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DATA STRUCTURES 

TEXT BOOKS: 

1. Fundamentals of Data structures in C, 2nd 
Edition, E.Horowitz, S.Sahni and Susan 

    Anderson-Freed, Universities Press. 

2. Data structures A Programming Approach    
with C, D.S.Kushwaha and A.K.Misra, PHI. 
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UNIT-I 

Topics: 
     Basic concepts- Algorithm Specification-Introduction, 

Recursive algorithms, Data Abstraction Performance 
analysis- time complexity and space complexity, Asymptotic 
Notation-Big O, Omega and Theta notations, introduction 
to Linear and Non Linear data structures. 

     Singly Linked Lists-Operations-Insertion, Deletion, 
Concatenating singly linked lists, circularly linked lists-
Operations for Circularly linked lists, Doubly Linked Lists- 
Operations- Insertion, Deletion. Representation of single, 
two dimensional arrays, sparse matrices-array and linked 
representations. 
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ALGORITHM 

 
      

 

     An algorithm is a step by step representation or a procedure 

for solving a problem. 

 

                                                 or 

     It is a method of finding a right solution  to a problem or to a 

different problem  or to a  different problem breaking into 

simple cases. 
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PROPERTIES OF AN ALGORITHM 
Finitness:  

An algorithm should terminate at finite number of steps. 

Definiteness:  

Each step of an algorithm must be precisely stated. 

Effectiveness: 

 It consists of basic instructions that are realizable.  

This means that the instructions can be performed by using the 
given inputs in a finite amount of time. 

 Input: 

An algorithm accepts zero or more inputs. 

Output:  

It produces at least one output.  
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PSEUDOCODE 

 It is a representation of algorithm in which instruction sequence 

can be given with the help of programming constructs. 

                                  or  

Pseudo code, on the other hand, is not a programming language, 

but simply an informal way of describing a program. 

 

Because it is not an actual programming language, pseudo code 

cannot be compiled into an executable program. 

 

Therefore, pseudo code must be converted into a specific 

programming language if it is to become an usable application. 
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PSEUDOCODE CONVENTIONS  
 1. Algorithm is a procedure consisting of heading and body. The 

heading consists of a name of the procedure and parameter list. 
The syntax is 

    Algorithm name_of 
_procedure(paramater1,parameter2,…..parameter n). 

 

2.Using assignment operator:=an assignment statement can be 
given. For instance: variable:=expression; 

 

3. Boolean operators, logical operators, relational operators can 
be used in pseudo code. 

 

4. All different types of arrays can be used and array indices 
stored in [ and ] brackets. 
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PSEUDOCODE CONVENTIONS  

5. The beginning and end of block should be indicted by { and} 

resp. the compound statements should be enclosed within { 

and } brackets. 

 

6. The delimiters ; are used at the end of each statement. 

 

7. Single line comments are written using // as beginning of 

comment. 

 

8.The identifier should beginning by letter only. 

 

9.No need to write data types explicitly for identifiers. 
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PSEUDOCODE CONVENTIONS  

10. The inputting and outputting can be done using read and 

write. 

 

11. The conditional statements and the looping statements have 

the same syntax as in C language. 
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EXAMPLES 

 
1) write an algorithm to count the sum of n numbers 

  Algorithm sum(1,n) 

{ 

 Result:=0; 

 for i:=1 to n do i:=i+1 

    Result:=result+i; 

} 
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EXAMPLES 

2) write an algorithm to check whether given number is even or 

odd 

  Algorithm events (val) 

{ 

      if  (val%2==0) then 

    write(“given no is even”): 

    else 

    write(“given no is odd”); 

 } 
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EXAMPLES 

3) write an algorithm to find factorial of n number. 

 Algorithm fact(n) 

{ 

 if n:=1 then 

  return  1; 

 else 

  return n*fact(n-1); 

} 
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EXAMPLES 

4) write an algorithm to perform multiplication of two matrices. 

 Algorithm Mul(A,B,n) 

{ 

 for i:=1 to n do 

  for j:=1 to n do 

   c[i,j]:=0 

  for k:=1 to n do 

    c[i,j]:=c[i,j]+a[i,k]*b[k,j]; 

} 
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RECURSIVE ALGORITHM 

 
A recursive routine is one whose design includes a call to itself. 

                                              

 

      Or  

 

 

A function that calls itself is known as recursive function and this 

technique is known as recursion in C programming. 
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EXAMPLES 

Factorial of a number 

Algorithm factorial(a) 

int a; 

  { 

        int fact=1 

        if(a>1) 

        Fact = a* factorial(a-1); 

        Return(fact); 

} 
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DATA ABSTRACTION 

  
 Data abstraction refers to, providing only essential information 

to the outside world and hiding their background details, i.e., 

to represent the needed information in program without 

presenting the details. 

 

 Data abstraction is a programming (and design) technique that 

relies on the separation of interface and implementation. 
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PERFORMANCE EVALUATION 

 
    The total effectiveness of a computer system, including 

throughput, individual response time, and availability. 

 

   Performance evaluation can be loosely divided into 2 phases 

 

1) A priori estimates which is known as performance analysis 

 

1) A posterior testing which is known as performance 

measurement. 
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PERFORMANCE ANALYSIS 

 

   The efficiency of an algorithm can be decided by measuring 

the performance of an algorithm. 

 

    The performance of an algorithm by computing amount of 

time(time complexity )and storage requirement(space 

complexity). 
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TIME COMPLEXITY 
This is the amount of computing time required by an algorithm to 

run to completion. 

 

 There are 2 types of computing time- compile time and run time. 

 

 The time complexity is generally computed using run time or 

execution time. 

 

 The time complexity is given in terms of frequency count. 

 

 Frequency count is basically a count denoting number of times of 

execution of statement. 
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TIME COMPLEXITY 
The time complexity is computed using run time is calculated by 

input size and asymptotic notations . 

 

Input size: the input size of any instance of a problem is defined 
as the number of words required to describe that instance of 
problem. 

 

Asymptotic notations: This is the shorthand way to represent the 
time complexity. 

 

Time complexity is given as fastest possible, slowest possible or 
average time. 

 

Notations such as Ω,θ,Ο are the asymptotic notations. 
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BIG OH NOTATION 

It represents the upper bound of algorithms running time. 

 

The longest amount of time taken by the algorithm to complete is 

calculated by big oh (Ο). 

 

Def: let f(n) and g(n) are two non-negative functions. And is there 

exists an integer no and constant C such that C>0 and for all 

integers n>n₀ ,f(n)<=c*g(n), then f(n) is big oh of g(n). It is also 

denoted as “ f(n) = Ο(g(n))”. 
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BIG OH NOTATION 

Various meanings associated with big-oh are 

 

O(1)- constant computing time 

 

O(n)- linear 

 

O(n²)-quadratic 

 

O(n³)-cubic 

 

O(2n)-exponential 

 

O(log n)-logarithmic 
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OMEGA NOTATION 

 It represents the lower bound of algorithms running time. 

 

 It is the shortest amount of time taken by algorithm to complete. 

 

 F(n)>C*g(n). 

 This is denoted by f(n)=Ωg(n). 
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THETA NOTATION 

  It represents the running time between upper bound and lower 

bound. 

 

   c1g(n)<=f(n)<=c2g(n) 

 

   It is denoted by f(n)=θ g(n). 
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SPACE COMPLEXITY 

 
 This is the amount of memory required by an algorithm to run. 

 

 There are two factors to compute space complexity. 

 

 1) constant  

 

 2)instance 
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SPACE COMPLEXITY 

The space requirement S(p) can be given as 

 

S(p)= C+Sp 

 

C is the constant 

 

Sp is a space dependent upon instance characteristics. 
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DATA STRUCTURE 

   The data structure can be defined as the collection of elements 

and all the possible operations which are required for those set 

of elements. 

 

                                    Or 

 

   Data structure is a combination of a set of elements and 

corresponding set of operations. 

 

  The data structures can be implemented by building the suitable 

algorithms for them. 
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TYPES OF DATA STRUCTURES 

The data structure can be divided into two basic types. 

 

1) Preliminary data structures 

 

1) Secondary data structures 
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TYPES OF DATA STRUCTURES 

Data structures 

Primitive data structures 
Ex: int, char,float 

 linear data structures 
Ex: lists, stack, queues 

Non linear data structures 
Ex : trees, graphs 

Non primitive data  structure 
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LIST 

  List is the collection of elements arranged in a sequential 

manner. 

 

 There are two representations  

 

 1) list of sequentially stored elements----using arrays 

 

 2) list of elements with associated pointers---using linked list. 
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LIST REPRESENTATION 
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OPERATIONS ON AN ORDERED LIST  

1)display of list. 

 

2)search an element in the list. 

 

3) insert an element into the list. 

 

4) delete an element from the list. 
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SINGLY LINKED LIST 

 In the single linked list, a node is connected to the next node 

by a single link. 

 

 In this list a node contains two types of fields- 

    data:  

    which holds a list element  

    next(pointer):  

    which holds a link to the next node in the list. 

 

 The head of the pointer is used to gain  access to the list and 

the end of the list is denoted by a NULL pointer 
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STRUCTURE OF A SINGLE LINKED LIST 

struct node 

{       

  int data; 

      struct node * next; 

} 

 The list holds two members ,an integer type variable “data” 

which holds the elements and another member of type “node”, 

which has the variable next.  
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 SINGLE LINKED LIST OPERATIONS 

 Creating a linked list 

 Inserting in a linked list 

 Deleting a linked list 

 Searching an element in the linked list 

 Display the elements 

 Merging two linked list 

 Sorting a linked list 

 Reversing a list 
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CREATING A LINKED LIST  

  

 

List can be created by using pointers and dynamic memory 

allocation function such as malloc. 

 

   The head pointer is used to create and access unnamed nodes. 
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CREATING A LINKED LIST  

 struct list 

{  

  int no; 
     

  struct list *next; 
}; 
  

 typedef struct list node; 
 

 node *head; 
  

 head=(node*) malloc (size of(node)); 
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CREATING A LINKED LIST  

 The statement obtains memory to store a node and assigns its 

address to head which is a pointer variable. 

                           

 

 

    

  

     To store values  in the member fields : 
 headno=10; 
 headnext=NULL; 

  The second node can be added as: 
 headnext=(node*)malloc(size_of(node)); 
 headnextnumber=20; 
 headnextnext=NULL; 
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INSERTING AN ELEMENT 

 Insertion is done in three ways: 

      

 Insertion at the beginning of the list. 

 

     Insertion after any specified node. 

 

     Inserting node at the end of the list.  
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INSERTING AN ELEMENT 

 Function to insert a node at the beginning of the list: 
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INSERTING AN ELEMENT 

    Function to insert a node at the beginning of the list: 

    void add_beg(struct node **q, int no) 
{     

           struct node *temp;  /*add new node*/ 
 

        tempdata=no; 

 
 tempnext=*q;t 

 
 *q=temp; 

 
} 

   here temp variable is take and space is allocated using “malloc” 
function. 

 41 



INSERTING AN ELEMENT 

 Insertion after any specified node: 

 

 Inserting a node in the middle of the list,  

 

     if you consider to insert a node after the element then the  

 

     process is as follows. 
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INSERTING AN ELEMENT 
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INSERTING AN ELEMENT 
Function to insert a node at the middle of the list: 

Void add_after(struct node *q, int loc, int no) 

 

{  

 struct node *temp, *r; 
 

int l; 
 

temp=q;/*skip to desire portion*/ 
 

for(i=0;i<loc;i++) 
 

 {   

  temp=tempnext; 
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INSERTING AN ELEMENT 

  if(temp==NULL) 
 { 

  printf(“\n there are less than %d elements in list”,loc); 
        return; 

            } 

}   ?/*insert new node*/ 
r=malloc(sizeof(struct node)); 

 
rdata=n0; 

 
rnext=tempnext; 

 
tempnext=r; 
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INSERTING AN ELEMENT 

 Inserting node at the end of the list: 
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INSERTING AN ELEMENT 

 Inserting node at the end of the list: 

 

void create(struct node **q, int no) 

{  

 struct node *temp,*r; 

 
if(*q==NULL) /*if the list is empty,create first node*/ 

 
{  

  temp=malloc(sizeof(struct node)); 

 
tempdata=no; 
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INSERTING AN ELEMENT 

 
tempnext=NULL; 

 
*q=temp; 

 
} 

   else 

 

     { 

 

 temp=*q; /* go to last node*/ 
 

 while(tempnext!=NULL) 
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INSERTING AN ELEMENT 

  temp=tempnext; 

 
 r=malloc(sizeof(struct node)); 

 
 rdata=no; 

 
 rnext=NULL; 

 
 tempnext=r; 

 
 } 

} 
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DELETING AN ELEMENT 
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DELETING AN ELEMENT 

 
 We traverse through the entire linked list to check each node 

whether it has to be deleted.  

 

 if we want to delete the first node in the list then we shift the 

structure type pointer variable to the next node and then delete 

the entire node. 

 

if the node is a intermediate node then the various pointers the 

linked list before and after deletion should be taken care of 
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DISPLAYING THE CONTENTS OF THE 

LINKED LIST 

 Displays the elements of the linked list contained in the data 

part. 

 

Function to display the contents of the linked list. 

 

void display(struct node *start) 

 {  

 printf(“\n”); 
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DISPLAYING THE CONTENTS OF THE 

LINKED LIST 

 /*traverse the entire list*/ 

 

while(start!=NULL) 

 

{  

 printf(“%d”,startdata); 

 

start=startnext; 

 

} 

} 
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OTHER OPERATIONS OF SINGLY 

LINKED LIST 

 Searching the linked list:  

 

 Searching means finding information in a given linked list. 

 

 Reversing a linked list:  

 

 The reversing of the linked list that last node becomes the first 

node and first becomes the last. 
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OTHER OPERATIONS OF SINGLY 

LINKED LIST 

 Sorting the list:  

 

 In sorting function the node containing the largest element is 

removed from the linked list and is appended to the new list in 

the ascending order.  

 Merging the two linked list:  

 

 Merging two list pointed by two pointers into a third list.  

 While merging be ensure that the elements common to the lists 

appear only once in the third list. 

 

CREATING A LINKED LIST  
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CIRCULAR LINKED LIST 

 A linked list in which last node points to the header node is 

called the circular linked list. 

 

 The list have neither a beginning nor an end. 

 

 In this list the last node contains a pointer back to the first 

node rather than the NULL pointer. 
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CIRCULAR LINKED LIST 

The structure defined for circular linked list 

 

struct node 

 

{  

  int data; 

    

  struct node *next; 

 

} 

57 



CIRCULAR LINKED LIST 

A circular linked list is represented as follows: 

 

A circular linked list can be used to represent a stack and a queue. 
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OPERATION OF CIRCULAR LINKED LIST 

 Adding elements in the circular linked list. 

 

 Deleting element from the circular list. 

 

 Displaying elements from the circular list. 
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ADDING ELEMENTS IN THE CIRCULAR 

LINKED LIST 

 Ciradd(): 

 

 this function accepts three parameters: 

 

receives the address of the pointer to the first node. 

 

receives the address of the pointer to the last node. 

 

holds the data items that need to add in the list. 
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DELETING ELEMENTS FROM THE 

CIRCULAR LINKED LIST 

 delcirq(): 

 

 this function receives two parameters. 

 

the pointer to the front . 

 

the pointer to the rear . 
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DELETING ELEMENTS FROM THE 

CIRCULAR LINKED LIST 

 The condition is checked for the empty list.  

 If the list is not empty,  

 

 then it is checked whether the front and rear  

 point to the same node or not. 

 

 If they point to the same node,  

 

 then the memory occupied by the node  

 is released and front and rear are both  

 assigned a NULL value. 
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DISPLAYING THE CIRCULAR LIST 

 Cirq_disp(): 

     the function receives the pointer to the first node in the list as 

a parameter. 

 The q is also made to point to the first node in the list.  

     The entire list is traversed using q. 

 Another pointer p is set to NULL initially. 

  

     The circular list is traversed through a loop till the time it 

reach the first node again.  

     It reach first node again when q equals p. 
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DOUBLY LINKED LIST 

 The doubly linked list uses double set of pointer’s, one 

pointing to the next item and the other pointing to the 

preceding item. 

 

 It can traverse in two directions: 

 

from the beginning of the list to the end   

                            or 

In the backward direction from the end of the list to the 

beginning. 
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DOUBLY LINKED LIST 
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DOUBLY LINKED LIST 

 Each node contains three parts: 

 An information field which contains the data. 

 A pointer field next which contains the location of the next 
node n the list. 

 

 A pointer field prev which contains the location of the 
preceding node in the list. 

 
Structure to define DLL: 
struct node 
{  int data; 
  struct node *next; 
  struct node  *prev; 
} 
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CREATING A DLL  

 To create DLL at the nodes to the existing list:  

 To create the list the function d_create can be used before 

creating the list the function  checks if the list is empty. 

 

 Here the function accepts two parameters. 

 

s of type struct dnode ** which contains the address of the 

pointer to the first node of the list. 

 

parameter num is an integer which is to be added in the list. 
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CREATING A DLL  

 To create DLL at the nodes to the existing list:  

 To create the list the function d_create can be used before 

creating the list the function  checks if the list is empty. 

 

 Here the function accepts two parameters. 

 

s of type struct dnode ** which contains the address of the 

pointer to the first node of the list. 

 

parameter num is an integer which is to be added in the list. 
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OPERATIONS OF DLL 

 Adding a node in the beginning of DLL: 

  

 To add the node at the beginning of the list the function 

d_addatbeg()  is used . 

  

 This function takes two parameters: 

s of type dounode ** which contains the address of the pointer 

to the first node . 

 

num is an integer to be added in the list. 
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OPERATIONS OF DLL 

  

 The allocation of memory for the new node is done whose 

address is stored in q. 

   

 The num is the data part of the node. 

  

 A NULL value is stored in the prev part of new node a this is 

the first node in the list. 
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OPERATIONS OF DLL 

Function to add a node at the beginning of list. 

 

Void d_addatbeg(struct dnode  **s,int num) 

{   

struct dnode *q; 

 q=malloc(sizeof(struct dnode)); 

qprev=NULL; 

qdata=num; 

qnext=*s; 

(*s)prev=q; 

*s=q; 

} 
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OPERATIONS OF DLL 

 Adding a node in the middle of the list: 

 To add the node in the middle of the list we use the function 

d_addafter(). 

 

  The function accepts three parameters. 

q points to the first node of the list. 

loc specifies the node number after which new node must be 

inserted. 

num which is to be added to the list. 

  

 To reach to the position where node is to be inserted, a loop is 

executed. 
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OPERATIONS OF DLL 

  Deleting a node from DLL: 

 

 This function deletes a node from the list if the data part       

matches a with num. 

 The function receives two parameters 

 the address of the pointer to the first node. 

 the number to be deleted. 

 To traverse the list ,a loop is run.  

     The data part of each node is compared with the num. 

     If the num value matches the data part, then the position of the 

node to be deleted is checked 

73 



OPERATIONS OF DLL 

  Display the contents of DLL. 

  to display the contents of the doubly linked list, we follow the 

same algorithm that had used in the singly linked list.  

  Here q points to the first node in the list and the entire list is 

traversed . 

 Function to display the DLL. 

void d_disp(struct dnode *q) 

{  printf(“\n”); 

while(q!=NULL) 

{ printf(“%2d”,qdata); 

 q=qnext; 

} 

} 
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ARRAYS  

 
 A collection of objects of the same type stored contiguously 

in memory under one name.  

    May be type of any kind of variable 

    May even be collection of arrays! 

 The elements of the array are stored in consecutive memory 

locations and are referenced by an index (subscript).  
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ARRAYS  

 
 To refer to an element, specify 

―Array name 

―Position number 

 Syntax: 

array_name[ position number ] 
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ARRAYS  

 
Array Declaration 

      When declaring arrays 

– Name 

– Type of data elements 

– Number of elements 

      Syntax 

Data_Type array_Name[ Number_Of_Elements ]; 
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ARRAYS  

 
 Examples:  

int c[ 10 ];   

float myArray[ 3284 ]; 

 Declaring multiple arrays of same type 

– Format similar to regular variables 

– Example: 

int b[ 100 ], x[ 27 ];  
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ARRAYS 

 int c[12] 

• An array of ten integers 

• c[0], c[1], …, c[11] 

 double B[20] 

• An array of twenty long floating 

 point numbers 

• B[0], B[1], …, B[19] 

79 

Name of array (Note 

that all elements of 

this array have the 

same name, c) 

 

Position number of 

the element within 

array c 

c[6] 

 

-45 

 6 

 0 

 72 

 1543 

 -89 

 0 

 62 

 -3 

 1 

 6453 

 78 

 

c[0] 

 c[1] 

 c[2] 

 c[3] 

 

c[11] 

 

c[10] 

 

c[9] 

 

c[8] 

 

c[7] 

 

c[5] 

 

c[4] 

           -89 
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ARRAYS 

 Arrays of structs, unions, 

 

     pointers, etc., are also allowed 

 

 Array indexes always  

 

    start at zero in C 
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ARRAYS 

Two Dimensional Array 

• Syntax 

 Data_Type array_Name[ Row_Elements][Column_Elements]; 

 

• Example 

   int D[10][20] 

– An array of ten rows, each of which is an array of 

twenty integers 

– D[0][0], D[0][1], …, D[1][0], D[1][1], …, D[9][19] 

– Not used so often as arrays of pointers 
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ARRAYS 

Two Dimensional Array 

• Multiple subscripted arrays as  

– Tables with rows and columns (m×n array) 

– Like matrices: specify row, then column  
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Row 0 

 Row 1 

 Row 2 

 

Column 0 

 

Column 1 

 

Column 2 

 

Column 3 

 
a[ 0 ][ 0 ] 
 
a[ 1 ][ 0 ] 
 
a[ 2 ][ 0 ] 
 

a[ 0 ][ 1 ] 
 
a[ 1 ][ 1 ] 
 
a[ 2 ][ 1 ] 
 

a[ 0 ][ 2 ] 
 
a[ 1 ][ 2 ] 
 
a[ 2 ][ 2 ] 
 

a[ 0 ][ 3 ] 
 
a[ 1 ][ 3 ] 
 
a[ 2 ][ 3 ] 
 

Row subscript 

 

Array name 

 

Column subscript 

 



ARRAYS 

Multi Dimensional Arrays 

• Array declarations read right-to-left 

• Syntax 

 Data_Type array_Name[ Size ][Size][Size] … Size]; 

• Example 

  int a[10][3][2]; 

       “an array of ten arrays of three arrays of two elements” 

         in memory 
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SPARSE MATRIX 

 A sparse matrix is a matrix that allows special techniques to 

take advantage of the large number of zero elements. 

 

    Sparse matrix is very useful in engineering field, when solving 

the partial differentiation equations.  

      

     if there are maximum zeros then the matrix is known as 

sparse. matrix. 

     if there are few zeros then the matrix is dense matrix. 
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CATEGORIES OF SPARSE MATRIX 

Sparse matrix has  

 

N² sparse matrix and 

 

Triangular sparse matrix 

 

A matrix with zero entries that form a square or a bar is N² sparse 

matrix. 

 

A matrix with zero entries in its diagonal either in the upper or 

lower side is known as triangular sparse matrix. 
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REPRESENTATION OF SPARSE MATRIX 

Sparse matrix can be represented in  

 

Tuple method 

 

Array representation 

 

Linked list representation 

 

Only non zero elements are stored in any of the above 

representations. 
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TUPLE METHOD 

consider a matrix    Tuple matrix is 

 

[15 0 0 21   

  22 11 0 0 

  0  19 35 16] 

 

This is N² sparse matrix 

 

row column value 

1 1 15 

1 4 21 

2 1 22 

2 2 11 

3 2 19 

3 3 35 

3 4 16 
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TUPLE METHOD 

consider a matrix   Tuple matrix is 

 

[4  0 0 0 

 3  11 0 0 

 1  22 33 0 

7     45 41 22] 

 

This is triangular matrix 

row column value 

1 1 4 

2 1 3 

2 2 11 

3 1 1 

3 2 22 

3 3 33 

4 1 7 

4 2 45 

4 3 41 

4 4 22 
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ARRAY METHOD 

consider a matrix    

 

[15 0 0 21 

22        11         0          0 

 0  19 35 15] 

This is triangular matrix 

The elements are represented as follows 

 
1,1,15 1,4,21 2,1,22 2,2,11 3,2,11 3,2,19 3,3,35 3,4,16 
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SPARSE MATRIX OPERATIONS USING 

ARRAYS 

 

Addition of two sparse matrix: 

 

The function addmat() carries addition 

The function display() displays the result. 

 

Multiplication of two sparse matrix: 
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SPARSE MATRIX OPERATIONS USING 

ARRAYS 
This holds three functions 

Sparseprod() stores the result. 

Search_nonzero()checks whether an non zero element is present 

or not. 

Searchinb()searches an element whose row number is equal to 

column number. 

 

Transpose of a sparse matrix: 

Transpose() is used to allocate memory to store the elements. 
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REPRESENTATION OF SPARSE MATRIX 

THROUGH LINKED LIST 

The elements of sparse matrix consist of three integers. 

Its row number 

Its column number 

Its value 

 

The head node consist of three parts. 

Row number indicates the row to which the “head” node is 
pointing to the component element. 

The head also points to another head the node for the next row. 
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REPRESENTATION OF SPARSE MATRIX 

THROUGH LINKED LIST 

The create_list() function stores the information in the form of 

linked list. 

 

Insert() accepts a pointer  to the special node . 

 

show_list() reads and displays the data stored in the linked list. 
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REPRESENTATION OF SPARSE MATRIX 

THROUGH LINKED LIST 
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REPRESENTATION OF SPARSE MATRIX 

THROUGH LINKED LIST 
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REPRESENTATION OF SPARSE MATRIX 

THROUGH LINKED LIST 
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UNIT-II 

Topics: 

    Stack ADT, definition, operations, array and linked 
implementations in C, applications-infix to postfix 
conversion, Postfix expression evaluation, 
recursion implementation, Queue ADT, definition 
and operations ,array and linked Implementations 
in C, Circular queues-Insertion and deletion 
operations, Deque (Double ended queue) ADT, 
array and linked implementations in C. 
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 STACKS 

     A stack is a linear structures in which addition or deletion of 
elements takes place at the same end. 

     Or  

     The stack is an ordered list in which insertion and deletion is 
done at the same end. 

 

    The end is called the top of stack. 

     Insertion and deletion cannot be done from the middle.  

 

     A technique of Last In First Out is followed. 

    Stack can be implemented by using both arrays and linked 
lists. 



 STACKS 



STACK ADT 

     
     Stacks can also be defined as Abstract Data Types(ADT). 

 

     A stack of elements of any particular type is a finite sequence 

of elements of that type together  with specific operations. 

 

 Therefore, stacks are called LIFO lists. 

      

 

 



STACK OPERATIONS 

The primitive operations on stack are 

 

To create a stack. 

To insert an element on to the stack. 

To delete an element from the stack. 

To check which element is at the top of the stack. 

To check whether a stack is empty or not. 



STACK OPERATIONS 

 If Stack is not full , 

 then add a new node at one end of the stack 

 this operation is called PUSH. 

 

If the stack is not empty 

 then delete the node at its top.  

This operation is called POP. 

 

PUSH and POP are functions of stack used to fulfill the stack 

operations. 

TOP is the pointer locating the stack current position. 

 



ARRAY IMPLEMENTATION IN C 

     Stacks can be represented in the memory arrays by  

     maintaining a linear array STACK and a pointer variable TOP 

     which contains the location of top element. 

 

     The Variable MAXSTACK gives  

      maximum number of elements held by the stack. 

 

     The TOP=NULL  /0 will indicate that the stack is empty. 

 

     The operation of adding and removing an item in the stack can 
be implemented using the PUSH and POP functions. 

 

  



Figure shows the array representation 



Pictorial depiction of pushing elements 

in stack 



Pictorial depiction of popping elements 

in stack 



DISADVANTAGE OF STACK USING ARRAYS 

   The array representation of stack suffers from the drawbacks of  

     the array’s size, that cannot be increased or decreased once it 

is declared . 

 

    The space is wasted, if not used , or, there is shortage of space 

if needed. 



LINKED IMPLEMENTATION IN C 

 The stack can be implemented using linked lists. 

 

 The stack as linked list is represented as a single linked list. 

 

 Each node in the list contains data and a pointer to the next node. 



Pictorial depiction of stack in linked 

list 



APPLICATION OF STACKS 

 

Reversing a list. 

 

 

Conversion of Infix to Postfix Expression. 

Evaluation of Postfix Expression. 

 

Conversion of Infix to Prefix Expression. 

Evaluation of Prefix Expression. 

   

 



CONVERSION OF INFIX TO POSTFIX 

EXPRESSION 

     While evaluating an infix expression, 

     operations are executed according to the order as follows: 

 

Brackets / Parentheses. 

Exponentiation. 

Multiplication / Division. 

Addition / Subtraction. 

 

       the operators with the same priority(e.g. * and /) are 

evaluated from left to right. 



STEPS TO CONVERT INFIX TO POSTFIX 

EXPRESSION 

    Step 1:  The actual evaluation is determined by inserting 

braces. 

 

    Step 2:  Convert the expression in the innermost braces into 

postfix notation by putting the operator after the operands. 

 

    Step 3:  Repeat the above step (2) until the entire expression is 

converted into postfix notation. 



EXAMPLE OF INFIX TO POSTFIX 

CONVERSION 



RECURSION IMPLEMENTATION 

     If a procedure contains either a call statement to itself/to a 

second procedure that may eventually result in a cell statement 

back to the original procedure. Then such a procedure is called 

as recursive procedure. 

 

     Recursion may be useful in developing algorithms for specific 

problems. The stack may be used to implement recursive 

procedures. 

 



QUEUE 

   Queue is a linear list of  elements in which deletion of an 

element can take place only at one end,  

    called the front  

    and insertion can take place only at the other end, 

    called the rear. 

    The first element in a queue will be the first one to be removed 

from the list. 

 

    Therefore, queues are called FIFO lists. 



QUEUE 



QUEUE ADT 

     The definition of an abstract data type clearly states that for a 

data structure to be abstract, it should have the two 

characteristics as follows. 

 

    There should be a particular way in which components are 

related to each other. 

 

     A statement of the operations that can be performed on 

element of the abstract data type should specified. 

 



QUEUE OPERATIONS 

Queue overflow. 

 

Insertion of the element into the queue. 

 

Queue underflow. 

 

Deletion of the element from the queue. 

 

Display of the queue. 



ARRAY IMPLEMENTATION IN C 

 Array is a data structure that stores a fixed number of 

elements. 

 

 One of the major limitations of an array is that its size should 

be fixed prior to using it. 

 

 The size of the queue keeps on changing as the elements are 

either removed from the front end or added at the rear end. 

 

 The solution of this problem is to declare an array with a 

maximum size. 



FIGURE TO REPRESENT A QUEUE USING 

ARRAY 



INSERTION AND DELETION 

OPERATIONS IN QUEUE USING ARRAYS 

 We consider two variables front and rear which are declared to 

point to both the ends of the queue. 

 

 The array begins with index therefore , the maximum number 

of elements that can be stored can be consider as MAX-1(n-1). 

 

 If the number of elements are already stored in the queue is 

reported to be full.  

 

 If the elements are added then the rear is incremented using the 

pointer and new item is stored in the array. 



ADDING ELEMENTS IN A QUEUE 

 The front and rear variables are initially set to -1, which 

denotes that the queue is empty.  

      If the item being added is the first  element then as the item is 

added, .the queue front is set to 0 indicating that the queue is 

now full. 

 



DELETING ELEMENTS IN A QUEUE 

     For deleting elements from the queue, the function first checks 

if there are any elements for deletion. If not , the queue  is said 

to be empty otherwise an element is deleted. 

 



LINKED IMPLEMENTATION IN C 

  
 The linked list representation of a queue does not have any 

restrictions on the number of elements it can hold. 

 

 The elements are allocated dynamically , hence it can grow as 

long as there is sufficient memory available for dynamic 

allocation. 



APPLICATION OF QUEUE 

Job scheduling. 

 

Categorizing data. 

 

Random number generation. 



TYPES OF QUEUES 

Circular queue. 

 

De queue (double ended queue). 

 

Priority queue. 



CIRCULAR QUEUE 

 Circular queues are implemented in circular form rather than 

in a straight line. 

 

 This form over come the problem of unutilized space in linear 

queue implemented as an array. 

 

 In the array implementation there is a possibility that the queue 

is reported full even though slots of the queue are empty. 

 



CIRCULAR QUEUE 

 Suppose an array x of n elements is used to implement a 

circular queue. If we go on adding elements to the queue we 

may reach x[n-1].  

 

 In a queue array if the elements reach the end then it reports 

the queue is full even some slots are empty but in circular 

queue ,it would not report as full until all the slots are 

occupied. 

 



REPRESENTATION OF CIRCULAR 

QUEUE 



ADDING ELEMENTS INTO CIRCULAR 

QUEUE 

    The conditions that are checked before inserting the elements : 

 

 If the front and rear are in adjacent locations(i.e. rare following 

front)the message ‘Queue is full’ is displayed. 

 

 If the value of front is -1 then it denotes that the queue is 

empty and that the element to be added would be the first 

element in the queue . The value of front and rear in such a 

case are set to 0 and new element gets placed at 0Th position. 



ADDING ELEMENTS INTO CIRCULAR 

QUEUE 

 Some of the positions at the front end of the array might be 

empty .  

    This happens if we have deleted some elements from the queue 
, when the value of rear is MAX-1 and the value of front is 
greater than 0. 

 

    In such a case value of rear is set to 0 and the element to be 
added is added to this position. 

 

 The element is added at the rear position in case the value of 
front is either equal to or greater than 0 and the value of rear is 
less than MAX-1. 

 



ADDING ELEMENTS IN CIRCULAR 

QUEUE 



DELETING ELEMENTS INTO CIRCULAR 

QUEUE 

 The conditions that are checked before deleting the elements : 

 

 First it is checked whether the queue is empty or not . The 

elements at the front position will be deleted. 

 

 Now , it is checked if the value of front is equal to rear . If it is, 

then the element which will be deleted is the only element in 

the queue . 

 

 If the element is removes, the queue  will be empty and front 

and rear are set to -1. 



DELETING ELEMENTS IN CIRCULAR 

QUEUE 
 On Deleting an element from the queue the value of front is set 

to 0 if it is equal to MAX-1 otherwise front is simply 

incremented by 1. 



DOUBLE ENDED QUEUE 

 A deque is a linear list in which elements can be added or 

removed at either end but not in the middle. 

 

 There are two variations of a deque an input restricted deque 

and an output restricted deque which are intermediate between 

deque and a regular queue. 

 

 An input  restricted deque is a deque which allows insertions 

at only one end of the list , but allows deletions at both ends of 

the list 



DOUBLE ENDED QUEUE 

 The output restricted deque is a deque which allows deletions 

at only one end of the list but allows insertions at both ends of 

the list. 

 

 The two possibilities that must consider while inserting 

/deleting elements into the queue are: 

 

 When an attempt is made to insert an element into a deque 

which is already full, an overflow occurs. 

 

 When an attempt is made to delete an element from a deque 

which is empty, underflow occurs. 

 



REPRESENTATION OF DEQUE 



UNIT-III 

Topics: 

    Trees – Terminology, Representation of Trees, Binary 
tree ADT, Properties of Binary Trees, Binary Tree 
Representations-array and linked representations, 
Binary Tree traversals, threaded binary trees, Max 
Priority Queue ADT-implementation-Max Heap-
Definition, Insertion into a Max Heap, Deletion from a 
Max Heap. 

     Graphs – Introduction, Definition, Terminology, Graph 
ADT, Graph Representations- Adjacency matrix, 
Adjacency lists, Graph traversals- DFS and BFS. 
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Definition of Tree 

 A tree is a finite set of one or more nodes  
such that: 

 There is a specially designated node called  
the root. 

 The remaining nodes are partitioned into 
n>=0 disjoint sets T1, ..., Tn, where each of 
these sets is a tree. 

 We call T1, ..., Tn the subtrees of the root. 
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                   Fig.Tree 2 

Terminology 
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ROOT: 
This is the unique node in the tree to which further subtrees are 
attached.in the above fig node A is a root node. 

Degree of the node: 
The total number of sub-trees attached to the node is called the 
degree of the node. 
Node  degree 
A  3 
E  0  

Leaves: 
These are terminal nodes of the tree.The nodes with degree 0 are 
always the leaf nodes.In above given tree E,F,G,C and H are the leaf 
nodes. 

Internal nodes: 
The nodes other than the root node and the leaves are called the 
internal nodes.Here B and D are internal nodes. 
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Parent nodes: 
The node which is having  further sub-trees(branches)is called the 
parent node of those sub-trees. In the given example node  B is parent 
node of E,F and G nodes.  

Predecessor: 
While displaying the tree ,if some particular node occurs previous to 
some other node then that node is called the predecessor of the other 
node.In above figure E is a predecessor of the node B. 

successor: 
The node which occurs next to some other node is a successor node.In 
above figure B is successor of F and G. 

Level of the tree: 
The root node is always considered at level 0,then its adjacent children 
are supposed to be at level 1 and so on.In above figure the node A is at 
level 0,the nodes B,C,D are at level 1,the nodes E,F,G,H are at level 2. 
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Height of the tree: 
The maximum level is the height of the tree.Here height of the 
tree is 3.The height of the tree is also called depth of the tree. 

Degree of tree: 
The maximum degree of the node is called the degree of the 
tree. 

The degree of a node is the number of subtrees of the node 

– The degree of A is 3; the degree of C is 1. 

 The node with degree 0 is a leaf or terminal  
node. 

 A node that has subtrees is the parent of the  
roots of the subtrees. 

 The roots of these subtrees are the children of  
the node. 

 Children of the same parent are siblings. 

 The ancestors  of a node are all the nodes  
along the path from the root to the node. 144 



Binary Trees 

 A binary tree is a finite set of nodes that is  
either empty or consists of a root and two  
disjoint binary trees called the left subtree  
and the right subtree. 

 Any tree can be transformed into binary 
tree. 

– by left child-right sibling representation 

 The left subtree and the right subtree are 
distinguished. 145 



 
 

Types Of Binary Trees 
 
 

 

 
 
 
 
There are three types of binary trees 
 
•Left skewed binary tree 

 
•Right skewed binary tree 

 
•Complete binary tree 
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Left skewed binary tree 
 

• If the right subtree is missing in every node of a tree 
we cal it as left skewed tree.  

A 

B 

C 
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Right skewed binary tree 
 

• If the left subtree is missing in every node of a 
tree we call it as right subtree. 

A 

B 

C 
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Complete binary tree 
• The tree in which degree of each node is at the most two is 

called a complete binary tree.In  a complete binary tree there 
is exactly one node at level 0,twonodes at level 1 and four 
nodes at level 2 and so on.so we can say that a complete 
binary tree of depth d will contains exactly 2l  nodes at each 
level l,where l is from 0 to d. 

E 

C B 

D F G 

A 
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Abstract Data Type Binary_Tree 
structure Binary_Tree(abbreviated BinTree) is 

objects: a finite set of nodes either empty or  
consisting of a root node, left Binary_Tree,  
and right Binary_Tree. 

functions: 

  for all bt, bt1, bt2  BinTree, item  element 

  Bintree Create()::= creates an empty binary tree 

  Boolean IsEmpty(bt)::= if (bt==empty binary  
tree) return TRUE else return FALSE 
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BinTree MakeBT(bt1, item, bt2)::= return a binary 
tree  
       whose left subtree is bt1, whose right subtree is 
bt2,  
       and whose root node contains the data item  
Bintree Lchild(bt)::= if (IsEmpty(bt)) return error  
                            else return the left subtree of bt 
element Data(bt)::= if (IsEmpty(bt)) return error 
                            else return the data in the root node 
of bt 
Bintree Rchild(bt)::= if (IsEmpty(bt)) return error  
                            else return the right subtree of bt 
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Maximum Number of Nodes in BT 

 The maximum number of nodes on level i of a 
binary tree is 2i-1, i>=1. 

 The maximum nubmer of nodes in a binary tree  
of depth k is 2k-1, k>=1. 

Prove by induction. 
 
 

2 2 11

1

i

i

k
k



  
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Binary Tree Representation 

•Sequential(Arrays)  representation 
 

•Linked  representation  
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Array Representation of Binary Tree 

This representation uses only a single linear 
array tree as follows: 

i)The root of the tree is stored in tree[0]. 

ii)if a node occupies tree[i],then its left child is 
stored in tree[2*i+1],its right child is stored in 
tree[2*i+2],and the parent is stored in tree[(i-
1)/2]. 
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     Sequential Representation 
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Sequential Representation 
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Advantages of sequential representation 

The only advantage with this type of representation is that 
the direct access to any node can be possible and finding the 
parent or left right children of any particular node is fast 
because of the random access.  
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Disadvantages of sequential representation 

• The major disadvantage with this type of 
representation is wastage of memory. 

• The maximum depth of the tree has to be 
fixed. 

• The insertions and deletion of any node in the 
tree will be costlier as other nodes has to be 
adjusted at appropraite positions so that the 
meaning of binary tree can be preserved. 
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Linked Representation 

struct node 

 { 

 int data; 

struct node * left_child, *right_child; 

}; 

 
data left_child right_child 

data 

left_child right_child 
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Linked Representation 
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55,44,66,33,50,22 
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Advantages of Linked representation 

 

•This representation is superior to our 
representation as there is no wastage of memory. 
•Insertions and deletions which are the most 
common operations can be done without moving the 
other nodes. 
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Disadvantages of linked representation 

• This representation does not provide direct 
access to a node and special algorithms are 
required. 

• This representation needs additional space in 
each node for storing the left and right sub-
trees. 

162 



Full BT VS Complete BT 

 A binary tree with n nodes and depth k is  
complete iff its nodes correspond to the nodes 
numbered from 1 to n in the full binary tree of  
depth k. 

 A full binary tree of depth k is a binary tree of  
depth k having 2 -1 nodes, k>=0. 

k 
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Full binary tree of depth 4 

 
Complete binary tree 
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Binary Tree Traversals 
   The process of going through a tree in such a way that each node is 

visted once is tree traversal.several method are used for tree 

traversal.the traversal in a binary tree involves three kinds of basic 

activities such as: 

  Visiting the root 

    Traverse left subtree  

  Traverse  right subtree 
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We will use some notations to traverse a given binary 
tree  as follows: 

L means move to the Left child. 

R means move to the Right child. 

D means the root/parent node. 

 

The  only difference among the methods is the order 
in which these three operations are performed. 

There are three standard ways of traversing a non 
empty binary tree namely : 

Preorder 

Inorder 

Postorder 
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Preorder(also known as depth-first order) 

1.Visit the root(D) 

2.Traverse the left subtree in preorder(L) 

3.Traverse the right subtree in preorder(R) 
                             

                                   Print 1st  

         Print 2nd              
 

          Print 3rd 

 

A-B-C-D-E is the preorder traversal of the 
above figure. 

 

A 

B D 

E C 

Print 4th 

Print at the last 
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Inorder(also known as symmetric order) 

1.Traverse the left subtree in Inorder(L) 

2.Visit the root(D) 

3.Traverse the right subtree in Inorder(R) 
                             

                                   Print 3rd  

         Print 2nd              
 

          Print 1st 

 

C-B-A-D-E is the Inorder traversal of the above 
figure. 

 

A 

B D 

E C 

Print 4th 

Print at the last 
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Postorder 

1.Traverse the left subtree in postorder(L) 

2.Traverse the right subtree in postorder(R) 

3.Visit the root(D) 
 

                        Print at the last  

         Print 3rd              
 

          Print 1st 

 

C-D-B-E-A is the postorder traversal of the 
above figure. 

 

A 

B D 

E C 

Print 4th 

Print 2nd 
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  Binary tree traversals 
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  FIG(a)                        FIG(b) 

 
Preorder:ABDHIECFJKG          preorder :ABDHIEJCFG    
Inorder:HDIBEAJFKCG          inorder:   HDIBJEAFCG 
Postorder:HIDEBJKFGCA          postorder:HIDJEBFGCA   
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Arithmetic Expression Using BT 

+ 

* 

A 

* 

/ 

E 

D 

C 

B 

inorder traversal 
A / B * C * D + E 
infix expression 
preorder traversal 
+ * * / A B C D E 
prefix expression 
postorder traversal 
A B / C * D * E + 
postfix expression 
level order traversal 
+ * E * D / C A B 
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Inorder Traversal (recursive version) 

void inorder(tree_pointer ptr) 

/* inorder tree traversal */ 

{ 

    if (ptr) { 

        inorder(ptr->left_child); 

        printf(“%d”, ptr->data); 

        indorder(ptr->right_child); 

    } 

} 

A / B * C * D + E 
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Preorder Traversal (recursive version) 

void preorder(tree_pointer ptr) 

/* preorder tree traversal */ 

{ 

    if (ptr) { 

        printf(“%d”, ptr->data); 

        preorder(ptr->left_child); 

        predorder(ptr->right_child); 

    } 

} 

+ * * / A B C D E 
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Postorder Traversal (recursive version) 

void postorder(tree_pointer ptr) 

/* postorder tree traversal */ 

{ 

    if (ptr) { 

        postorder(ptr->left_child); 

        postdorder(ptr->right_child); 

        printf(“%d”, ptr->data); 

    } 

} 

A B / C * D * E + 
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Iterative Inorder Traversal 
(using stack) 

void iter_inorder(tree_pointer node) 

{ 

  int top= -1; /* initialize stack */ 

  tree_pointer stack[MAX_STACK_SIZE]; 

  for (;;) { 

   for (; node; node=node->left_child) 

     add(&top, node);/* add to stack */ 

   node= delete(&top);  

                /* delete from stack */ 

   if (!node) break; /* empty stack */ 

   printf(“%D”, node->data); 

   node = node->right_child; 

 } 

} O(n) 
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Trace Operations of Inorder Traversal 

Call of inorder Value in root Action Call of inorder Value in root Action

1 + 11 C

2 * 12 NULL

3 * 11 C printf

4 / 13 NULL

5 A 2 * printf

6 NULL 14 D

5 A printf 15 NULL

7 NULL 14 D printf

4 / printf 16 NULL

8 B 1 + printf

9 NULL 17 E

8 B printf 18 NULL

10 NULL 17 E printf

3 * printf 19 NULL
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Level Order Traversal 
(using queue) 

void level_order(tree_pointer ptr) 

/* level order tree traversal */ 

{ 

  int front = rear = 0; 

  tree_pointer queue[MAX_QUEUE_SIZE]; 

  if (!ptr) return; /* empty queue */ 

  addq(front, &rear, ptr); 

  for (;;) { 

    ptr = deleteq(&front, rear); 
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    if (ptr) { 

      printf(“%d”, ptr->data); 

      if (ptr->left_child) 

        addq(front, &rear,  

                     ptr->left_child); 

      if (ptr->right_child) 

        addq(front, &rear,  

                     ptr->right_child); 

    } 

    else break; 

  } 

} 
+ * E * D / C A B 
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Copying Binary Trees 
tree_poointer copy(tree_pointer original) 

{ 

tree_pointer temp; 

if (original) { 

 temp=(tree_pointer) malloc(sizeof(node)); 

 if (IS_FULL(temp)) { 

   fprintf(stderr, “the memory is full\n”); 

   exit(1); 

 } 

 temp->left_child=copy(original->left_child); 

 temp->right_child=copy(original->right_child);

 temp->data=original->data; 

 return temp; 

} 

return NULL; 

} 

postorder 
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void post_order_eval(tree_pointer node) 
{ 

/* modified post order traversal to evaluate a propositional 
calculus tree */ 

    if (node) { 
        post_order_eval(node->left_child); 

        post_order_eval(node->right_child); 
        switch(node->data) { 

           case not:  node->value = 
                   !node->right_child->value; 

                   break; 
 

Post-order-eval function 
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case and:     node->value = 
               node->right_child->value && 
               node->left_child->value; 
               break; 
       case or:        node->value = 
               node->right_child->value | | 
               node->left_child->value; 
               break; 
        case true:    node->value = TRUE; 
               break; 
        case false:  node->value = FALSE; 
       } 
   } 
} 
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Threaded Binary Trees 
 Two many null pointers in current representation 

of binary trees 
    n: number of nodes 
    number of non-null links: n-1 
    total links: 2n 
    null links: 2n-(n-1)=n+1 

 Replace these null pointers with some useful 
“threads”. 



Threaded Binary Trees (Continued) 

182 

If ptr->left_child is null,  
    replace it with a pointer to the node that would be  
    visited before ptr in an inorder traversal 
 
If ptr->right_child is null,  
    replace it with a pointer to the node that would be  
    visited after ptr in an inorder traversal 
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A Threaded Binary Tree 

A 

B C 

G E 

I 

D 

H 

F 

root 

dangling 

dangling 

inorder traversal: 
H, D, I, B, E, A, F, C, G 



 TRUE   
 

  FALSE 

Data Structures for Threaded BT 

typedef struct threaded_tree *threaded_pointer; 

typedef struct threaded_tree { 

    short int left_thread; 

    threaded_pointer left_child; 

    char data; 

    threaded_pointer right_child; 

    short int right_thread;  }; 

left_thread     left_child       data        right_child    right_thread 

FALSE: child TRUE: thread 
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Memory Representation of A Threaded BT 

f f -- 

f f A 

f f C f f B 

t t E t t F t t G f f D 

t t I t t H 

root 
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Next Node in Threaded BT 

threaded_pointer insucc(threaded_pointer 

tree) 

{ 

  threaded_pointer temp; 

  temp = tree->right_child; 

  if (!tree->right_thread) 

    while (!temp->left_thread)  

      temp = temp->left_child; 

  return temp; 

} 
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Inorder Traversal of Threaded BT 

void tinorder(threaded_pointer tree) 

{ 

/* traverse the threaded binary tree 

inorder */ 

    threaded_pointer temp = tree; 

    for (;;) { 

        temp = insucc(temp); 

        if (temp==tree) break; 

        printf(“%3c”, temp->data); 

    } 

} 
O(n)(timecomplexity) 
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Inserting Nodes into Threaded BTs 

 Insert child as the right child of node parent 

– change parent->right_thread to FALSE 

– set child->left_thread and child->right_thread 
to TRUE 

– set child->left_child to point to parent 

– set child->right_child to parent->right_child 

– change parent->right_child to point to child 
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Examples 

root 

parent 

A 

B 

C D 
child 

root 

parent 

A 

B 

C D 
child 

empty 

Insert a node D as a right child of B. 

(1) 

(2) 

(3) 



*Figure 5.24: Insertion of child as a right child of parent in a threaded binary tree (p.217) 

nonempty 

(1) 

(3) 

(4) 

(2) 
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Right Insertion in Threaded BTs 

void insert_right(threaded_pointer parent,   

                  threaded_pointer child) 

{ 

  threaded_pointer temp; 

  child->right_child = parent->right_child; 

  child->right_thread = parent->right_thread; 

  child->left_child = parent;  case (a) 

  child->left_thread = TRUE; 

  parent->right_child = child; 

  parent->right_thread = FALSE; 

  if (!child->right_thread) { case (b) 
  temp = insucc(child); 

    temp->left_child = child; 

  } 

} 

(1) 

(2) 

(3) 

(4) 
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Heap 
 A max tree is a tree in which the key value in  

each node is no smaller than the key values in  
its children.  A max heap is a complete binary  
tree that is also a max tree. 

 A min tree is a tree in which the key value in  
each node is no larger than the key values in  
its children.  A min heap is a complete binary  
tree that is also a min tree. 

 Operations on heaps 

– creation of an empty heap 

– insertion of a new element into the heap;  

– deletion of the largest element from the heap 



 Sample max heaps  

 [4] 

14 

12 7 

8 10 6 

9 

6 3 

5 

30 

25 

[1] 

[2] [3] 

[5] [6] 

[1] 

 [2] [3] 

[4] 

   [1] 

[2] 

Property: 
 The root of max heap  contains  
 the largest . 
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2 

7 4 

8 10 6 

10 

20 83 

50 

11 

21 

[1] 

[2] [3] 

[5] [6] 

[1] 

 [2] [3] 

[4] 

   [1] 

[2] 

 [4] 

Sample min heaps  

Property: 
 The root of min heap contains  
 the smallest. 
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ADT for Max Heap 
structure MaxHeap 
  objects: a complete binary tree of n > 0 elements organized so that  

the value in each node is at least as large as those in its children 
  functions: 
    for all heap belong to MaxHeap, item belong to Element, n,  

max_size belong to integer 
    MaxHeap Create(max_size)::= create an empty heap that can  

                               hold a maximum of max_size elements 
    Boolean HeapFull(heap, n)::= if (n==max_size) return TRUE 

                                                else return FALSE 
    MaxHeap Insert(heap, item, n)::= if (!HeapFull(heap,n)) insert  

                               item into heap and return the resulting heap  
                                                else return error 

    Boolean HeapEmpty(heap, n)::= if (n>0) return FALSE 
                                                     else return TRUE 
    Element Delete(heap,n)::= if (!HeapEmpty(heap,n)) return one 

                               instance of the largest element in the heap  
                               and remove it from the heap  

                                                     else return error 
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Example of Insertion to Max Heap 

20 

15 2 

14 10 

initial location of new node 

21 

15 20 

14 10 2 

insert 21 into heap 

20 

15 5 

14 10 2 

insert 5 into heap 
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Insertion into a Max Heap 

void insert_max_heap(element item, int *n) 

{ 

  int i; 

  if (HEAP_FULL(*n)) { 

    fprintf(stderr, “the heap is full.\n”); 

    exit(1); 

  } 

  i = ++(*n); 

  while ((i!=1)&&(item.key>heap[i/2].key)) { 

    heap[i] = heap[i/2]; 

    i /= 2; 

  } 

  heap[i]= item; 

} 

2k-1=n ==> k=log2(n+1) 

O(log2n) 
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Example of Deletion from Max Heap 

20 

remove 

15 2 

14 10 

10 

15 2 

14 

15 

14 2 

10 
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Deletion from a Max Heap 
element delete_max_heap(int *n) 

{ 

  int parent, child; 

  element item, temp; 

  if (HEAP_EMPTY(*n)) { 

    fprintf(stderr, “The heap is empty\n”); 

    exit(1); 

  } 

  /* save value of the element with the  
   highest key */ 

  item = heap[1]; 

  /* use last element in heap to adjust heap */

  temp = heap[(*n)--]; 

  parent = 1; 

  child = 2; 
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while (child <= *n) { 
    /* find the larger child of the current  
       parent */ 
    if ((child < *n)&& 
        (heap[child].key<heap[child+1].key)) 
      child++; 
    if (temp.key >= heap[child].key) break; 
    /* move to the next lower level */ 
    heap[parent] = heap[child]; 
    child *= 2; 
  } 
  heap[parent] = temp; 
  return item; 
} 



Graphs 
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What is a graph? 

• A data structure that consists of a set of nodes 
(vertices) and a set of edges that relate the nodes 
to each other 

• The set of edges describes relationships among 
the vertices  
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Formal definition of graphs 

• A graph G is defined as follows: 

    G=(V,E) 

  V(G): a finite, nonempty set of vertices 

  E(G): a set of edges (pairs of vertices) 
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Directed vs. undirected graphs 

• When the edges in a graph have no 
direction, the graph is called undirected 
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Directed vs. undirected graphs (cont.) 

• When the edges in a graph have a direction, 
the graph is called directed (or digraph)  

E(Graph2) = {(1,3) (3,1) (5,9) (9,11) (5,7) 

Warning: if the graph is 

directed, the order of the 

vertices in each edge is 

important !! 
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Trees vs graphs 

• Trees are special cases of graphs!!  
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Graph terminology 

• Adjacent nodes: two nodes are adjacent if 
they are connected by an edge 

 

 

• Path: a sequence of vertices that connect two 
nodes in a graph 

• Complete graph: a graph in which every vertex 
is directly connected to every other vertex 

5 is adjacent to 7 
7 is adjacent from 5 
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Graph terminology (cont.) 

• What is the number of edges in a complete 
directed graph with N vertices?  

  N * (N-1) 

2( )O N
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Graph terminology (cont.) 

• What is the number of edges in a complete 
undirected graph with N vertices?  

  N * (N-1) / 2 

2( )O N
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Graph terminology (cont.) 

• Weighted graph: a graph in which each edge 
carries a value  
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Graph implementation 

• Array-based implementation 

– A 1D array is used to represent the vertices 

– A 2D array (adjacency matrix) is used to 
represent the edges  
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Array-based implementation 
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Graph implementation (cont.) 

• Linked-list implementation 

– A 1D array is used to represent the vertices  

– A list is used for each vertex v which contains the 

vertices which are adjacent from v (adjacency list)  
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Linked-list implementation  
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Adjacency matrix vs. adjacency list 
representation  

• Adjacency matrix 
– Good for dense graphs --|E|~O(|V|2) 

– Memory requirements: O(|V| + |E| ) = O(|V|2 ) 

– Connectivity between two vertices can be tested 
quickly 

• Adjacency list 
– Good for sparse graphs -- |E|~O(|V|) 

– Memory requirements: O(|V| + |E|)=O(|V|)  

– Vertices adjacent to another vertex can be found 
quickly 
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Depth-First-Search (DFS) 

• What is the idea behind DFS? 

– Travel as far as you can down a path  

– Back up as little as possible when you reach a 
"dead end" (i.e.,  next vertex has been "marked" 
or there is no next vertex) 

• DFS can be implemented efficiently using a 
       stack  
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Depth-First-Search (DFS) (cont.) 

Set found to false 
stack.Push(startVertex) 
DO 
  stack.Pop(vertex) 
  IF vertex == endVertex 
    Set found to true 
  ELSE 
    Push all adjacent vertices onto stack 
WHILE !stack.IsEmpty() AND !found 
  
IF(!found) 
  Write "Path does not exist" 
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start end 

(initialization) 
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template <class ItemType> 

void DepthFirstSearch(GraphType<VertexType> graph, VertexType 
startVertex, VertexType endVertex) 

{ 

 StackType<VertexType> stack; 

 QueType<VertexType> vertexQ; 
  

 bool found = false; 

 VertexType vertex; 

 VertexType item; 
  

 graph.ClearMarks(); 

 stack.Push(startVertex); 

 do { 

   stack.Pop(vertex); 

   if(vertex == endVertex)  

     found = true; 
    

(continues) 
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 else { 

     if(!graph.IsMarked(vertex)) { 

       graph.MarkVertex(vertex); 

       graph.GetToVertices(vertex, vertexQ); 

        

       while(!vertexQ.IsEmpty()) { 

         vertexQ.Dequeue(item); 

         if(!graph.IsMarked(item)) 

           stack.Push(item); 

       } 

     } 

   } while(!stack.IsEmpty() && !found); 

  

   if(!found) 

     cout << "Path not found" << endl; 

}  
(continues) 
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template<class VertexType> 

void GraphType<VertexType>::GetToVertices(VertexType vertex,  

                               QueTye<VertexType>& adjvertexQ) 

{ 

 int fromIndex; 

 int toIndex; 

  

 fromIndex = IndexIs(vertices, vertex); 

 for(toIndex = 0; toIndex < numVertices; toIndex++) 

   if(edges[fromIndex][toIndex] != NULL_EDGE) 

     adjvertexQ.Enqueue(vertices[toIndex]); 

}  
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Breadth-First-Searching (BFS) 

• What is the idea behind BFS? 

– Look at all possible paths at the same depth 
before you go at a deeper level 

– Back up as far as possible when you reach a 
"dead end" (i.e.,  next vertex has been 
"marked" or there is no next vertex) 
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Breadth-First-Searching (BFS) (cont.) 

• BFS can be implemented efficiently using a queue 
 

Set found to false 
queue.Enqueue(startVertex) 
DO 
  queue.Dequeue(vertex) 
  IF vertex == endVertex 
    Set found to true 
  ELSE 
    Enqueue all adjacent vertices onto queue 
WHILE !queue.IsEmpty() AND !found 

  

• Should we mark a vertex when it is enqueued or 
when it is dequeued ?  

IF(!found) 
  Write "Path does not exist" 
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start end 

(initialization) 
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next: 
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template<class VertexType> 
void BreadthFirtsSearch(GraphType<VertexType> graph, 

VertexType startVertex, VertexType endVertex); 
{ 
 QueType<VertexType> queue; 
 QueType<VertexType> vertexQ;//  
  
 bool found = false; 
 VertexType vertex; 
 VertexType item; 
  
 graph.ClearMarks(); 
 queue.Enqueue(startVertex); 
 do { 
   queue.Dequeue(vertex); 
   if(vertex == endVertex)  
     found = true; 
     

(continues) 
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 else { 

     if(!graph.IsMarked(vertex)) { 

       graph.MarkVertex(vertex); 

       graph.GetToVertices(vertex, vertexQ); 

  

       while(!vertxQ.IsEmpty()) { 

         vertexQ.Dequeue(item); 

         if(!graph.IsMarked(item)) 

           queue.Enqueue(item); 

       } 

     } 

   } 

 } while (!queue.IsEmpty() && !found); 

  

 if(!found) 

   cout << "Path not found" << endl; 

}  
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Single-source shortest-path problem 

• There are multiple paths from a source 
vertex to a destination vertex 

• Shortest path: the path whose total weight 
(i.e., sum of edge weights) is minimum 

• Examples:  
– Austin->Houston->Atlanta->Washington:     1560 

miles 

– Austin->Dallas->Denver->Atlanta->Washington: 
2980 miles 
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Single-source shortest-path problem 
(cont.) 

• Common algorithms: Dijkstra's algorithm, 
Bellman-Ford algorithm 

• BFS can be used to solve the shortest graph 
problem when the graph is weightless or all 
the weights are the same  

 (mark vertices before Enqueue) 
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UNIT-IV 

Topics: 

    Searching- Linear Search, Binary Search, Static 
Hashing-Introduction, hash tables, hash 
functions, Overflow Handling. 

    Sorting-Insertion Sort, Selection Sort, Radix 
Sort, Quick sort, Heap Sort, Comparison of 
Sorting methods. 
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Sequential Search 
O (n) 

 

• A sequential search of a list/array begins at 
the beginning of the list/array  and continues 
until the item is found or the entire list/array 
has been searched 
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Sequential Search 

bool LinSearch(double x[ ], int n, double item){ 

  

  for(int i=0;i<n;i++){ 

   if(x[i]==item) return true; 

   else return false; 

  } 

  return false; 

 } 

  



Linear Search - Example 

• Array numlist contains: 

 

 
 

• Searching for the the value 11, linear search 
examines 17, 23, 5, and 11 

• Searching for the the value 7, linear search examines 
17, 23, 5, 11, 2, 29, and 3 

17 23 5 11 2 29 3 
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Search Algorithms 
Suppose that there are n elements in the array. The following expression 

gives the average number of comparisons: 

It is known that 

Therefore, the following expression gives the average number of comparisons 

made by the sequential search in the successful case: 
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Search Algorithms 
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Binary Search 
O(log2 n) 

 
• A binary search looks for an item 

in a list using a divide-and-
conquer strategy 

 



Binary Search 

 Requires array elements to be in order 
1. Divides the array into three sections: 

– middle element 
– elements on one side of the middle element 
– elements on the other side of the middle 

element 
2. If the middle element is the correct value, done.  

Otherwise, go to step 1. using only the half of the 
array that may contain the correct value.   

3. Continue steps 1. and 2. until either the value is 
found or there are no more elements to examine 
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Binary Search: middle element 

left + right 

2 
mid =  
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Binary Search 

bool BinSearch(double list[ ], int n, double 
item, int&index){ 

  int left=0; 
  int right=n-1; 
  int mid; 
  while(left<=right){ 
        mid=(left+right)/2; 
    



if(item> list [mid]){ left=mid+1; } 
  else if(item< list [mid]){right=mid-1;} 
  else{ 
  item= list [mid]; 
  index=mid; 
  return true; }   
       }// while  
     return false;   
   } 
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Binary Search: Example 



Binary Search - Example 

• Array numlist2 contains: 

 

 

• Searching for the the value 11, binary search 
examines 11 and stops 

• Searching for the the value 7, binary search 
examines 11, 3, 5, and stops 

2 3 5 11 17 23 29 



Binary Search - Tradeoffs 

• Benefits: 

– Much more efficient than linear search.  For 
array of N elements, performs at most 
log2N comparisons 
 

• Disadvantages: 

– Requires that array elements be sorted 



Concept of Hashing 

• In CS, a hash table, or a hash map, is a data 
structure that associates keys (names) with 
values (attributes). 

 

– Look-Up Table 

– Dictionary 

– Cache 

– Extended Array 



Example 

A small phone book as a hash table. 
(Figure is from Wikipedia) 



Search vs. Hashing 

• Search tree methods: key comparisons 

– Time complexity: O(size) or O(log n) 

• Hashing methods: hash functions 

– Expected time: O(1) 

• Types 

– Static hashing (section 8.2) 

– Dynamic hashing (section 8.3) 



Static Hashing 

• Key-value pairs are stored in a fixed size table 
called a hash table. 

– A hash table is partitioned into many 
buckets. 

– Each bucket has many slots. 

– Each slot holds one record. 

– A hash function f(x) transforms the 
identifier (key) into an address in the hash 
table 



Hash table 

.  .  . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

.  .  . 

b
 b

u
ckets 

0 

1 

b-1 

0 1 s-1 

s slots 



Data Structure for Hash Table 

#define MAX_CHAR  10 

#define TABLE_SIZE  13 

typedef struct { 

    char key[MAX_CHAR]; 

    /* other fields */ 

} element; 

element hash_table[TABLE_SIZE]; 



Some Issues 

• Choice of hash function. 

– Really tricky! 

– To avoid collision (two different pairs are 
in the same the same bucket.) 

– Size (number of buckets) of hash table. 

• Overflow handling method. 

– Overflow: there is no space in the bucket 
for the new pair. 



Example (fig 8.1) 

 Slot 0  Slot 1

0 acos atan

1

2 char ceil

3 define

4 exp

5 float floor

6

…

25

synonyms synonyms: 

char, ceil,  

clock, ctime 

overflow 

synonyms 



Choice of Hash Function 

• Requirements 

– easy to compute 

– minimal number of collisions 

• If a hashing function groups key values 
together, this is called clustering of the keys. 

• A good hashing function distributes the key 
values uniformly throughout the range. 



Some hash functions 

• Middle of square 

– H(x):= return middle digits of x^2 

• Division 

– H(x):= return x % k 

• Multiplicative: 

– H(x):= return the first few digits of the 
fractional part of x*k, where k is a fraction. 

 



Some hash functions II 

• Folding: 
– Partition the identifier x into several parts, and add the parts 

together to obtain the hash address 

– e.g. x=12320324111220; partition x into 123,203,241,112,20; 
then return the address 123+203+241+112+20=699 

– Shift folding vs. folding at the boundaries 

• Digit analysis: 
– If all the keys have been known in advance, then we could delete 

the digits of keys having the most skewed distributions, and use 
the rest digits as hash address. 

 



Overflow Handling 

• An overflow occurs when the home bucket 
for a new pair (key, element) is full. 

• We may handle overflows by: 
– Search the hash table in some systematic 

fashion for a bucket that is not full. 
• . 



• Linear probing (linear open addressing). 
• Quadratic probing. 
• Random probing. 

– Eliminate overflows by permitting each 
bucket to keep a list of all pairs for which it 
is the home bucket. 
• Array linear list. 
• Chain 



Linear probing (linear open 
addressing) 

• Open addressing ensures that all elements 
are stored directly into the hash table, thus 
it attempts to resolve collisions using various 
methods.  

 

• Linear Probing resolves collisions by placing 
the data into the next open slot in the table. 

 



Linear Probing – Get And Insert 

• divisor = b (number of buckets) = 17. 

• Home bucket = key % 17. 

0 4 8 12 16 

• Insert pairs whose keys are 6, 12, 34, 29, 
28, 11, 23, 7, 0, 33, 30, 45 

6 12 29 34 28 11 23 7 0 33 30 45 



Linear Probing – Delete 

• Delete(0) 

0 4 8 12 16 

6 12 29 34 28 11 23 7 0 33 30 45 

0 4 8 12 16 

6 12 29 34 28 11 23 7 45 33 30 

• Search cluster for pair (if any) to fill vacated bucket. 

0 4 8 12 16 

6 12 29 34 28 11 23 7 45 33 30 



Linear Probing – Delete(34) 
 

• Search cluster for pair (if any) to fill vacated bucket. 

0 4 8 12 16 

6 12 29 34 28 11 23 7 0 33 30 45 

0 4 8 12 16 

6 12 29 0 28 11 23 7 33 30 45 

0 4 8 12 16 

6 12 29 0 28 11 23 7 33 30 45 

0 4 8 12 16 

6 12 29 28 11 23 7 0 33 30 45 



Linear Probing – Delete(29) 
 

• Search cluster for pair (if any) to fill vacated bucket. 

0 4 8 12 16 

6 12 29 34 28 11 23 7 0 33 30 45 

0 4 8 12 16 

6 12 34 28 11 23 7 0 33 30 45 

0 4 8 12 16 

6 12 11 34 28 23 7 0 33 30 45 

0 4 8 12 16 

6 12 11 34 28 23 7 0 33 30 45 

0 4 8 12 16 

6 12 11 34 28 23 7 0 33 30 45 



Performance Of Linear Probing 

• Worst-case find/insert/erase time is (n), where 
n is the number of pairs in the table. 

• This happens when all pairs are in the same 
cluster. 

0 4 8 12 16 

6 12 29 34 28 11 23 7 0 33 30 45 



Problem of Linear Probing 

• Identifiers tend to cluster together 

• Adjacent cluster tend to coalesce 

• Increase the search time 



Quadratic Probing 

• Linear probing searches buckets (H(x)+i2)%b 

• Quadratic probing uses a quadratic function 
of i as the increment 

• Examine buckets H(x), (H(x)+i2)%b, (H(x)-
i2)%b, for 1<=i<=(b-1)/2 

• b is a prime number of the form 4j+3, j is an 
integer 



Random Probing 

• Random Probing works incorporating with 
random numbers. 

– H(x):= (H’(x) + S[i]) % b 

– S[i] is a table with size b-1 

– S[i] is a random permuation of integers 
[1,b-1]. 



Some Applications of Hash Tables 

• Database systems: Specifically, those that require 
efficient random access. Generally, database 
systems try to optimize between two types of 
access methods: sequential and random. Hash 
tables are an important part of efficient random 
access because they provide a way to locate data 
in a constant amount of time. 

 



 

• Symbol tables: The tables used by compilers 
to maintain information about symbols from a 
program. Compilers access information about 
symbols frequently. Therefore, it is important 
that symbol tables be implemented very 
efficiently. 

 



• Data dictionaries: Data structures that 
support adding, deleting, and searching for 
data. Although the operations of a hash table 
and a data dictionary are similar, other data 
structures may be used to implement data 
dictionaries. Using a hash table is particularly 
efficient. 

 



• Network processing algorithms: Hash tables 
are fundamental components of several 
network processing algorithms and 
applications, including route lookup, packet 
classification, and network monitoring.  

 

• Browser Cashes: Hash tables are used to 
implement browser cashes. 

 

 



Problems for Which Hash Tables are 
not Suitable  

 

1.Problems for which data ordering is required. 
     Because a hash table is an unordered data 

structure, certain operations are difficult and 
     expensive. Range queries, proximity queries, 

selection, and sorted traversals are possible 
    only if  the keys are copied into a sorted data 

structure. There are hash table implementations 
     that keep the keys in order, but they are far from 

efficient. 
 



• 2. Problems having multidimensional data. 

 

• 3. Prefix searching especially if the keys are 
long and of variable-lengths. 

 

 



 
• 4. Problems that have dynamic data: 
•     Open-addressed hash tables are based on 

1D-arrays, which are difficult to resize 
•     once they have been allocated. Unless you 

want to implement the table as a  
•     dynamic array and rehash all of the keys 

whenever the size changes. This is an 
•     incredibly expensive operation. An 

alternative is use a separate-chained hash 
tables or dynamic hashing. 
 



• 5. Problems in which the data does not have 
unique keys. 

•     Open-addressed hash tables cannot be used 
if the data does not have unique keys. An 
alternative is use separate-chained hash 
tables. 

 



 

 

Sorting 



Sorting 

• To arrange a set of items in sequence.  

• It is estimated that 25~50% of all computing 
power is used for sorting activities.  

• Possible reasons:  

– Many applications require sorting;  

– Many applications perform sorting when 
they don't have to;  

– Many applications use inefficient sorting 
algorithms. 



Sorting: Definition 
 
 

Sorting: an operation that segregates items into 
groups according to specified criterion.  

 
 

A = { 3 1 6 2 1 3 4 5 9 0 } 
 

A = { 0 1 1 2 3 3 4 5 6 9 } 
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Some Definitions 

• Internal Sort 

– The data to be sorted is all stored in the 
computer’s main memory. 

• External Sort 

– Some of the data to be sorted might be stored 
in some external, slower, device. 

• In Place Sort 

– The amount of extra space required to sort the 
data is constant with the input size. 



Types of Sorting Algorithms 

 

There are many, many different types of 
sorting algorithms, but the primary ones are:  

 
● Bubble Sort 
● Selection Sort 
● Insertion Sort 
● Merge Sort 
●Quick Sort 
● Shell Sort  

●Radix Sort 
● Swap Sort 
●Heap Sort 
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Insertion Sort 

• Idea: like sorting a hand of playing cards 

– Start with an empty left hand and the cards 

facing down on the table. 

– Remove one card at a time from the table, 

and insert it into the correct position in the 

left hand 



• compare it with each of the cards already 

in the hand, from right to left 

– The cards held in the left hand are sorted 

• these cards were originally the top cards 

of the pile on the table 
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To insert 12, we need to 
make room for it by 
moving first 36 and 
then 24. 

Insertion Sort 



285 

Insertion Sort 
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Insertion Sort 



287 

Insertion Sort 

5      2      4      6      1      3 

input array  

left sub-array right sub-array 

at each iteration, the array is divided in two sub-arrays: 

sorted unsorted 
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Insertion Sort 



Insertion Sort: Analysis  

• Running time analysis: 

–  Worst case: O(N2) 

–  Best case: O(N) 



Selection Sort: Idea 

1. We have two group of items: 
– sorted group, and 

– unsorted group 

2. Initially, all items are in the unsorted group. 
The sorted group is empty.  
– We assume that items in the unsorted group 

unsorted.  

– We have to keep items in the sorted group 
sorted.  



Selection Sort: Cont’d 

1. Select the “best” (eg. smallest) item from the 
unsorted group, then put the “best” item at 
the end of the sorted group. 

2. Repeat the process until the unsorted group 
becomes empty. 

 



Selection Sort 

5 1 3 4 6 2 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 6 2 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 6 2 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 6 2 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 6 2 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 6 2 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 6 2 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 6 2 

Comparison 
 
Data Movement 
 
Sorted 

 
Largest 



Selection Sort 

5 1 3 4 2 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 2 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 2 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 2 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 2 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 2 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 2 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

5 1 3 4 2 6 

Comparison 
 
Data Movement 
 
Sorted 

 
Largest 



Selection Sort 

2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 
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2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 
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2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 
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2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 

 
Largest 
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2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 
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2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 
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2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 
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2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 
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2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 

 
Largest 

 



Selection Sort 

2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

2 1 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 

 
Largest 

 



Selection Sort 

1 2 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 



Selection Sort 

1 2 3 4 5 6 

Comparison 
 
Data Movement 
 
Sorted 

DONE! 



42 40 2 1 3 3 4 0 -1 65 58 43 

40 2 1 43 3 4 0 -1 42 65 58 3 

40 2 1 43 3 4 0 -1 58 3 65 42 

40 2 1 43 3 65 0 -1 58 3 42 4 

Selection Sort: Example  



42 40 2 1 3 3 4 0 65 58 43 -1 

42 -1 2 1 3 3 4 0 65 58 43 40 

42 -1 2 1 3 3 4 65 58 43 40 0 

42 -1 2 1 0 3 4 65 58 43 40 3 

Selection Sort: Example  



1 

42 -1 2 1 3 4 65 58 43 40 3 0 

42 -1 0 3 4 65 58 43 40 3 2 

1 42 -1 0 3 4 65 58 43 40 3 2 

1 42 0 3 4 65 58 43 40 3 2 -1 

1 42 0 3 4 65 58 43 40 3 2 -1 

Selection Sort: Example  



Selection Sort: Analysis 

• Running time: 

– Worst case: O(N2) 

– Best case: O(N2) 
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Radix Sort 
• This sort is unusual because it does not 

directly compare any of the elements 
 

• We instead create a set of buckets and 
repeatedly separate the elements into the 
buckets 
 

• On each pass, we look at a different part of 
the elements 
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Radix Sort 
• Assuming decimal elements and 10 

buckets, we would put the elements into 
the bucket associated with its units digit 

 
• The buckets are actually queues so the 

elements are added at the end of the 
bucket 

• At the end of the pass, the buckets are 
combined in increasing order 
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Radix Sort 

• On the second pass, we separate the 
elements based on the “tens” digit, and on 
the third pass we separate them based on 
the “hundreds” digit 

 

• Each pass must make sure to process the 
elements in order and to put the buckets 
back together in the correct order 
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Radix Sort Example 

 

The unit digit is 0 

The unit digit is 1 

 The unit digit is 2 

 The unit digit is 3 
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Radix Sort Example (continued) 

 

The unit digits are already in order 

 

Now start sorting the tens digit 
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Radix Sort Example (continued) 

 

 

 

 

 

 
 

 

Values in the buckets are now in order 

 

The unit and tens digits are already in order 

 

Now start sorting the hundreds digit 
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The Algorithm to sort a set of numeric 
keys 

shift = 1 

for pass = 1 to keySize do 

for entry = 1 to N do 

bucketNumber = (list[entry] / shift) mod 10 

Append( bucket[bucketNumber], list[entry] ) 

end for 

list = CombineBuckets() 

shift = shift * 10 

end for 

 

quotient 

 

remainder 

# of digits of the longest key 

# of elemnts in the list  

bucketNumber: lies between 0 and 9  
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Radix Sort Analysis 

• Each element is examined once for each of 
the digits it contains, so if the elements 
have at most M digits and there are N 
elements this algorithm has order O(M*N) 

• This means that sorting is linear based on 
the number of elements 

• Why then isn’t this the only sorting 
algorithm used? 
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Radix Sort Analysis 
• Though this is a very time efficient 

algorithm it is not space efficient 

• If an array is used for the buckets and we 
have B buckets, we would need N*B extra 
memory locations because it’s possible for 
all of the elements to wind up in one 
bucket 

• If linked lists are used for the buckets you 
have the overhead of pointers 
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Radix Sort 
 

• Radix is the base of a number system or    
logarithm.  
 
• Radix sort is a multiple pass distribution sort. 

– It distributes each item to a bucket 
according to part of the item's key.  

 
– After each pass, items are collected from 

the buckets, keeping the items in order, 
then redistributed according to the next 
most significant part of the key. 

 
 
 
 



• This sorts keys digit-by-digit (hence referred to 
as digital sort), or, if the keys are strings that 
we want to sort alphabetically, it sorts 
character-by-character. 

• It was used in card-sorting machines. 
 
• Radix sort uses bucket or count sort as the 

stable sorting algorithm, where the initial 
relative order of equal keys is unchanged.  



 
 
Integer representations can be used to represent 
strings of characters as well as integers. 
So, anything that can be represented by integers 
can be rearranged to be in order by a radix sort. 
 
Execution of Radix sort is in Ө(d(n + k)), where n 
is instance size or number of elements that need 
to be sorted. k is the number of buckets that can 
be generated and d is the number of digits in the 
element, or length of the keys.  
 



Radix sort 

• There’s also a bottom-up version of bucket sort 
called radix sort, which is easiest to state for 
character strings of the same length p: 

–    for i from p down to 1 

–       for each string s, assign s to the bucket 
corresponding to its ith character 

–       concatenate the buckets into an output 
list 

–       clear each bucket 

• For b buckets, the time is Q(b+n) per iteration 
and thus Q(p(b+n)) overall 



Radix sort details 

• Concatenation is easiest if linked lists are used 
for the individual buckets. 

• It is important that distribution into buckets 
be stable – elements should appear in the 
buckets in the order of the original input. 

• If strings have different lengths, they can be 
padded (explicitly or implicitly) with nulls on 
the right 



Radix sort analysis 

• Note that if p and b are independent of n, 
then radix sort has (n) time complexity 

• However if p is independent of n, then there 
can be at most (bp) distinct strings. 

• So if all strings are distinct, then n is O(bp), so 
p is W(log n). 

• And thus the time complexity is W(n log n) 



Selection using bucket sort  

• Top-down bucket sort can easily be converted 
to a selection algorithm 

• To find the kth smallest item, distribute the 
items into buckets, counting the number of 
buckets 

• Then select recursively from the appropriate 
bucket, replacing k by a value that depends on 
the counts of the preceding buckets 



Radix sort example 

• To sort:    

– 123, 12, 313, 321, 212, 112, 221, 132, 131 

• Pass 1 assignment to buckets: 

–   0:        

–   1:  321, 221, 131 

–   2:  12, 212, 112, 132 

–   3:  123, 313 

• Concatenated result 

–   321, 221, 131, 12, 212, 112, 132, 123, 313 



Pass 2 

• From previous pass  

– 321, 221, 131, 212, 112, 132, 123, 313 

• Pass 2 assignment to buckets: 

–       0:     

–       1:  12, 212, 112, 313 

–       2:  321, 221, 123 

–       3:  131, 132 

• Concatenated result 

–         12, 212, 112, 313, 321, 221, 123, 131, 132 



Pass 3 

• From previous pass  
– 12, 212, 112, 313, 321, 221, 123, 131, 132 

• Pass 3 assignment to buckets: 
–    0:  12      

–    1:  112, 123, 131, 132      

–    2:  212, 221 

–    3:  313, 321 

• Concatenated result 
–        12,  112, 123, 131, 132, 212, 221, 313, 321 
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Classification of Radix Sort 
 

Radix sort is classified based on how it works 
internally: 

 
• least significant digit (LSD) radix sort: 

processing starts from the least significant 
digit and moves towards the most significant 
digit.  

• most significant digit (MSD) radix sort: 
processing starts from the most significant 
digit and moves towards the least significant 
digit. This is recursive. It works in the following 
way: 



 

– If we are sorting strings, we would create a 
bucket for ‘a’,’b’,’c’ upto ‘z’.  

 
– After the first pass, strings are roughly 

sorted in that any two strings that begin 
with different letters are in the correct 
order. 

– If a bucket has more than one string, its 
elements are recursively sorted (sorting into 
buckets by the next most significant 
character). 

– Contents of buckets are concatenated. 
 

 
 
 
 



• The differences between LSD and MSD radix 
sorts are 
– In MSD, if we know the minimum number 

of characters needed to distinguish all the 
strings, we can only sort these number of 
characters. So, if the strings are long, but 
we can distinguish them all by just looking 
at the first three characters, then we can 
sort 3 instead of the length of the keys. 
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Classification of Radix Sort…contd 

 

– LSD approach requires padding short keys if 
key length is variable, and guarantees that 
all digits will be examined even if the first 3-
4 digits contain all the information needed 
to achieve sorted order.  

– MSD is recursive. LSD is non-recursive. 
– MSD radix sort requires much more 

memory to sort elements. LSD radix sort is 
the preferred implementation between the 
two. 

 



• MSD recursive radix sorting has applications to 
parallel computing, as each of the sub-buckets 
can be sorted independently of the rest.  

• Each recursion can be passed to the next 
available processor.  

 



  
  The Postman's sort is a variant of MSD radix 
sort where attributes of the key are described 
so the algorithm can allocate buckets 
efficiently. This is the algorithm used by letter-
sorting machines in the post office: first states, 
then post offices, then routes, etc. The smaller 
buckets are then recursively sorted. 
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Example of LSD-Radix Sort 

12 44 41 34 11 32 23

Input is an array of 15 integers. For integers, the number of buckets is 10, from 0 to 9. 
The first pass distributes the keys into buckets by the least significant digit (LSD). When 
the first pass is done, we have the following. 

23

44

34

12

42

32

41

11

0        1          2          3           4          5        6         7          8         9 

5087 77

77

50 87 58

58

08

0842
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Example of LSD-Radix Sort…contd 

  

50

We collect these, keeping their relative order: 

Now we distribute by the next most significant digit, which is the highest digit in our example, 

and we get the following.  

 

11

12

23

32

34

41

42

44

When we collect them, they are in order. 

12 42 444111 3223 34

12 42 4441 3411 32 23 77 58 08

0        1          2          3           4          5        6         7          8         9 

50 877708

08 50 77 87

58

58

87
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Advantages and Disadvantages 

 

• Advantages 
– Radix and bucket sorts are stable, 

preserving existing order of equal keys.  
– They work in linear time, unlike most other 

sorts. In other words, they do not bog down 
when large numbers of items need to be 
sorted. Most sorts run in O(n log n) or 
O(n^2) time. 

– The time to sort per item is constant, as no 
comparisons among items are made. With 
other sorts, the time to sort per time 
increases with the number of items.  

 



– Radix sort is particularly efficient when you 
have large numbers of records to sort with 
short keys. 

 
• Drawbacks 

– Radix and bucket sorts do not work well 
when keys are very long, as the total sorting 
time is proportional to key length and to the 
number of items to sort.  

– They are not “in-place”, using more working 
memory than a traditional sort.  



Quicksort Concept 
• Basic Concept: divide and conquer 

• Select a pivot and split the data into two 
groups: (< pivot) and (> pivot): 

(<pivot) 
LEFT group 

(> pivot) 
RIGHT group 

• Recursively apply Quicksort to the subgroups 



Quicksort Start 

Unsorted Array 

Start with all data 
in an array, and  
consider it unsorted 



Quicksort Step 1 

26  

Step 1, select a pivot 
(it is arbitrary) 
 
 
 
We will select the first 
element, as presented in the 
original algorithm by  
C.A.R. Hoare in 1962. 
 

33  35  29  19 

pivot 

12  22  



Quicksort Step 2 

26  

Step 2, start process of  
dividing data into LEFT 
and RIGHT groups: 
 
The LEFT group will 
   have elements less than 
   the pivot. 
The RIGHT group will have  
   elements greater that the pivot. 
 
Use markers left and right 

33  35  29  19 

left 

pivot 

12  22  

right 



Quicksort Step 3 

26  

Step 3,  
If left element belongs 
 to LEFT group, then increment 
left index. 
 
If right index element belongs 
to RIGHT, then decrement right. 
 
Exchange when you find 
elements that belong to the other 
group. 

33  35  29  19 

left 

pivot 

12  22  

right 



Quicksort Step 4 

26  

Step 4: 
  
Element 33 belongs 
   to RIGHT group. 
 
Element 22 belongs 
   to LEFT group.  
 
Exchange the two 
   elements. 

33  35  29  19 

left 

pivot 

12  22  

right 

26  22  35  29  19 

left 

pivot 

12  33  

right 



Quicksort Step 5 

26  

Step 5:  
  
After the exchange, 
increment left marker, 
decrement right marker. 

22  35  29  19 

left 

pivot 

12  33  

right 



Quicksort Step 6 

26  

Step 6:  
  
Element 35 belongs 
   to RIGHT group. 
 
Element 12 belongs 
to LEFT group.  
 
Exchange,  
increment left, and 
decrement right. 

22  35  29  19 

left 

pivot 

12  33  

right 

26  22  12  29  19 

left 

pivot 

35  33  

right 



Quicksort Step 7 

26  

Step 7:  
  
Element 29 belongs 
   to RIGHT. 
 
Element 19 belongs 
   to LEFT. 
 
Exchange, 
increment left, 
decrement right. 

22  12  29  19 

left 

pivot 

35  33  

right 

26  22  12  19  29 

left 

pivot 

35  33  

right 



Quicksort Step 8 

26  

Step 8:   
When the left and right 
markers pass each other,  
we are done with the  
partition task. 
 
Swap the right with pivot. 
 
 
 
 
 

22  12  19  29 

left 

pivot 

35  33  

right 

26  
19  22  12  29 

pivot 

35  33  

LEFT RIGHT  



Quicksort Step 9 

Step 9:   
Apply Quicksort 
to the LEFT and  
RIGHT groups,  
recursively. 
 
 
 
 
 
Assemble parts when done 
 
 

pivot 

26  

19  22  12  29 

previous pivot  

35  33  

Quicksort Quicksort 

pivot 

12  19  22  29 33  35  

26  

26  12  19  22  29 33  35  



Quicksort Efficiency 

The partitioning of an array into two parts is O(n) 
 
The number of recursive calls to Quicksort depends on how 
many times we can split the array into two groups. 
On average this is O (log2 n) 
 
The overall Quicksort efficiency is O(n) = n log2n 
 
 
What is the worst-case efficiency?  
 Compare this to the worst case for the heapsort. 



Quicksort Concept 
• Basic Concept: divide and conquer 

• Select a pivot and split the data into two 
groups: (< pivot) and (> pivot): 

(<pivot) 
LEFT group 

(> pivot) 
RIGHT group 

• Recursively apply Quicksort to the subgroups 



Quicksort Start 

Unsorted Array 

Start with all data 
in an array, and  
consider it unsorted 



Quicksort Step 1 

26  

Step 1, select a pivot 
(it is arbitrary) 
 
 
 
We will select the first 
element, as presented in the 
original algorithm by  
C.A.R. Hoare in 1962. 
 

33  35  29  19 

pivot 

12  22  



Quicksort Step 2 

26  

Step 2, start process of  
dividing data into LEFT 
and RIGHT groups: 
 
The LEFT group will 
   have elements less than 
   the pivot. 
The RIGHT group will have  
   elements greater that the pivot. 
 
Use markers left and right 

33  35  29  19 

left 

pivot 

12  22  

right 



Quicksort Step 3 

26  

Step 3,  
If left element belongs 
 to LEFT group, then increment 
left index. 
 
If right index element belongs 
to RIGHT, then decrement right. 
 
Exchange when you find 
elements that belong to the other 
group. 

33  35  29  19 

left 

pivot 

12  22  

right 



Quicksort Step 4 

26  

Step 4: 
  
Element 33 belongs 
   to RIGHT group. 
 
Element 22 belongs 
   to LEFT group.  
 
Exchange the two 
   elements. 

33  35  29  19 

left 

pivot 

12  22  

right 

26  22  35  29  19 

left 

pivot 

12  33  

right 



Quicksort Step 5 

26  

Step 5:  
  
After the exchange, 
increment left marker, 
decrement right marker. 

22  35  29  19 

left 

pivot 

12  33  

right 



Quicksort Step 6 

26  

Step 6:  
  
Element 35 belongs 
   to RIGHT group. 
 
Element 12 belongs 
to LEFT group.  
 
Exchange,  
increment left, and 
decrement right. 

22  35  29  19 

left 

pivot 

12  33  

right 

26  22  12  29  19 

left 

pivot 

35  33  

right 



Quicksort Step 7 

26  

Step 7:  
  
Element 29 belongs 
   to RIGHT. 
 
Element 19 belongs 
   to LEFT. 
 
Exchange, 
increment left, 
decrement right. 

22  12  29  19 

left 

pivot 

35  33  

right 

26  22  12  19  29 

left 

pivot 

35  33  

right 



Quicksort Step 8 

26  

Step 8:   
When the left and right 
markers pass each other,  
we are done with the  
partition task. 
 
Swap the right with pivot. 
 
 
 
 
 

22  12  19  29 

left 

pivot 

35  33  

right 

26  
19  22  12  29 

pivot 

35  33  

LEFT RIGHT  



Quicksort Step 9 

Step 9:   
Apply Quicksort 
to the LEFT and  
RIGHT groups,  
recursively. 
 
 
 
 
 
Assemble parts when done 
 
 

pivot 

26  

19  22  12  29 

previous pivot  

35  33  

Quicksort Quicksort 

pivot 

12  19  22  29 33  35  

26  

26  12  19  22  29 33  35  



Quicksort Efficiency 
The partitioning of an array into two parts is O(n) 
 
The number of recursive calls to Quicksort depends 
on how many times we can split the array into two 
groups. 
On average this is O (log2 n) 
 
The overall Quicksort efficiency is O(n) = n log2n 
 
What is the worst-case efficiency?  
 Compare this to the worst case for the heapsort. 



Heap 

• The root of the tree A[1] and given index i 
of a node, the indices of its parent, left 
child and right child can be computed 
  

 PARENT (i) 
        return floor(i/2) 
LEFT (i) 
        return 2i 
RIGHT (i) 
        return 2i + 1 

 



Heap order property 

• For every node v, other than the root, the 
key stored in v is greater or equal (smaller 
or equal for max heap) than the key 
stored in the parent of v. 

 

• In this case the maximum value is stored 
in the root 

 



Definition 

• Max Heap 

– Store data in ascending order 

– Has property of 

 A[Parent(i)] ≥ A[i] 

• Min Heap 

– Store data in descending order 

– Has property of 

 A[Parent(i)] ≤ A[i] 

 



Max Heap Example 

16 19 1 4 12 7 

Array A 

19 

12 16 

4 1 7 



Min heap example 

12 7 19 16 4 1 

Array A 

1 

4 16 

12 7 19 



Insertion 

• Algorithm 
1. Add the new element to the next available position at the 

lowest level 
2. Restore the max-heap property if violated 

• General strategy is percolate up (or bubble up): 
if the parent of the element is smaller than the 
element, then interchange the parent and child. 
 

    OR 
 

 Restore the min-heap property if violated 

• General strategy is percolate up (or bubble up): 
if the parent of the element is larger than the 
element, then interchange the parent and child. 

 

 



19 

12 16 

4 1 7 

19 

12 16 

4 1 7 17 

19 

12 17 

4 1 7 16 

Insert 17 

swap 

Percolate up to maintain the 

heap property 



Deletion 

• Delete max 
– Copy the last number to the root ( overwrite the 

maximum element stored there ). 

– Restore the max heap property by percolate 
down. 

 

• Delete min 
– Copy the last number to the root ( overwrite the 

minimum element stored there ). 

– Restore the min heap property by percolate 
down. 

 



Heap Sort 

    A sorting algorithm that works by first 
organizing the data to be sorted into a 
special type of binary tree called a 
heap 



Procedures on Heap 

• Heapify 

• Build Heap 

• Heap Sort 

 



Heapify 
• Heapify picks the largest child key and compare it to the parent 

key. If parent key is larger than heapify quits, otherwise it swaps 
the parent key with the largest child key. So that the parent is now 
becomes larger than its children. 

   Heapify(A, i) 

 {  
        l  left(i)  
        r  right(i)  
        if l <= heapsize[A] and A[l] > A[i]  
            then largest l  
            else largest  i  
        if r <= heapsize[A] and A[r] > A[largest]  
            then largest  r  
        if largest != i  
            then swap A[i]  A[largest]  
                Heapify(A, largest)  
 }  

 



BUILD HEAP 
• We can use the procedure 'Heapify' in a bottom-up fashion to 

convert an array A[1 . . n] into a heap. Since the elements in the 
subarray A[n/2 +1 . . n] are all leaves, the procedure BUILD_HEAP 
goes through the remaining nodes of the tree and runs 'Heapify' 
on each one. The bottom-up order of processing node guarantees 
that the subtree rooted at children are heap before 'Heapify' is run 
at their parent. 

 

  Buildheap(A) 

 {  
        heapsize[A] length[A]  
        for i |length[A]/2  //down to 1 
            do Heapify(A, i)  
 }  

 



Heap Sort Algorithm 
• The heap sort algorithm starts by using procedure BUILD-HEAP to 

build a heap on the input array A[1 . . n]. Since the maximum 
element of the array stored at the root A[1], it can be put into its 
correct final position by exchanging it with A[n] (the last element in 
A). If we now discard node n from the heap than the remaining 
elements can be made into heap. Note that the new element at 
the root may violate the heap property. All that is needed to 
restore the heap property. 

 

 Heapsort(A) 

 {  
        Buildheap(A)  
        for i  length[A] //down to 2  
            do swap A[1]  A[i]  
            heapsize[A]  heapsize[A] - 1  
            Heapify(A, 1)  
}  

 



Example:  Convert the following array to a heap 

16 4 7 1 12 19 

Picture the array as a complete binary tree: 

16 

4 7 

12 1 19 



16 

4 7 

12 1 19 

16 

4 19 

12 1 7 

16 

12 19 

4 1 7 

19 

12 16 

4 1 7 

swap 

swap 

swap 



Heap Sort 

• The heapsort algorithm consists of two phases: 
- build a heap from an arbitrary array 
- use the heap to sort the data 

  

• To sort the elements in the decreasing order, use a min heap 

• To sort the elements in the increasing order, use a max heap 

 

19 

12 16 

4 1 7 



Example of Heap Sort 

19 

12 16 

4 1 7 

19 12 16 1 4 7 

Array A 
Sorted: 

Take out biggest 

Move the last element 

to the root 



12 16 

4 1 

7 

19 12 16 1 4 7 

Array A 
Sorted: 

HEAPIFY() 

swap 



12 

16 

4 1 

7 

19 12 16 1 4 7 

Array A 
Sorted: 



12 

16 

4 1 

7 

19 12 16 1 4 7 

Array A 
Sorted: 

Take out biggest 

Move the last element 

to the root 



12 

4 

1 

7 

19 12 16 1 4 7 

Array A 
Sorted: 



12 

4 

1 

7 

19 12 16 1 4 7 

Array A 
Sorted: 

HEAPIFY() 

swap 



12 

4 

1 

7 
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Sorted: 



Time Analysis 

• Build Heap Algorithm will run in O(n) time 

• There are n-1 calls to Heapify each call 
requires O(log n) time 

• Heap sort program combine Build Heap 
program and Heapify, therefore it has the 
running time of O(n log n) time 

• Total time complexity: O(n log n) 

 

 



Comparison of Sorting Methods 

 



UNIT-V 

Topics: 

• Search Trees-Binary Search Trees, Definition, 
Operations- Searching, Insertion and Deletion, AVL 
Trees-Definition and Examples, Insertion into an AVL 
Tree ,B-Trees, Definition, B-Tree of order m, operations-
Insertion and Searching, Introduction to Red-Black and 
Splay Trees(Elementary treatment-only Definitions and 
Examples),Comparison of Search Trees. 

     Pattern matching algorithm- The Knuth-Morris-Pratt 
algorithm, Tries (examples only). 
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Comparision Between Binary Tree & 

Binary Search Tree  
 * A binary search tree is a binary 

tree in which it has atmost two 

children, the key values in the left 

node is less than the root and the 

key values in the right node is 

greater than the root.  

* It doesn't have any order.  

Note : * Every binary search tree is 

a binary tree.  

* All binary trees need not be a 

binary search tree.  



Example of Binary Search Tree 

  

 

 

 

 

 

 

 

A binary search tree Not a binary search tree 



Binary Search Trees 

 

 

 

 

 

 

 

 

 

The same set of keys may have different BSTs 



 

DECLARATION ROUTINE FOR BINARY 

SEARCH TREE  

 
Struct TreeNode  

{  

int Element ;  

SearchTree Left;  

SearchTree Right;  

};  

 



  BST Operations 

•The 3 basic BST operations are: search, 

insert, and delete;  and develop 

algorithms for searches, insertion, and 

deletion. 

•Searches 

• Insertion 

• Deletion 



Three BST search algorithms: 

• Find the smallest node 

• Find the largest node 

• Find a requested node 

426 



Find : -  
   
• Check whether the root is NULL if 

so then return NULL.  

•  Otherwise, Check the value X with 

the root node value (i.e. T data)  

• (1) If X is equal to T data, return T.  

• (2) If X is less than T data, Traverse 

the left of T recursively.  

• (3) If X is greater than T data, 

traverse the right of T recursively.  

 



ROUTINE FOR FIND OPERATION  
 Int Find (int X, SearchTree T)  

{  

If T = = NULL)  

Return NULL ;  

If (X < T Element)  

return Find (X, T →left);  

else  

If (X > T→ Element)  

return Find (X, T →Right);  

else  

return T; // returns the position of 

the search element.  

}  





Find Min :  
 

• This operation returns the 

position of the smallest element 

in the tree.  

• To perform FindMin, start at the 

root and go left as long as there is 

a left child. The stopping point is 

the smallest element.  

 



RECURISVE ROUTINE FOR FINDMIN  
 int FindMin (SearchTree T)  

{  

if (T = = NULL);  

return NULL ;  

else if (T →left = = NULL)  

return T;  

else  

return FindMin (T → left);  

 



Example : - Root T  

(a) T! = NULL and T→left!=NULL,  

(b) (b) T! = NULL and T→left!=NULL,  

Traverse left Traverse left until Min T  

(c) Since Tleft is Null, return T as a minimum 
element.  

 



NON - RECURSIVE ROUTINE FOR FINDMIN  

 

int FindMin (SearchTree T)  

{  

if (T! = NULL)  

while (T →Left ! = NULL)  

T = T →Left ;  

return T;  

}  

 



 
RECURSIVE ROUTINE FOR FINDMAX  

 

 
int FindMax (SearchTree T)  

{  

if (T = = NULL)  

return NULL ;  

else if (T →Right = = NULL)  

return T;  

else FindMax (T →Right);  

}  

Example :- Root T  

(a) T! = NULL and T→Right!=NULL, (b) T! = NULL 

and T→Right!=NULL,  

Traverse Right Traverse Right  

Max  

(c) Since T Right is NULL, return T as a 

Maximum element.  

 



FindMax  
 

 
•FindMax routine return the 

position of largest elements in 

the tree.  

•To perform a FindMax, start at 

the root and go right as long as 

there is a right child.  

•The stopping point is the 

largest element.  
 



RECURSIVE ROUTINE FOR FINDMAX  

 
int FindMax (SearchTree T)  

{  

if (T = = NULL)  

return NULL ;  

else if (T →Right = = NULL)  

return T;  

else FindMax (T →Right);  

}  

Example :- Root T  

(a) T! = NULL and T→Right!=NULL, (b) T! = 

NULL and T→Right!=NULL,  

Traverse Right Traverse Right Max  

(c) Since T Right is NULL, return T as a 

Maximum element.  

 



NON - RECURSIVE ROUTINE FOR 
FINDMAX 

 

int FindMax (SearchTree T)  

{  

if (T! = NULL)  

while (T Right ! = NULL)  

T = T →Right ;  

return T ;  

}  

 











Make Empty :-  
This operation is mainly for initialization 

when the programmer prefer to initialize 

the first element as a one - node tree.  
ROUTINE TO MAKE AN EMPTY TREE :-  
SearchTree MakeEmpty (SearchTree T)  

{  

if (T! = NULL)  

{  

MakeEmpty (T left);  

MakeEmpty (T Right);  

free (T);  

}  

return NULL ;  

}  
 



Insert  operation: -  
 To insert the element X into the tree,  

•  Check with the root node T  

•  If it is less than the root,  

• Traverse the left subtree recursively 

until it reaches the T left equals to 

NULL. Then X is placed in T left.  

• If X is greater than the root.  

• Traverse the right subtree 

recursively until it reaches the T 

right equals to NULL. Then x is 

placed in TRight.  

 



 

ROUTINE TO INSERT INTO A BINARY 

SEARCH TREE  

 

 

SearchTree Insert (int X, searchTree T)  

{  

if (T = = NULL)  

{  

T = malloc (size of (Struct TreeNode));  

if(T! = NULL)// First element is placed in 

the root.  

{  

T →Element = X;  

T→ left = NULL;  

T →Right = NULL; 

 }} }  

 



else  

if (X < T →Element)  

T left = Insert (X, T →left);  

else  

if (X > T →Element)  

T Right = Insert (X, T →Right);  

// Else X is in the tree already.  

return T;  
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Delete operation:  
 • Deletion operation is the complex operation in the 

Binary search tree. To delete an element, 

consider the following three possibilities.  

• CASE 1 Node with no children (Leaf node)  

   If the node is a leaf node, it can be deleted 

immediately.  

• CASE 2 : - Node with one child  

     If the node has one child, it can be deleted by 

adjustingits parent pointer that points to its child 

node 

• Case 3 : Node with two children  

    It is difficult to delete a node which has two 

children. The general strategy is to replace the 

data of the node to be deleted with its smallest 

data of the right subtree and recursively delete 

that node.  

 
 



 
DELETION ROUTINE FOR BINARY 

SEARCH TREES  
 

 

 

SearchTree Delete (int X, searchTree T)  

{  

int Tmpcell ;  

if (T = = NULL)  

Error ("Element not found");  

else  

if (X < T →Element) // Traverse towards left  

T →Left = Delete (X, T Left);  

else  

if (X > T Element) // Traverse towards right  

T →Right = Delete (X, T →Right);  

// Found Element tobe deleted  

 

 



else                                                // Two children  
if (T→ Left && T→ Right)  
{ // Replace with smallest data in right subtree  
Tmpcell = FindMin (T→ Right);  
T →Element = Tmpcell Element ;  
T →Right = Delete (T →Element; T →Right);  
}  
else {// one or zero children   
Tmpcell = T;  
if (T →Left = = NULL)  
T = T→ Right;  
else if (T→ Right = = NULL)  
T = T →Left ;  
free (TmpCell);  
}  
return T; }  
 



Delete node from BST 



(continued) Delete node from BST 
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AVL Trees 
 

These are self-adjusting, height-balanced binary 
search trees and are named after the inventors: 
Adelson-Velskii and Landis.  

Definition: 

The height of a binary tree is the maximum 
path length from the root to a leaf. A single-
node binary tree has height 0, and an empty 
binary tree has height -1 



• An AVL tree is a binary search tree in which every node 
is height balanced, that is, the difference in the heights 
of its two subtrees is at most 1.  

• The balance factor of a node is the height of its right 
subtree minus the height of its left subtree. An 
equivalent definition, then, for an AVL tree is that it is a 
binary search tree in which each node has a balance 
factor of -1, 0, or +1.  

• Note :balance factor of -1 means that the subtree is 
left-heavy, and 

•  a balance factor of +1 means that the subtree is right-
heavy.  
 



AVL Trees 



AVL Trees 
 

These are self-adjusting, height-balanced 
binary search trees and are named after the 
inventors: Adelson-Velskii and Landis.  

Definition: 

The height of a binary tree is the maximum 
path length from the root to a leaf. A single-
node AVLtree has height 0, and an empty 
AVL tree has height -1 



AVL Tree 

Definition  

• Binary Search tree. 

• If T is a nonempty binary Search tree with TL 
and TR as its left and right subtrees, then T is 
an AVL tree iff 

1. TL and TR are AVL trees, and 

2. |hL – hR|  1 where hL and hR are the heights of 
TL and TR, respectively 



AVL Tree 

Definition  

• Binary tree. 

• If T is a nonempty binary tree with TL and TR 
as its left and right subtrees, then T is an AVL 
tree iff 

1. TL and TR are AVL trees, and 

2. |hL – hR|  1 where hL and hR are the heights of 
TL and TR, respectively 



Balance Factor 

• AVL trees are normally represented using the linked 
representation 

• To facilitate insertion and deletion, a balance factor (bf) is 
associated with each node. 

• The balance factor bf(x) of a node x is defined as 
 height(xleftChild) – height(xrightChild) 

• Balance factor of each node in an AVL tree must be –1, 0, 
or 1 



Eg with balance factors 
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Not an AVL TREE 
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Inserting into an AVL Search Trees 

• If we insert an element into an AVL search tree, the result may not 
be an AVL tree 

• That is, the tree may become unbalanced 

• If the tree becomes unbalanced, we must adjust the tree to 
restore balance - this adjustment is called rotation. 

• There are Four Models of rotations: 

• There are four models about the operation of AVL Tree: 

1. LL: new node is in the left subtree of the left subtree of A 

2. LR: new node is in the right subtree of the left subtree of A 

3. RR: new node is in the right subtree of the right subtree of A 

4. RL: new node is in the left subtree of the right subtree of A 

 



Rotation 

Definition 

• To switch children and parents among two or 
three adjacent nodes to restore balance of a 
tree. 

• A rotation may change the depth of some 
nodes, but does not change their relative 
ordering.  

 



Single and Double Rotations 

• Single rotations: the transformations done to correct LL and 
RR imbalances 

• Double rotations: the transformations done to correct LR 
and RL imbalances 

• The transformation to correct LR imbalance can be achieved 
by an RR rotation followed by an LL rotation 

• The transformation to correct RL imbalance can be achieved 
by an LL rotation followed by an RR rotation 



Left Rotation 
Definition 

• In a binary search tree, pushing a node A down and to the left 
to balance the tree.  

• A's right child replaces A, and the right child's left child 
becomes A's right child. 

Left Rotation 

15 

22 9 

12 4 

9 

4 15 

12 22 

A 



Right Rotation 
Definition 

• In a binary search tree, pushing a node A down and to the 
right to balance the tree. 

• A's left child replaces A, and the left child's right child 
becomes A's left child. 

 
 

9 

4 15 

12 22 

Right Rotation 

15 

22 9 

12 4 

A 



Single Rotation (LL) 
• Let k2 be the first node on the path up violating AVL balance 

property. Figure below is the only possible scenario that 
allows k2 to satisfy the AVL property before the insertion but 
violate it afterwards. Subtree X has grown an extra level (2 
levels deeper than Z now). Y cannot be at the same level as X 
(k2 then out of balance before insertion) and Y cannot be at 
the same level as Z (then k1 would be the first to violate). 



• Note that in single rotation inorder traversal orders of 
the nodes are preserved. 

• The new height of the subtree is exactly the same as 
before. Thus no further updating of the nodes on the 
path to the root is needed. 

Single Rotation (RR) 



• AVL property destroyed by insertion of 6, 
then fixed by a single rotation. 

• BST node structure needs an additional 
field for height. 

Single Rotation-Example I 



Single Rotation-Example II 
• Start with an initially empty tree and insert items 1 

through 7 sequentially. Dashed line joins the two nodes 
that are the subject of the rotation. 



 
Insert 6. 
Balance 
problem at the 
root. So a 
single rotation 
is performed. 
 
 
Finally, Insert 
7 causing 
another 
rotation. 

Single Rotation-Example III 



Double Rotation (LR, RL) - I 
• The algorithm that works for cases 1 and 4 (LL, RR) does 

not work for cases 2 and 3 (LR, RL). The problem is that 
subtree Y is too deep, and a single rotation does not 
make it any less deep. 

• The fact that subtree Y has had an item inserted into it 
guarantees that it is nonempty. Assume it has a root and 
two subtrees. 



Below are 4 subtrees connected by 3 nodes. Note that exactly 
one of tree B or C is 2 levels deeper than D (unless all empty). To 
rebalance, k3 cannot be root and a rotation between k1 and k3 
was shown not to work. So the only alternative is to place k2 as 
the new root. This forces k1 to be k2’s left child and k3 to be its 
right child. It also completely determines the locations of all 4 
subtrees. AVL balance property is now satisfied. Old height of 
the tree is restored; so, all the balancing and and height 
updating is complete. 

Double Rotation (LR) - II 



Double Rotation (RL) - III 
In both cases (LR and RL), the effect is the same as rotating 
between α’s child and grandchild and then between α and its 
new child. Every double rotation can be modelled in terms of 2 
single rotations. Inorder traversal orders are always preserved 
between k1, k2, and k3. 
 
Double RL = Single LL (α->right)+ Single RR (α) 
Double LR = Single RR (α->left)+ Single LL (α ) 
 



Double Rotation Example - I 
• Continuing our example, suppose keys 8 through 

15 are inserted in reverse order. Inserting 15 is 
easy but inserting 14 causes a height imbalance 
at node 7. The double rotation is an RL type and 
involves 7, 15, and 14.  



Double Rotation Example - II 
• insert 13: double rotation is RL that will involve 

6, 14, and 7 and will restore the tree.  



Double Rotation Example - III 
• If 12 is now inserted, there is an imbalance at the 

root. Since 12 is not between 4 and 7, we know 
that the single rotation RR will work. 



Double Rotation Example - IV 
• Insert 11: single rotation LL; insert 10: single 

rotation LL; insert 9: single rotation LL; insert 8: 
without a rotation. 



Definition 

• In a binary search tree, pushing a node A down and to the 
right to balance the tree. 

• A's left child replaces A, and the left child's right child 
becomes A's left child. 
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Inserting into an AVL Search Tree 

29 

Insert(29) 
-1 

1 

0 

0 0 

0 

1 

1 

-1 0 

-1 

0 

0 

10 

40 

30 45 

20 35 

25 

60 

7 

3 8 

1 5 

• Where is 29 going to be inserted into? 

   - use the AVL-search-tree-insertion algorithm 

     in Figure 15.6) 

• After the insertion, is the tree still an AVL 

search tree? (i.e., still balanced?) 



Inserting into an AVL Search Tree 

• What are the new balance factors for 20, 

25, 29? 

• What type of imbalance do we have? 

• RR imbalance  new node is in the right 

subtree of right subtree of node 20 (node 

with bf = -2)  what rotation do we need? 

• What would the left subtree of 30 look like 

after RR rotation? 

-2 

-1 

0 29 

-1 
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0 

0 0 

0 
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1 

0 

-1 
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10 

40 

30 45 

20 35 

25 

60 

7 

3 8 

1 5 



After RR Rotation 
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0 
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40 

30 45 

35 60 
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3 8 

1 5 0 

0 0 

25 

20 29 

• After the RR rotation, is the resulting tree an AVL search tree? 

 

 













Deletion from an AVL Search Tree 

     Deletion procedure is more complex than insertion in 2 ways: 

• 1)More number of cases for rebalancing may arise in 
deletion; 

• 2)In insertion there is only one reblancing,but in deletion 
there can be as many rebalancing as the length of the path 
from the deleted node to the root. 



AVL Tree Example: 

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree 

14 

17 11 

7 53 

4 



AVL Tree Example: 

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree 

14 

17 7 

4 53 11 

13 

1 

-1 -1 

-1 0 



AVL Tree Example: 

• Now insert 12 

14 

17 7 

4 53 11 

13 

12 

-2 



AVL Tree Example: 

• Now insert 12 

14 

17 7 

4 53 11 

12 

13 

-2 



AVL Tree Example: 

• Now the AVL tree is balanced. 

14 

17 7 

4 53 12 

13 11 

0 



AVL Tree Example: 

• Now insert 8 

14 

17 7 

4 53 12 

13 11 

8 

-2 



AVL Tree Example: 

• Now insert 8 

14 

17 7 

4 53 11 

12 8 

13 

-2 



AVL Tree Example: 

• Now the AVL tree is balanced. 

14 

17 
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4 

53 

11 

12 

8 13 



AVL Tree Example: 

• Now remove 53 

14 

17 
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4 

53 

11 

12 

8 13 



AVL Tree Example: 

• Now remove 53, unbalanced 
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8 13 
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AVL Tree Example: 

• Balanced!    Remove 11 

14 
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11 
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13 



AVL Tree Example: 

• Remove 11, replace it with the largest in its left branch 

14 

17 
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13 



AVL Tree Example: 

• Remove 8, unbalanced 

14 

17 
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7 

12 

13 



AVL Tree Example: 

• Remove 8, unbalanced 

14 

17 

4 

7 

12 

13 



AVL Tree Example: 

• Balanced!! 

14 

17 4 

7 

12 

13 



Exercise 

• Build an AVL tree with the following values: 

15, 20, 24, 10, 13, 7, 30, 36, 25 

 



15 

15, 20, 24, 10, 13, 7, 30, 36, 25 

20 

24 

15 

20 

24 

10 

13 

15 

20 

24 

13 

10 

13 

20 

24 

15 10 



13 

20 

24 

15 10 

15, 20, 24, 10, 13, 7, 30, 36, 25 
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24 15 
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7 

30 

36 13 
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36 24 



13 

20 

30 15 

10 

7 

36 24 

15, 20, 24, 10, 13, 7, 30, 36, 25 
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15 



Remove 24 and 20 from the AVL tree. 
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B -TREE 



B-tree of order n 

• Every B-tree is of some "order n", meaning nodes 
contain from n to 2n keys (so nodes are always at 
least half full of keys), and   n+1 to 2n+1 pointers, 
and n can be any number.  

• Keys are kept in sorted order within each node. A 
corresponding list of pointers are effectively 
interspersed between keys to indicate where to 
search for a key if it isn't in the current node.  

 



• A B-tree of order n is a multi-way search tree 
with two properties:  

•    1.All leaves are at the same level  

•    2.The number of keys in any node lies 
between n and 2n, with the possible 
exception of the root which may have fewer 
keys.  

 



Other definition 

A B-tree of order m is a m-way tree that satisfies the following 
conditions.  

•   Every node has < m children.  

•   Every internal node (except the root) has <m/2 children.  

•   The root has  >2 children.  

•   An internal node with k children contains (k-1) ordered keys. 
The leftmost child contains keys less than or equal to the 
first key in the node. The second child contains keys greater 
than the first keys but less than or equal to the second key, 

and so on.  

 



B-tree of order n 

• Every B-tree is of some "order n", meaning nodes 
contain from n to 2n keys (so nodes are always at 
least half full of keys), and   n+1 to 2n+1 pointers, 
and n can be any number.  

• Keys are kept in sorted order within each node. A 
corresponding list of pointers are effectively 
interspersed between keys to indicate where to 
search for a key if it isn't in the current node.  

 



• A B-tree of order n is a multi-way search tree 
with two properties:  

•    1.All leaves are at the same level  

•    2.The number of keys in any node lies 
between n and 2n, with the possible 
exception of the root which may have fewer 
keys.  

 



Other definition 

A B-tree of order m is a m-way tree that satisfies the following 
conditions.  

•   Every node has < m children.  

•   Every internal node (except the root) has <m/2 children.  

•   The root has  >2 children.  

•   An internal node with k children contains (k-1) ordered keys. 
The leftmost child contains keys less than or equal to the 
first key in the node. The second child contains keys greater 
than the first keys but less than or equal to the second key, 

and so on.  

 



A B-tree of order 2 



• A multi-way (or m-way) search tree of order m is a tree in which  

– Each node has at-most m subtrees, where the subtrees may be 
empty.  

– Each node consists of at least 1 and at most m-1 distinct keys  

– The keys in each node are sorted. 

• The keys and subtrees of a non-leaf node are ordered as: 

   T0, k1, T1, k2, T2, . . . , km-1, Tm-1 such that: 

– All keys in subtree T0 are less than k1. 

– All keys in subtree Ti , 1 <= i <=  m - 2, are greater than ki but less 
than ki+1. 

– All keys in subtree Tm-1 are greater than km-1 



km-2 
. . . k3 k2 k1 

T0 T1 T2 Tm-2 Tm-1 

key < k1 k1 < key < k2 k2 < key < k3 km-2 < key < km-1 key > km-1 

km-1 

Multi-way tree  



What is B-tree? 

• B-tree of order m (or branching factor m), where m > 2, is either an 
empty tree or a multiway search tree with the following 
properties: 

–The root is either a leaf or it has at least two non-empty 
subtrees and at most m non-empty subtrees. 

–Each non-leaf node, other than the root, has at least 
m/2 non-empty subtrees and at most m non-empty 
subtrees. (Note: x is the lowest integer >  x ). 

–The number of keys in each non-leaf node is one less 
than the number of non-empty subtrees for that node. 

–All leaf nodes are at the same level; that is the tree is 
perfectly balanced 



What is a B-tree?  
 

• For a non-empty B-tree of order m: 



 

Example: A B-tree of order 4 

Example: A B-tree of order 5 

Note: 

• The data references are not shown. 

• The leaf references are to empty subtrees 



Height of B-Trees 
 

• For n greater than or equal to one, the height 
of an n-key b-tree T of height h with a 
minimum degree t greater than or equal to 2 



Operations of B-Trees 
 

• B-Tree-Search(x, k) 
– The search operation on a b-tree is similar to a search 

on a binary tree. The B-Tree-search runs in time O(logt 
n).  

• B-Tree-Create(T) 
–The B-Tree-Create operation creates an empty b-tree by 

allocating a new root node that has no keys and is a leaf 
node. Only the root node is permitted to have these 
properties; all other nodes must meet the criteria 
outlined previously. The B-Tree-Create operation runs in 
time O(1). 

 

 



Operations of B-Trees 
 

• B-Tree-Split-Child(x, i, y) 
–If is node becomes "too full," it is necessary to perform 

a split operation. The split operation moves the median 
key of node x into its parent y where x is the ith child of 
y. A new node, z, is allocated, and all keys in x right of 
the median key are moved to z. The keys left of the 
median key remain in the original node x. The new 
node, z, becomes the child immediately to the right of 
the median key that was moved to the parent y, and the 
original node, x, becomes the child immediately to the 
left of the median key that was moved into the parent. 
The B-Tree-Split-Child algorithm will run in time O(t) , T 
is constrain 

 
 
 



Operations of B-Trees 
 

•  B-Tree-Insert(T, k) 

•  B-Tree-Insert-Nonfull(x, k)  

   To perform an insertion on a b-tree, the appropriate 

node for the key must be located using an algorithm 

similiar to B-Tree-Search. Next, the key must be 

inserted into the node.  

 If the node is not full prior to the insertion, no 

special action is required; however, if the node is 

full, the node must be split to make room for the 

new key. Since splitting the node results in moving 

one key to the parent node, the parent node must 

not be full or another split operation is required. 

This process may repeat all the way up to the root 

and may require splitting the root node.  

 This approach requires two passes. The first pass 

locates the node where the key should be inserted; 

the second pass performs any required splits on the 

ancestor nodes. runs in time O(t log
t
 n) 

 
 
 
 
 



 OVERFLOW CONDITION: 
     A root-node or a non-root node of a B-tree of order m overflows if, 

after a key insertion, it contains m keys. 
 
 Insertion algorithm: 

 
     If a node overflows, split it into two, propagate the "middle" key 

to the parent of the node. If the parent overflows the process 
propagates upward. If the node has no parent, create a new root 
node.  
 

 Note: Insertion of a key always starts at a leaf node. 



Insertion in B-Trees 
 

• Insertion in a B-tree of odd order 

• Example: Insert the keys 78, 52, 81, 40, 33, 90, 85, 20, and 38 in this 

order in an initially empty B-tree of order 3 

 

Insertion 



Insertion in B-Trees 
 

•  Insertion in a B-tree of even order 

• right-bias: The node is split such that its right subtree has more keys than the 

left subtree. 

• left-bias: The node is split such that its left subtree has more keys than the 

right subtree. 

• Example: Insert the key 5 in the following B-tree of order 4: 



Insertion  
 

• Insert the keys in the folowing order into a B-tree of order 5.  

•    A, G, F, B, K, D, H, M, J, E, S, I, R, X, C, L, N, T, U, P.  

 

 





Searching 

Searching  for an Item in a B-Tree: 

    1.  Make a local variable, i, equal to the first index such that 
data[i] >= target.  If there is no such index, then set i equal to 
data_count,  indicating that none of the entries is greater than 
or equal to the target. 

     2.  if (we found the target at data[i]) 

                 return true; 

           else if (the root has no children) 

                  return false; 

            else  

                   return subset[i]->contains (target);  



Searching (cont.) 

• Example:   target = 10 

2      3 

19    22 

6     17 

16 10 18 20 25 

12 

5 

4 



Deletion form a B-Tree 
 

• 1. detete h, r : 
 

 

 

 

•                                                                s             promote s and 

•                                                                     delete form leaf    

j 

c     f 

g    i 

d      e a      b k      l n    p 

m     r 

g   h   i 

t   u   x 

s   t   u   x 



Deletion (cont.) 

• 2.  delete p : 
•      

 

 

 

•                                                                                   t      pull s down; 

•                                                                              pull t up 

j 

g    i n    p k    l d    e a    b 

m   s c     f 

t   u   x 

n     s 



Deletion (cont.) 

• 3. delete d: 
 

 

 

 

• Combine: 

j 

c     f 

g       i d     e a     b k       l n      s u     x 

m    t 



Deletion (cont.) 

• combine :              

f 

j 

u   x n    s k    l g     i 

g   i k    l n   s u   x 

m   t 

a    b    c    e 

f    j    m    t 

a   b    c    e 



Deleting from a B-Tree 
 

•  To delete a key value x from a B-tree, first search to 
determine the leaf node that contains x.  

•      If removing x leaves that leaf node with fewer 
than the minimum  number of keys, try to adopt a 
key from a neighboring node. If that’s possible, then 

you’re finished.  



Deleting from a B-Tree (continued) 

• If the neighboring node is already at its minimum, 
combine the leaf node with its neighboring node, 
resulting in one full leaf node.  

•  This will require restructuring the parent node since 
it has lost a child 

•  If the parent now has fewer than the minimum keys, 
adopt a key from one of its neighbors. If that’s not 

possible, combine the parent with its  neighbor.  



Deleting from a B-Tree (continued) 

• This process may percolate all the way to the 
root.  

• If the root is left with only one child, then 
remove the root node and make its child the 
new root.  

•  Both insertion and deletion are O(h), where h 
is the height of the tree. 



Delete 18 



Delete 5 



Delete 19 



Delete 12 



Deletion in B-Tree 

• B-Tree-Delete 

• UNDERFLOW CONDITION 

• A non-root node of a B-tree of order m 
underflows if, after a key deletion, it contains m / 
2 - 2 keys 

• The root node does not underflow. If it contains 
only one key and this key is deleted, the tree 
becomes empty. 

 



Deletion in B-Tree 

• There are five deletion cases: 
 1.  The leaf does not underflow. 

  2. The leaf underflows and the adjacent right sibling has at least m / 2   
keys.  

   perform a left key-rotation 

  3. The leaf underflows and the adjacent left sibling has at least m / 2   
keys.  

   perform a right key-rotation 

  4. The leaf underflows and each of the adjacent right sibling and the 
adjacent left sibling has at least m / 2   keys. 

  perform either a left or a right key-rotation& perform a merging 

 5. The leaf underflows and each adjacent sibling has m / 2  - 1 keys. 

    

 



Deletion in B-Tree 
• Case1: The leaf does not underflow. 

• Example : B-tree of order 4 

 

 

Delete 140 



Deletion in B-Tree 
•  Case2: The leaf underflows and the adjacent right sibling has at least      

m/2  keys.  

• Example : B-tree of order 5 

 

Delete 113 



Deletion in B-Tree 
• Case 3:  The leaf underflows and the adjacent left sibling has at least m / 2 keys. 

• Example : B-tree of order 5 

 

Delete 135 



 

 

 

 

 

 

 

 

 

 

An example B-Tree 

51 62 42 

6 12 

26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55 

 

60 

 

70 

 

64 

 

90 

 

45 

 

1 2 4 7 8 13 15 18 25 

27 

 

29 

 

46 

 

48 

 

53 

 

A B-tree of order 5 
containing 26 items 

Note that all the leaves are at the same level 



• Suppose we start with an empty B-tree and keys 
arrive in the following order:1  12  8  2  25  5  14  
28  17  7  52  16  48  68  3  26  29  53  55  45 

• We want to construct a B-tree of order 5 
• The first four items go into the root: 

 
 

• To put the fifth item in the root would violate 
condition 5 

• Therefore, when 25 arrives, pick the middle key 
to make a new root 
 

Constructing a B-tree 

1 2 8 12 



Constructing a B-tree (contd.) 

1 2 

8 

12 25 

6, 14, 28 get added to the leaf nodes: 

1 2 

8 

12 14 6 25 28 



Constructing a B-tree (contd.) 

Adding 17 to the right leaf node would over-fill it, so we take the 

middle key, promote it (to the root) and split the leaf 

8 17 

12 14 25 28 1 2 6 

7, 52, 16, 48 get added to the leaf nodes 

8 17 

12 14 25 28 1 2 6 16 48 52 7 



Constructing a B-tree (contd.) 

Adding 68 causes us to split the right most leaf, promoting 48 to the 

root, and adding 3 causes us to split the left most leaf, promoting 3 

to the root; 26, 29, 53, 55 then go into the leaves 

3 8 17 48 

52 53 55 68 25 26 28 29 1 2 6 7 12 14 16 

Adding 45 causes a split of  25 26 28 29 

and promoting 28 to the root then causes the root to split 



Constructing a B-tree (contd.) 

17 

3 8 28 48 

1 2 6 7 12 14 16 52 53 55 68 25 26 29 45 



Inserting into a B-Tree 

• Attempt to insert the new key into a leaf 

• If this would result in that leaf becoming too big, split 
the leaf into two, promoting the middle key to the 
leaf’s parent 

• If this would result in the parent becoming too big, split 
the parent into two, promoting the middle key 

• This strategy might have to be repeated all the way to 
the top 

• If necessary, the root is split in two and the middle key 
is promoted to a new root, making the tree one level 
higher 



Exercise in Inserting a B-Tree  

• Insert the following keys to a 5-way B-tree: 

• 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 
31, 35, 56 

 



Removal from a B-tree 

• During insertion, the key always goes into a leaf.  
For deletion we wish to remove from a leaf.  
There are three possible ways we can do this: 

• 1 - If the key is already in a leaf node, and 
removing it doesn’t cause that leaf node to have 
too few keys, then simply remove the key to be 
deleted. 

• 2 - If the key is not in a leaf then it is guaranteed 
(by the nature of a B-tree) that its predecessor or 
successor will be in a leaf -- in this case we can 
delete the key and promote the predecessor or 
successor key to the non-leaf deleted key’s 
position. 



Removal from a B-tree (2) 

• If (1) or (2) lead to a leaf node containing less than the 
minimum number of keys then we have to look at the 
siblings immediately adjacent to the leaf in question:   
– 3: if one of them has more than the min. number of keys 

then we can promote one of its keys to the parent and 
take the parent key into our lacking leaf  

– 4: if neither of them has more than the min. number of 
keys then the lacking leaf and one of its neighbours can be 
combined with their shared parent (the opposite of 
promoting a key) and the new leaf will have the correct 
number of keys; if this step leave the parent with too few 
keys then we repeat the process up to the root itself, if 
required  
 



Type #1: Simple leaf deletion 

12 29 52 

2 7 9 15 22 56 69 72 31 43 

Delete 2:  Since there are enough 
keys in the node, just delete it 

Assuming a 5-way 
B-Tree, as before... 



Type #2: Simple non-leaf deletion 

12 29 52 

7 9 15 22 56 69 72 31 43 

Delete 52 

Borrow the predecessor 
or (in this case) successor 

56 



Type #4: Too few keys in node and its 
siblings 

12 29 56 

7 9 15 22 69 72 31 43 

Delete 72 

Too few keys! 

 

Join back together 



Type #4: Too few keys in node and its 
siblings 

12 29 

7 9 15 22 69 56 31 43 



Type #3: Enough siblings 

12 29 

7 9 15 22 69 56 31 43 

Demote root key and 
promote leaf key 



Type #3: Enough siblings 

12 

29 7 9 15 

31 

69 56 43 



Summary 
• The B-tree is a tree-like structure that helps us to 

organize data in an efficient way. 

• The B-tree index is a technique used to minimize the disk 
I/Os needed for the purpose of locating a row with a 
given index key value. 

• Because of its advantages, the B-tree and the B-tree 
index structure are widely used in databases nowadays. 

• In addition to its use in databases, the B-tree is also used 
in file systems to allow quick random access to an 
arbitrary block in a particular file. The basic problem is 
turning the file block i address into a disk block. 

 



Secondary Storages 

MS/Dos - FAT (File allocation table) 
 
•entry for each disk block 
•entry identifies whether its block is used by a file  
•which block (if any) is the next disk block of the same file 
•allocation of each file is represented as a linked list in the table 



Red-Black Trees 



Red-Black Properties 

    The red-black properties: 

1.  Every node is either red or black 

2.  Every leaf (NULL pointer) is black 

Note: this means every “real” node has 2 children 

3.  If a node is red, both children are black 

Note: can’t have 2 consecutive reds on a path 

4.  Every path from node to descendent leaf 
contains the same number of black nodes 

5. The root is always black 



Red-Black Trees: An Example 

● Color this tree:  

 

7 

5 9 

12 12 

5 9 

7 

Red-black properties: 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 
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● Insert 8 

■ Where does it go? 

Red-Black Trees:  
The Problem With Insertion 

12 

5 9 

7 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 
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● Insert 8 

■ Where does it go? 

■ What color  
should it be? 

Red-Black Trees:  
The Problem With Insertion 

12 

5 9 

7 

8 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 



● Insert 8 

■ Where does it go? 

■ What color  
should it be? 

Red-Black Trees:  
The Problem With Insertion 

12 

5 9 

7 

8 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 



Red-Black Trees: 
The Problem With Insertion 

● Insert 11 

■ Where does it go? 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 

12 

5 9 

7 

8 



Red-Black Trees: 
The Problem With Insertion 

● Insert 11 

■ Where does it go? 

■ What color? 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 

12 

5 9 

7 

8 

11 



Red-Black Trees: 
The Problem With Insertion 

● Insert 11 

■ Where does it go? 

■ What color? 

○ Can’t be red! (#3) 

 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 

12 

5 9 

7 

8 

11 



Red-Black Trees: 
The Problem With Insertion 

● Insert 11 

■ Where does it go? 

■ What color? 

○ Can’t be red! (#3) 

○ Can’t be black! (#4) 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 

12 

5 9 

7 

8 

11 



Red-Black Trees: 
The Problem With Insertion 

● Insert 11 

■ Where does it go? 

■ What color? 

○ Solution:  
recolor the tree 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 

12 

5 9 

7 

8 

11 



Red-Black Trees: 
The Problem With Insertion 

● Insert 10 

■ Where does it go? 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 

12 

5 9 

7 

8 

11 



Red-Black Trees: 
The Problem With Insertion 

● Insert 10 

■ Where does it go? 

■ What color? 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 

12 

5 9 

7 

8 

11 

10 



Red-Black Trees: 
The Problem With Insertion 

● Insert 10 

■ Where does it go? 

■ What color? 

○ A: no color! Tree  
is too imbalanced 

○ Must change tree structure 
to allow recoloring 

■ Goal: restructure tree in  
O(lg n) time 

12 

5 9 

7 

8 

11 

10 



RB Trees: Rotation 

● Our basic operation for changing tree 
structure is called rotation: 

 

 

 

 

● Does rotation preserve inorder key ordering? 

● What would the code for rightRotate() 
actually do? 

y 

x C 

A B 

x 

A y 

B C 

rightRotate(y) 

leftRotate(x) 



rightRotate(y) 

RB Trees: Rotation 

 

 

 

● Answer: A lot of pointer manipulation 

■ x keeps its left child 

■ y keeps its right child 

■ x’s right child becomes y’s left child 

■ x’s and y’s parents change 

● What is the running time? 

y 

x C 

A B 

x 

A y 

B C 



Rotation Example 

● Rotate left about 9: 

12 

5 9 

7 

8 

11 



Rotation Example 

● Rotate left about 9: 

5 12 

7 

9 

11 8 



Example Red-Black Tree 



Splay Trees 

    Splay trees are binary search trees (BSTs) that: 
– Are not perfectly balanced all the time 

– Allow search and insertion operations to try to balance the tree so 
that future operations may run faster 

 

     Based on the heuristic: 
– If X is accessed once, it is likely to be accessed again. 

– After node X is accessed, perform “splaying” operations to bring X 
up to the root of the tree. 

– Do this in a way that leaves the tree more or less balanced as a 
whole. 

 



Example 

605 

• Not only splaying with 12 makes the tree balanced, 
subsequent accesses for 12 will take O(1) time. 

• Active (recently accessed) nodes will move towards the root 
and inactive nodes will slowly move further from the root 

Initial tree 

Root 

15 

6 18 

3 12 

9 14 

14 

Root 

12 

6 15 

3 9 18 

After splaying with 12 

After Search(12) 

Splay idea: Get 12 
up to the root  
using rotations  

1 

2 



Splay Tree Terminology 

606 

• Let X be a non-root node, i.e., has at least 1 ancestor. 

• Let P be its parent node. 

• Let G be its grandparent node (if it exists) 

• Consider a path from G to X:  
– Each time we go left, we say that we “zig” 

– Each time we go right, we say that we “zag” 

• There are 6 possible cases: 

P 

X 

G 

P 

X 

G 

P 

X 

G 

P 

X 

G 

P 

X 

P 

X 

1. zig 2. zig-zig 3. zig-zag 4. zag-zig 5. zag-zag 6. zag 



Splay Tree Operations 

607 

• When node X is accessed, apply one of six 
rotation operations: 

–  Single Rotations (X has a P but no G) 

• zig, zag 

 

–  Double Rotations (X has both a P and a G) 

• zig-zig, zig-zag 

• zag-zig, zag-zag 



Splay Trees: Zig Operation 

608 

• “Zig” is just a single rotation, as in an AVL tree 
• Suppose 6 was the node that was accessed (e.g. using 

Search) 

15 

6 18 

3 12 

• “Zig-Right” moves 6 to the root. 

• Can access 6 faster next time: O(1) 

• Notice that this is simply a right rotation in AVL tree 
terminology. 

15 

6 

18 

3 

12 

Zig-Right 



Splay Trees: Zig-Zig Operation 

609 

• “Zig-Zig” consists of  two single rotations of the same type 

• Suppose 3 was the node that was accessed (e.g., using Search) 

• Due to “zig-zig” splaying, 3 has bubbled to the top! 

• Note: Parent-Grandparent is rotated first. 

15 

6 18 

3 12 

1 4 

12 

6 

18 

3 15 

1 4 

12 

6 

18 

3 

15 

1 

4 

Zig-Right Zig-Right 



Splay Trees: Zig-Zag Operation 

610 

• “Zig-Zag” consists of  two rotations of the opposite type 

• Suppose 12 was the node that was accessed (e.g., using Search) 

• Due to “zig-zag” splaying, 12 has bubbled to the top! 

• Notice that this is simply an LR imbalance correction in AVL tree 
terminology (first a left rotation, then a right rotation) 

15 

6 18 

3 12 

10 14 

Zag-Left 15 

6 

18 

3 

12 

10 

14 

15 6 

18 3 

12 

10 14 

Zig-Right 



Splay Trees: Zag-Zig Operation 

611 

• “Zag-Zig” consists of  two rotations of the opposite type 

• Suppose 17 was the node that was accessed (e.g., using Search) 

• Due to “zag-zig” splaying, 17 has bubbled to the top! 

• Notice that this is simply an RL imbalance correction in 
AVL tree terminology (first a right rotation, then a 
left rotation) 

15 

6 20 

30 17 

16 18 

Zig-Right 
15 

6 

20 

30 

17 

16 

18 

15 

6 

20 

30 

17 

16 18 

Zag-Left 



Splay Trees: Zag-Zag Operation 

612 

• “Zag-Zag” consists of  two single rotations of the same type 

• Suppose 30 was the node that was accessed (e.g., using Search) 

• Due to “zag-zag” splaying, 30 has bubbled to the top! 

• Note: Parent-Grandparent is rotated first. 

Zag-Left 15 

6 20 

30 17 

25 40 

15 

6 

20 

30 

17 25 40 15 

6 

20 

30 

17 

25 

40 

Zag-Left 



Splay Trees: Zag Operation 

613 

• “Zag” is just a single rotation, as in an AVL tree 
• Suppose 15 was the node that was accessed (e.g., using 

Search) 

15 

6 18 

3 12 

• “Zag-Left”moves 15 to the root. 

• Can access 15 faster next time: O(1) 

• Notice that this is simply a left rotation in AVL tree 
terminology 

15 

6 

18 

3 

12 

Zag-Left 



Splay Trees: Example – 40 is accessed 

614 

80 

70 85 

60 75 

50 65 

40 55 

30 45 

(a) 

80 

70 85 

75 

50 

40 

30 

45 

(b) 

60 

55 65 

After Zig-zig 

70 

50 

40 

30 

45 60 

55 65 

80 

75 85 

(c) 
After Zig-zig 



Splay Trees: Example – 60 is accessed 
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70 

50 

40 

30 

45 60 

55 65 

80 

75 85 

70 

50 

40 

30 

45 

60 

55 

65 80 

75 85 

70 50 

40 

30 

45 

60 

55 65 80 

75 85 

(a) (b) 

After Zig-zag 

(c) 
After zag 



Splaying during other operations 

616 

• Splaying can be done not just after Search, but also after 
other operations such as Insert/Delete. 

 

• Insert X: After inserting X at a leaf node (as in a regular BST), 
splay X up to the root 

 

• Delete X: Do a Search on X and get X up to the root. Delete 
X at the root and move the largest item in its left sub-tree, 
i.e, its predecessor, to the root using splaying. 

 

• Note on Search X: If X was not found, splay the leaf node 
that the Search ended up with to the root. 



Summary of Splay Trees 

617 

• Examples suggest that splaying causes tree to get balanced. 

 

• The actual analysis is rather advanced and is in Chapter 11. Such 
analysis is called “amortized analysis” 

 

• Result of Analysis: Any sequence of M operations on a splay tree of size 
N takes O(M log N) time. So, the amortized running time for one 
operation is O(log N). 

 

• This guarantees that even if the depths of some nodes get very large, 
you cannot get a long sequence of O(N) searches because each search 
operation causes a rebalance. 

 

• Without splaying, total time could be O(MN). 



Comparison of  Search Trees 

Tree 
Worst Case Expected 

Search Insert Remove Search Insert Remove 

BST n n n log n log n log n 

AVL tree log n log n log n log n log n log n 

red-black tree log n log n log n log n log n log n 

splay tree n n n log n log n log n 

B-trees log n log n log n log n log n log n 



Knuth-Morris-Pratt Algorithm 



The problem of String Matching 

 

Given a string ‘S’, the problem of string matching 
deals with finding whether a pattern ‘p’ occurs 
in ‘S’ and if ‘p’ does occur then returning 
position in ‘S’ where ‘p’ occurs. 



…. a O(mn) approach 

One of the most obvious approach towards the string 
matching problem would be to compare the first 
element of the pattern to be searched ‘p’, with the 
first element of the string ‘S’ in which to locate ‘p’. If 
the first element of ‘p’ matches the first element of 
‘S’, compare the second element of ‘p’ with second 
element of ‘S’. If match found proceed likewise until 
entire ‘p’ is found. If a mismatch is found at any 
position, shift ‘p’ one position to the right and repeat 
comparison beginning from first element of ‘p’. 



How does the O(mn) approach work 

Below is an illustration of how the previously 
described O(mn) approach works. 

 

String  S    a b c a b a a b c a b a c 

a b a a Pattern   p 



Step 1:compare p[1] with S[1] 

S      

 

a b c a b a a b c a b a c 

p a b a a 

Step 2: compare p[2] with S[2] 

S a b c a b a a b c a b a c 

p a b a a 



Step 3: compare p[3] with S[3] 

  S        

a b a a p 

Mismatch occurs here.. 

Since mismatch is detected, shift ‘p’ one position to the right and  
repeat matching procedure.  

a b c a b a a b c a b a c 



  S         a b c a b a a b c a b a c 

a b a a p 

Finally, a match would be found after shifting ‘p’ three times to the right side. 
 
Drawbacks of this approach: if ‘m’ is the length of pattern ‘p’ and ‘n’ the length of 
string ‘S’, the matching time is of the order O(mn).  This is a certainly a very slow 
running algorithm.  
What makes this approach so slow is the fact that elements of ‘S’ with which 
comparisons had been performed earlier are involved again and again in 
comparisons in some future iterations. For example:  when mismatch is detected for 
the first time in comparison of p[3] with S[3], pattern ‘p’ would be moved one 
position to the right and matching procedure would resume from here. Here the first 
comparison that would take place would be between p[0]=‘a’ and S[1]=‘b’. It should 
be noted here that S[1]=‘b’ had been previously involved in a comparison in step 2. 
this is a repetitive use of S[1] in another comparison.  
It is these repetitive  comparisons that lead to the runtime of O(mn). 
  
 



The Knuth-Morris-Pratt Algorithm 

Knuth, Morris and Pratt proposed a linear time 
algorithm for the string matching problem.  

A matching time of O(n) is achieved by avoiding 
comparisons with elements of ‘S’ that have 
previously been involved in comparison with 
some element of the pattern ‘p’ to be 
matched. i.e., backtracking on the string ‘S’ 
never occurs 



Components of KMP algorithm 

• The prefix function, Π 
The prefix function,Π for a pattern encapsulates 

knowledge about how the pattern matches against 
shifts of itself. This information can be used to avoid 
useless shifts of the pattern ‘p’. In other words, this 
enables avoiding backtracking on the string ‘S’. 

• The KMP Matcher 
With string ‘S’, pattern ‘p’ and prefix function ‘Π’ as 

inputs, finds the occurrence of ‘p’ in ‘S’ and returns 
the number of shifts of ‘p’ after which occurrence is 
found.  
 



The prefix function, Π 

Following pseudocode computes the prefix fucnction, Π: 
 
Compute-Prefix-Function (p) 
1  m  length[p]               //’p’ pattern to be matched 
2  Π[1]  0  
3  k  0 
4  for q  2 to m 
5          do while k > 0 and p[k+1] != p[q] 
6                       do k  Π[k] 
7               If p[k+1] = p[q] 
8                  then k  k +1 
9               Π[q]  k 
10     return Π 
  



Example: compute Π for the pattern ‘p’ below:  

         p a b a b a c a 

q 1 2 3 4 5 6 7 

p a b a b a c a 

Π 0 0 

Initially: m = length[p] = 7 
             Π[1] = 0 
             k = 0                                                
 
Step 1:  q = 2, k=0                                     
                   Π[2] = 0 
 
 
 
Step 2: q = 3, k = 0, 
                   Π[3] = 1 
 
 
 
Step 3: q = 4, k = 1 
                   Π[4] = 2 
 
              

q 1 2 3 4 5 6 7 

p a b a b a c a 

Π 0 0 1 

q 1 2 3 4 5 6 7 

p a b a b a c A 

Π 0 0 1 2 



Step 4: q = 5, k =2 

                    Π[5] = 3 

 

 

 

Step 5: q = 6, k = 3 

                    Π[6] = 1 

 

 

 

Step 6: q = 7, k = 1  

                    Π[7] = 1 

 

 

After iterating 6 times, the prefix 
function computation is 
complete:                         

q 1 2 3 4 5 6 7 

p a b a b a c a 

Π 0 0 1 2 3 

q 1 2 3 4 5 6 7 

p a b a b a c a 

Π 0 0 1 2 3 1 

q 1 2 3 4 5 6 7 

p a b a b a c a 

Π 0 0 1 2 3 1 1 

q 1 2 3 4 5 6 7 

p a b A b a c a 

Π 0 0 1 2 3 1 1 



The KMP Matcher 

The KMP Matcher, with pattern ‘p’, string ‘S’ and prefix function ‘Π’ as input, finds a 
match of p in S. 

Following pseudocode computes the matching component of KMP algorithm: 
KMP-Matcher(S,p) 
1 n  length[S]                                    
2 m  length[p] 
3 Π  Compute-Prefix-Function(p) 
4 q  0                                                          //number of characters matched   
5 for i  1 to n                                              //scan S from left to right 
6      do while  q > 0 and p[q+1] != S[i] 
7            do  q  Π[q]                              //next character does not match 
8       if p[q+1] = S[i] 
9          then q  q + 1                            //next character matches 
10       if q = m                                           //is all of p matched? 
11           then print “Pattern occurs with shift” i – m 
12                  q  Π[ q]                             // look for the next match 
 
Note: KMP finds every occurrence of a ‘p’ in ‘S’.  That is why KMP does not terminate in 

step 12, rather it searches remainder of ‘S’ for any more occurrences of ‘p’. 
 
 



Illustration: given a String ‘S’ and pattern ‘p’ as follows:  

 

          S                  
b a c b a b a b a b a c a c a 

a b a b a c a p 

Let us execute the KMP algorithm to find whether 
‘p’ occurs in ‘S’.  
 
For ‘p’ the prefix function, Π was computed previously and is as follows: 

q 1 2 3 4 5 6 7 

p a b a b a c a 

Π 0 0 1 2 3 1 1 



b a c b a b a b a b a c a a b 

b a c b a b a b a b a c a a b 

a b a b a c a 

a b a b a c a 

Initially: n = size of S = 15;  
             m = size of p = 7 
 
Step 1: i = 1, q = 0 
             comparing p[1] with S[1] 

S 

p 
P[1] does not match with S[1].  ‘p’ will be shifted one position to the right. 

 

S 

p 

Step 2: i = 2, q = 0 
            comparing p[1] with S[2] 

P[1] matches S[2]. Since there is a match, p is not shifted. 



Step 3: i = 3, q = 1 

b a c b a b a b a b a c a a b 

a b a b a c a 

Comparing p[2] with S[3] 

S 

b a c b a b a b a b a c a a b 

b a c b a b a b a b a c a a b 

a b a b a c a 

a b a b a c a p 

S 

p 

S 

p 

p[2] does not match with S[3] 

Backtracking on p, comparing p[1] and S[3] 

Step 4: i = 4, q = 0  
comparing p[1] with S[4] p[1] does not match with S[4] 

Step 5: i = 5, q = 0  
comparing p[1] with S[5] p[1] matches with S[5] 



b a c b a b a b a b a c a a b 

b a c b a b a b a b a c a a b 

b a c b a b a b a b a c a a b 

a b a b a c a 

a b a b a c a 

a b a b a c a 

Step 6: i = 6, q = 1 

S 

p 

Comparing p[2] with S[6] p[2] matches with S[6] 

S 

p 

Step 7: i = 7, q = 2 
Comparing p[3] with S[7] p[3] matches with S[7] 

Step 8: i = 8, q = 3 
Comparing p[4] with S[8] p[4] matches with S[8] 

S 

p 



Step 9: i = 9, q = 4 

Comparing p[5] with S[9] 

Comparing p[6] with S[10] 

Comparing p[5] with S[11] 

Step 10: i = 10, q = 5 

Step 11: i = 11, q = 4 

S 

S 

S 

p 

p 

p 

b a c b a b a b a b a c a a b 

b a c b a b a b a b a c a a b 

b a c b a b a b a b a c a a b 

a b a b a c a 

a b a b a c a 

a b a b a c a 

p[6] doesn’t match with S[10] 

Backtracking on p, comparing p[4] with S[10] because after mismatch q = Π[5] = 3 
  

p[5] matches with S[9] 

p[5] matches with S[11] 



b a c b a b a b a b a c a a b 

b a c b a b a b a b a c a a b 

a b a b a c a 

a b a b a c a 

Step 12: i = 12, q = 5 

Comparing p[6] with S[12] 

Comparing p[7] with S[13] 

S 

S 

p 

p 

Step 13: i = 13, q = 6 

p[6] matches with S[12] 

p[7] matches with S[13] 

Pattern ‘p’ has been found to completely occur in string ‘S’. The total number of shifts  
that took place for the match to be found are: i – m = 13 – 7 = 6 shifts.  



Running - time analysis 

• Compute-Prefix-Function (Π) 
1  m  length[p]               //’p’ pattern to be 

matched 
2  Π[1]  0  
3  k  0 
4  for q  2 to m 
5          do while k > 0 and p[k+1] != p[q] 
6                       do k  Π[k] 
7               If p[k+1] = p[q] 
8                  then k  k +1 
9               Π[q]  k 
10 return Π 
 
 

 
In the above pseudocode for computing the 

prefix function, the for loop from step 
4 to step 10 runs ‘m’ times. Step 1 to 
step 3 take constant time. Hence the 
running time of compute prefix 
function is Θ(m). 

 
 
 
 
 

• KMP Matcher 
1 n  length[S]                                    
2 m  length[p] 
3 Π  Compute-Prefix-Function(p) 
4 q  0                          
5 for i  1 to n                                              
6     do while  q > 0 and p[q+1] != S[i] 
7           do  q  Π[q]  
8    if p[q+1] = S[i] 
9        then q  q + 1                             
10    if q = m                                            
11      then print “Pattern occurs with shift” i 

– m 
12                  q  Π[ q] 
 
The for loop beginning in step 5 runs ‘n’ 

times, i.e., as long as the length of the 
string ‘S’. Since step 1 to step 4  take 
constant time, the running time is 
dominated by this for loop. Thus running 
time of matching function is Θ(n). 

 



Tries 

 Trie is a special structure to represent sets of 
character strings. 

 Can also be used to represent data types 
that are objects of any type e.g. strings of 
integers. 

 The word “trie” is derived from the middle 
letters of the word “retrieval”. 



Tries: Example 

One way to implement a spelling checker is 

 Read a text file. 

 Break it into words( character strings 
separated by blanks and new lines). 

 Find those words not in a standard 
dictionary of words. 

 Words in the text but not in the dictionary 
are printed out as possible misspellings. 



Tries: Example 

It can be implemented by a set having 
operations of : 

 INSERT 

 DELETE 

 MAKENULL 

 PRINT 

A Trie structure supports these set operations 
when the element of the set are words.  



Tries: Example 
T 

H 

E 

$ 

$ $ $ 

$ 

$ 

$ 

N 

I I 

N 

G 

S 

S N N 

I 



Tries: Example 

 Tries are appropriate when many words begin with 
the same sequence of letters. 

 i.e; when the number of distinct prefixes among all 
words in the set is much less than the total length 
of all the words. 

 Each path from the root to the leaf corresponds to 
one word in the represented set. 

 Nodes of the trie correspond to the prefixes of 
words in the set. 

 



Tries: Example 

  The symbol $ is added at the end of each word so 
that no prefix of a word can be a word itself. 

 The Trie corresponds to the set {THE,THEN THIN, 
TIN, SIN, SING} 

 Each node has at most 27 children, one for each 
letter and $ 

 Most nodes will have many fewer than 27 children. 

 A leaf reached by an edge labeled $ cannot have 
any children. 
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Tries 
• Standard Tries 

• Compressed Tries 

• Suffix Tries 
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Text Processing 
• We have seen that preprocessing the pattern speeds up pattern 

matching queries 

• After preprocessing the pattern in time proportional to the pattern 
length, the Boyer-Moore algorithm searches an arbitrary English 
text in (average) time proportional to the text length 

• If the text is large, immutable and searched for often (e.g., works by 
Shakespeare), we may want to preprocess the text instead of the 
pattern in order to perform pattern matching queries in time 
proportional to the pattern length. 

• Tradeoffs in text       
 searching 
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Standard Tries 
• The standard trie for a set of strings S is an ordered tree such that: 

– each node but the root is labeled with a character 

– the children of a node are alphabetically ordered 

– the paths from the external nodes to the root yield the strings of S 

• Example: standard trie for  

     the set of strings 

 S = { bear, bell, bid, bull, 

          buy, sell, stock, stop } 

 

 

 

 

 

•A standard trie uses O(n) space. Operations (find, insert, remove) take time 
O(dm) each, where: 

 -n = total size of the strings in S, 

 -m =size of the string parameter of the operation 

 -d =alphabet size,  
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Applications of Tries 
• A standard trie supports the following operations on a preprocessed 

text in time O(m), where m = |X| 
 -word matching: find the first occurence of word X in the text 
 -prefix matching: find the first occurrence of the longest prefix of 

word X in the text 
• Each operation is performed by tracing a path in the trie starting at 

the root 
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Compressed Tries 

• Trie with nodes of degree at least 2 

• Obtained from standard trie by compressing chains of redundant 
nodes 

 

 

 

 

 

Compressed Trie: 

Standard Trie: 
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Compact Storage of Compressed Tries 

• A compressed trie can be stored in space O(s), where s = |S|, by using 
O(1) space index ranges at the nodes 
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Insertion and Deletion 
into/from a Compressed Trie 
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Suffix Tries 
• A suffix trie is a compressed trie for all the suffixes of a text 

Example: 

 

 

 

 

Compact representation: 
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Properties of Suffix Tries 
• The suffix trie for a text X of size n from an alphabet of size d 

 -stores all the n(n-1)/2 suffixes of X in O(n) space 

 -supports arbitrary pattern matching and prefix matching queries in 
O(dm) time, where m is the length of the pattern 

 -can be constructed in O(dn) time 
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Tries and Web Search Engines 

• The index of a search engine (collection of all searchable words) is stored 
into a compressed trie 

• Each leaf of the trie is associated with a word and has a list of pages (URLs) 
containing that word, called occurrence list 

• The trie is kept in internal memory 

• The occurrence lists are kept in external memory and are ranked by 
relevance 

• Boolean queries for sets of words (e.g., Java and coffee) correspond to set 
operations (e.g., intersection) on the occurrence lists 

• Additional information retrieval techniques are used, such as 
– stopword elimination (e.g., ignore “the” “a” “is”) 

– stemming (e.g., identify “add” “adding” “added”) 

– link analysis (recognize authoritative pages) 
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Tries and Internet Routers 
• Computers on the internet (hosts) are identified by a unique 32-bit IP 

(internet protocol) addres, usually written in “dotted-quad-decimal” 
notation 

• E.g., www.cs.brown.edu is 128.148.32.110 

• Use nslookup on Unix to find out IP addresses 

• An organization uses a subset of IP addresses with the same prefix, e.g., 
Brown uses 128.148.*.*, Yale uses 130.132.*.*  

• Data is sent to a host by fragmenting it into packets. Each packet carries the 
IP address of its destination. 

• The internet whose nodes are routers, and whose edges are 
communication links. 

• A router forwards packets to its neighbors using IP prefix matching rules. 
E.g., a packet with IP prefix 128.148. should be forwarded to the Brown 
gateway router. 

• Routers use tries on the alphabet 0,1 to do prefix matching. 


