
DATA STRUCTURES

 Prepared by:

 Mr. Suresh kumar Raju

 Assistant Professor

 Information Technology

1

DATA STRUCTURES

TEXT BOOKS:

1. Fundamentals of Data structures in C, 2nd
Edition, E.Horowitz, S.Sahni and Susan

 Anderson-Freed, Universities Press.

2. Data structures A Programming Approach
with C, D.S.Kushwaha and A.K.Misra, PHI.

2

UNIT-I

Topics:
 Basic concepts- Algorithm Specification-Introduction,

Recursive algorithms, Data Abstraction Performance
analysis- time complexity and space complexity, Asymptotic
Notation-Big O, Omega and Theta notations, introduction
to Linear and Non Linear data structures.

 Singly Linked Lists-Operations-Insertion, Deletion,
Concatenating singly linked lists, circularly linked lists-
Operations for Circularly linked lists, Doubly Linked Lists-
Operations- Insertion, Deletion. Representation of single,
two dimensional arrays, sparse matrices-array and linked
representations.

3

ALGORITHM

 An algorithm is a step by step representation or a procedure

for solving a problem.

 or

 It is a method of finding a right solution to a problem or to a

different problem or to a different problem breaking into

simple cases.

4

PROPERTIES OF AN ALGORITHM
Finitness:

An algorithm should terminate at finite number of steps.

Definiteness:

Each step of an algorithm must be precisely stated.

Effectiveness:

 It consists of basic instructions that are realizable.

This means that the instructions can be performed by using the
given inputs in a finite amount of time.

 Input:

An algorithm accepts zero or more inputs.

Output:

It produces at least one output.

5

PSEUDOCODE

 It is a representation of algorithm in which instruction sequence

can be given with the help of programming constructs.

 or

Pseudo code, on the other hand, is not a programming language,

but simply an informal way of describing a program.

Because it is not an actual programming language, pseudo code

cannot be compiled into an executable program.

Therefore, pseudo code must be converted into a specific

programming language if it is to become an usable application.

6

http://www.techterms.com/definition/compile
http://www.techterms.com/definition/application

PSEUDOCODE CONVENTIONS
 1. Algorithm is a procedure consisting of heading and body. The

heading consists of a name of the procedure and parameter list.
The syntax is

 Algorithm name_of
_procedure(paramater1,parameter2,…..parameter n).

2.Using assignment operator:=an assignment statement can be
given. For instance: variable:=expression;

3. Boolean operators, logical operators, relational operators can
be used in pseudo code.

4. All different types of arrays can be used and array indices
stored in [and] brackets.

7

PSEUDOCODE CONVENTIONS

5. The beginning and end of block should be indicted by { and}

resp. the compound statements should be enclosed within {

and } brackets.

6. The delimiters ; are used at the end of each statement.

7. Single line comments are written using // as beginning of

comment.

8.The identifier should beginning by letter only.

9.No need to write data types explicitly for identifiers.

8

PSEUDOCODE CONVENTIONS

10. The inputting and outputting can be done using read and

write.

11. The conditional statements and the looping statements have

the same syntax as in C language.

9

EXAMPLES

1) write an algorithm to count the sum of n numbers

 Algorithm sum(1,n)

{

 Result:=0;

 for i:=1 to n do i:=i+1

 Result:=result+i;

}

10

EXAMPLES

2) write an algorithm to check whether given number is even or

odd

 Algorithm events (val)

{

 if (val%2==0) then

 write(“given no is even”):

 else

 write(“given no is odd”);

 }

11

EXAMPLES

3) write an algorithm to find factorial of n number.

 Algorithm fact(n)

{

 if n:=1 then

 return 1;

 else

 return n*fact(n-1);

}

12

EXAMPLES

4) write an algorithm to perform multiplication of two matrices.

 Algorithm Mul(A,B,n)

{

 for i:=1 to n do

 for j:=1 to n do

 c[i,j]:=0

 for k:=1 to n do

 c[i,j]:=c[i,j]+a[i,k]*b[k,j];

}

13

RECURSIVE ALGORITHM

A recursive routine is one whose design includes a call to itself.

 Or

A function that calls itself is known as recursive function and this

technique is known as recursion in C programming.

14

EXAMPLES

Factorial of a number

Algorithm factorial(a)

int a;

 {

 int fact=1

 if(a>1)

 Fact = a* factorial(a-1);

 Return(fact);

}

15

DATA ABSTRACTION

 Data abstraction refers to, providing only essential information

to the outside world and hiding their background details, i.e.,

to represent the needed information in program without

presenting the details.

 Data abstraction is a programming (and design) technique that

relies on the separation of interface and implementation.

16

PERFORMANCE EVALUATION

 The total effectiveness of a computer system, including

throughput, individual response time, and availability.

 Performance evaluation can be loosely divided into 2 phases

1) A priori estimates which is known as performance analysis

1) A posterior testing which is known as performance

measurement.

17

PERFORMANCE ANALYSIS

 The efficiency of an algorithm can be decided by measuring

the performance of an algorithm.

 The performance of an algorithm by computing amount of

time(time complexity)and storage requirement(space

complexity).

18

TIME COMPLEXITY
This is the amount of computing time required by an algorithm to

run to completion.

 There are 2 types of computing time- compile time and run time.

 The time complexity is generally computed using run time or

execution time.

 The time complexity is given in terms of frequency count.

 Frequency count is basically a count denoting number of times of

execution of statement.

19

TIME COMPLEXITY
The time complexity is computed using run time is calculated by

input size and asymptotic notations .

Input size: the input size of any instance of a problem is defined
as the number of words required to describe that instance of
problem.

Asymptotic notations: This is the shorthand way to represent the
time complexity.

Time complexity is given as fastest possible, slowest possible or
average time.

Notations such as Ω,θ,Ο are the asymptotic notations.

20

BIG OH NOTATION

It represents the upper bound of algorithms running time.

The longest amount of time taken by the algorithm to complete is

calculated by big oh (Ο).

Def: let f(n) and g(n) are two non-negative functions. And is there

exists an integer no and constant C such that C>0 and for all

integers n>n₀ ,f(n)<=c*g(n), then f(n) is big oh of g(n). It is also

denoted as “ f(n) = Ο(g(n))”.

21

BIG OH NOTATION

Various meanings associated with big-oh are

O(1)- constant computing time

O(n)- linear

O(n²)-quadratic

O(n³)-cubic

O(2n)-exponential

O(log n)-logarithmic

22

OMEGA NOTATION

 It represents the lower bound of algorithms running time.

 It is the shortest amount of time taken by algorithm to complete.

 F(n)>C*g(n).

 This is denoted by f(n)=Ωg(n).

23

THETA NOTATION

 It represents the running time between upper bound and lower

bound.

 c1g(n)<=f(n)<=c2g(n)

 It is denoted by f(n)=θ g(n).

24

SPACE COMPLEXITY

 This is the amount of memory required by an algorithm to run.

 There are two factors to compute space complexity.

 1) constant

 2)instance

25

SPACE COMPLEXITY

The space requirement S(p) can be given as

S(p)= C+Sp

C is the constant

Sp is a space dependent upon instance characteristics.

26

DATA STRUCTURE

 The data structure can be defined as the collection of elements

and all the possible operations which are required for those set

of elements.

 Or

 Data structure is a combination of a set of elements and

corresponding set of operations.

 The data structures can be implemented by building the suitable

algorithms for them.

27

TYPES OF DATA STRUCTURES

The data structure can be divided into two basic types.

1) Preliminary data structures

1) Secondary data structures

28

TYPES OF DATA STRUCTURES

Data structures

Primitive data structures
Ex: int, char,float

 linear data structures
Ex: lists, stack, queues

Non linear data structures
Ex : trees, graphs

Non primitive data structure

29

LIST

 List is the collection of elements arranged in a sequential

manner.

 There are two representations

 1) list of sequentially stored elements----using arrays

 2) list of elements with associated pointers---using linked list.

30

LIST REPRESENTATION

31

OPERATIONS ON AN ORDERED LIST

1)display of list.

2)search an element in the list.

3) insert an element into the list.

4) delete an element from the list.

32

SINGLY LINKED LIST

 In the single linked list, a node is connected to the next node

by a single link.

 In this list a node contains two types of fields-

 data:

 which holds a list element

 next(pointer):

 which holds a link to the next node in the list.

 The head of the pointer is used to gain access to the list and

the end of the list is denoted by a NULL pointer

33

STRUCTURE OF A SINGLE LINKED LIST

struct node

{

 int data;

 struct node * next;

}

 The list holds two members ,an integer type variable “data”

which holds the elements and another member of type “node”,

which has the variable next.

34

 SINGLE LINKED LIST OPERATIONS

 Creating a linked list

 Inserting in a linked list

 Deleting a linked list

 Searching an element in the linked list

 Display the elements

 Merging two linked list

 Sorting a linked list

 Reversing a list

35

CREATING A LINKED LIST

List can be created by using pointers and dynamic memory

allocation function such as malloc.

 The head pointer is used to create and access unnamed nodes.

36

CREATING A LINKED LIST

 struct list

{

 int no;

 struct list *next;
};

 typedef struct list node;

 node *head;

 head=(node*) malloc (size of(node));

37

CREATING A LINKED LIST

 The statement obtains memory to store a node and assigns its

address to head which is a pointer variable.

 To store values in the member fields :
 headno=10;
 headnext=NULL;

 The second node can be added as:
 headnext=(node*)malloc(size_of(node));
 headnextnumber=20;
 headnextnext=NULL;

38

INSERTING AN ELEMENT

 Insertion is done in three ways:

 Insertion at the beginning of the list.

 Insertion after any specified node.

 Inserting node at the end of the list.

39

INSERTING AN ELEMENT

 Function to insert a node at the beginning of the list:

40

INSERTING AN ELEMENT

 Function to insert a node at the beginning of the list:

 void add_beg(struct node **q, int no)
{

 struct node *temp; /*add new node*/

 tempdata=no;

 tempnext=*q;t

 *q=temp;

}

 here temp variable is take and space is allocated using “malloc”
function.

 41

INSERTING AN ELEMENT

 Insertion after any specified node:

 Inserting a node in the middle of the list,

 if you consider to insert a node after the element then the

 process is as follows.

42

INSERTING AN ELEMENT

43

INSERTING AN ELEMENT
Function to insert a node at the middle of the list:

Void add_after(struct node *q, int loc, int no)

{

 struct node *temp, *r;

int l;

temp=q;/*skip to desire portion*/

for(i=0;i<loc;i++)

 {

 temp=tempnext;

44

INSERTING AN ELEMENT

 if(temp==NULL)
 {

 printf(“\n there are less than %d elements in list”,loc);
 return;

 }

} ?/*insert new node*/
r=malloc(sizeof(struct node));

rdata=n0;

rnext=tempnext;

tempnext=r;

45

INSERTING AN ELEMENT

 Inserting node at the end of the list:

46

INSERTING AN ELEMENT

 Inserting node at the end of the list:

void create(struct node **q, int no)

{

 struct node *temp,*r;

if(*q==NULL) /*if the list is empty,create first node*/

{

 temp=malloc(sizeof(struct node));

tempdata=no;

47

INSERTING AN ELEMENT

tempnext=NULL;

*q=temp;

}

 else

 {

 temp=*q; /* go to last node*/

 while(tempnext!=NULL)

48

INSERTING AN ELEMENT

 temp=tempnext;

 r=malloc(sizeof(struct node));

 rdata=no;

 rnext=NULL;

 tempnext=r;

 }

}

49

DELETING AN ELEMENT

50

DELETING AN ELEMENT

 We traverse through the entire linked list to check each node

whether it has to be deleted.

 if we want to delete the first node in the list then we shift the

structure type pointer variable to the next node and then delete

the entire node.

if the node is a intermediate node then the various pointers the

linked list before and after deletion should be taken care of

51

DISPLAYING THE CONTENTS OF THE

LINKED LIST

 Displays the elements of the linked list contained in the data

part.

Function to display the contents of the linked list.

void display(struct node *start)

 {

 printf(“\n”);

52

DISPLAYING THE CONTENTS OF THE

LINKED LIST

 /*traverse the entire list*/

while(start!=NULL)

{

 printf(“%d”,startdata);

start=startnext;

}

}

53

OTHER OPERATIONS OF SINGLY

LINKED LIST

 Searching the linked list:

 Searching means finding information in a given linked list.

 Reversing a linked list:

 The reversing of the linked list that last node becomes the first

node and first becomes the last.

54

OTHER OPERATIONS OF SINGLY

LINKED LIST

 Sorting the list:

 In sorting function the node containing the largest element is

removed from the linked list and is appended to the new list in

the ascending order.

 Merging the two linked list:

 Merging two list pointed by two pointers into a third list.

 While merging be ensure that the elements common to the lists

appear only once in the third list.

CREATING A LINKED LIST

55

CIRCULAR LINKED LIST

 A linked list in which last node points to the header node is

called the circular linked list.

 The list have neither a beginning nor an end.

 In this list the last node contains a pointer back to the first

node rather than the NULL pointer.

56

CIRCULAR LINKED LIST

The structure defined for circular linked list

struct node

{

 int data;

 struct node *next;

}

57

CIRCULAR LINKED LIST

A circular linked list is represented as follows:

A circular linked list can be used to represent a stack and a queue.

 58

OPERATION OF CIRCULAR LINKED LIST

 Adding elements in the circular linked list.

 Deleting element from the circular list.

 Displaying elements from the circular list.

59

ADDING ELEMENTS IN THE CIRCULAR

LINKED LIST

 Ciradd():

 this function accepts three parameters:

receives the address of the pointer to the first node.

receives the address of the pointer to the last node.

holds the data items that need to add in the list.

60

DELETING ELEMENTS FROM THE

CIRCULAR LINKED LIST

 delcirq():

 this function receives two parameters.

the pointer to the front .

the pointer to the rear .

61

DELETING ELEMENTS FROM THE

CIRCULAR LINKED LIST

 The condition is checked for the empty list.

 If the list is not empty,

 then it is checked whether the front and rear

 point to the same node or not.

 If they point to the same node,

 then the memory occupied by the node

 is released and front and rear are both

 assigned a NULL value.

 62

DISPLAYING THE CIRCULAR LIST

 Cirq_disp():

 the function receives the pointer to the first node in the list as

a parameter.

 The q is also made to point to the first node in the list.

 The entire list is traversed using q.

 Another pointer p is set to NULL initially.

 The circular list is traversed through a loop till the time it

reach the first node again.

 It reach first node again when q equals p.

63

DOUBLY LINKED LIST

 The doubly linked list uses double set of pointer’s, one

pointing to the next item and the other pointing to the

preceding item.

 It can traverse in two directions:

from the beginning of the list to the end

 or

In the backward direction from the end of the list to the

beginning.

64

DOUBLY LINKED LIST

65

DOUBLY LINKED LIST

 Each node contains three parts:

 An information field which contains the data.

 A pointer field next which contains the location of the next
node n the list.

 A pointer field prev which contains the location of the
preceding node in the list.

Structure to define DLL:
struct node
{ int data;
 struct node *next;
 struct node *prev;
}

66

CREATING A DLL

 To create DLL at the nodes to the existing list:

 To create the list the function d_create can be used before

creating the list the function checks if the list is empty.

 Here the function accepts two parameters.

s of type struct dnode ** which contains the address of the

pointer to the first node of the list.

parameter num is an integer which is to be added in the list.

67

CREATING A DLL

 To create DLL at the nodes to the existing list:

 To create the list the function d_create can be used before

creating the list the function checks if the list is empty.

 Here the function accepts two parameters.

s of type struct dnode ** which contains the address of the

pointer to the first node of the list.

parameter num is an integer which is to be added in the list.

68

OPERATIONS OF DLL

 Adding a node in the beginning of DLL:

 To add the node at the beginning of the list the function

d_addatbeg() is used .

 This function takes two parameters:

s of type dounode ** which contains the address of the pointer

to the first node .

num is an integer to be added in the list.

69

OPERATIONS OF DLL

 The allocation of memory for the new node is done whose

address is stored in q.

 The num is the data part of the node.

 A NULL value is stored in the prev part of new node a this is

the first node in the list.

70

OPERATIONS OF DLL

Function to add a node at the beginning of list.

Void d_addatbeg(struct dnode **s,int num)

{

struct dnode *q;

 q=malloc(sizeof(struct dnode));

qprev=NULL;

qdata=num;

qnext=*s;

(*s)prev=q;

*s=q;

}

71

OPERATIONS OF DLL

 Adding a node in the middle of the list:

 To add the node in the middle of the list we use the function

d_addafter().

 The function accepts three parameters.

q points to the first node of the list.

loc specifies the node number after which new node must be

inserted.

num which is to be added to the list.

 To reach to the position where node is to be inserted, a loop is

executed.

72

OPERATIONS OF DLL

 Deleting a node from DLL:

 This function deletes a node from the list if the data part

matches a with num.

 The function receives two parameters

 the address of the pointer to the first node.

 the number to be deleted.

 To traverse the list ,a loop is run.

 The data part of each node is compared with the num.

 If the num value matches the data part, then the position of the

node to be deleted is checked

73

OPERATIONS OF DLL

 Display the contents of DLL.

 to display the contents of the doubly linked list, we follow the

same algorithm that had used in the singly linked list.

 Here q points to the first node in the list and the entire list is

traversed .

 Function to display the DLL.

void d_disp(struct dnode *q)

{ printf(“\n”);

while(q!=NULL)

{ printf(“%2d”,qdata);

 q=qnext;

}

}

74

ARRAYS

 A collection of objects of the same type stored contiguously

in memory under one name.

 May be type of any kind of variable

 May even be collection of arrays!

 The elements of the array are stored in consecutive memory

locations and are referenced by an index (subscript).

75

ARRAYS

 To refer to an element, specify

―Array name

―Position number

 Syntax:

array_name[position number]

76

ARRAYS

Array Declaration

 When declaring arrays

– Name

– Type of data elements

– Number of elements

 Syntax

Data_Type array_Name[Number_Of_Elements];

77

ARRAYS

 Examples:

int c[10];

float myArray[3284];

 Declaring multiple arrays of same type

– Format similar to regular variables

– Example:

int b[100], x[27];

78

ARRAYS

 int c[12]

• An array of ten integers

• c[0], c[1], …, c[11]

 double B[20]

• An array of twenty long floating

 point numbers

• B[0], B[1], …, B[19]

79

Name of array (Note

that all elements of

this array have the

same name, c)

Position number of

the element within

array c

c[6]

-45

 6

 0

 72

 1543

 -89

 0

 62

 -3

 1

 6453

 78

c[0]

 c[1]

 c[2]

 c[3]

c[11]

c[10]

c[9]

c[8]

c[7]

c[5]

c[4]

 -89

1

ARRAYS

 Arrays of structs, unions,

 pointers, etc., are also allowed

 Array indexes always

 start at zero in C

80

ARRAYS

Two Dimensional Array

• Syntax

 Data_Type array_Name[Row_Elements][Column_Elements];

• Example

 int D[10][20]

– An array of ten rows, each of which is an array of

twenty integers

– D[0][0], D[0][1], …, D[1][0], D[1][1], …, D[9][19]

– Not used so often as arrays of pointers

81

ARRAYS

Two Dimensional Array

• Multiple subscripted arrays as

– Tables with rows and columns (m×n array)

– Like matrices: specify row, then column

82

Row 0

 Row 1

 Row 2

Column 0

Column 1

Column 2

Column 3

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

a[1][3]

a[2][3]

Row subscript

Array name

Column subscript

ARRAYS

Multi Dimensional Arrays

• Array declarations read right-to-left

• Syntax

 Data_Type array_Name[Size][Size][Size] … Size];

• Example

 int a[10][3][2];

 “an array of ten arrays of three arrays of two elements”

 in memory

83

3

10

...

2 2 2 2 2 2 2 2 2

3 3

SPARSE MATRIX

 A sparse matrix is a matrix that allows special techniques to

take advantage of the large number of zero elements.

 Sparse matrix is very useful in engineering field, when solving

the partial differentiation equations.

 if there are maximum zeros then the matrix is known as

sparse. matrix.

 if there are few zeros then the matrix is dense matrix.

84

http://eigen.tuxfamily.org/api/TutorialSparse.html
http://eigen.tuxfamily.org/api/TutorialSparse.html
http://eigen.tuxfamily.org/api/TutorialSparse.html
http://eigen.tuxfamily.org/api/TutorialSparse.html

CATEGORIES OF SPARSE MATRIX

Sparse matrix has

N² sparse matrix and

Triangular sparse matrix

A matrix with zero entries that form a square or a bar is N² sparse

matrix.

A matrix with zero entries in its diagonal either in the upper or

lower side is known as triangular sparse matrix.

85

REPRESENTATION OF SPARSE MATRIX

Sparse matrix can be represented in

Tuple method

Array representation

Linked list representation

Only non zero elements are stored in any of the above

representations.

86

TUPLE METHOD

consider a matrix Tuple matrix is

[15 0 0 21

 22 11 0 0

 0 19 35 16]

This is N² sparse matrix

row column value

1 1 15

1 4 21

2 1 22

2 2 11

3 2 19

3 3 35

3 4 16

87

TUPLE METHOD

consider a matrix Tuple matrix is

[4 0 0 0

 3 11 0 0

 1 22 33 0

7 45 41 22]

This is triangular matrix

row column value

1 1 4

2 1 3

2 2 11

3 1 1

3 2 22

3 3 33

4 1 7

4 2 45

4 3 41

4 4 22

88

ARRAY METHOD

consider a matrix

[15 0 0 21

22 11 0 0

 0 19 35 15]

This is triangular matrix

The elements are represented as follows

1,1,15 1,4,21 2,1,22 2,2,11 3,2,11 3,2,19 3,3,35 3,4,16

89

SPARSE MATRIX OPERATIONS USING

ARRAYS

Addition of two sparse matrix:

The function addmat() carries addition

The function display() displays the result.

Multiplication of two sparse matrix:

90

SPARSE MATRIX OPERATIONS USING

ARRAYS
This holds three functions

Sparseprod() stores the result.

Search_nonzero()checks whether an non zero element is present

or not.

Searchinb()searches an element whose row number is equal to

column number.

Transpose of a sparse matrix:

Transpose() is used to allocate memory to store the elements.

91

REPRESENTATION OF SPARSE MATRIX

THROUGH LINKED LIST

The elements of sparse matrix consist of three integers.

Its row number

Its column number

Its value

The head node consist of three parts.

Row number indicates the row to which the “head” node is
pointing to the component element.

The head also points to another head the node for the next row.

92

REPRESENTATION OF SPARSE MATRIX

THROUGH LINKED LIST

The create_list() function stores the information in the form of

linked list.

Insert() accepts a pointer to the special node .

show_list() reads and displays the data stored in the linked list.

93

REPRESENTATION OF SPARSE MATRIX

THROUGH LINKED LIST

94

REPRESENTATION OF SPARSE MATRIX

THROUGH LINKED LIST

95

REPRESENTATION OF SPARSE MATRIX

THROUGH LINKED LIST

96

UNIT-II

Topics:

 Stack ADT, definition, operations, array and linked
implementations in C, applications-infix to postfix
conversion, Postfix expression evaluation,
recursion implementation, Queue ADT, definition
and operations ,array and linked Implementations
in C, Circular queues-Insertion and deletion
operations, Deque (Double ended queue) ADT,
array and linked implementations in C.

97

 STACKS

 A stack is a linear structures in which addition or deletion of
elements takes place at the same end.

 Or

 The stack is an ordered list in which insertion and deletion is
done at the same end.

 The end is called the top of stack.

 Insertion and deletion cannot be done from the middle.

 A technique of Last In First Out is followed.

 Stack can be implemented by using both arrays and linked
lists.

 STACKS

STACK ADT

 Stacks can also be defined as Abstract Data Types(ADT).

 A stack of elements of any particular type is a finite sequence

of elements of that type together with specific operations.

 Therefore, stacks are called LIFO lists.

STACK OPERATIONS

The primitive operations on stack are

To create a stack.

To insert an element on to the stack.

To delete an element from the stack.

To check which element is at the top of the stack.

To check whether a stack is empty or not.

STACK OPERATIONS

 If Stack is not full ,

 then add a new node at one end of the stack

 this operation is called PUSH.

If the stack is not empty

 then delete the node at its top.

This operation is called POP.

PUSH and POP are functions of stack used to fulfill the stack

operations.

TOP is the pointer locating the stack current position.

ARRAY IMPLEMENTATION IN C

 Stacks can be represented in the memory arrays by

 maintaining a linear array STACK and a pointer variable TOP

 which contains the location of top element.

 The Variable MAXSTACK gives

 maximum number of elements held by the stack.

 The TOP=NULL /0 will indicate that the stack is empty.

 The operation of adding and removing an item in the stack can
be implemented using the PUSH and POP functions.

Figure shows the array representation

Pictorial depiction of pushing elements

in stack

Pictorial depiction of popping elements

in stack

DISADVANTAGE OF STACK USING ARRAYS

 The array representation of stack suffers from the drawbacks of

 the array’s size, that cannot be increased or decreased once it

is declared .

 The space is wasted, if not used , or, there is shortage of space

if needed.

LINKED IMPLEMENTATION IN C

 The stack can be implemented using linked lists.

 The stack as linked list is represented as a single linked list.

 Each node in the list contains data and a pointer to the next node.

Pictorial depiction of stack in linked

list

APPLICATION OF STACKS

Reversing a list.

Conversion of Infix to Postfix Expression.

Evaluation of Postfix Expression.

Conversion of Infix to Prefix Expression.

Evaluation of Prefix Expression.

CONVERSION OF INFIX TO POSTFIX

EXPRESSION

 While evaluating an infix expression,

 operations are executed according to the order as follows:

Brackets / Parentheses.

Exponentiation.

Multiplication / Division.

Addition / Subtraction.

 the operators with the same priority(e.g. * and /) are

evaluated from left to right.

STEPS TO CONVERT INFIX TO POSTFIX

EXPRESSION

 Step 1: The actual evaluation is determined by inserting

braces.

 Step 2: Convert the expression in the innermost braces into

postfix notation by putting the operator after the operands.

 Step 3: Repeat the above step (2) until the entire expression is

converted into postfix notation.

EXAMPLE OF INFIX TO POSTFIX

CONVERSION

RECURSION IMPLEMENTATION

 If a procedure contains either a call statement to itself/to a

second procedure that may eventually result in a cell statement

back to the original procedure. Then such a procedure is called

as recursive procedure.

 Recursion may be useful in developing algorithms for specific

problems. The stack may be used to implement recursive

procedures.

QUEUE

 Queue is a linear list of elements in which deletion of an

element can take place only at one end,

 called the front

 and insertion can take place only at the other end,

 called the rear.

 The first element in a queue will be the first one to be removed

from the list.

 Therefore, queues are called FIFO lists.

QUEUE

QUEUE ADT

 The definition of an abstract data type clearly states that for a

data structure to be abstract, it should have the two

characteristics as follows.

 There should be a particular way in which components are

related to each other.

 A statement of the operations that can be performed on

element of the abstract data type should specified.

QUEUE OPERATIONS

Queue overflow.

Insertion of the element into the queue.

Queue underflow.

Deletion of the element from the queue.

Display of the queue.

ARRAY IMPLEMENTATION IN C

 Array is a data structure that stores a fixed number of

elements.

 One of the major limitations of an array is that its size should

be fixed prior to using it.

 The size of the queue keeps on changing as the elements are

either removed from the front end or added at the rear end.

 The solution of this problem is to declare an array with a

maximum size.

FIGURE TO REPRESENT A QUEUE USING

ARRAY

INSERTION AND DELETION

OPERATIONS IN QUEUE USING ARRAYS

 We consider two variables front and rear which are declared to

point to both the ends of the queue.

 The array begins with index therefore , the maximum number

of elements that can be stored can be consider as MAX-1(n-1).

 If the number of elements are already stored in the queue is

reported to be full.

 If the elements are added then the rear is incremented using the

pointer and new item is stored in the array.

ADDING ELEMENTS IN A QUEUE

 The front and rear variables are initially set to -1, which

denotes that the queue is empty.

 If the item being added is the first element then as the item is

added, .the queue front is set to 0 indicating that the queue is

now full.

DELETING ELEMENTS IN A QUEUE

 For deleting elements from the queue, the function first checks

if there are any elements for deletion. If not , the queue is said

to be empty otherwise an element is deleted.

LINKED IMPLEMENTATION IN C

 The linked list representation of a queue does not have any

restrictions on the number of elements it can hold.

 The elements are allocated dynamically , hence it can grow as

long as there is sufficient memory available for dynamic

allocation.

APPLICATION OF QUEUE

Job scheduling.

Categorizing data.

Random number generation.

TYPES OF QUEUES

Circular queue.

De queue (double ended queue).

Priority queue.

CIRCULAR QUEUE

 Circular queues are implemented in circular form rather than

in a straight line.

 This form over come the problem of unutilized space in linear

queue implemented as an array.

 In the array implementation there is a possibility that the queue

is reported full even though slots of the queue are empty.

CIRCULAR QUEUE

 Suppose an array x of n elements is used to implement a

circular queue. If we go on adding elements to the queue we

may reach x[n-1].

 In a queue array if the elements reach the end then it reports

the queue is full even some slots are empty but in circular

queue ,it would not report as full until all the slots are

occupied.

REPRESENTATION OF CIRCULAR

QUEUE

ADDING ELEMENTS INTO CIRCULAR

QUEUE

 The conditions that are checked before inserting the elements :

 If the front and rear are in adjacent locations(i.e. rare following

front)the message ‘Queue is full’ is displayed.

 If the value of front is -1 then it denotes that the queue is

empty and that the element to be added would be the first

element in the queue . The value of front and rear in such a

case are set to 0 and new element gets placed at 0Th position.

ADDING ELEMENTS INTO CIRCULAR

QUEUE

 Some of the positions at the front end of the array might be

empty .

 This happens if we have deleted some elements from the queue
, when the value of rear is MAX-1 and the value of front is
greater than 0.

 In such a case value of rear is set to 0 and the element to be
added is added to this position.

 The element is added at the rear position in case the value of
front is either equal to or greater than 0 and the value of rear is
less than MAX-1.

ADDING ELEMENTS IN CIRCULAR

QUEUE

DELETING ELEMENTS INTO CIRCULAR

QUEUE

 The conditions that are checked before deleting the elements :

 First it is checked whether the queue is empty or not . The

elements at the front position will be deleted.

 Now , it is checked if the value of front is equal to rear . If it is,

then the element which will be deleted is the only element in

the queue .

 If the element is removes, the queue will be empty and front

and rear are set to -1.

DELETING ELEMENTS IN CIRCULAR

QUEUE
 On Deleting an element from the queue the value of front is set

to 0 if it is equal to MAX-1 otherwise front is simply

incremented by 1.

DOUBLE ENDED QUEUE

 A deque is a linear list in which elements can be added or

removed at either end but not in the middle.

 There are two variations of a deque an input restricted deque

and an output restricted deque which are intermediate between

deque and a regular queue.

 An input restricted deque is a deque which allows insertions

at only one end of the list , but allows deletions at both ends of

the list

DOUBLE ENDED QUEUE

 The output restricted deque is a deque which allows deletions

at only one end of the list but allows insertions at both ends of

the list.

 The two possibilities that must consider while inserting

/deleting elements into the queue are:

 When an attempt is made to insert an element into a deque

which is already full, an overflow occurs.

 When an attempt is made to delete an element from a deque

which is empty, underflow occurs.

REPRESENTATION OF DEQUE

UNIT-III

Topics:

 Trees – Terminology, Representation of Trees, Binary
tree ADT, Properties of Binary Trees, Binary Tree
Representations-array and linked representations,
Binary Tree traversals, threaded binary trees, Max
Priority Queue ADT-implementation-Max Heap-
Definition, Insertion into a Max Heap, Deletion from a
Max Heap.

 Graphs – Introduction, Definition, Terminology, Graph
ADT, Graph Representations- Adjacency matrix,
Adjacency lists, Graph traversals- DFS and BFS.

138

Definition of Tree

 A tree is a finite set of one or more nodes
such that:

 There is a specially designated node called
the root.

 The remaining nodes are partitioned into
n>=0 disjoint sets T1, ..., Tn, where each of
these sets is a tree.

 We call T1, ..., Tn the subtrees of the root.

139

A

T
0

T
4 T

5

T
1

T
3

T
2

T
6

 Fig.Tree 1

Representation of Tree
Level

1

2

3

 140

A

E

B C

F H

D

G

A

 Fig.Tree 2

Terminology

141

ROOT:
This is the unique node in the tree to which further subtrees are
attached.in the above fig node A is a root node.

Degree of the node:
The total number of sub-trees attached to the node is called the
degree of the node.
Node degree
A 3
E 0

Leaves:
These are terminal nodes of the tree.The nodes with degree 0 are
always the leaf nodes.In above given tree E,F,G,C and H are the leaf
nodes.

Internal nodes:
The nodes other than the root node and the leaves are called the
internal nodes.Here B and D are internal nodes.

142

Parent nodes:
The node which is having further sub-trees(branches)is called the
parent node of those sub-trees. In the given example node B is parent
node of E,F and G nodes.

Predecessor:
While displaying the tree ,if some particular node occurs previous to
some other node then that node is called the predecessor of the other
node.In above figure E is a predecessor of the node B.

successor:
The node which occurs next to some other node is a successor node.In
above figure B is successor of F and G.

Level of the tree:
The root node is always considered at level 0,then its adjacent children
are supposed to be at level 1 and so on.In above figure the node A is at
level 0,the nodes B,C,D are at level 1,the nodes E,F,G,H are at level 2.

143

Height of the tree:
The maximum level is the height of the tree.Here height of the
tree is 3.The height of the tree is also called depth of the tree.

Degree of tree:
The maximum degree of the node is called the degree of the
tree.

The degree of a node is the number of subtrees of the node

– The degree of A is 3; the degree of C is 1.

 The node with degree 0 is a leaf or terminal
node.

 A node that has subtrees is the parent of the
roots of the subtrees.

 The roots of these subtrees are the children of
the node.

 Children of the same parent are siblings.

 The ancestors of a node are all the nodes
along the path from the root to the node. 144

Binary Trees

 A binary tree is a finite set of nodes that is
either empty or consists of a root and two
disjoint binary trees called the left subtree
and the right subtree.

 Any tree can be transformed into binary
tree.

– by left child-right sibling representation

 The left subtree and the right subtree are
distinguished. 145

Types Of Binary Trees

There are three types of binary trees

•Left skewed binary tree

•Right skewed binary tree

•Complete binary tree

146

Left skewed binary tree

• If the right subtree is missing in every node of a tree
we cal it as left skewed tree.

A

B

C

147

Right skewed binary tree

• If the left subtree is missing in every node of a
tree we call it as right subtree.

A

B

C

148

Complete binary tree
• The tree in which degree of each node is at the most two is

called a complete binary tree.In a complete binary tree there
is exactly one node at level 0,twonodes at level 1 and four
nodes at level 2 and so on.so we can say that a complete
binary tree of depth d will contains exactly 2l nodes at each
level l,where l is from 0 to d.

E

C B

D F G

A

149

Abstract Data Type Binary_Tree
structure Binary_Tree(abbreviated BinTree) is

objects: a finite set of nodes either empty or
consisting of a root node, left Binary_Tree,
and right Binary_Tree.

functions:

 for all bt, bt1, bt2  BinTree, item  element

 Bintree Create()::= creates an empty binary tree

 Boolean IsEmpty(bt)::= if (bt==empty binary
tree) return TRUE else return FALSE

150

BinTree MakeBT(bt1, item, bt2)::= return a binary
tree
 whose left subtree is bt1, whose right subtree is
bt2,
 and whose root node contains the data item
Bintree Lchild(bt)::= if (IsEmpty(bt)) return error
 else return the left subtree of bt
element Data(bt)::= if (IsEmpty(bt)) return error
 else return the data in the root node
of bt
Bintree Rchild(bt)::= if (IsEmpty(bt)) return error
 else return the right subtree of bt

151

Maximum Number of Nodes in BT

 The maximum number of nodes on level i of a
binary tree is 2i-1, i>=1.

 The maximum nubmer of nodes in a binary tree
of depth k is 2k-1, k>=1.

Prove by induction.

2 2 11

1

i

i

k
k



  

152

Binary Tree Representation

•Sequential(Arrays) representation

•Linked representation

153

Array Representation of Binary Tree

This representation uses only a single linear
array tree as follows:

i)The root of the tree is stored in tree[0].

ii)if a node occupies tree[i],then its left child is
stored in tree[2*i+1],its right child is stored in
tree[2*i+2],and the parent is stored in tree[(i-
1)/2].

154

 Sequential Representation

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A

B

C

D

E

F

G

H

I

A

B C

G E

I

D

H

F

 .
 .
 .
 .

 .
 .
 .
 .

155

55

44 66

50

22

33

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

55

44

66

33

50

22

Sequential Representation

156

Advantages of sequential representation

The only advantage with this type of representation is that
the direct access to any node can be possible and finding the
parent or left right children of any particular node is fast
because of the random access.

157

Disadvantages of sequential representation

• The major disadvantage with this type of
representation is wastage of memory.

• The maximum depth of the tree has to be
fixed.

• The insertions and deletion of any node in the
tree will be costlier as other nodes has to be
adjusted at appropraite positions so that the
meaning of binary tree can be preserved.

158

Linked Representation

struct node

 {

 int data;

struct node * left_child, *right_child;

};

data left_child right_child

data

left_child right_child

159

Linked Representation

55

50

22

33

66 44

X X X

X X

X X

 root

55,44,66,33,50,22

160

Advantages of Linked representation

•This representation is superior to our
representation as there is no wastage of memory.
•Insertions and deletions which are the most
common operations can be done without moving the
other nodes.

161

Disadvantages of linked representation

• This representation does not provide direct
access to a node and special algorithms are
required.

• This representation needs additional space in
each node for storing the left and right sub-
trees.

162

Full BT VS Complete BT

 A binary tree with n nodes and depth k is
complete iff its nodes correspond to the nodes
numbered from 1 to n in the full binary tree of
depth k.

 A full binary tree of depth k is a binary tree of
depth k having 2 -1 nodes, k>=0.

k

A

B C

G E

I

D

H

F

A

B C

G E

K

D

J

F

I H O N M L

Full binary tree of depth 4

Complete binary tree

163

Binary Tree Traversals
 The process of going through a tree in such a way that each node is

visted once is tree traversal.several method are used for tree

traversal.the traversal in a binary tree involves three kinds of basic

activities such as:

 Visiting the root

 Traverse left subtree

 Traverse right subtree

164

We will use some notations to traverse a given binary
tree as follows:

L means move to the Left child.

R means move to the Right child.

D means the root/parent node.

The only difference among the methods is the order
in which these three operations are performed.

There are three standard ways of traversing a non
empty binary tree namely :

Preorder

Inorder

Postorder

165

Preorder(also known as depth-first order)

1.Visit the root(D)

2.Traverse the left subtree in preorder(L)

3.Traverse the right subtree in preorder(R)

 Print 1st

 Print 2nd

 Print 3rd

A-B-C-D-E is the preorder traversal of the
above figure.

A

B D

E C

Print 4th

Print at the last

166

Inorder(also known as symmetric order)

1.Traverse the left subtree in Inorder(L)

2.Visit the root(D)

3.Traverse the right subtree in Inorder(R)

 Print 3rd

 Print 2nd

 Print 1st

C-B-A-D-E is the Inorder traversal of the above
figure.

A

B D

E C

Print 4th

Print at the last

167

Postorder

1.Traverse the left subtree in postorder(L)

2.Traverse the right subtree in postorder(R)

3.Visit the root(D)

 Print at the last

 Print 3rd

 Print 1st

C-D-B-E-A is the postorder traversal of the
above figure.

A

B D

E C

Print 4th

Print 2nd

168

 Binary tree traversals
A

B C

G E

I

D

H

F

K
J

A

B C

G E

I

D

H

F

J

 FIG(a) FIG(b)

Preorder:ABDHIECFJKG preorder :ABDHIEJCFG
Inorder:HDIBEAJFKCG inorder: HDIBJEAFCG
Postorder:HIDEBJKFGCA postorder:HIDJEBFGCA

169

Arithmetic Expression Using BT

+

*

A

*

/

E

D

C

B

inorder traversal
A / B * C * D + E
infix expression
preorder traversal
+ * * / A B C D E
prefix expression
postorder traversal
A B / C * D * E +
postfix expression
level order traversal
+ * E * D / C A B

170

Inorder Traversal (recursive version)

void inorder(tree_pointer ptr)

/* inorder tree traversal */

{

 if (ptr) {

 inorder(ptr->left_child);

 printf(“%d”, ptr->data);

 indorder(ptr->right_child);

 }

}

A / B * C * D + E

171

Preorder Traversal (recursive version)

void preorder(tree_pointer ptr)

/* preorder tree traversal */

{

 if (ptr) {

 printf(“%d”, ptr->data);

 preorder(ptr->left_child);

 predorder(ptr->right_child);

 }

}

+ * * / A B C D E

172

Postorder Traversal (recursive version)

void postorder(tree_pointer ptr)

/* postorder tree traversal */

{

 if (ptr) {

 postorder(ptr->left_child);

 postdorder(ptr->right_child);

 printf(“%d”, ptr->data);

 }

}

A B / C * D * E +

173

Iterative Inorder Traversal
(using stack)

void iter_inorder(tree_pointer node)

{

 int top= -1; /* initialize stack */

 tree_pointer stack[MAX_STACK_SIZE];

 for (;;) {

 for (; node; node=node->left_child)

 add(&top, node);/* add to stack */

 node= delete(&top);

 /* delete from stack */

 if (!node) break; /* empty stack */

 printf(“%D”, node->data);

 node = node->right_child;

 }

} O(n)
174

Trace Operations of Inorder Traversal

Call of inorder Value in root Action Call of inorder Value in root Action

1 + 11 C

2 * 12 NULL

3 * 11 C printf

4 / 13 NULL

5 A 2 * printf

6 NULL 14 D

5 A printf 15 NULL

7 NULL 14 D printf

4 / printf 16 NULL

8 B 1 + printf

9 NULL 17 E

8 B printf 18 NULL

10 NULL 17 E printf

3 * printf 19 NULL

175

Level Order Traversal
(using queue)

void level_order(tree_pointer ptr)

/* level order tree traversal */

{

 int front = rear = 0;

 tree_pointer queue[MAX_QUEUE_SIZE];

 if (!ptr) return; /* empty queue */

 addq(front, &rear, ptr);

 for (;;) {

 ptr = deleteq(&front, rear);

176

 if (ptr) {

 printf(“%d”, ptr->data);

 if (ptr->left_child)

 addq(front, &rear,

 ptr->left_child);

 if (ptr->right_child)

 addq(front, &rear,

 ptr->right_child);

 }

 else break;

 }

}
+ * E * D / C A B

177

Copying Binary Trees
tree_poointer copy(tree_pointer original)

{

tree_pointer temp;

if (original) {

 temp=(tree_pointer) malloc(sizeof(node));

 if (IS_FULL(temp)) {

 fprintf(stderr, “the memory is full\n”);

 exit(1);

 }

 temp->left_child=copy(original->left_child);

 temp->right_child=copy(original->right_child);

 temp->data=original->data;

 return temp;

}

return NULL;

}

postorder

178

void post_order_eval(tree_pointer node)
{

/* modified post order traversal to evaluate a propositional
calculus tree */

 if (node) {
 post_order_eval(node->left_child);

 post_order_eval(node->right_child);
 switch(node->data) {

 case not: node->value =
 !node->right_child->value;

 break;

Post-order-eval function

179

case and: node->value =
 node->right_child->value &&
 node->left_child->value;
 break;
 case or: node->value =
 node->right_child->value | |
 node->left_child->value;
 break;
 case true: node->value = TRUE;
 break;
 case false: node->value = FALSE;
 }
 }
}

180

181

Threaded Binary Trees
 Two many null pointers in current representation

of binary trees
 n: number of nodes
 number of non-null links: n-1
 total links: 2n
 null links: 2n-(n-1)=n+1

 Replace these null pointers with some useful
“threads”.

Threaded Binary Trees (Continued)

182

If ptr->left_child is null,
 replace it with a pointer to the node that would be
 visited before ptr in an inorder traversal

If ptr->right_child is null,
 replace it with a pointer to the node that would be
 visited after ptr in an inorder traversal

183

A Threaded Binary Tree

A

B C

G E

I

D

H

F

root

dangling

dangling

inorder traversal:
H, D, I, B, E, A, F, C, G

 TRUE  

 FALSE

Data Structures for Threaded BT

typedef struct threaded_tree *threaded_pointer;

typedef struct threaded_tree {

 short int left_thread;

 threaded_pointer left_child;

 char data;

 threaded_pointer right_child;

 short int right_thread; };

left_thread left_child data right_child right_thread

FALSE: child TRUE: thread

184

185

Memory Representation of A Threaded BT

f f --

f f A

f f C f f B

t t E t t F t t G f f D

t t I t t H

root

186

Next Node in Threaded BT

threaded_pointer insucc(threaded_pointer

tree)

{

 threaded_pointer temp;

 temp = tree->right_child;

 if (!tree->right_thread)

 while (!temp->left_thread)

 temp = temp->left_child;

 return temp;

}

187

Inorder Traversal of Threaded BT

void tinorder(threaded_pointer tree)

{

/* traverse the threaded binary tree

inorder */

 threaded_pointer temp = tree;

 for (;;) {

 temp = insucc(temp);

 if (temp==tree) break;

 printf(“%3c”, temp->data);

 }

}
O(n)(timecomplexity)

188

Inserting Nodes into Threaded BTs

 Insert child as the right child of node parent

– change parent->right_thread to FALSE

– set child->left_thread and child->right_thread
to TRUE

– set child->left_child to point to parent

– set child->right_child to parent->right_child

– change parent->right_child to point to child

189

Examples

root

parent

A

B

C D
child

root

parent

A

B

C D
child

empty

Insert a node D as a right child of B.

(1)

(2)

(3)

*Figure 5.24: Insertion of child as a right child of parent in a threaded binary tree (p.217)

nonempty

(1)

(3)

(4)

(2)

190

191

Right Insertion in Threaded BTs

void insert_right(threaded_pointer parent,

 threaded_pointer child)

{

 threaded_pointer temp;

 child->right_child = parent->right_child;

 child->right_thread = parent->right_thread;

 child->left_child = parent; case (a)

 child->left_thread = TRUE;

 parent->right_child = child;

 parent->right_thread = FALSE;

 if (!child->right_thread) { case (b)
 temp = insucc(child);

 temp->left_child = child;

 }

}

(1)

(2)

(3)

(4)

192

Heap
 A max tree is a tree in which the key value in

each node is no smaller than the key values in
its children. A max heap is a complete binary
tree that is also a max tree.

 A min tree is a tree in which the key value in
each node is no larger than the key values in
its children. A min heap is a complete binary
tree that is also a min tree.

 Operations on heaps

– creation of an empty heap

– insertion of a new element into the heap;

– deletion of the largest element from the heap

 Sample max heaps

 [4]

14

12 7

8 10 6

9

6 3

5

30

25

[1]

[2] [3]

[5] [6]

[1]

 [2] [3]

[4]

 [1]

[2]

Property:
 The root of max heap contains
 the largest .

193

2

7 4

8 10 6

10

20 83

50

11

21

[1]

[2] [3]

[5] [6]

[1]

 [2] [3]

[4]

 [1]

[2]

 [4]

Sample min heaps

Property:
 The root of min heap contains
 the smallest.

194

195

ADT for Max Heap
structure MaxHeap
 objects: a complete binary tree of n > 0 elements organized so that

the value in each node is at least as large as those in its children
 functions:
 for all heap belong to MaxHeap, item belong to Element, n,

max_size belong to integer
 MaxHeap Create(max_size)::= create an empty heap that can

 hold a maximum of max_size elements
 Boolean HeapFull(heap, n)::= if (n==max_size) return TRUE

 else return FALSE
 MaxHeap Insert(heap, item, n)::= if (!HeapFull(heap,n)) insert

 item into heap and return the resulting heap
 else return error

 Boolean HeapEmpty(heap, n)::= if (n>0) return FALSE
 else return TRUE
 Element Delete(heap,n)::= if (!HeapEmpty(heap,n)) return one

 instance of the largest element in the heap
 and remove it from the heap

 else return error

196

Example of Insertion to Max Heap

20

15 2

14 10

initial location of new node

21

15 20

14 10 2

insert 21 into heap

20

15 5

14 10 2

insert 5 into heap

197

Insertion into a Max Heap

void insert_max_heap(element item, int *n)

{

 int i;

 if (HEAP_FULL(*n)) {

 fprintf(stderr, “the heap is full.\n”);

 exit(1);

 }

 i = ++(*n);

 while ((i!=1)&&(item.key>heap[i/2].key)) {

 heap[i] = heap[i/2];

 i /= 2;

 }

 heap[i]= item;

}

2k-1=n ==> k=log2(n+1)

O(log2n)

198

Example of Deletion from Max Heap

20

remove

15 2

14 10

10

15 2

14

15

14 2

10

199

Deletion from a Max Heap
element delete_max_heap(int *n)

{

 int parent, child;

 element item, temp;

 if (HEAP_EMPTY(*n)) {

 fprintf(stderr, “The heap is empty\n”);

 exit(1);

 }

 /* save value of the element with the
 highest key */

 item = heap[1];

 /* use last element in heap to adjust heap */

 temp = heap[(*n)--];

 parent = 1;

 child = 2;

200

while (child <= *n) {
 /* find the larger child of the current
 parent */
 if ((child < *n)&&
 (heap[child].key<heap[child+1].key))
 child++;
 if (temp.key >= heap[child].key) break;
 /* move to the next lower level */
 heap[parent] = heap[child];
 child *= 2;
 }
 heap[parent] = temp;
 return item;
}

Graphs

201

What is a graph?

• A data structure that consists of a set of nodes
(vertices) and a set of edges that relate the nodes
to each other

• The set of edges describes relationships among
the vertices

202

Formal definition of graphs

• A graph G is defined as follows:

 G=(V,E)

 V(G): a finite, nonempty set of vertices

 E(G): a set of edges (pairs of vertices)

203

Directed vs. undirected graphs

• When the edges in a graph have no
direction, the graph is called undirected

204

Directed vs. undirected graphs (cont.)

• When the edges in a graph have a direction,
the graph is called directed (or digraph)

E(Graph2) = {(1,3) (3,1) (5,9) (9,11) (5,7)

Warning: if the graph is

directed, the order of the

vertices in each edge is

important !!

205

Trees vs graphs

• Trees are special cases of graphs!!

206

Graph terminology

• Adjacent nodes: two nodes are adjacent if
they are connected by an edge

• Path: a sequence of vertices that connect two
nodes in a graph

• Complete graph: a graph in which every vertex
is directly connected to every other vertex

5 is adjacent to 7
7 is adjacent from 5

207

Graph terminology (cont.)

• What is the number of edges in a complete
directed graph with N vertices?

 N * (N-1)

2()O N

208

Graph terminology (cont.)

• What is the number of edges in a complete
undirected graph with N vertices?

 N * (N-1) / 2

2()O N

209

Graph terminology (cont.)

• Weighted graph: a graph in which each edge
carries a value

210

Graph implementation

• Array-based implementation

– A 1D array is used to represent the vertices

– A 2D array (adjacency matrix) is used to
represent the edges

211

Array-based implementation

212

Graph implementation (cont.)

• Linked-list implementation

– A 1D array is used to represent the vertices

– A list is used for each vertex v which contains the

vertices which are adjacent from v (adjacency list)

213

Linked-list implementation

214

Adjacency matrix vs. adjacency list
representation

• Adjacency matrix
– Good for dense graphs --|E|~O(|V|2)

– Memory requirements: O(|V| + |E|) = O(|V|2)

– Connectivity between two vertices can be tested
quickly

• Adjacency list
– Good for sparse graphs -- |E|~O(|V|)

– Memory requirements: O(|V| + |E|)=O(|V|)

– Vertices adjacent to another vertex can be found
quickly

215

Depth-First-Search (DFS)

• What is the idea behind DFS?

– Travel as far as you can down a path

– Back up as little as possible when you reach a
"dead end" (i.e., next vertex has been "marked"
or there is no next vertex)

• DFS can be implemented efficiently using a
 stack

216

Depth-First-Search (DFS) (cont.)

Set found to false
stack.Push(startVertex)
DO
 stack.Pop(vertex)
 IF vertex == endVertex
 Set found to true
 ELSE
 Push all adjacent vertices onto stack
WHILE !stack.IsEmpty() AND !found

IF(!found)
 Write "Path does not exist"

217

start end

(initialization)

218

219

220

template <class ItemType>

void DepthFirstSearch(GraphType<VertexType> graph, VertexType
startVertex, VertexType endVertex)

{

 StackType<VertexType> stack;

 QueType<VertexType> vertexQ;

 bool found = false;

 VertexType vertex;

 VertexType item;

 graph.ClearMarks();

 stack.Push(startVertex);

 do {

 stack.Pop(vertex);

 if(vertex == endVertex)

 found = true;

(continues)

221

 else {

 if(!graph.IsMarked(vertex)) {

 graph.MarkVertex(vertex);

 graph.GetToVertices(vertex, vertexQ);

 while(!vertexQ.IsEmpty()) {

 vertexQ.Dequeue(item);

 if(!graph.IsMarked(item))

 stack.Push(item);

 }

 }

 } while(!stack.IsEmpty() && !found);

 if(!found)

 cout << "Path not found" << endl;

}
(continues)

222

template<class VertexType>

void GraphType<VertexType>::GetToVertices(VertexType vertex,

 QueTye<VertexType>& adjvertexQ)

{

 int fromIndex;

 int toIndex;

 fromIndex = IndexIs(vertices, vertex);

 for(toIndex = 0; toIndex < numVertices; toIndex++)

 if(edges[fromIndex][toIndex] != NULL_EDGE)

 adjvertexQ.Enqueue(vertices[toIndex]);

}

223

Breadth-First-Searching (BFS)

• What is the idea behind BFS?

– Look at all possible paths at the same depth
before you go at a deeper level

– Back up as far as possible when you reach a
"dead end" (i.e., next vertex has been
"marked" or there is no next vertex)

224

Breadth-First-Searching (BFS) (cont.)

• BFS can be implemented efficiently using a queue

Set found to false
queue.Enqueue(startVertex)
DO
 queue.Dequeue(vertex)
 IF vertex == endVertex
 Set found to true
 ELSE
 Enqueue all adjacent vertices onto queue
WHILE !queue.IsEmpty() AND !found

• Should we mark a vertex when it is enqueued or
when it is dequeued ?

IF(!found)
 Write "Path does not exist"

225

start end

(initialization)

226

next:

227

228

template<class VertexType>
void BreadthFirtsSearch(GraphType<VertexType> graph,

VertexType startVertex, VertexType endVertex);
{
 QueType<VertexType> queue;
 QueType<VertexType> vertexQ;//

 bool found = false;
 VertexType vertex;
 VertexType item;

 graph.ClearMarks();
 queue.Enqueue(startVertex);
 do {
 queue.Dequeue(vertex);
 if(vertex == endVertex)
 found = true;

(continues)

229

 else {

 if(!graph.IsMarked(vertex)) {

 graph.MarkVertex(vertex);

 graph.GetToVertices(vertex, vertexQ);

 while(!vertxQ.IsEmpty()) {

 vertexQ.Dequeue(item);

 if(!graph.IsMarked(item))

 queue.Enqueue(item);

 }

 }

 }

 } while (!queue.IsEmpty() && !found);

 if(!found)

 cout << "Path not found" << endl;

}

230

Single-source shortest-path problem

• There are multiple paths from a source
vertex to a destination vertex

• Shortest path: the path whose total weight
(i.e., sum of edge weights) is minimum

• Examples:
– Austin->Houston->Atlanta->Washington: 1560

miles

– Austin->Dallas->Denver->Atlanta->Washington:
2980 miles

231

Single-source shortest-path problem
(cont.)

• Common algorithms: Dijkstra's algorithm,
Bellman-Ford algorithm

• BFS can be used to solve the shortest graph
problem when the graph is weightless or all
the weights are the same

 (mark vertices before Enqueue)

232

UNIT-IV

Topics:

 Searching- Linear Search, Binary Search, Static
Hashing-Introduction, hash tables, hash
functions, Overflow Handling.

 Sorting-Insertion Sort, Selection Sort, Radix
Sort, Quick sort, Heap Sort, Comparison of
Sorting methods.

233

Data Structures Using C++ 234

Sequential Search
O (n)

• A sequential search of a list/array begins at
the beginning of the list/array and continues
until the item is found or the entire list/array
has been searched

Data Structures Using C++ 235

Sequential Search

bool LinSearch(double x[], int n, double item){

 for(int i=0;i<n;i++){

 if(x[i]==item) return true;

 else return false;

 }

 return false;

 }

Linear Search - Example

• Array numlist contains:

• Searching for the the value 11, linear search
examines 17, 23, 5, and 11

• Searching for the the value 7, linear search examines
17, 23, 5, 11, 2, 29, and 3

17 23 5 11 2 29 3

Data Structures Using C++ 237

Search Algorithms
Suppose that there are n elements in the array. The following expression

gives the average number of comparisons:

It is known that

Therefore, the following expression gives the average number of comparisons

made by the sequential search in the successful case:

Data Structures Using C++ 238

Search Algorithms

Data Structures Using C++ 239

Binary Search
O(log2 n)

• A binary search looks for an item

in a list using a divide-and-
conquer strategy

Binary Search

 Requires array elements to be in order
1. Divides the array into three sections:

– middle element
– elements on one side of the middle element
– elements on the other side of the middle

element
2. If the middle element is the correct value, done.

Otherwise, go to step 1. using only the half of the
array that may contain the correct value.

3. Continue steps 1. and 2. until either the value is
found or there are no more elements to examine

Data Structures Using C++ 241

Binary Search: middle element

left + right

2
mid =

Data Structures Using C++ 242

Binary Search

bool BinSearch(double list[], int n, double
item, int&index){

 int left=0;
 int right=n-1;
 int mid;
 while(left<=right){
 mid=(left+right)/2;

if(item> list [mid]){ left=mid+1; }
 else if(item< list [mid]){right=mid-1;}
 else{
 item= list [mid];
 index=mid;
 return true; }
 }// while
 return false;
 }

Data Structures Using C++ 244

Binary Search: Example

Binary Search - Example

• Array numlist2 contains:

• Searching for the the value 11, binary search
examines 11 and stops

• Searching for the the value 7, binary search
examines 11, 3, 5, and stops

2 3 5 11 17 23 29

Binary Search - Tradeoffs

• Benefits:

– Much more efficient than linear search. For
array of N elements, performs at most
log2N comparisons

• Disadvantages:

– Requires that array elements be sorted

Concept of Hashing

• In CS, a hash table, or a hash map, is a data
structure that associates keys (names) with
values (attributes).

– Look-Up Table

– Dictionary

– Cache

– Extended Array

Example

A small phone book as a hash table.
(Figure is from Wikipedia)

Search vs. Hashing

• Search tree methods: key comparisons

– Time complexity: O(size) or O(log n)

• Hashing methods: hash functions

– Expected time: O(1)

• Types

– Static hashing (section 8.2)

– Dynamic hashing (section 8.3)

Static Hashing

• Key-value pairs are stored in a fixed size table
called a hash table.

– A hash table is partitioned into many
buckets.

– Each bucket has many slots.

– Each slot holds one record.

– A hash function f(x) transforms the
identifier (key) into an address in the hash
table

Hash table

. . .

.

.

.

.

.

.

.

.

.

. . .

b
 b

u
ckets

0

1

b-1

0 1 s-1

s slots

Data Structure for Hash Table

#define MAX_CHAR 10

#define TABLE_SIZE 13

typedef struct {

 char key[MAX_CHAR];

 /* other fields */

} element;

element hash_table[TABLE_SIZE];

Some Issues

• Choice of hash function.

– Really tricky!

– To avoid collision (two different pairs are
in the same the same bucket.)

– Size (number of buckets) of hash table.

• Overflow handling method.

– Overflow: there is no space in the bucket
for the new pair.

Example (fig 8.1)

 Slot 0 Slot 1

0 acos atan

1

2 char ceil

3 define

4 exp

5 float floor

6

…

25

synonyms synonyms:

char, ceil,

clock, ctime

overflow

synonyms

Choice of Hash Function

• Requirements

– easy to compute

– minimal number of collisions

• If a hashing function groups key values
together, this is called clustering of the keys.

• A good hashing function distributes the key
values uniformly throughout the range.

Some hash functions

• Middle of square

– H(x):= return middle digits of x^2

• Division

– H(x):= return x % k

• Multiplicative:

– H(x):= return the first few digits of the
fractional part of x*k, where k is a fraction.

Some hash functions II

• Folding:
– Partition the identifier x into several parts, and add the parts

together to obtain the hash address

– e.g. x=12320324111220; partition x into 123,203,241,112,20;
then return the address 123+203+241+112+20=699

– Shift folding vs. folding at the boundaries

• Digit analysis:
– If all the keys have been known in advance, then we could delete

the digits of keys having the most skewed distributions, and use
the rest digits as hash address.

Overflow Handling

• An overflow occurs when the home bucket
for a new pair (key, element) is full.

• We may handle overflows by:
– Search the hash table in some systematic

fashion for a bucket that is not full.
• .

• Linear probing (linear open addressing).
• Quadratic probing.
• Random probing.

– Eliminate overflows by permitting each
bucket to keep a list of all pairs for which it
is the home bucket.
• Array linear list.
• Chain

Linear probing (linear open
addressing)

• Open addressing ensures that all elements
are stored directly into the hash table, thus
it attempts to resolve collisions using various
methods.

• Linear Probing resolves collisions by placing
the data into the next open slot in the table.

Linear Probing – Get And Insert

• divisor = b (number of buckets) = 17.

• Home bucket = key % 17.

0 4 8 12 16

• Insert pairs whose keys are 6, 12, 34, 29,
28, 11, 23, 7, 0, 33, 30, 45

6 12 29 34 28 11 23 7 0 33 30 45

Linear Probing – Delete

• Delete(0)

0 4 8 12 16

6 12 29 34 28 11 23 7 0 33 30 45

0 4 8 12 16

6 12 29 34 28 11 23 7 45 33 30

• Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16

6 12 29 34 28 11 23 7 45 33 30

Linear Probing – Delete(34)

• Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16

6 12 29 34 28 11 23 7 0 33 30 45

0 4 8 12 16

6 12 29 0 28 11 23 7 33 30 45

0 4 8 12 16

6 12 29 0 28 11 23 7 33 30 45

0 4 8 12 16

6 12 29 28 11 23 7 0 33 30 45

Linear Probing – Delete(29)

• Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16

6 12 29 34 28 11 23 7 0 33 30 45

0 4 8 12 16

6 12 34 28 11 23 7 0 33 30 45

0 4 8 12 16

6 12 11 34 28 23 7 0 33 30 45

0 4 8 12 16

6 12 11 34 28 23 7 0 33 30 45

0 4 8 12 16

6 12 11 34 28 23 7 0 33 30 45

Performance Of Linear Probing

• Worst-case find/insert/erase time is (n), where
n is the number of pairs in the table.

• This happens when all pairs are in the same
cluster.

0 4 8 12 16

6 12 29 34 28 11 23 7 0 33 30 45

Problem of Linear Probing

• Identifiers tend to cluster together

• Adjacent cluster tend to coalesce

• Increase the search time

Quadratic Probing

• Linear probing searches buckets (H(x)+i2)%b

• Quadratic probing uses a quadratic function
of i as the increment

• Examine buckets H(x), (H(x)+i2)%b, (H(x)-
i2)%b, for 1<=i<=(b-1)/2

• b is a prime number of the form 4j+3, j is an
integer

Random Probing

• Random Probing works incorporating with
random numbers.

– H(x):= (H’(x) + S[i]) % b

– S[i] is a table with size b-1

– S[i] is a random permuation of integers
[1,b-1].

Some Applications of Hash Tables

• Database systems: Specifically, those that require
efficient random access. Generally, database
systems try to optimize between two types of
access methods: sequential and random. Hash
tables are an important part of efficient random
access because they provide a way to locate data
in a constant amount of time.

• Symbol tables: The tables used by compilers
to maintain information about symbols from a
program. Compilers access information about
symbols frequently. Therefore, it is important
that symbol tables be implemented very
efficiently.

• Data dictionaries: Data structures that
support adding, deleting, and searching for
data. Although the operations of a hash table
and a data dictionary are similar, other data
structures may be used to implement data
dictionaries. Using a hash table is particularly
efficient.

• Network processing algorithms: Hash tables
are fundamental components of several
network processing algorithms and
applications, including route lookup, packet
classification, and network monitoring.

• Browser Cashes: Hash tables are used to
implement browser cashes.

Problems for Which Hash Tables are
not Suitable

1.Problems for which data ordering is required.
 Because a hash table is an unordered data

structure, certain operations are difficult and
 expensive. Range queries, proximity queries,

selection, and sorted traversals are possible
 only if the keys are copied into a sorted data

structure. There are hash table implementations
 that keep the keys in order, but they are far from

efficient.

• 2. Problems having multidimensional data.

• 3. Prefix searching especially if the keys are
long and of variable-lengths.

• 4. Problems that have dynamic data:
• Open-addressed hash tables are based on

1D-arrays, which are difficult to resize
• once they have been allocated. Unless you

want to implement the table as a
• dynamic array and rehash all of the keys

whenever the size changes. This is an
• incredibly expensive operation. An

alternative is use a separate-chained hash
tables or dynamic hashing.

• 5. Problems in which the data does not have
unique keys.

• Open-addressed hash tables cannot be used
if the data does not have unique keys. An
alternative is use separate-chained hash
tables.

Sorting

Sorting

• To arrange a set of items in sequence.

• It is estimated that 25~50% of all computing
power is used for sorting activities.

• Possible reasons:

– Many applications require sorting;

– Many applications perform sorting when
they don't have to;

– Many applications use inefficient sorting
algorithms.

Sorting: Definition

Sorting: an operation that segregates items into
groups according to specified criterion.

A = { 3 1 6 2 1 3 4 5 9 0 }

A = { 0 1 1 2 3 3 4 5 6 9 }

280

Some Definitions

• Internal Sort

– The data to be sorted is all stored in the
computer’s main memory.

• External Sort

– Some of the data to be sorted might be stored
in some external, slower, device.

• In Place Sort

– The amount of extra space required to sort the
data is constant with the input size.

Types of Sorting Algorithms

There are many, many different types of
sorting algorithms, but the primary ones are:

● Bubble Sort
● Selection Sort
● Insertion Sort
● Merge Sort
●Quick Sort
● Shell Sort

●Radix Sort
● Swap Sort
●Heap Sort

282

Insertion Sort

• Idea: like sorting a hand of playing cards

– Start with an empty left hand and the cards

facing down on the table.

– Remove one card at a time from the table,

and insert it into the correct position in the

left hand

• compare it with each of the cards already

in the hand, from right to left

– The cards held in the left hand are sorted

• these cards were originally the top cards

of the pile on the table

284

To insert 12, we need to
make room for it by
moving first 36 and
then 24.

Insertion Sort

285

Insertion Sort

286

Insertion Sort

287

Insertion Sort

5 2 4 6 1 3

input array

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

sorted unsorted

288

Insertion Sort

Insertion Sort: Analysis

• Running time analysis:

– Worst case: O(N2)

– Best case: O(N)

Selection Sort: Idea

1. We have two group of items:
– sorted group, and

– unsorted group

2. Initially, all items are in the unsorted group.
The sorted group is empty.
– We assume that items in the unsorted group

unsorted.

– We have to keep items in the sorted group
sorted.

Selection Sort: Cont’d

1. Select the “best” (eg. smallest) item from the
unsorted group, then put the “best” item at
the end of the sorted group.

2. Repeat the process until the unsorted group
becomes empty.

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted


Largest

Selection Sort

5 1 3 4 2 6

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 2 6

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 2 6

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 2 6

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 2 6

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 2 6

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 2 6

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 2 6

Comparison

Data Movement

Sorted


Largest

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted


Largest

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted


Largest

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

2 1 3 4 5 6

Comparison

Data Movement

Sorted


Largest

Selection Sort

1 2 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 5 6

Comparison

Data Movement

Sorted

DONE!

42 40 2 1 3 3 4 0 -1 65 58 43

40 2 1 43 3 4 0 -1 42 65 58 3

40 2 1 43 3 4 0 -1 58 3 65 42

40 2 1 43 3 65 0 -1 58 3 42 4

Selection Sort: Example

42 40 2 1 3 3 4 0 65 58 43 -1

42 -1 2 1 3 3 4 0 65 58 43 40

42 -1 2 1 3 3 4 65 58 43 40 0

42 -1 2 1 0 3 4 65 58 43 40 3

Selection Sort: Example

1

42 -1 2 1 3 4 65 58 43 40 3 0

42 -1 0 3 4 65 58 43 40 3 2

1 42 -1 0 3 4 65 58 43 40 3 2

1 42 0 3 4 65 58 43 40 3 2 -1

1 42 0 3 4 65 58 43 40 3 2 -1

Selection Sort: Example

Selection Sort: Analysis

• Running time:

– Worst case: O(N2)

– Best case: O(N2)

332

Radix Sort
• This sort is unusual because it does not

directly compare any of the elements

• We instead create a set of buckets and
repeatedly separate the elements into the
buckets

• On each pass, we look at a different part of
the elements

333

Radix Sort
• Assuming decimal elements and 10

buckets, we would put the elements into
the bucket associated with its units digit

• The buckets are actually queues so the

elements are added at the end of the
bucket

• At the end of the pass, the buckets are
combined in increasing order

334

Radix Sort

• On the second pass, we separate the
elements based on the “tens” digit, and on
the third pass we separate them based on
the “hundreds” digit

• Each pass must make sure to process the
elements in order and to put the buckets
back together in the correct order

335

Radix Sort Example

The unit digit is 0

The unit digit is 1

 The unit digit is 2

 The unit digit is 3

336

Radix Sort Example (continued)

The unit digits are already in order

Now start sorting the tens digit

337

Radix Sort Example (continued)

Values in the buckets are now in order

The unit and tens digits are already in order

Now start sorting the hundreds digit

338

The Algorithm to sort a set of numeric
keys

shift = 1

for pass = 1 to keySize do

for entry = 1 to N do

bucketNumber = (list[entry] / shift) mod 10

Append(bucket[bucketNumber], list[entry])

end for

list = CombineBuckets()

shift = shift * 10

end for

quotient

remainder

of digits of the longest key

of elemnts in the list

bucketNumber: lies between 0 and 9

339

Radix Sort Analysis

• Each element is examined once for each of
the digits it contains, so if the elements
have at most M digits and there are N
elements this algorithm has order O(M*N)

• This means that sorting is linear based on
the number of elements

• Why then isn’t this the only sorting
algorithm used?

340

Radix Sort Analysis
• Though this is a very time efficient

algorithm it is not space efficient

• If an array is used for the buckets and we
have B buckets, we would need N*B extra
memory locations because it’s possible for
all of the elements to wind up in one
bucket

• If linked lists are used for the buckets you
have the overhead of pointers

341

Radix Sort

• Radix is the base of a number system or
logarithm.

• Radix sort is a multiple pass distribution sort.

– It distributes each item to a bucket
according to part of the item's key.

– After each pass, items are collected from

the buckets, keeping the items in order,
then redistributed according to the next
most significant part of the key.

• This sorts keys digit-by-digit (hence referred to
as digital sort), or, if the keys are strings that
we want to sort alphabetically, it sorts
character-by-character.

• It was used in card-sorting machines.

• Radix sort uses bucket or count sort as the

stable sorting algorithm, where the initial
relative order of equal keys is unchanged.

Integer representations can be used to represent
strings of characters as well as integers.
So, anything that can be represented by integers
can be rearranged to be in order by a radix sort.

Execution of Radix sort is in Ө(d(n + k)), where n
is instance size or number of elements that need
to be sorted. k is the number of buckets that can
be generated and d is the number of digits in the
element, or length of the keys.

Radix sort

• There’s also a bottom-up version of bucket sort
called radix sort, which is easiest to state for
character strings of the same length p:

– for i from p down to 1

– for each string s, assign s to the bucket
corresponding to its ith character

– concatenate the buckets into an output
list

– clear each bucket

• For b buckets, the time is Q(b+n) per iteration
and thus Q(p(b+n)) overall

Radix sort details

• Concatenation is easiest if linked lists are used
for the individual buckets.

• It is important that distribution into buckets
be stable – elements should appear in the
buckets in the order of the original input.

• If strings have different lengths, they can be
padded (explicitly or implicitly) with nulls on
the right

Radix sort analysis

• Note that if p and b are independent of n,
then radix sort has (n) time complexity

• However if p is independent of n, then there
can be at most (bp) distinct strings.

• So if all strings are distinct, then n is O(bp), so
p is W(log n).

• And thus the time complexity is W(n log n)

Selection using bucket sort

• Top-down bucket sort can easily be converted
to a selection algorithm

• To find the kth smallest item, distribute the
items into buckets, counting the number of
buckets

• Then select recursively from the appropriate
bucket, replacing k by a value that depends on
the counts of the preceding buckets

Radix sort example

• To sort:

– 123, 12, 313, 321, 212, 112, 221, 132, 131

• Pass 1 assignment to buckets:

– 0:

– 1: 321, 221, 131

– 2: 12, 212, 112, 132

– 3: 123, 313

• Concatenated result

– 321, 221, 131, 12, 212, 112, 132, 123, 313

Pass 2

• From previous pass

– 321, 221, 131, 212, 112, 132, 123, 313

• Pass 2 assignment to buckets:

– 0:

– 1: 12, 212, 112, 313

– 2: 321, 221, 123

– 3: 131, 132

• Concatenated result

– 12, 212, 112, 313, 321, 221, 123, 131, 132

Pass 3

• From previous pass
– 12, 212, 112, 313, 321, 221, 123, 131, 132

• Pass 3 assignment to buckets:
– 0: 12

– 1: 112, 123, 131, 132

– 2: 212, 221

– 3: 313, 321

• Concatenated result
– 12, 112, 123, 131, 132, 212, 221, 313, 321

351

Classification of Radix Sort

Radix sort is classified based on how it works
internally:

• least significant digit (LSD) radix sort:

processing starts from the least significant
digit and moves towards the most significant
digit.

• most significant digit (MSD) radix sort:
processing starts from the most significant
digit and moves towards the least significant
digit. This is recursive. It works in the following
way:

– If we are sorting strings, we would create a
bucket for ‘a’,’b’,’c’ upto ‘z’.

– After the first pass, strings are roughly

sorted in that any two strings that begin
with different letters are in the correct
order.

– If a bucket has more than one string, its
elements are recursively sorted (sorting into
buckets by the next most significant
character).

– Contents of buckets are concatenated.

• The differences between LSD and MSD radix
sorts are
– In MSD, if we know the minimum number

of characters needed to distinguish all the
strings, we can only sort these number of
characters. So, if the strings are long, but
we can distinguish them all by just looking
at the first three characters, then we can
sort 3 instead of the length of the keys.

354

Classification of Radix Sort…contd

– LSD approach requires padding short keys if
key length is variable, and guarantees that
all digits will be examined even if the first 3-
4 digits contain all the information needed
to achieve sorted order.

– MSD is recursive. LSD is non-recursive.
– MSD radix sort requires much more

memory to sort elements. LSD radix sort is
the preferred implementation between the
two.

• MSD recursive radix sorting has applications to
parallel computing, as each of the sub-buckets
can be sorted independently of the rest.

• Each recursion can be passed to the next
available processor.

 The Postman's sort is a variant of MSD radix
sort where attributes of the key are described
so the algorithm can allocate buckets
efficiently. This is the algorithm used by letter-
sorting machines in the post office: first states,
then post offices, then routes, etc. The smaller
buckets are then recursively sorted.

357

Example of LSD-Radix Sort

12 44 41 34 11 32 23

Input is an array of 15 integers. For integers, the number of buckets is 10, from 0 to 9.
The first pass distributes the keys into buckets by the least significant digit (LSD). When
the first pass is done, we have the following.

23

44

34

12

42

32

41

11

0 1 2 3 4 5 6 7 8 9

5087 77

77

50 87 58

58

08

0842

358

Example of LSD-Radix Sort…contd

50

We collect these, keeping their relative order:

Now we distribute by the next most significant digit, which is the highest digit in our example,

and we get the following.

11

12

23

32

34

41

42

44

When we collect them, they are in order.

12 42 444111 3223 34

12 42 4441 3411 32 23 77 58 08

0 1 2 3 4 5 6 7 8 9

50 877708

08 50 77 87

58

58

87

359

Advantages and Disadvantages

• Advantages
– Radix and bucket sorts are stable,

preserving existing order of equal keys.
– They work in linear time, unlike most other

sorts. In other words, they do not bog down
when large numbers of items need to be
sorted. Most sorts run in O(n log n) or
O(n^2) time.

– The time to sort per item is constant, as no
comparisons among items are made. With
other sorts, the time to sort per time
increases with the number of items.

– Radix sort is particularly efficient when you
have large numbers of records to sort with
short keys.

• Drawbacks

– Radix and bucket sorts do not work well
when keys are very long, as the total sorting
time is proportional to key length and to the
number of items to sort.

– They are not “in-place”, using more working
memory than a traditional sort.

Quicksort Concept
• Basic Concept: divide and conquer

• Select a pivot and split the data into two
groups: (< pivot) and (> pivot):

(<pivot)
LEFT group

(> pivot)
RIGHT group

• Recursively apply Quicksort to the subgroups

Quicksort Start

Unsorted Array

Start with all data
in an array, and
consider it unsorted

Quicksort Step 1

26

Step 1, select a pivot
(it is arbitrary)

We will select the first
element, as presented in the
original algorithm by
C.A.R. Hoare in 1962.

33 35 29 19

pivot

12 22

Quicksort Step 2

26

Step 2, start process of
dividing data into LEFT
and RIGHT groups:

The LEFT group will
 have elements less than
 the pivot.
The RIGHT group will have
 elements greater that the pivot.

Use markers left and right

33 35 29 19

left

pivot

12 22

right

Quicksort Step 3

26

Step 3,
If left element belongs
 to LEFT group, then increment
left index.

If right index element belongs
to RIGHT, then decrement right.

Exchange when you find
elements that belong to the other
group.

33 35 29 19

left

pivot

12 22

right

Quicksort Step 4

26

Step 4:

Element 33 belongs
 to RIGHT group.

Element 22 belongs
 to LEFT group.

Exchange the two
 elements.

33 35 29 19

left

pivot

12 22

right

26 22 35 29 19

left

pivot

12 33

right

Quicksort Step 5

26

Step 5:

After the exchange,
increment left marker,
decrement right marker.

22 35 29 19

left

pivot

12 33

right

Quicksort Step 6

26

Step 6:

Element 35 belongs
 to RIGHT group.

Element 12 belongs
to LEFT group.

Exchange,
increment left, and
decrement right.

22 35 29 19

left

pivot

12 33

right

26 22 12 29 19

left

pivot

35 33

right

Quicksort Step 7

26

Step 7:

Element 29 belongs
 to RIGHT.

Element 19 belongs
 to LEFT.

Exchange,
increment left,
decrement right.

22 12 29 19

left

pivot

35 33

right

26 22 12 19 29

left

pivot

35 33

right

Quicksort Step 8

26

Step 8:
When the left and right
markers pass each other,
we are done with the
partition task.

Swap the right with pivot.

22 12 19 29

left

pivot

35 33

right

26
19 22 12 29

pivot

35 33

LEFT RIGHT

Quicksort Step 9

Step 9:
Apply Quicksort
to the LEFT and
RIGHT groups,
recursively.

Assemble parts when done

pivot

26

19 22 12 29

previous pivot

35 33

Quicksort Quicksort

pivot

12 19 22 29 33 35

26

26 12 19 22 29 33 35

Quicksort Efficiency

The partitioning of an array into two parts is O(n)

The number of recursive calls to Quicksort depends on how
many times we can split the array into two groups.
On average this is O (log2 n)

The overall Quicksort efficiency is O(n) = n log2n

What is the worst-case efficiency?
 Compare this to the worst case for the heapsort.

Quicksort Concept
• Basic Concept: divide and conquer

• Select a pivot and split the data into two
groups: (< pivot) and (> pivot):

(<pivot)
LEFT group

(> pivot)
RIGHT group

• Recursively apply Quicksort to the subgroups

Quicksort Start

Unsorted Array

Start with all data
in an array, and
consider it unsorted

Quicksort Step 1

26

Step 1, select a pivot
(it is arbitrary)

We will select the first
element, as presented in the
original algorithm by
C.A.R. Hoare in 1962.

33 35 29 19

pivot

12 22

Quicksort Step 2

26

Step 2, start process of
dividing data into LEFT
and RIGHT groups:

The LEFT group will
 have elements less than
 the pivot.
The RIGHT group will have
 elements greater that the pivot.

Use markers left and right

33 35 29 19

left

pivot

12 22

right

Quicksort Step 3

26

Step 3,
If left element belongs
 to LEFT group, then increment
left index.

If right index element belongs
to RIGHT, then decrement right.

Exchange when you find
elements that belong to the other
group.

33 35 29 19

left

pivot

12 22

right

Quicksort Step 4

26

Step 4:

Element 33 belongs
 to RIGHT group.

Element 22 belongs
 to LEFT group.

Exchange the two
 elements.

33 35 29 19

left

pivot

12 22

right

26 22 35 29 19

left

pivot

12 33

right

Quicksort Step 5

26

Step 5:

After the exchange,
increment left marker,
decrement right marker.

22 35 29 19

left

pivot

12 33

right

Quicksort Step 6

26

Step 6:

Element 35 belongs
 to RIGHT group.

Element 12 belongs
to LEFT group.

Exchange,
increment left, and
decrement right.

22 35 29 19

left

pivot

12 33

right

26 22 12 29 19

left

pivot

35 33

right

Quicksort Step 7

26

Step 7:

Element 29 belongs
 to RIGHT.

Element 19 belongs
 to LEFT.

Exchange,
increment left,
decrement right.

22 12 29 19

left

pivot

35 33

right

26 22 12 19 29

left

pivot

35 33

right

Quicksort Step 8

26

Step 8:
When the left and right
markers pass each other,
we are done with the
partition task.

Swap the right with pivot.

22 12 19 29

left

pivot

35 33

right

26
19 22 12 29

pivot

35 33

LEFT RIGHT

Quicksort Step 9

Step 9:
Apply Quicksort
to the LEFT and
RIGHT groups,
recursively.

Assemble parts when done

pivot

26

19 22 12 29

previous pivot

35 33

Quicksort Quicksort

pivot

12 19 22 29 33 35

26

26 12 19 22 29 33 35

Quicksort Efficiency
The partitioning of an array into two parts is O(n)

The number of recursive calls to Quicksort depends
on how many times we can split the array into two
groups.
On average this is O (log2 n)

The overall Quicksort efficiency is O(n) = n log2n

What is the worst-case efficiency?
 Compare this to the worst case for the heapsort.

Heap

• The root of the tree A[1] and given index i
of a node, the indices of its parent, left
child and right child can be computed

 PARENT (i)
 return floor(i/2)
LEFT (i)
 return 2i
RIGHT (i)
 return 2i + 1

Heap order property

• For every node v, other than the root, the
key stored in v is greater or equal (smaller
or equal for max heap) than the key
stored in the parent of v.

• In this case the maximum value is stored
in the root

Definition

• Max Heap

– Store data in ascending order

– Has property of

 A[Parent(i)] ≥ A[i]

• Min Heap

– Store data in descending order

– Has property of

 A[Parent(i)] ≤ A[i]

Max Heap Example

16 19 1 4 12 7

Array A

19

12 16

4 1 7

Min heap example

12 7 19 16 4 1

Array A

1

4 16

12 7 19

Insertion

• Algorithm
1. Add the new element to the next available position at the

lowest level
2. Restore the max-heap property if violated

• General strategy is percolate up (or bubble up):
if the parent of the element is smaller than the
element, then interchange the parent and child.

 OR

 Restore the min-heap property if violated

• General strategy is percolate up (or bubble up):
if the parent of the element is larger than the
element, then interchange the parent and child.

19

12 16

4 1 7

19

12 16

4 1 7 17

19

12 17

4 1 7 16

Insert 17

swap

Percolate up to maintain the

heap property

Deletion

• Delete max
– Copy the last number to the root (overwrite the

maximum element stored there).

– Restore the max heap property by percolate
down.

• Delete min
– Copy the last number to the root (overwrite the

minimum element stored there).

– Restore the min heap property by percolate
down.

Heap Sort

 A sorting algorithm that works by first
organizing the data to be sorted into a
special type of binary tree called a
heap

Procedures on Heap

• Heapify

• Build Heap

• Heap Sort

Heapify
• Heapify picks the largest child key and compare it to the parent

key. If parent key is larger than heapify quits, otherwise it swaps
the parent key with the largest child key. So that the parent is now
becomes larger than its children.

 Heapify(A, i)

 {
 l  left(i)
 r  right(i)
 if l <= heapsize[A] and A[l] > A[i]
 then largest l
 else largest  i
 if r <= heapsize[A] and A[r] > A[largest]
 then largest  r
 if largest != i
 then swap A[i]  A[largest]
 Heapify(A, largest)
 }

BUILD HEAP
• We can use the procedure 'Heapify' in a bottom-up fashion to

convert an array A[1 . . n] into a heap. Since the elements in the
subarray A[n/2 +1 . . n] are all leaves, the procedure BUILD_HEAP
goes through the remaining nodes of the tree and runs 'Heapify'
on each one. The bottom-up order of processing node guarantees
that the subtree rooted at children are heap before 'Heapify' is run
at their parent.

 Buildheap(A)

 {
 heapsize[A] length[A]
 for i |length[A]/2 //down to 1
 do Heapify(A, i)
 }

Heap Sort Algorithm
• The heap sort algorithm starts by using procedure BUILD-HEAP to

build a heap on the input array A[1 . . n]. Since the maximum
element of the array stored at the root A[1], it can be put into its
correct final position by exchanging it with A[n] (the last element in
A). If we now discard node n from the heap than the remaining
elements can be made into heap. Note that the new element at
the root may violate the heap property. All that is needed to
restore the heap property.

 Heapsort(A)

 {
 Buildheap(A)
 for i  length[A] //down to 2
 do swap A[1]  A[i]
 heapsize[A]  heapsize[A] - 1
 Heapify(A, 1)
}

Example: Convert the following array to a heap

16 4 7 1 12 19

Picture the array as a complete binary tree:

16

4 7

12 1 19

16

4 7

12 1 19

16

4 19

12 1 7

16

12 19

4 1 7

19

12 16

4 1 7

swap

swap

swap

Heap Sort

• The heapsort algorithm consists of two phases:
- build a heap from an arbitrary array
- use the heap to sort the data

• To sort the elements in the decreasing order, use a min heap

• To sort the elements in the increasing order, use a max heap

19

12 16

4 1 7

Example of Heap Sort

19

12 16

4 1 7

19 12 16 1 4 7

Array A
Sorted:

Take out biggest

Move the last element

to the root

12 16

4 1

7

19 12 16 1 4 7

Array A
Sorted:

HEAPIFY()

swap

12

16

4 1

7

19 12 16 1 4 7

Array A
Sorted:

12

16

4 1

7

19 12 16 1 4 7

Array A
Sorted:

Take out biggest

Move the last element

to the root

12

4

1

7

19 12 16 1 4 7

Array A
Sorted:

12

4

1

7

19 12 16 1 4 7

Array A
Sorted:

HEAPIFY()

swap

12

4

1

7

19 12 16 1 4 7

Array A
Sorted:

12

4

1

7

19 12 16 1 4 7

Array A
Sorted:

Take out biggest

Move the last

element to the

root

4

1

7

19 12 16 1 4 7

Array A
Sorted:

swap

4 1

7

19 12 16 1 4 7

Array A
Sorted:

4 1

7

19 12 16 1 4 7

Array A
Sorted:

Move the last

element to the

root

Take out biggest

4

1

19 12 16 1 4 7

Array A
Sorted:

HEAPIFY()

swap

4

1

19 12 16 1 4 7

Array A
Sorted:

Move the last

element to the

root

Take out biggest

1

19 12 16 1 4 7

Array A
Sorted:

Take out biggest

19 12 16 1 4 7

Sorted:

Time Analysis

• Build Heap Algorithm will run in O(n) time

• There are n-1 calls to Heapify each call
requires O(log n) time

• Heap sort program combine Build Heap
program and Heapify, therefore it has the
running time of O(n log n) time

• Total time complexity: O(n log n)

Comparison of Sorting Methods

UNIT-V

Topics:

• Search Trees-Binary Search Trees, Definition,
Operations- Searching, Insertion and Deletion, AVL
Trees-Definition and Examples, Insertion into an AVL
Tree ,B-Trees, Definition, B-Tree of order m, operations-
Insertion and Searching, Introduction to Red-Black and
Splay Trees(Elementary treatment-only Definitions and
Examples),Comparison of Search Trees.

 Pattern matching algorithm- The Knuth-Morris-Pratt
algorithm, Tries (examples only).

418

Comparision Between Binary Tree &

Binary Search Tree
 * A binary search tree is a binary

tree in which it has atmost two

children, the key values in the left

node is less than the root and the

key values in the right node is

greater than the root.

* It doesn't have any order.

Note : * Every binary search tree is

a binary tree.

* All binary trees need not be a

binary search tree.

Example of Binary Search Tree

A binary search tree Not a binary search tree

Binary Search Trees

The same set of keys may have different BSTs

DECLARATION ROUTINE FOR BINARY

SEARCH TREE

Struct TreeNode

{

int Element ;

SearchTree Left;

SearchTree Right;

};

 BST Operations

•The 3 basic BST operations are: search,

insert, and delete; and develop

algorithms for searches, insertion, and

deletion.

•Searches

• Insertion

• Deletion

Three BST search algorithms:

• Find the smallest node

• Find the largest node

• Find a requested node

426

Find : -

• Check whether the root is NULL if

so then return NULL.

• Otherwise, Check the value X with

the root node value (i.e. T data)

• (1) If X is equal to T data, return T.

• (2) If X is less than T data, Traverse

the left of T recursively.

• (3) If X is greater than T data,

traverse the right of T recursively.

ROUTINE FOR FIND OPERATION
 Int Find (int X, SearchTree T)

{

If T = = NULL)

Return NULL ;

If (X < T Element)

return Find (X, T →left);

else

If (X > T→ Element)

return Find (X, T →Right);

else

return T; // returns the position of

the search element.

}

Find Min :

• This operation returns the

position of the smallest element

in the tree.

• To perform FindMin, start at the

root and go left as long as there is

a left child. The stopping point is

the smallest element.

RECURISVE ROUTINE FOR FINDMIN
 int FindMin (SearchTree T)

{

if (T = = NULL);

return NULL ;

else if (T →left = = NULL)

return T;

else

return FindMin (T → left);

Example : - Root T

(a) T! = NULL and T→left!=NULL,

(b) (b) T! = NULL and T→left!=NULL,

Traverse left Traverse left until Min T

(c) Since Tleft is Null, return T as a minimum
element.

NON - RECURSIVE ROUTINE FOR FINDMIN

int FindMin (SearchTree T)

{

if (T! = NULL)

while (T →Left ! = NULL)

T = T →Left ;

return T;

}

RECURSIVE ROUTINE FOR FINDMAX

int FindMax (SearchTree T)

{

if (T = = NULL)

return NULL ;

else if (T →Right = = NULL)

return T;

else FindMax (T →Right);

}

Example :- Root T

(a) T! = NULL and T→Right!=NULL, (b) T! = NULL

and T→Right!=NULL,

Traverse Right Traverse Right

Max

(c) Since T Right is NULL, return T as a

Maximum element.

FindMax

•FindMax routine return the

position of largest elements in

the tree.

•To perform a FindMax, start at

the root and go right as long as

there is a right child.

•The stopping point is the

largest element.

RECURSIVE ROUTINE FOR FINDMAX

int FindMax (SearchTree T)

{

if (T = = NULL)

return NULL ;

else if (T →Right = = NULL)

return T;

else FindMax (T →Right);

}

Example :- Root T

(a) T! = NULL and T→Right!=NULL, (b) T! =

NULL and T→Right!=NULL,

Traverse Right Traverse Right Max

(c) Since T Right is NULL, return T as a

Maximum element.

NON - RECURSIVE ROUTINE FOR
FINDMAX

int FindMax (SearchTree T)

{

if (T! = NULL)

while (T Right ! = NULL)

T = T →Right ;

return T ;

}

Make Empty :-
This operation is mainly for initialization

when the programmer prefer to initialize

the first element as a one - node tree.
ROUTINE TO MAKE AN EMPTY TREE :-
SearchTree MakeEmpty (SearchTree T)

{

if (T! = NULL)

{

MakeEmpty (T left);

MakeEmpty (T Right);

free (T);

}

return NULL ;

}

Insert operation: -
 To insert the element X into the tree,

• Check with the root node T

• If it is less than the root,

• Traverse the left subtree recursively

until it reaches the T left equals to

NULL. Then X is placed in T left.

• If X is greater than the root.

• Traverse the right subtree

recursively until it reaches the T

right equals to NULL. Then x is

placed in TRight.

ROUTINE TO INSERT INTO A BINARY

SEARCH TREE

SearchTree Insert (int X, searchTree T)

{

if (T = = NULL)

{

T = malloc (size of (Struct TreeNode));

if(T! = NULL)// First element is placed in

the root.

{

T →Element = X;

T→ left = NULL;

T →Right = NULL;

 }} }

else

if (X < T →Element)

T left = Insert (X, T →left);

else

if (X > T →Element)

T Right = Insert (X, T →Right);

// Else X is in the tree already.

return T;

30

30 30

30

Delete operation:
 • Deletion operation is the complex operation in the

Binary search tree. To delete an element,

consider the following three possibilities.

• CASE 1 Node with no children (Leaf node)

 If the node is a leaf node, it can be deleted

immediately.

• CASE 2 : - Node with one child

 If the node has one child, it can be deleted by

adjustingits parent pointer that points to its child

node

• Case 3 : Node with two children

 It is difficult to delete a node which has two

children. The general strategy is to replace the

data of the node to be deleted with its smallest

data of the right subtree and recursively delete

that node.

DELETION ROUTINE FOR BINARY

SEARCH TREES

SearchTree Delete (int X, searchTree T)

{

int Tmpcell ;

if (T = = NULL)

Error ("Element not found");

else

if (X < T →Element) // Traverse towards left

T →Left = Delete (X, T Left);

else

if (X > T Element) // Traverse towards right

T →Right = Delete (X, T →Right);

// Found Element tobe deleted

else // Two children
if (T→ Left && T→ Right)
{ // Replace with smallest data in right subtree
Tmpcell = FindMin (T→ Right);
T →Element = Tmpcell Element ;
T →Right = Delete (T →Element; T →Right);
}
else {// one or zero children
Tmpcell = T;
if (T →Left = = NULL)
T = T→ Right;
else if (T→ Right = = NULL)
T = T →Left ;
free (TmpCell);
}
return T; }

Delete node from BST

(continued) Delete node from BST

27 27

27 27

AVL Trees

These are self-adjusting, height-balanced binary
search trees and are named after the inventors:
Adelson-Velskii and Landis.

Definition:

The height of a binary tree is the maximum
path length from the root to a leaf. A single-
node binary tree has height 0, and an empty
binary tree has height -1

• An AVL tree is a binary search tree in which every node
is height balanced, that is, the difference in the heights
of its two subtrees is at most 1.

• The balance factor of a node is the height of its right
subtree minus the height of its left subtree. An
equivalent definition, then, for an AVL tree is that it is a
binary search tree in which each node has a balance
factor of -1, 0, or +1.

• Note :balance factor of -1 means that the subtree is
left-heavy, and

• a balance factor of +1 means that the subtree is right-
heavy.

AVL Trees

AVL Trees

These are self-adjusting, height-balanced
binary search trees and are named after the
inventors: Adelson-Velskii and Landis.

Definition:

The height of a binary tree is the maximum
path length from the root to a leaf. A single-
node AVLtree has height 0, and an empty
AVL tree has height -1

AVL Tree

Definition

• Binary Search tree.

• If T is a nonempty binary Search tree with TL
and TR as its left and right subtrees, then T is
an AVL tree iff

1. TL and TR are AVL trees, and

2. |hL – hR|  1 where hL and hR are the heights of
TL and TR, respectively

AVL Tree

Definition

• Binary tree.

• If T is a nonempty binary tree with TL and TR
as its left and right subtrees, then T is an AVL
tree iff

1. TL and TR are AVL trees, and

2. |hL – hR|  1 where hL and hR are the heights of
TL and TR, respectively

Balance Factor

• AVL trees are normally represented using the linked
representation

• To facilitate insertion and deletion, a balance factor (bf) is
associated with each node.

• The balance factor bf(x) of a node x is defined as
 height(xleftChild) – height(xrightChild)

• Balance factor of each node in an AVL tree must be –1, 0,
or 1

Eg with balance factors

7

3 12

2 10 20

9 11

0 0

0 0
0

1 1

-1
30

22 62

44 95

51 97

5

-1

0
0

-1 0
1

1 0

Not an AVL TREE

100

70
150

130 180 30
80

140
10 40

36

1

0

0

1

-1

0

2
1

-1
0

0

Inserting into an AVL Search Trees

• If we insert an element into an AVL search tree, the result may not
be an AVL tree

• That is, the tree may become unbalanced

• If the tree becomes unbalanced, we must adjust the tree to
restore balance - this adjustment is called rotation.

• There are Four Models of rotations:

• There are four models about the operation of AVL Tree:

1. LL: new node is in the left subtree of the left subtree of A

2. LR: new node is in the right subtree of the left subtree of A

3. RR: new node is in the right subtree of the right subtree of A

4. RL: new node is in the left subtree of the right subtree of A

Rotation

Definition

• To switch children and parents among two or
three adjacent nodes to restore balance of a
tree.

• A rotation may change the depth of some
nodes, but does not change their relative
ordering.

Single and Double Rotations

• Single rotations: the transformations done to correct LL and
RR imbalances

• Double rotations: the transformations done to correct LR
and RL imbalances

• The transformation to correct LR imbalance can be achieved
by an RR rotation followed by an LL rotation

• The transformation to correct RL imbalance can be achieved
by an LL rotation followed by an RR rotation

Left Rotation
Definition

• In a binary search tree, pushing a node A down and to the left
to balance the tree.

• A's right child replaces A, and the right child's left child
becomes A's right child.

Left Rotation

15

22 9

12 4

9

4 15

12 22

A

Right Rotation
Definition

• In a binary search tree, pushing a node A down and to the
right to balance the tree.

• A's left child replaces A, and the left child's right child
becomes A's left child.

9

4 15

12 22

Right Rotation

15

22 9

12 4

A

Single Rotation (LL)
• Let k2 be the first node on the path up violating AVL balance

property. Figure below is the only possible scenario that
allows k2 to satisfy the AVL property before the insertion but
violate it afterwards. Subtree X has grown an extra level (2
levels deeper than Z now). Y cannot be at the same level as X
(k2 then out of balance before insertion) and Y cannot be at
the same level as Z (then k1 would be the first to violate).

• Note that in single rotation inorder traversal orders of
the nodes are preserved.

• The new height of the subtree is exactly the same as
before. Thus no further updating of the nodes on the
path to the root is needed.

Single Rotation (RR)

• AVL property destroyed by insertion of 6,
then fixed by a single rotation.

• BST node structure needs an additional
field for height.

Single Rotation-Example I

Single Rotation-Example II
• Start with an initially empty tree and insert items 1

through 7 sequentially. Dashed line joins the two nodes
that are the subject of the rotation.

Insert 6.
Balance
problem at the
root. So a
single rotation
is performed.

Finally, Insert
7 causing
another
rotation.

Single Rotation-Example III

Double Rotation (LR, RL) - I
• The algorithm that works for cases 1 and 4 (LL, RR) does

not work for cases 2 and 3 (LR, RL). The problem is that
subtree Y is too deep, and a single rotation does not
make it any less deep.

• The fact that subtree Y has had an item inserted into it
guarantees that it is nonempty. Assume it has a root and
two subtrees.

Below are 4 subtrees connected by 3 nodes. Note that exactly
one of tree B or C is 2 levels deeper than D (unless all empty). To
rebalance, k3 cannot be root and a rotation between k1 and k3
was shown not to work. So the only alternative is to place k2 as
the new root. This forces k1 to be k2’s left child and k3 to be its
right child. It also completely determines the locations of all 4
subtrees. AVL balance property is now satisfied. Old height of
the tree is restored; so, all the balancing and and height
updating is complete.

Double Rotation (LR) - II

Double Rotation (RL) - III
In both cases (LR and RL), the effect is the same as rotating
between α’s child and grandchild and then between α and its
new child. Every double rotation can be modelled in terms of 2
single rotations. Inorder traversal orders are always preserved
between k1, k2, and k3.

Double RL = Single LL (α->right)+ Single RR (α)
Double LR = Single RR (α->left)+ Single LL (α)

Double Rotation Example - I
• Continuing our example, suppose keys 8 through

15 are inserted in reverse order. Inserting 15 is
easy but inserting 14 causes a height imbalance
at node 7. The double rotation is an RL type and
involves 7, 15, and 14.

Double Rotation Example - II
• insert 13: double rotation is RL that will involve

6, 14, and 7 and will restore the tree.

Double Rotation Example - III
• If 12 is now inserted, there is an imbalance at the

root. Since 12 is not between 4 and 7, we know
that the single rotation RR will work.

Double Rotation Example - IV
• Insert 11: single rotation LL; insert 10: single

rotation LL; insert 9: single rotation LL; insert 8:
without a rotation.

Definition

• In a binary search tree, pushing a node A down and to the
right to balance the tree.

• A's left child replaces A, and the left child's right child
becomes A's left child.

9

4 15

12 22

Right Rotation

15

22 9

12 4

A

examples

Inserting into an AVL Search Tree

29

Insert(29)
-1

1

0

0 0

0

1

1

-1 0

-1

0

0

10

40

30 45

20 35

25

60

7

3 8

1 5

• Where is 29 going to be inserted into?

 - use the AVL-search-tree-insertion algorithm

 in Figure 15.6)

• After the insertion, is the tree still an AVL

search tree? (i.e., still balanced?)

Inserting into an AVL Search Tree

• What are the new balance factors for 20,

25, 29?

• What type of imbalance do we have?

• RR imbalance  new node is in the right

subtree of right subtree of node 20 (node

with bf = -2)  what rotation do we need?

• What would the left subtree of 30 look like

after RR rotation?

-2

-1

0 29

-1

1

0

0 0

0

1

1

0

-1

0

10

40

30 45

20 35

25

60

7

3 8

1 5

After RR Rotation
-1

1

0

0 0

0

1

1

0

-1

0

10

40

30 45

35 60

7

3 8

1 5 0

0 0

25

20 29

• After the RR rotation, is the resulting tree an AVL search tree?

Deletion from an AVL Search Tree

 Deletion procedure is more complex than insertion in 2 ways:

• 1)More number of cases for rebalancing may arise in
deletion;

• 2)In insertion there is only one reblancing,but in deletion
there can be as many rebalancing as the length of the path
from the deleted node to the root.

AVL Tree Example:

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

14

17 11

7 53

4

AVL Tree Example:

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

14

17 7

4 53 11

13

1

-1 -1

-1 0

AVL Tree Example:

• Now insert 12

14

17 7

4 53 11

13

12

-2

AVL Tree Example:

• Now insert 12

14

17 7

4 53 11

12

13

-2

AVL Tree Example:

• Now the AVL tree is balanced.

14

17 7

4 53 12

13 11

0

AVL Tree Example:

• Now insert 8

14

17 7

4 53 12

13 11

8

-2

AVL Tree Example:

• Now insert 8

14

17 7

4 53 11

12 8

13

-2

AVL Tree Example:

• Now the AVL tree is balanced.

14

17

7

4

53

11

12

8 13

AVL Tree Example:

• Now remove 53

14

17

7

4

53

11

12

8 13

AVL Tree Example:

• Now remove 53, unbalanced

14

17

7

4

11

12

8 13

-2

AVL Tree Example:

• Balanced! Remove 11

14

17

7

4

11

12 8

13

AVL Tree Example:

• Remove 11, replace it with the largest in its left branch

14

17

7

4

8

12

13

AVL Tree Example:

• Remove 8, unbalanced

14

17

4

7

12

13

AVL Tree Example:

• Remove 8, unbalanced

14

17

4

7

12

13

AVL Tree Example:

• Balanced!!

14

17 4

7

12

13

Exercise

• Build an AVL tree with the following values:

15, 20, 24, 10, 13, 7, 30, 36, 25

15

15, 20, 24, 10, 13, 7, 30, 36, 25

20

24

15

20

24

10

13

15

20

24

13

10

13

20

24

15 10

13

20

24

15 10

15, 20, 24, 10, 13, 7, 30, 36, 25

7

13

20

24 15

10

7

30

36 13

20

30 15

10

7

36 24

13

20

30 15

10

7

36 24

15, 20, 24, 10, 13, 7, 30, 36, 25

25

13

20

30

15

10

7

36

24

25 13

24

36

20

10

7

25

30

15

Remove 24 and 20 from the AVL tree.

13

24

36

20

10

7

25

30

15

13

20

36

15

10

7

25

30

13

15

36

10

7

25

30

13

30

36

10

7

25

15

B -TREE

B-tree of order n

• Every B-tree is of some "order n", meaning nodes
contain from n to 2n keys (so nodes are always at
least half full of keys), and n+1 to 2n+1 pointers,
and n can be any number.

• Keys are kept in sorted order within each node. A
corresponding list of pointers are effectively
interspersed between keys to indicate where to
search for a key if it isn't in the current node.

• A B-tree of order n is a multi-way search tree
with two properties:

• 1.All leaves are at the same level

• 2.The number of keys in any node lies
between n and 2n, with the possible
exception of the root which may have fewer
keys.

Other definition

A B-tree of order m is a m-way tree that satisfies the following
conditions.

• Every node has < m children.

• Every internal node (except the root) has <m/2 children.

• The root has >2 children.

• An internal node with k children contains (k-1) ordered keys.
The leftmost child contains keys less than or equal to the
first key in the node. The second child contains keys greater
than the first keys but less than or equal to the second key,

and so on.

B-tree of order n

• Every B-tree is of some "order n", meaning nodes
contain from n to 2n keys (so nodes are always at
least half full of keys), and n+1 to 2n+1 pointers,
and n can be any number.

• Keys are kept in sorted order within each node. A
corresponding list of pointers are effectively
interspersed between keys to indicate where to
search for a key if it isn't in the current node.

• A B-tree of order n is a multi-way search tree
with two properties:

• 1.All leaves are at the same level

• 2.The number of keys in any node lies
between n and 2n, with the possible
exception of the root which may have fewer
keys.

Other definition

A B-tree of order m is a m-way tree that satisfies the following
conditions.

• Every node has < m children.

• Every internal node (except the root) has <m/2 children.

• The root has >2 children.

• An internal node with k children contains (k-1) ordered keys.
The leftmost child contains keys less than or equal to the
first key in the node. The second child contains keys greater
than the first keys but less than or equal to the second key,

and so on.

A B-tree of order 2

• A multi-way (or m-way) search tree of order m is a tree in which

– Each node has at-most m subtrees, where the subtrees may be
empty.

– Each node consists of at least 1 and at most m-1 distinct keys

– The keys in each node are sorted.

• The keys and subtrees of a non-leaf node are ordered as:

 T0, k1, T1, k2, T2, . . . , km-1, Tm-1 such that:

– All keys in subtree T0 are less than k1.

– All keys in subtree Ti , 1 <= i <= m - 2, are greater than ki but less
than ki+1.

– All keys in subtree Tm-1 are greater than km-1

km-2
. . . k3 k2 k1

T0 T1 T2 Tm-2 Tm-1

key < k1 k1 < key < k2 k2 < key < k3 km-2 < key < km-1 key > km-1

km-1

Multi-way tree

What is B-tree?

• B-tree of order m (or branching factor m), where m > 2, is either an
empty tree or a multiway search tree with the following
properties:

–The root is either a leaf or it has at least two non-empty
subtrees and at most m non-empty subtrees.

–Each non-leaf node, other than the root, has at least
m/2 non-empty subtrees and at most m non-empty
subtrees. (Note: x is the lowest integer > x).

–The number of keys in each non-leaf node is one less
than the number of non-empty subtrees for that node.

–All leaf nodes are at the same level; that is the tree is
perfectly balanced

What is a B-tree?

• For a non-empty B-tree of order m:

Example: A B-tree of order 4

Example: A B-tree of order 5

Note:

• The data references are not shown.

• The leaf references are to empty subtrees

Height of B-Trees

• For n greater than or equal to one, the height
of an n-key b-tree T of height h with a
minimum degree t greater than or equal to 2

Operations of B-Trees

• B-Tree-Search(x, k)
– The search operation on a b-tree is similar to a search

on a binary tree. The B-Tree-search runs in time O(logt
n).

• B-Tree-Create(T)
–The B-Tree-Create operation creates an empty b-tree by

allocating a new root node that has no keys and is a leaf
node. Only the root node is permitted to have these
properties; all other nodes must meet the criteria
outlined previously. The B-Tree-Create operation runs in
time O(1).

Operations of B-Trees

• B-Tree-Split-Child(x, i, y)
–If is node becomes "too full," it is necessary to perform

a split operation. The split operation moves the median
key of node x into its parent y where x is the ith child of
y. A new node, z, is allocated, and all keys in x right of
the median key are moved to z. The keys left of the
median key remain in the original node x. The new
node, z, becomes the child immediately to the right of
the median key that was moved to the parent y, and the
original node, x, becomes the child immediately to the
left of the median key that was moved into the parent.
The B-Tree-Split-Child algorithm will run in time O(t) , T
is constrain

Operations of B-Trees

• B-Tree-Insert(T, k)

• B-Tree-Insert-Nonfull(x, k)

 To perform an insertion on a b-tree, the appropriate

node for the key must be located using an algorithm

similiar to B-Tree-Search. Next, the key must be

inserted into the node.

 If the node is not full prior to the insertion, no

special action is required; however, if the node is

full, the node must be split to make room for the

new key. Since splitting the node results in moving

one key to the parent node, the parent node must

not be full or another split operation is required.

This process may repeat all the way up to the root

and may require splitting the root node.

 This approach requires two passes. The first pass

locates the node where the key should be inserted;

the second pass performs any required splits on the

ancestor nodes. runs in time O(t log
t
 n)

 OVERFLOW CONDITION:
 A root-node or a non-root node of a B-tree of order m overflows if,

after a key insertion, it contains m keys.

 Insertion algorithm:

 If a node overflows, split it into two, propagate the "middle" key

to the parent of the node. If the parent overflows the process
propagates upward. If the node has no parent, create a new root
node.

 Note: Insertion of a key always starts at a leaf node.

Insertion in B-Trees

• Insertion in a B-tree of odd order

• Example: Insert the keys 78, 52, 81, 40, 33, 90, 85, 20, and 38 in this

order in an initially empty B-tree of order 3

Insertion

Insertion in B-Trees

• Insertion in a B-tree of even order

• right-bias: The node is split such that its right subtree has more keys than the

left subtree.

• left-bias: The node is split such that its left subtree has more keys than the

right subtree.

• Example: Insert the key 5 in the following B-tree of order 4:

Insertion

• Insert the keys in the folowing order into a B-tree of order 5.

• A, G, F, B, K, D, H, M, J, E, S, I, R, X, C, L, N, T, U, P.

Searching

Searching for an Item in a B-Tree:

 1. Make a local variable, i, equal to the first index such that
data[i] >= target. If there is no such index, then set i equal to
data_count, indicating that none of the entries is greater than
or equal to the target.

 2. if (we found the target at data[i])

 return true;

 else if (the root has no children)

 return false;

 else

 return subset[i]->contains (target);

Searching (cont.)

• Example: target = 10

2 3

19 22

6 17

16 10 18 20 25

12

5

4

Deletion form a B-Tree

• 1. detete h, r :

• s promote s and

• delete form leaf

j

c f

g i

d e a b k l n p

m r

g h i

t u x

s t u x

Deletion (cont.)

• 2. delete p :
•

• t pull s down;

• pull t up

j

g i n p k l d e a b

m s c f

t u x

n s

Deletion (cont.)

• 3. delete d:

• Combine:

j

c f

g i d e a b k l n s u x

m t

Deletion (cont.)

• combine :

f

j

u x n s k l g i

g i k l n s u x

m t

a b c e

f j m t

a b c e

Deleting from a B-Tree

• To delete a key value x from a B-tree, first search to
determine the leaf node that contains x.

• If removing x leaves that leaf node with fewer
than the minimum number of keys, try to adopt a
key from a neighboring node. If that’s possible, then

you’re finished.

Deleting from a B-Tree (continued)

• If the neighboring node is already at its minimum,
combine the leaf node with its neighboring node,
resulting in one full leaf node.

• This will require restructuring the parent node since
it has lost a child

• If the parent now has fewer than the minimum keys,
adopt a key from one of its neighbors. If that’s not

possible, combine the parent with its neighbor.

Deleting from a B-Tree (continued)

• This process may percolate all the way to the
root.

• If the root is left with only one child, then
remove the root node and make its child the
new root.

• Both insertion and deletion are O(h), where h
is the height of the tree.

Delete 18

Delete 5

Delete 19

Delete 12

Deletion in B-Tree

• B-Tree-Delete

• UNDERFLOW CONDITION

• A non-root node of a B-tree of order m
underflows if, after a key deletion, it contains m /
2 - 2 keys

• The root node does not underflow. If it contains
only one key and this key is deleted, the tree
becomes empty.

Deletion in B-Tree

• There are five deletion cases:
 1. The leaf does not underflow.

 2. The leaf underflows and the adjacent right sibling has at least m / 2 
keys.

 perform a left key-rotation

 3. The leaf underflows and the adjacent left sibling has at least m / 2 
keys.

 perform a right key-rotation

 4. The leaf underflows and each of the adjacent right sibling and the
adjacent left sibling has at least m / 2  keys.

 perform either a left or a right key-rotation& perform a merging

 5. The leaf underflows and each adjacent sibling has m / 2 - 1 keys.

Deletion in B-Tree
• Case1: The leaf does not underflow.

• Example : B-tree of order 4

Delete 140

Deletion in B-Tree
• Case2: The leaf underflows and the adjacent right sibling has at least

m/2 keys.

• Example : B-tree of order 5

Delete 113

Deletion in B-Tree
• Case 3: The leaf underflows and the adjacent left sibling has at least m / 2 keys.

• Example : B-tree of order 5

Delete 135

An example B-Tree

51 62 42

6 12

26

55

60

70

64

90

45

1 2 4 7 8 13 15 18 25

27

29

46

48

53

A B-tree of order 5
containing 26 items

Note that all the leaves are at the same level

• Suppose we start with an empty B-tree and keys
arrive in the following order:1 12 8 2 25 5 14
28 17 7 52 16 48 68 3 26 29 53 55 45

• We want to construct a B-tree of order 5
• The first four items go into the root:

• To put the fifth item in the root would violate
condition 5

• Therefore, when 25 arrives, pick the middle key
to make a new root

Constructing a B-tree

1 2 8 12

Constructing a B-tree (contd.)

1 2

8

12 25

6, 14, 28 get added to the leaf nodes:

1 2

8

12 14 6 25 28

Constructing a B-tree (contd.)

Adding 17 to the right leaf node would over-fill it, so we take the

middle key, promote it (to the root) and split the leaf

8 17

12 14 25 28 1 2 6

7, 52, 16, 48 get added to the leaf nodes

8 17

12 14 25 28 1 2 6 16 48 52 7

Constructing a B-tree (contd.)

Adding 68 causes us to split the right most leaf, promoting 48 to the

root, and adding 3 causes us to split the left most leaf, promoting 3

to the root; 26, 29, 53, 55 then go into the leaves

3 8 17 48

52 53 55 68 25 26 28 29 1 2 6 7 12 14 16

Adding 45 causes a split of 25 26 28 29

and promoting 28 to the root then causes the root to split

Constructing a B-tree (contd.)

17

3 8 28 48

1 2 6 7 12 14 16 52 53 55 68 25 26 29 45

Inserting into a B-Tree

• Attempt to insert the new key into a leaf

• If this would result in that leaf becoming too big, split
the leaf into two, promoting the middle key to the
leaf’s parent

• If this would result in the parent becoming too big, split
the parent into two, promoting the middle key

• This strategy might have to be repeated all the way to
the top

• If necessary, the root is split in two and the middle key
is promoted to a new root, making the tree one level
higher

Exercise in Inserting a B-Tree

• Insert the following keys to a 5-way B-tree:

• 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4,
31, 35, 56

Removal from a B-tree

• During insertion, the key always goes into a leaf.
For deletion we wish to remove from a leaf.
There are three possible ways we can do this:

• 1 - If the key is already in a leaf node, and
removing it doesn’t cause that leaf node to have
too few keys, then simply remove the key to be
deleted.

• 2 - If the key is not in a leaf then it is guaranteed
(by the nature of a B-tree) that its predecessor or
successor will be in a leaf -- in this case we can
delete the key and promote the predecessor or
successor key to the non-leaf deleted key’s
position.

Removal from a B-tree (2)

• If (1) or (2) lead to a leaf node containing less than the
minimum number of keys then we have to look at the
siblings immediately adjacent to the leaf in question:
– 3: if one of them has more than the min. number of keys

then we can promote one of its keys to the parent and
take the parent key into our lacking leaf

– 4: if neither of them has more than the min. number of
keys then the lacking leaf and one of its neighbours can be
combined with their shared parent (the opposite of
promoting a key) and the new leaf will have the correct
number of keys; if this step leave the parent with too few
keys then we repeat the process up to the root itself, if
required

Type #1: Simple leaf deletion

12 29 52

2 7 9 15 22 56 69 72 31 43

Delete 2: Since there are enough
keys in the node, just delete it

Assuming a 5-way
B-Tree, as before...

Type #2: Simple non-leaf deletion

12 29 52

7 9 15 22 56 69 72 31 43

Delete 52

Borrow the predecessor
or (in this case) successor

56

Type #4: Too few keys in node and its
siblings

12 29 56

7 9 15 22 69 72 31 43

Delete 72

Too few keys!

Join back together

Type #4: Too few keys in node and its
siblings

12 29

7 9 15 22 69 56 31 43

Type #3: Enough siblings

12 29

7 9 15 22 69 56 31 43

Demote root key and
promote leaf key

Type #3: Enough siblings

12

29 7 9 15

31

69 56 43

Summary
• The B-tree is a tree-like structure that helps us to

organize data in an efficient way.

• The B-tree index is a technique used to minimize the disk
I/Os needed for the purpose of locating a row with a
given index key value.

• Because of its advantages, the B-tree and the B-tree
index structure are widely used in databases nowadays.

• In addition to its use in databases, the B-tree is also used
in file systems to allow quick random access to an
arbitrary block in a particular file. The basic problem is
turning the file block i address into a disk block.

Secondary Storages

MS/Dos - FAT (File allocation table)

•entry for each disk block
•entry identifies whether its block is used by a file
•which block (if any) is the next disk block of the same file
•allocation of each file is represented as a linked list in the table

Red-Black Trees

Red-Black Properties

 The red-black properties:

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

Note: this means every “real” node has 2 children

3. If a node is red, both children are black

Note: can’t have 2 consecutive reds on a path

4. Every path from node to descendent leaf
contains the same number of black nodes

5. The root is always black

Red-Black Trees: An Example

● Color this tree:

7

5 9

12 12

5 9

7

Red-black properties:

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

David Luebke

588

7/28/2016

● Insert 8

■ Where does it go?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

David Luebke

589

7/28/2016

● Insert 8

■ Where does it go?

■ What color
should it be?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

8

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

● Insert 8

■ Where does it go?

■ What color
should it be?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

8

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

Red-Black Trees:
The Problem With Insertion

● Insert 11

■ Where does it go?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

Red-Black Trees:
The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:
The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

○ Can’t be red! (#3)

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:
The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

○ Can’t be red! (#3)

○ Can’t be black! (#4)

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:
The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

○ Solution:
recolor the tree

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:
The Problem With Insertion

● Insert 10

■ Where does it go?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:
The Problem With Insertion

● Insert 10

■ Where does it go?

■ What color?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

10

Red-Black Trees:
The Problem With Insertion

● Insert 10

■ Where does it go?

■ What color?

○ A: no color! Tree
is too imbalanced

○ Must change tree structure
to allow recoloring

■ Goal: restructure tree in
O(lg n) time

12

5 9

7

8

11

10

RB Trees: Rotation

● Our basic operation for changing tree
structure is called rotation:

● Does rotation preserve inorder key ordering?

● What would the code for rightRotate()
actually do?

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)

rightRotate(y)

RB Trees: Rotation

● Answer: A lot of pointer manipulation

■ x keeps its left child

■ y keeps its right child

■ x’s right child becomes y’s left child

■ x’s and y’s parents change

● What is the running time?

y

x C

A B

x

A y

B C

Rotation Example

● Rotate left about 9:

12

5 9

7

8

11

Rotation Example

● Rotate left about 9:

5 12

7

9

11 8

Example Red-Black Tree

Splay Trees

 Splay trees are binary search trees (BSTs) that:
– Are not perfectly balanced all the time

– Allow search and insertion operations to try to balance the tree so
that future operations may run faster

 Based on the heuristic:
– If X is accessed once, it is likely to be accessed again.

– After node X is accessed, perform “splaying” operations to bring X
up to the root of the tree.

– Do this in a way that leaves the tree more or less balanced as a
whole.

Example

605

• Not only splaying with 12 makes the tree balanced,
subsequent accesses for 12 will take O(1) time.

• Active (recently accessed) nodes will move towards the root
and inactive nodes will slowly move further from the root

Initial tree

Root

15

6 18

3 12

9 14

14

Root

12

6 15

3 9 18

After splaying with 12

After Search(12)

Splay idea: Get 12
up to the root
using rotations

1

2

Splay Tree Terminology

606

• Let X be a non-root node, i.e., has at least 1 ancestor.

• Let P be its parent node.

• Let G be its grandparent node (if it exists)

• Consider a path from G to X:
– Each time we go left, we say that we “zig”

– Each time we go right, we say that we “zag”

• There are 6 possible cases:

P

X

G

P

X

G

P

X

G

P

X

G

P

X

P

X

1. zig 2. zig-zig 3. zig-zag 4. zag-zig 5. zag-zag 6. zag

Splay Tree Operations

607

• When node X is accessed, apply one of six
rotation operations:

– Single Rotations (X has a P but no G)

• zig, zag

– Double Rotations (X has both a P and a G)

• zig-zig, zig-zag

• zag-zig, zag-zag

Splay Trees: Zig Operation

608

• “Zig” is just a single rotation, as in an AVL tree
• Suppose 6 was the node that was accessed (e.g. using

Search)

15

6 18

3 12

• “Zig-Right” moves 6 to the root.

• Can access 6 faster next time: O(1)

• Notice that this is simply a right rotation in AVL tree
terminology.

15

6

18

3

12

Zig-Right

Splay Trees: Zig-Zig Operation

609

• “Zig-Zig” consists of two single rotations of the same type

• Suppose 3 was the node that was accessed (e.g., using Search)

• Due to “zig-zig” splaying, 3 has bubbled to the top!

• Note: Parent-Grandparent is rotated first.

15

6 18

3 12

1 4

12

6

18

3 15

1 4

12

6

18

3

15

1

4

Zig-Right Zig-Right

Splay Trees: Zig-Zag Operation

610

• “Zig-Zag” consists of two rotations of the opposite type

• Suppose 12 was the node that was accessed (e.g., using Search)

• Due to “zig-zag” splaying, 12 has bubbled to the top!

• Notice that this is simply an LR imbalance correction in AVL tree
terminology (first a left rotation, then a right rotation)

15

6 18

3 12

10 14

Zag-Left 15

6

18

3

12

10

14

15 6

18 3

12

10 14

Zig-Right

Splay Trees: Zag-Zig Operation

611

• “Zag-Zig” consists of two rotations of the opposite type

• Suppose 17 was the node that was accessed (e.g., using Search)

• Due to “zag-zig” splaying, 17 has bubbled to the top!

• Notice that this is simply an RL imbalance correction in
AVL tree terminology (first a right rotation, then a
left rotation)

15

6 20

30 17

16 18

Zig-Right
15

6

20

30

17

16

18

15

6

20

30

17

16 18

Zag-Left

Splay Trees: Zag-Zag Operation

612

• “Zag-Zag” consists of two single rotations of the same type

• Suppose 30 was the node that was accessed (e.g., using Search)

• Due to “zag-zag” splaying, 30 has bubbled to the top!

• Note: Parent-Grandparent is rotated first.

Zag-Left 15

6 20

30 17

25 40

15

6

20

30

17 25 40 15

6

20

30

17

25

40

Zag-Left

Splay Trees: Zag Operation

613

• “Zag” is just a single rotation, as in an AVL tree
• Suppose 15 was the node that was accessed (e.g., using

Search)

15

6 18

3 12

• “Zag-Left”moves 15 to the root.

• Can access 15 faster next time: O(1)

• Notice that this is simply a left rotation in AVL tree
terminology

15

6

18

3

12

Zag-Left

Splay Trees: Example – 40 is accessed

614

80

70 85

60 75

50 65

40 55

30 45

(a)

80

70 85

75

50

40

30

45

(b)

60

55 65

After Zig-zig

70

50

40

30

45 60

55 65

80

75 85

(c)
After Zig-zig

Splay Trees: Example – 60 is accessed

615

70

50

40

30

45 60

55 65

80

75 85

70

50

40

30

45

60

55

65 80

75 85

70 50

40

30

45

60

55 65 80

75 85

(a) (b)

After Zig-zag

(c)
After zag

Splaying during other operations

616

• Splaying can be done not just after Search, but also after
other operations such as Insert/Delete.

• Insert X: After inserting X at a leaf node (as in a regular BST),
splay X up to the root

• Delete X: Do a Search on X and get X up to the root. Delete
X at the root and move the largest item in its left sub-tree,
i.e, its predecessor, to the root using splaying.

• Note on Search X: If X was not found, splay the leaf node
that the Search ended up with to the root.

Summary of Splay Trees

617

• Examples suggest that splaying causes tree to get balanced.

• The actual analysis is rather advanced and is in Chapter 11. Such
analysis is called “amortized analysis”

• Result of Analysis: Any sequence of M operations on a splay tree of size
N takes O(M log N) time. So, the amortized running time for one
operation is O(log N).

• This guarantees that even if the depths of some nodes get very large,
you cannot get a long sequence of O(N) searches because each search
operation causes a rebalance.

• Without splaying, total time could be O(MN).

Comparison of Search Trees

Tree
Worst Case Expected

Search Insert Remove Search Insert Remove

BST n n n log n log n log n

AVL tree log n log n log n log n log n log n

red-black tree log n log n log n log n log n log n

splay tree n n n log n log n log n

B-trees log n log n log n log n log n log n

Knuth-Morris-Pratt Algorithm

The problem of String Matching

Given a string ‘S’, the problem of string matching
deals with finding whether a pattern ‘p’ occurs
in ‘S’ and if ‘p’ does occur then returning
position in ‘S’ where ‘p’ occurs.

…. a O(mn) approach

One of the most obvious approach towards the string
matching problem would be to compare the first
element of the pattern to be searched ‘p’, with the
first element of the string ‘S’ in which to locate ‘p’. If
the first element of ‘p’ matches the first element of
‘S’, compare the second element of ‘p’ with second
element of ‘S’. If match found proceed likewise until
entire ‘p’ is found. If a mismatch is found at any
position, shift ‘p’ one position to the right and repeat
comparison beginning from first element of ‘p’.

How does the O(mn) approach work

Below is an illustration of how the previously
described O(mn) approach works.

String S a b c a b a a b c a b a c

a b a a Pattern p

Step 1:compare p[1] with S[1]

S

a b c a b a a b c a b a c

p a b a a

Step 2: compare p[2] with S[2]

S a b c a b a a b c a b a c

p a b a a

Step 3: compare p[3] with S[3]

 S

a b a a p

Mismatch occurs here..

Since mismatch is detected, shift ‘p’ one position to the right and
repeat matching procedure.

a b c a b a a b c a b a c

 S a b c a b a a b c a b a c

a b a a p

Finally, a match would be found after shifting ‘p’ three times to the right side.

Drawbacks of this approach: if ‘m’ is the length of pattern ‘p’ and ‘n’ the length of
string ‘S’, the matching time is of the order O(mn). This is a certainly a very slow
running algorithm.
What makes this approach so slow is the fact that elements of ‘S’ with which
comparisons had been performed earlier are involved again and again in
comparisons in some future iterations. For example: when mismatch is detected for
the first time in comparison of p[3] with S[3], pattern ‘p’ would be moved one
position to the right and matching procedure would resume from here. Here the first
comparison that would take place would be between p[0]=‘a’ and S[1]=‘b’. It should
be noted here that S[1]=‘b’ had been previously involved in a comparison in step 2.
this is a repetitive use of S[1] in another comparison.
It is these repetitive comparisons that lead to the runtime of O(mn).

The Knuth-Morris-Pratt Algorithm

Knuth, Morris and Pratt proposed a linear time
algorithm for the string matching problem.

A matching time of O(n) is achieved by avoiding
comparisons with elements of ‘S’ that have
previously been involved in comparison with
some element of the pattern ‘p’ to be
matched. i.e., backtracking on the string ‘S’
never occurs

Components of KMP algorithm

• The prefix function, Π
The prefix function,Π for a pattern encapsulates

knowledge about how the pattern matches against
shifts of itself. This information can be used to avoid
useless shifts of the pattern ‘p’. In other words, this
enables avoiding backtracking on the string ‘S’.

• The KMP Matcher
With string ‘S’, pattern ‘p’ and prefix function ‘Π’ as

inputs, finds the occurrence of ‘p’ in ‘S’ and returns
the number of shifts of ‘p’ after which occurrence is
found.

The prefix function, Π

Following pseudocode computes the prefix fucnction, Π:

Compute-Prefix-Function (p)
1 m  length[p] //’p’ pattern to be matched
2 Π[1]  0
3 k  0
4 for q  2 to m
5 do while k > 0 and p[k+1] != p[q]
6 do k  Π[k]
7 If p[k+1] = p[q]
8 then k  k +1
9 Π[q]  k
10 return Π

Example: compute Π for the pattern ‘p’ below:

 p a b a b a c a

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0

Initially: m = length[p] = 7
 Π[1] = 0
 k = 0

Step 1: q = 2, k=0
 Π[2] = 0

Step 2: q = 3, k = 0,
 Π[3] = 1

Step 3: q = 4, k = 1
 Π[4] = 2

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1

q 1 2 3 4 5 6 7

p a b a b a c A

Π 0 0 1 2

Step 4: q = 5, k =2

 Π[5] = 3

Step 5: q = 6, k = 3

 Π[6] = 1

Step 6: q = 7, k = 1

 Π[7] = 1

After iterating 6 times, the prefix
function computation is
complete: 

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1 1

q 1 2 3 4 5 6 7

p a b A b a c a

Π 0 0 1 2 3 1 1

The KMP Matcher

The KMP Matcher, with pattern ‘p’, string ‘S’ and prefix function ‘Π’ as input, finds a
match of p in S.

Following pseudocode computes the matching component of KMP algorithm:
KMP-Matcher(S,p)
1 n  length[S]
2 m  length[p]
3 Π  Compute-Prefix-Function(p)
4 q  0 //number of characters matched
5 for i  1 to n //scan S from left to right
6 do while q > 0 and p[q+1] != S[i]
7 do q  Π[q] //next character does not match
8 if p[q+1] = S[i]
9 then q  q + 1 //next character matches
10 if q = m //is all of p matched?
11 then print “Pattern occurs with shift” i – m
12 q  Π[q] // look for the next match

Note: KMP finds every occurrence of a ‘p’ in ‘S’. That is why KMP does not terminate in

step 12, rather it searches remainder of ‘S’ for any more occurrences of ‘p’.

Illustration: given a String ‘S’ and pattern ‘p’ as follows:

 S
b a c b a b a b a b a c a c a

a b a b a c a p

Let us execute the KMP algorithm to find whether
‘p’ occurs in ‘S’.

For ‘p’ the prefix function, Π was computed previously and is as follows:

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1 1

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

Initially: n = size of S = 15;
 m = size of p = 7

Step 1: i = 1, q = 0
 comparing p[1] with S[1]

S

p
P[1] does not match with S[1]. ‘p’ will be shifted one position to the right.

S

p

Step 2: i = 2, q = 0
 comparing p[1] with S[2]

P[1] matches S[2]. Since there is a match, p is not shifted.

Step 3: i = 3, q = 1

b a c b a b a b a b a c a a b

a b a b a c a

Comparing p[2] with S[3]

S

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a p

S

p

S

p

p[2] does not match with S[3]

Backtracking on p, comparing p[1] and S[3]

Step 4: i = 4, q = 0
comparing p[1] with S[4] p[1] does not match with S[4]

Step 5: i = 5, q = 0
comparing p[1] with S[5] p[1] matches with S[5]

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

a b a b a c a

Step 6: i = 6, q = 1

S

p

Comparing p[2] with S[6] p[2] matches with S[6]

S

p

Step 7: i = 7, q = 2
Comparing p[3] with S[7] p[3] matches with S[7]

Step 8: i = 8, q = 3
Comparing p[4] with S[8] p[4] matches with S[8]

S

p

Step 9: i = 9, q = 4

Comparing p[5] with S[9]

Comparing p[6] with S[10]

Comparing p[5] with S[11]

Step 10: i = 10, q = 5

Step 11: i = 11, q = 4

S

S

S

p

p

p

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

a b a b a c a

p[6] doesn’t match with S[10]

Backtracking on p, comparing p[4] with S[10] because after mismatch q = Π[5] = 3

p[5] matches with S[9]

p[5] matches with S[11]

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

Step 12: i = 12, q = 5

Comparing p[6] with S[12]

Comparing p[7] with S[13]

S

S

p

p

Step 13: i = 13, q = 6

p[6] matches with S[12]

p[7] matches with S[13]

Pattern ‘p’ has been found to completely occur in string ‘S’. The total number of shifts
that took place for the match to be found are: i – m = 13 – 7 = 6 shifts.

Running - time analysis

• Compute-Prefix-Function (Π)
1 m  length[p] //’p’ pattern to be

matched
2 Π[1]  0
3 k  0
4 for q  2 to m
5 do while k > 0 and p[k+1] != p[q]
6 do k  Π[k]
7 If p[k+1] = p[q]
8 then k  k +1
9 Π[q]  k
10 return Π

In the above pseudocode for computing the

prefix function, the for loop from step
4 to step 10 runs ‘m’ times. Step 1 to
step 3 take constant time. Hence the
running time of compute prefix
function is Θ(m).

• KMP Matcher
1 n  length[S]
2 m  length[p]
3 Π  Compute-Prefix-Function(p)
4 q  0
5 for i  1 to n
6 do while q > 0 and p[q+1] != S[i]
7 do q  Π[q]
8 if p[q+1] = S[i]
9 then q  q + 1
10 if q = m
11 then print “Pattern occurs with shift” i

– m
12 q  Π[q]

The for loop beginning in step 5 runs ‘n’

times, i.e., as long as the length of the
string ‘S’. Since step 1 to step 4 take
constant time, the running time is
dominated by this for loop. Thus running
time of matching function is Θ(n).

Tries

 Trie is a special structure to represent sets of
character strings.

 Can also be used to represent data types
that are objects of any type e.g. strings of
integers.

 The word “trie” is derived from the middle
letters of the word “retrieval”.

Tries: Example

One way to implement a spelling checker is

 Read a text file.

 Break it into words(character strings
separated by blanks and new lines).

 Find those words not in a standard
dictionary of words.

 Words in the text but not in the dictionary
are printed out as possible misspellings.

Tries: Example

It can be implemented by a set having
operations of :

 INSERT

 DELETE

 MAKENULL

 PRINT

A Trie structure supports these set operations
when the element of the set are words.

Tries: Example
T

H

E

$

$ $ $

$

$

$

N

I I

N

G

S

S N N

I

Tries: Example

 Tries are appropriate when many words begin with
the same sequence of letters.

 i.e; when the number of distinct prefixes among all
words in the set is much less than the total length
of all the words.

 Each path from the root to the leaf corresponds to
one word in the represented set.

 Nodes of the trie correspond to the prefixes of
words in the set.

Tries: Example

  The symbol $ is added at the end of each word so
that no prefix of a word can be a word itself.

 The Trie corresponds to the set {THE,THEN THIN,
TIN, SIN, SING}

 Each node has at most 27 children, one for each
letter and $

 Most nodes will have many fewer than 27 children.

 A leaf reached by an edge labeled $ cannot have
any children.

645

Tries
• Standard Tries

• Compressed Tries

• Suffix Tries

646

Text Processing
• We have seen that preprocessing the pattern speeds up pattern

matching queries

• After preprocessing the pattern in time proportional to the pattern
length, the Boyer-Moore algorithm searches an arbitrary English
text in (average) time proportional to the text length

• If the text is large, immutable and searched for often (e.g., works by
Shakespeare), we may want to preprocess the text instead of the
pattern in order to perform pattern matching queries in time
proportional to the pattern length.

• Tradeoffs in text
 searching

647

Standard Tries
• The standard trie for a set of strings S is an ordered tree such that:

– each node but the root is labeled with a character

– the children of a node are alphabetically ordered

– the paths from the external nodes to the root yield the strings of S

• Example: standard trie for

 the set of strings

 S = { bear, bell, bid, bull,

 buy, sell, stock, stop }

•A standard trie uses O(n) space. Operations (find, insert, remove) take time
O(dm) each, where:

 -n = total size of the strings in S,

 -m =size of the string parameter of the operation

 -d =alphabet size,

648

Applications of Tries
• A standard trie supports the following operations on a preprocessed

text in time O(m), where m = |X|
 -word matching: find the first occurence of word X in the text
 -prefix matching: find the first occurrence of the longest prefix of

word X in the text
• Each operation is performed by tracing a path in the trie starting at

the root

649

Compressed Tries

• Trie with nodes of degree at least 2

• Obtained from standard trie by compressing chains of redundant
nodes

Compressed Trie:

Standard Trie:

650

Compact Storage of Compressed Tries

• A compressed trie can be stored in space O(s), where s = |S|, by using
O(1) space index ranges at the nodes

651

Insertion and Deletion
into/from a Compressed Trie

652

Suffix Tries
• A suffix trie is a compressed trie for all the suffixes of a text

Example:

Compact representation:

653

Properties of Suffix Tries
• The suffix trie for a text X of size n from an alphabet of size d

 -stores all the n(n-1)/2 suffixes of X in O(n) space

 -supports arbitrary pattern matching and prefix matching queries in
O(dm) time, where m is the length of the pattern

 -can be constructed in O(dn) time

654

Tries and Web Search Engines

• The index of a search engine (collection of all searchable words) is stored
into a compressed trie

• Each leaf of the trie is associated with a word and has a list of pages (URLs)
containing that word, called occurrence list

• The trie is kept in internal memory

• The occurrence lists are kept in external memory and are ranked by
relevance

• Boolean queries for sets of words (e.g., Java and coffee) correspond to set
operations (e.g., intersection) on the occurrence lists

• Additional information retrieval techniques are used, such as
– stopword elimination (e.g., ignore “the” “a” “is”)

– stemming (e.g., identify “add” “adding” “added”)

– link analysis (recognize authoritative pages)

655

Tries and Internet Routers
• Computers on the internet (hosts) are identified by a unique 32-bit IP

(internet protocol) addres, usually written in “dotted-quad-decimal”
notation

• E.g., www.cs.brown.edu is 128.148.32.110

• Use nslookup on Unix to find out IP addresses

• An organization uses a subset of IP addresses with the same prefix, e.g.,
Brown uses 128.148.*.*, Yale uses 130.132.*.*

• Data is sent to a host by fragmenting it into packets. Each packet carries the
IP address of its destination.

• The internet whose nodes are routers, and whose edges are
communication links.

• A router forwards packets to its neighbors using IP prefix matching rules.
E.g., a packet with IP prefix 128.148. should be forwarded to the Brown
gateway router.

• Routers use tries on the alphabet 0,1 to do prefix matching.

