(p\) in \(S\).
Following pseudocode computes the matching component of KMP algorithm:
KMP-Matcher(S,p)
\(1 \mathrm{n} \leftarrow\) length \([\mathrm{S}]\)
\(2 \mathrm{~m} \leftarrow\) length[p]
\(3 \Pi \leftarrow\) Compute-Prefix-Function(p)
\(4 \mathrm{q} \leftarrow 0 \quad\) //number of characters matched
5 for \(i \leftarrow 1\) to \(n \quad / /\) scan \(S\) from left to right
6 do while \(q>0\) and \(p[q+1]!=S[i]\)
7 do \(q \leftarrow \Pi[q] \quad / /\) next character does not match
8 if \(p[q+1]=S[i]\)
9 then \(\mathrm{q} \leftarrow \mathrm{q}+1\) //next character matches
10 if \(q=m \quad / /\) is all of \(p\) matched?
11 then print "Pattern occurs with shift" \(\mathrm{i}-\mathrm{m}\)
12 \(q \leftarrow \square[q]\)
// look for the next match
Note: KMP finds every occurrence of a ' \(p\) ' in ' \(S\) '. That is why KMP does not terminate in step 12, rather it searches remainder of ' \(S\) ' for any more occurrences of ' \(p\) '.

Illustration: given a String ' \(S\) ' and pattern ' \(p\) ' as follows:

S


Let us execute the KMP algorithm to find whether ' \(p\) ' occurs in ' \(S\) '.

For ' \(p\) ' the prefix function, \(\Pi\) was computed previously and is as follows:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(q\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline\(p\) & \(a\) & \(b\) & \(a\) & \(b\) & \(a\) & \(c\) & \(a\) \\
\hline\(\Pi\) & 0 & 0 & 1 & 2 & 3 & 1 & 1 \\
\hline
\end{tabular}

Initially: \(\mathrm{n}=\) size of \(\mathrm{S}=15\);
\[
m=\text { size of } p=7
\]

Step 1: \(\mathrm{i}=1, \mathrm{q}=0\) comparing p [1] with \(\mathrm{S}[1]\)

\(P[1]\) does not match with \(S[1]\). ' \(p\) ' will be shifted one position to the right.

Step 2: \(i=2, q=0\)
comparing p [1] with \(\mathrm{S}[2]\)
S

\(P[1]\) matches \(S[2]\). Since there is a match, \(p\) is not shifted.

Step 3: \(\mathrm{i}=3, \mathrm{q}=1\)
Comparing \(\mathrm{p}[2]\) with \(\mathrm{S}[3] \quad \mathrm{p}[2]\) does not match with \(\mathrm{S}[3]\)

p


Backtracking on p , comparing \(\mathrm{p}[1]\) and \(\mathrm{S}[3]\)
Step 4: \(\mathrm{i}=4, \mathrm{q}=0\)


Step 5: \(i=5, q=0\)


Step 6: \(i=6, q=1\)
Comparing \(\mathrm{p}[2]\) with \(\mathrm{S}[6] \quad \mathrm{p}[2]\) matches with \(\mathrm{S}[6]\)


Step 7: \(i=7, q=2\)
Comparing p[3] with S[7] \(\quad \mathrm{p}[3]\) matches with S[7]


Step 8: \(i=8, q=3\)
Comparing \(\mathrm{p}[4]\) with \(\mathrm{S}[8] \quad \mathrm{p}[4]\) matches with \(\mathrm{S}[8]\)


Step 9: \(i=9, q=4\)


Step 10: \(i=10, q=5\)
Comparing \(\mathrm{p}[6]\) with \(\mathrm{S}[10] \quad \mathrm{p}[6]\) doesn't match with S[10]
S
p


Backtracking on \(p\), comparing \(p[4]\) with \(S[10]\) because after mismatch \(q=\Pi[5]=3\)
Step 11: \(\mathbf{i}=11, q=4\)
Comparing p[5] with S[11] p[5] matches with S[11]
S
\(p\)


Step 12: \(i=12, q=5\)
Comparing p[6] with S[12] \(\quad\) p[6] matches with S[12]


Step 13: \(i=13, q=6\)


Pattern ' \(p\) ' has been found to completely occur in string ' \(S\) '. The total number of shifts that took place for the match to be found are: \(i-m=13-7=6\) shifts.

\section*{Running - time analysis}


In the above pseudocode for computing the prefix function, the for loop from step 4 to step 10 runs ' \(m\) ' times. Step 1 to step 3 take constant time. Hence the running time of compute prefix function is \(\Theta(m)\).
- KMP Matcher
\(1 \mathrm{n} \lessdot\) length[S]
\(2 \mathrm{~m} \leftarrow\) length[p]
\(3 \Pi \leftarrow\) Compute-Prefix-Function(p)
\(4 \mathrm{q} \leftarrow 0\)
5 for \(i \leftarrow 1\) to \(n\)
6 do while \(q>0\) and \(p[q+1]!=S[i]\)
do \(q \leftarrow \Pi[q]\)
8 if \(p[q+1]=S[i]\)
\(9 \quad\) then \(q<q+1\)
10 if \(q=m\)
11 then print "Pattern occurs with shift" \(\mathbf{i}\) -m
\[
q \leftarrow \Pi[q]
\]

The for loop beginning in step 5 runs ' \(n\) ' times, i.e., as long as the length of the string ' \(S\) '. Since step 1 to step 4 take constant time, the running time is dominated by this for loop. Thus running time of matching function is \(\boldsymbol{O}(\mathrm{n})\).

\section*{Tries}

Trie is a special structure to represent sets of character strings.
Can also be used to represent data types that are objects of any type e.g. strings of integers.
The word "trie" is derived from the middle letters of the word "retrieval".

\section*{Tries: Example}

One way to implement a spelling checker is
- Read a text file.
- Break it into words( character strings separated by blanks and new lines).
- Find those words not in a standard dictionary of words.
- Words in the text but not in the dictionary are printed out as possible misspellings.

\section*{Tries: Example}

It can be implemented by a set having operations of :
- INSERT
- DELETE
- MAKENULL
- PRINT

A Trie structure supports these set operations when the element of the set are words.

\section*{Tries: Example}


\section*{Tries: Example}
- Tries are appropriate when many words begin with the same sequence of letters.
- i.e; when the number of distinct prefixes among all words in the set is much less than the total length of all the words.
- Each path from the root to the leaf corresponds to one word in the represented set.
- Nodes of the trie correspond to the prefixes of words in the set.

\section*{Tries: Example}
- The symbol \$ is added at the end of each word so that no prefix of a word can be a word itself.
- The Trie corresponds to the set \{THE,THEN THIN, TIN, SIN, SING\}
- Each node has at most 27 children, one for each letter and \$
- Most nodes will have many fewer than 27 children.
- A leaf reached by an edge labeled \$ cannot have any children.

\section*{Tries}

\section*{- Standard Tries}
- Compressed Tries
- Suffix Tries


\section*{Text Processing}
- We have seen that preprocessing the pattern speeds up pattern matching queries
- After preprocessing the pattern in time proportional to the pattern length, the Boyer-Moore algorithm searches an arbitrary English text in (average) time proportional to the text length
- If the text is large, immutable and searched for often (e.g., works by Shakespeare), we may want to preprocess the text instead of the pattern in order to perform pattern matching queries in time proportional to the pattern length.
- Tradeoffs in text searching
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
Preprocess \\
Pattern
\end{tabular} & \begin{tabular}{c} 
Preprocess \\
Text
\end{tabular} & Space & Search Time \\
\hline Brute Force & & & \(\mathrm{O}(1)\) & \(\mathrm{O}(\mathrm{mn})\) \\
\hline Boyer Moore & \(\mathrm{O}(\mathrm{m}+\mathrm{d})\) & & \(\mathrm{O}(\mathrm{d})\) & \(\mathrm{O}(\mathrm{n})^{*}\) \\
\hline Suffix Trie & & \(O(\mathrm{n})\) & \(O(\mathrm{n})\) & \(O(\mathrm{~m})\) \\
\hline
\end{tabular}
\(\mathrm{n}=\) text size
\(\mathrm{m}=\) pattern size
* on average

\section*{Standard Tries}
- The standard trie for a set of strings \(S\) is an ordered tree such that:
- each node but the root is labeled with a character
- the children of a node are alphabetically ordered
- the paths from the external nodes to the root yield the strings of \(S\)
- Example: standard trie for the set of strings
\(S=\{\) bear, bell, bid, bull, buy, sell, stock, stop \}

- A standard trie uses \(\mathrm{O}(\mathrm{n})\) space. Operations (find, insert, remove) take time O(dm) each, where:
\(-n=\) total size of the strings in \(S\),
\(-m=s i z e\) of the string parameter of the operation
-d =alphabet size,

\section*{Applications of Tries}
- A standard trie supports the following operations on a preprocessed text in time \(O(m)\), where \(m=|X|\)
-word matching: find the first occurence of word X in the text -prefix matching: find the first occurrence of the longest prefix of word X in the text
- Each operation is performed by tracing a path in the trie starting at the root


\section*{Compressed Tries}
- Trie with nodes of degree at least 2
- Obtained from standard trie by compressing chains of redundant nodes

Standard Trie:


Compressed Trie:


\section*{Compact Storage of Compressed Tries}
- A compressed trie can be stored in space \(O(s)\), where \(s=|S|\), by using \(O(1)\) space index ranges at the nodes


\section*{Insertion and Deletion}

\section*{into/from a Compressed Trie}

insert(bbaabb)


\section*{Suffix Tries}
- A suffix trie is a compressed trie for all the suffixes of a text Example:
\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline \mathrm{m} & \mathrm{i} & \mathrm{n} & \mathrm{i} & \mathrm{~m} & \mathrm{i} & \mathrm{z} & \mathrm{e} \\
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7}
\end{array}
\]


Compact representation:


\section*{Properties of Suffix Tries}
- The suffix trie for a text \(X\) of size \(n\) from an alphabet of size \(d\) -stores all the \(n(n-1) / 2\) suffixes of \(X\) in \(O(n)\) space
-supports arbitrary pattern matching and prefix matching queries in \(O(\mathrm{dm})\) time, where \(m\) is the length of the pattern
-can be constructed in \(O(d n)\) time
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{m}\) & \(\mathbf{i}\) & \(\mathbf{n}\) & \(\mathbf{i}\) & \(\mathbf{m}\) & \(\mathbf{i}\) & \(\mathbf{z}\) & \(\mathbf{e}\) \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline
\end{tabular}


\section*{Tries and Web Search Engines}
- The index of a search engine (collection of all searchable words) is stored into a compressed trie
- Each leaf of the trie is associated with a word and has a list of pages (URLs) containing that word, called occurrence list
- The trie is kept in internal memory
- The occurrence lists are kept in external memory and are ranked by relevance
- Boolean queries for sets of words (e.g., Java and coffee) correspond to set operations (e.g., intersection) on the occurrence lists
- Additional information retrieval techniques are used, such as
- stopword elimination (e.g., ignore "the" "a" "is")
- stemming (e.g., identify "add" "adding" "added")
- link analysis (recognize authoritative pages)

\section*{Tries and Internet Routers}
- Computers on the internet (hosts) are identified by a unique 32-bit IP (internet protocol) addres, usually written in "dotted-quad-decimal" notation
- E.g., www.cs.brown.edu is 128.148.32.110
- Use nslookup on Unix to find out IP addresses
- An organization uses a subset of IP addresses with the same prefix, e.g., Brown uses 128.148.*.*, Yale uses 130.132.*.*
- Data is sent to a host by fragmenting it into packets. Each packet carries the IP address of its destination.
- The internet whose nodes are routers, and whose edges are communication links.
- A router forwards packets to its neighbors using IP prefix matching rules. E.g., a packet with IP prefix 128.148. should be forwarded to the Brown gateway router.
- Routers use tries on the alphabet 0,1 to do prefix matching.```

