

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 (Autonomous)

ESTIMATION AND COSTING (A70138) JNTUH-R15 B.Tech IV YEAR I SEM

Prepared By: Mr. Gude Ramakrishna Associate Professor Department of Civil Engineering

UNIT-I GENERAL ITEMS OF WORK IN BUILDING

DEFINITION OF ESTIMATING AND COSTING

- Estimating is the technique of calculating or Computing the various quantities and the expected Expenditure to be incurred on a particular work or project.
- In case the funds avilable are less than the estimated cost the work is done in part or by reducing it or specifications are altered, the following require-ment are necessary for preparing an estimate.
- a) Drawings like plan, elevation and sections of important points.

PROCEDURE OF ESTIMATING OR METHOD OF ESTIMATING.

- Estimating involves the following operations
- Preparing detailed Estimate.
- Calculating the rate of each unit of work
- Preparing abstract of estimate

DATA REQUIRED TO PREPARE AN ESTIMATE

- Drawings i.e.plans, elevations, sections etc.
- Specifications.
- Rates.

NEED FOR ESTIMATION AND COSTING

- Estimate give an idea of the cost of the work and hence its feasibility can be determined i..e whether the project could be taken up with in the funds available or not.
- Estimate gives an idea of time required for the completion of the work.
- Estimate is required to invite the tenders and Quotations and to arange contract.
- Estimate is also required to control the expenditure during the execution of work.

PROCEDURE OF ESTIMATING OR METHOD OF ESTIMATING.

- Estimating involves the following operations
- Preparing detailed Estimate.
- Calculating the rate of each unit of work
- Preparing abstract of estimate

DATA REQUIRED TO PREPARE AN ESTIMATE

- Drawings i.e.plans, elevations, sections etc.
- Specifications.
- Rates.

RATES:

- For preparing the estimate the unit rates of each item of work are
- re-quired.
- For arriving at the unit rates of each item.
- The rates of various materials to be used in the construction.
- The cost of transport materials.
- The wages of labour, skilled or unskilled of masons, carpenters, Mazdoor, etc.,

LUMPSUM:

- While preparing an estimate, it is not possible to workout in detail in case of petty items. Items other than civil engineering such items are called lumpsum items or simply L.S.Items.
- The following are some of L.S. Items in the estimate.
 - Water supply and sanitary arrangements.
 - Electrical installations like meter, motor, etc.,
 - Architectural features.
 - Contingencies and unforeseen items.

WORK CHARGED ESTABLISHMENT:

• During the construction of a project considerable number of skilled su-pervisors, work assistance, watch men etc., are employed on temporary basis. The salaries of these persons are drawn from the L.S. amount alloted towards the work charged establishment. that is, establishment which is charged directly to work. an L.S.amount of 1½ to 2% of the estimated cost is provided towards the work charged establishment.

DETAILED ESTIMATES OF BUILDINGS

UNITS OF MEASUREMENTS:

- The units of measurements are mainly categorised for their nature, shape and size and for making payments to the contractor and also. The principle of units of measurements normally consists the following:
 - Single units work like doors, windows, trusses etc., are expressed in numbers.
 - Works consists linear measurements involve length like cornice, fencing, hand rail, bands of specified width etc., are expressed in running metres (RM)

- Works consists areal surface measurements involve area like plastering, white washing, partitions of specified thickness
- etc., are expressed in square meters (m²)
 - Works consists cubical contents which involve volume like earth work, cement concrete, Masonry etc are expressed in Cubic metres.

METHODS OF TAKING OUT QUANTITIES:

The quantities like earth work, foundation concrete, brickwork in plinth and super structure etc., canbe workout by any of following two methods:

- Long wall short wall method
- Centre line method.

a) Long wall-short wall method:

• In this method, the wall along the length of room is considered to be long wall while the wall perpendicular to long wall is said to be short wall.

MEASUREMENT OF MATERIALS AND WORKS

length of long wall or short wall, calculate first the centre line lengths of individual walls. Then the length of long wall, (out to out) may be calculated after adding half breadth at each end to its centre line length. Thus the length of short wall measured into in and may be found by deducting half breadth from its centre line length at each end. The length of long wall usually decreases from earth work to brick work in super structure while the short wall increases. These lengths are multiplied by breadth and depth to get quantities.

b)Centre line method:

• This method is suitable for walls of similar cross sections. Here the total centre line length is multiplied by breadth and depth of respective item to get the total quantity at a time. When cross walls or partitions or verandah walls join with mainall, the centre line length gets reduced by half of breadth for each junction. such junction or joints are studied caefully while calculating total centre line length. The estimates prepared by this method are most accurate and quick.

MEASUREMENT OF MATERIALS AND WORKS

UNITS OF MEASUREMENTS:

The units of measurements are mainly categorised for their nature, shape and size and for making payments to the contractor and also. The principle of units of measurements normally consists the following:

1.Single units work like doors, windows, trusses etc., are expressed in numbers.

2.Works consists linear measurements involve length like cornice, fencing, hand rail, bands of specified width etc., are expressed in running metres (RM)

3.Works consists areal surface measurements involve area like plastering, white washing, partitions of specified thickness etc., are expressed in square meters (m^2) From the Drawing given below determine (a) Earth work excavation (b) CC (1:5:10) Bed (c) R.R.Masonry in C.M. (1:6) (d) Brick Work in C.M.(1:6).

• Single Roomed Building

TYPES OF ESTIMATION

DETAILED ESTIMATE:

• The preparation of detailed estimate consists of working out quantities of various items of work and then determine the cost of each item. This is prepared in two stages.

Details of measurements and calculation of quantities:

• The complete work is divided into various items of work such as earth work concreting, brick work, R.C.C. Plastering etc., The details of measure-ments are taken from drawings and entered in respective columns of prescribed proforma. the quantities are calculated by multiplying the values that are in num-bers column to Depth column as shown below:

Details of measurements form

S.No.		No	Length	Breadth	Depth/	Quantity	
	Description of Item		(L) m	(B) m	Height (D/H)m		Explanatory Notes

Abstract of Estimated Cost :

• The cost of each item of work is worked out from the quantities that already computed in the detals measurement form at workable rate. But the total cost is worked out in the prescribed form is known as abstract of estimated form. 4%of estimated Cost is allowed for Petty Supervision, contingencies and Unforeseen items.

ABSTRACT OF ESTIMATE FORM

Item No.	Description	Quantity	Unit	Rate	Per	Amount
	/					
	Particulars				(Unit)	

Factors to be consisdered While Preparing Detailed Esti-mate:

- Quantity and transportation of materials: For bigger project, the re-quirement of materials is more. such bulk volume of materials will be pur-chased and transported definitely at cheaper rate.
- *Location of site:* The site of work is selected, such that it should reduce damage or in transit during loading, unloading, stocking of mateirals.

• Local labour charges: The skill, suitability and wages of local laboures are consideed while preparing the detailed

FIXING OF RATE PER UNIT OF AN ITEM:

The rate per unit of an item includes the following:

- Quantity of materials & cost: The requirement of materials are taken strictly in accordance with standard data book(S.D.B). The cost of these includes first cost, freight, insurance and transportation charges.
- **Cost of labour:** The exact number of labourers required for unit of work and the multiplied by the wages/ day to get of labour for unit item Work.

- *Cost of equipment (T&P):* Some works need special type of equip-ment, tools and plant. In such case, an amount of 1 to 2% of estimated cost is provided.
- *Overhead charges:* To meet expenses of office rent, depreciation of equipment salaries of staff postage, lighting an amount of 4% of estimate cost is allocated.

DETAIL & ABSTRACT ESTIMATES

From the given figure below calculate the detailed and abstract estimate for the single roomed building (Load bearing type structure) by

a) long wall & short wall method (b) Centre Line Method

Note: All Dimensions are in 'M' D=1X2.1M W=1.5X1.2M

Single Roomed Building

(Load Bearing type structure)

Estimation	and	Costing
------------	-----	---------

<u>a) L</u>	ong wall - Short M	etho	d	_			
S.N d	. Particulars of Item	s No.	L	в	н	Q	Explanation
1.	Earth Work excava	tion					
	for foundation						
	a) Long walls	2	6.2	0.9	1.4	15.264	L=5.3+.45+.45=6.2
							D=0.3+0.5+0.6=1.4
	b) Short walls	2	3.4	0.9	1.4	8.568	L= 4.3-0.45-0.45= 3.4
					Tota	24.192	m ³
2.	C.C.(1:4:8) bed fo	r					
_	foundation						
	a) Long walls	2	6.2	0.9	0.3	3.348	
	b) Short walls	2	3.4	0.9	0.3	1.836	
					Total	5.184	m ³
3.	R.R.Masonryin CN	r I					
	(1:6) for						
	a) Footings						
	i) Long walls	2	5.9	0.6	0.5	3.54	L= 5.3+0.3+0.3=5.9
	ii) Short walls	2	3.7	0.6	0.5	2.22	L=4.3-0.3-0.3=3.7
					Total	5.76	m ³
	b) Basement						
	i) Long walls	2	5.75	0.45	0.6	3.105 L=	5.3+0.225+0.225=5.75
	ii)Shortwalls	2	3.85	0.45	0.6	2.079 L=	4.3-0.225-0.225=3.85
					Total	5.184 _n	3
	Total R.R. Masonr	y for	footin	gs an	d Ba	sement	
	Priok maganany with	CN	=	5.76	+5.184	$=10.94\mathrm{m}$	l 3
	(1.6) for super structure						
	a) Long Walls	2	5.6	0.30	3.00	10.08	=53+015+015=56
	b) Short walls	2	4.0	0.30	3.00	7.20	L=4.3-0.15-0.15=4.0
	c) for parapetwall						
	5.6						
		0					
							L
	I				l	l	

	-			-				-
•	. Particulars of Item	is No). L	E	н	Q	Explanation]
	Deductions for openings a)Doors b) Windows	1 3	1.0	0.3	2.1 1.2 Tota	0.63 1.62 (-) 2.25	m ³	
	Net Brick Masonr	v	= 20.2	28 - 2	25 =	18.03m ³	5	
5.	R.C.C. (1:2:4) for					[
	a) Roof slab	1	5.6	4.6	0.12	3.090		
	b) Lintels over							
	1) Doors			0.2	0.15	0.054		
	ii) Windows	3	1.5	0.3	0.15	0.202		
	c) Beams		5			1 008		
	ii) short beams		3.0		0.3	1.008		
	ii) short beams		1 7.0	1 0	Total	5.074	m3	
6	Sandfilling for				I Otal			
	basement	1	4.85	3.85	0.48	8.96	L=5.0-0.075-0.075	=4.8
7	C.C.(1:4:8) for		4.85	3.85	0.1	1.86	B = 4.0 - 0.075 - 0.075 = 3.85	
	flooring							
8	Flooring with Mos:	aic 1	5.0	4.0)	20.0	\mathbf{m}^2	
	tiles							
9	Plastering with Cl	M						
	(1:6)for super							
	structure <u>Inside</u>							
								23
			I	I	I	I	I	
	1							

S.N	o. Particulars of Iten	ns N). L	в	Н	Q	Explanation
10 11	Plasteringfor Ceiling with CM(1:5) White Washing with two	1	5.0	4.0		20.0	m ²
	coats with Janatha cement	Ç.					
	Same as quantity of plastering for walls	and 1	51.1	8 (= 1	131.18	+20=1	51.18) ceiling
12.	Colour washing with two coats						
	Same as quantity of plastering for walls and ceiling					151.18 (=131.18+20)151.18)
13 \$	Supply & Fixing of best						
	country wood for						
	a) Doors	1				1 No.	
	b) Windows	3				310.	
14	Painting with ready	mixe	d				
	synthetic enamil pa	its wi	th				
	two coats over prim	ary c	oat				
	for new wood for					1 = 2 =	
	a) Doors	$2^{1/43}$	$(1 \ 1.0)$		2.1	4.725	
	b) whidows	2747	.5 1.5		Total	16.875	m ²
15	Petty supervision						
	and contingencies at						
	4% and rounding off.						

b) Centre Line Method

S.N	. Particulars of Item	s No	. L	в	Н	Q	Explanation
1.	Earth Work exevation for foundation 5.3 4.3	n 1	19.2	0.9	1.4	24.192	m ³ L=2(5.3+4.3)=19.2
2.	C.C.(1:4:8) bed fo foundation	r 1	19.2	0.9	0.3	5.184	m ³
3.	R.R.Masonry in						
	CM (1:6) for						
	a) Footings	1	19.2	0.6	0.5	5.76	
	b) Basement	1	19.2	0.45	0.6	5.184	
					Total	<u>10.944</u>	
4	Brick masonry with						
--.	CM(1.6) for superstruc	ture 1	19.2	03	3.0	17.28	1 223
	For parapet wall	1	19.2	0.3	0.75	3.00	1113
	Deductions foropenings	1	20.0	0.2	0.75	5.00	
	a)Doors	1	1.0	0.3	2.1	0.63	
	b) Windows	3	1.5	0.3	1.2	1.62	
					Total		m ³
					2.25		
	Net Brick Maso	$\mathbf{ny} =$	17.28	+3.0-	=		m ³
5.	R.C.C. (1:2:4) for						
	a) roof slab	1	5.6	4.6	0.12		
	b) Lintels over						
	i) Doors	1	1.2	0.3	0.15		
	ii) Windows	3	1.5	0.3	0.15		
	c) beams	1	19.2	1.3	0.3		
					Total		m ³
6.	Sandfilling for						
	basement	1	4.85	3.85	0.48		L=5.0-0.075-0.075=4.85
7	C.C.(1:4:8) for	1	4.85	3.85	0.1		B= 4.0-0.075-0.075=3.85
	flooring						

 								r
8. flooring withM	osaic	: 1	5.0	4.0		20	0.0	
9 Plastering with								
(1:6)for super s	truc	ure						
Inside								
For walls		T	18.0		B.O	54	.0	
Outside								
For walls			20.4	3	.87	61	.2	
Basement ou	tside	1	21.6	(0.6	12.	.96	
Parapet wall								
a) Inside		1	18.8	0	.75	14	4.1	
b) top		1	19.6	0.2	<u> </u>	3.9	92	
Deductions for ope	inings				[otal_]	146	.18 m ²	
Doors		1x2	1.0	:	2.1	4.	.2 L=5.0-0.075-0.07	5=4.85
Windows		3x2	1.5		1.2	10	B = 4.0 - 0.075 - 0.075 =	3.85
						15	m^{2}	
Net Plaster	ng=	146.1	8-15			13	$1.18 m^2$	
10 Plastering forC	eilin	g 1	5.0	4.0		20	$1.0 m^2$	
with $CM(1:5)$								
11 White Washing with	two							
coats with Janatha c	ement							
Same as quanti	tv of					15	$1.18 m^2$	
plastering for w	allsa	nd					(131.18 + 20 = 151.18)	5
ceiling								-
centing								
12. Colour wash	ing							
with two coats								
Same as quantit	v of							
plastering for y		and 14	51 19	\mathbf{m}^2 c	hiling	-		
		and I.	P 1.10		lillig	,		
								26
							l	

S.No	. Particulars of Iten	ıs N). L	В		Q	Explanation
14	Painting with ready mixed synthetic enamil paints wi two coats over primary co for new wood for a) Doors b) Windows	th at $2^{1}/4x^{2}$	1 1.0 3 1 5		2.1	4.725	
15	Petty supervision and contingencies at 4% and rounding off.	274	1.5		Total	16.875	m ²

Abstract estimate of single roomed building (load bearing structure)

S.NO.	Description of item	Quantity	Unit	Rate	Per	Amount
	Earth work excaation	24.192	m ³	465	$10m^{3}$	1125.00
$\begin{array}{c} 2.\\ 2\end{array}$	Cement concrete $(1:4:8)$	5.184	m ³	4343	1111	8009.30
5.	RR.masonrym.C.M.(1:3)	10.94	m°	105 20	m^3 3	175.00
4.	Briek magonry in country	0.90	m^3	195.20	TOIL	11206 72
5.	bricks of standard size in CM(1:8)	18.05	m ³	2291	m ³	41300.73
6.	R.C.C. (1:2:4) for lintels, beams etc.	1.984	m ³	6030	m^3	11963.52
7.	R.C.C.(1:2:4) for slabs,	3.09	m ³	6030	m ³	18633.00
8.	Cement concrete (1:5:10)	1.86	m3	1452	m3	2700.72
	for flooring				-	
9.	Supplying and fixing of	2.1	m^2	1650	m^2	3465.00
10	country wood for doors.	- 1	2	2200	m^2	10400.00
10.	Supplying and fixing of	5.4	m	2300	111	12420.00
	country wood for windows					
	and ventilators.	151 10	m^2	593	$10m^2$	9709 70
	Plastering to all exposed	151.18	111	362		0/90.70
	surfaces of brick work and becoment with $C M (1.5)$					
12	White weeking with best	151 10	m^2	116	$10m^2$	1752 69
12	shell lime	131.10	111	110		1755.08
13	Flooring with spartek tiles	20	7772	4230	$10m^2$	8460.00
15	set in C M (1.3)	20	1112	1250	10111	0100.00
14	Painting with ready mixed	1 16.875	m^2	335	$10m^2$	565.31
	8					

CALCULATE THE QUANTITIES OF ITEMS OF THE STAIR CASE OF THE FIGURE SHOWN IN BELOW.

R.C.C. Stair Case

S.N	o. Particulars of Iten	ns N	р. L	вн		Q	Explanation
1	R.C.C. (1:2:4) excluding						
	steel and its fabrication						
	but including centering						
	and shultering and						
	binding wire.						
	a) Toe wall	1x1	3 15	03	04	0 38	
		1	5.10	0.5	0.1	0.20	\mathbf{m}^{3} L= (1 2+0 15+1 2+2x0 3)
	b)Waistslabfor1andII	1x2	3.21	1.2	0.17	1.31	
	flights $L = \sqrt{2.75^2 + 100}$	1.65^{2}	= 3.1	21m			
	c) Landing Middle an	d1x2	2.85	1.65	0.17	1.60	$L = (1.2 \pm 0.15 \pm 1.2 \pm 2x0.15)$
	first floor				Total	3.29	
2. Ist	class brick work in	2x11	1.2	$\frac{1}{2}x(0)$	25 + 1.5) 0.495	
Ī	C.M. (1:4) for steps			, 0	20 1 1 10	,	
3. 2	20mm. thick cement						
	plastering (1:5) for						
	steps finished neat						
	a) Treads & Rises	2×11	1.2	x (0.2	5+0.15	5) 10.56	
	b) ends of steps	2x11		$\frac{1}{2x}(0.1)$	25+1.5)	0.41	
	_				Total	10.97	Z m ²
4.	2.5cm No sing in steps	2x12	1.2			28.8F	RM
5.	2.5cm. C.C. flooring						
	finished neat cement						
	floating in middle and						
	first floor landing.	1x2	2.55	1.2		6.12	m 2
6.	Supplying and fixing of						111-
	bestteak wood hand rail						
	finished smooth	1x1	6.67			6.67F	RM
7.	supplyandfixingofbest						
	teak wood newel po	sts 8	k				
	finished smooth	1x2	1.0	0.1	0.1	0.02	
8.	Cap of Newel post	1x2				2Nos	•••

UNIT - II

EARTHWORKS FOR ROADS AND CANALS.

- Generally all the Civil Engineering projects like roads, railways, earth dams, canal bunds, buildings etc. involves the earth work. This earth work may be either earth excavation or earth filling or Some times both will get according to the desired shape and level. Basically the volume of earthwork is computed from length, breadth, and depth of excavation or filling.
- In this chapter the various methods of calculating the earth work quantities shall be discussed.

• Lead and Lift:

Lead:

• It is the average horizontal distance between the centre of excavation to the centre of deposition. The unit of lead is 50m.

<u>Lift :</u>

• It is the average height through which the earth has to be lifted from source to the place of spreading or heaping. The unit of lift is 2.00m for first lift and one extra lift for every 1.0m. for example when earth is to be lifted for 4.5m, Four lifts are to be paid to the contractor.

Calculation of earth work for Roads: V = (bd+2x1/2x ndx d)L V = (bd+nd²)L

• Case2:

 $V = (bd+2x1/2x ndx d)L V = (bd+nd^2)L$ When the ground is in longitudinal slope or the formation has uniform gradi- ent for a length the earth work may be calculated by the following methods.

By Mid Section or Mid ordinate method.

Where d_1 , d_2 = depth of banks at two ends

Estimation and Costing

Mid ordinate (or) Average depth (d) $= \frac{d_1 + d_2}{2}$ Area of mid section (Am) = $(bd_m + \frac{m}{nd^2})$ volume of earth work (v) = A x L = $(b_1 + nd^2) \times L$

I)Trepezoidal formula: (for twosections) In this method also called mean sectional area method LetA₁&A₂betwoareasattwoends. A= (bd+ nd²), A=(bd + nd²) 1 1 2 2 2 $\underline{A_1 + A_2}$ $A_m = 2$ Volume of earth work (v) = Am ×L

From the problem 7.5 if the gradient is 1 in 100 raising upto 40th chainage and 1 in 100 falling ragient from 40th Chainage to 120th chainage. Calculate the vol of earth work by using the formulas.

UNIT-III ANALYSIS OF RATES

Definition : In order to determine the rate of a particular item, the factors affecting the rate of that item are studied carefully and then finally a rate is de-cided for that item. This process of determining the rates of an item is termed as analysis of rates or rate analysis.

- The rates of particular item of work depends on the following.
- •Specifications of works and material about their quality, proportion and con-structional operation method.
- •Quantity of materials and their costs.
- •Cost of labours and their wages.
- •Location of site of work and the distances from source and conveyance charges.
- •Overhead and establishment charges
- •Profit

- Lead statement: The distance between the source of availability of material and construction site is known as "Lead " and is expected in Km. The cost of convenayce of material depends onlead.
- This statement will give the total cost of materials per unit item. It in-cludes first cost, convenayce loading, unloading stacking, charges etc.
- The rate shown in the lead statement are for mettalled road and include loading and staking charges . The environment lead on the metalled roads are

Cost of materials at source and at site of construction. The costs of materials are taken as delivered at site inclusive of the transport local taxes and other charges. Purpose of Analysis of rates: To work out the actual cost of per unit of the items. To work out the economical use of materials and processes in completing the particulars item. To work out the cost of extra items which are not provided in the contract bond, but are to be done as per the directions of the department. To revise the schedule of rates due to increase zin the cost of material and labor or due to change in technique

Name.	Shape	Di	No.	Length in	TotalLength inm	
	-	a.		m		Self weight in kg /m
B E A M	main bars			4396+2x(9x1 6)	4.684 x 2	$ \begin{array}{ccccc} \pi & 16 & 2 \\ \times & \times 7860 \\ 4 & 1000 \\ = 1.58 \end{array} $
	4000+2x230-2x32=4396	16	2	= 4684mm = 4.684m	= 9.368m	
	Anchor bars			4396+2x(9x1 2) = 4612mm	4.612 x 2 = 9.224m	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	4000+2x230-2x32=4396	12	2	= 4.612m		= 0.89
	Cranked bars 500-2x25-16= 434 <u>798</u> 2800	16	2	4396+2x(9x16) 2(0.414x434) = 5043mm =5.043m Additional length for each crank = 0.414d	+ 5.04 x = 10.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	450	6	17	2(450+180) +	1.368x17	$\pi \times 6 2 \times 7860$
	180 Height = 500-2x25=450	o	17	= 1368mm = 1.368m	= 23.230	= 0.22
	Width =230-2x25 =180				No. ofstirups=((79 +(2800/400)	98/210)+1)x2 = 17 Nos

Prepare the bar bending schedule of the given figure for R.C.C. Lintel

Plan of R.C.C.Slab

dimension =4000x Internal room 2000

Slab Thickness=100mm

Nomo	Chore	Die	NT -	Lanoth in e-	Totall ength inm	
maine.	Snape	Dia.	No.	Length in m		Self weight in kg /m
B E A M	main bars			4396+2x(9x16)	4.684 x 2	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	4000+2x230-2x32=4396	16	2	= 4684mm = 4.684m	= 9.368m	
	Anchor bars			4396+2x(9x12) = 4612mm	4.612 x 2 = 9.224m	π 12 2 ××7860 4 1000
	4000+2x230-2x32=4396	12	2	= 4.612m		= 0.89
	Cranked bars 500-2x25-16=434 798 798 2800	16	2	4396+2x(9x16) 2(0.414x434) = 5043mm =5.043m Additional length for each crank = 0.414d	+ 5.04 x 2 = 10.08	π 16 2 × ×7860 4 1000 = 1.58
	60			2(450+180) +	1.368x17	π× 6 2×7860
	180 Height = 500-2x25=450	6	17	2x9x6 = 1368mm = 1.368m	= 23.256	4 1000 = 0.22
	Width =230-2x25 =180				No. ofstirups=((798/210)+1)x2 +(2800/400) = 17 Nos	

Prepare the bar bending schedule of the given figure for R.C.C. Lintel

R.C.C.LINTEL

LONGITUDINAL SECTION OF R.C.C.LINTEL

LONGITUDINAL SECTION OF R.C.C.LINTEL

UNIT-V VALUATION OF BUILDING

Gravel Road

A gravel road comprising of a gravel of thickness 100mm compacted thickness and compacted by hand roller. A gravel is placed over an earthern formation which is compacted by a 2 tonne roller.

The estimate of gravel road consists of determining the folloiwng quantities.

Earth work excavation and depositing on bank and compactioncollection of gravel

•spreading compacting gravel toOMC

Example 8.1:- Find the estamation of a gravel road for the fig shown below. for a proposed road from 0km to 12km.

2.	Collectionofgravelin-	1	1200	5.00	0.15	900m ³	
	cluding cost & convey-						
	anceetccomplete50%						
	allowance is given for						
	OMC compaction.						
3	Spreadingofgraveland	1	1200	5.00		6000m ²	
	watering						
4.	Unforceanitems@2%					L.S.	
5.	Tools and plant @1%					L.S	
6.	P.S.andcontinsecis@					L.S	
	4%						

Cement concrete road

C.C. road is laid over an existing W.B.M road, In certain cases. It is laid over a prepared sub grade and a base course is provided. The concrete used for roads is M15 grade using 20mm H.B.G. metal while for base course a concrete of 1:4:8 using 40mm HBGmetal the stages of Estimations of a C.C.road is

- •Earth work excavation and deposting on thebank
- •Cement concrete (1:4:8) for basecourse
- •Cement concrete (1:2:8) for wearingcourse.

:- Calculate the quantities of different items of the figure shown in below **SEPTIK TANK**

S.N	o. Particulars of Items	No.	L	В	Н	Q	Explanation
1. 2. C 3. B C a	Earth work excavation uptoG.L. C.(1:4:8) bed for foundation rick masonary in M 1:4 for side walls) Upto first step (400th) 4300	1	1 4.60 4.0	2.10 5 2.10	3.1 0.30	29.9 2.89	5 8
	$ \begin{array}{c} $)) 1)	1 10.	60 0.4	0 1.20	5.088	
	b)fromIsttoIIstep(300th 4100 1600))					
	Centre line method 3800 1300 Total centre line length (3800+1300)2-10200 Total Brick Masonry R.C.C. (1:2:4) using 20mm HBG metal	1	10.2 = 5.088	0 0.3 + 3	1.20 .672 =	<u>3.672</u> 8.76	
4.	•RCC roofslab •Bafflewall •8cumward	1 1 1	4.10 1.20 1.20	1.60 0.10 0.10	0.1 1.80 2.10 Total	0.656 0.216 0.252 1.124	(Assure projection 100mm inside the wall)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S.N	. Particulars of Items	No.	L	В	Н	Q	Explanation
6. $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	5.	lastering with CM(1:4) with 20mm thick						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		a) Inner surface of septic tank b) flooring	1	9.0		2.4	21.6	L=2(3.5+1.0)=9.0
10 for of barliewal generations of Pipe optimized in for		c)sidesofscumboard d)Bottom of scumboard e)sides of bafflewall	1	3.5	1.0		3.15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1) Top of battlewal (2) deduction for Pipe opening Earth filling with excavated soil around the brick work a) upto first step	1x2	1.0		2.1	4.2	
6. = 12.8 12.80 151.2 12.8		4750 225	1	1.0	0.1		0.1	
$\begin{bmatrix} Total length = (4.45+1.95)2 & IX2 & IX$		4450 195						
$ = 12.8 \ 12.8 \ 0.051.2 \\ to \\ Ground Level \\ - \frac{4600}{250} 200 \\ - \frac{4350}{250} 2 \\ - \frac{4350}{2100} 2 \\ - \frac{4350}{2100} 2 \\ - \frac{4800}{2100} \\ - \frac{2100}{250} \\ - \frac{2100}{25$		Total length = $(4.45+1.95)2$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		= 12.8 12.80 0.151.2	1x2	1.0		1.8	3.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		to						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ground Level	1	1.0	0.1		0.10	
$6. \qquad \begin{bmatrix} 250 \\ 4350 \\ 10$		4600 2100						
6. 185 70tal Centre Linelength =2(4.35+1.85) = 12.4 0 160 160 160 160 160 160 160		250	2	π×(0.1)	2		-0.015	
6. Total Centre Linelength = $2(4.35+1.85) = 12.4$ 0 1.60		4350		4 Net	Plast	ring=	33.08	m2
=2(4.35+1.85) = 12.4 (100) $=2(4.35+1.85) = 12.4$ (100) (100) (100)	6	185 Total Centre Linelength						1
1 - 2(4 - 3 - 4 + 1 - 6) = 12.4	0.	$-2(4,35\pm1,85) = 12.4$						
0 1.60 4.96		-2(4.55+1.65) = 12.4					to up	
			0		1.60		4.96	
			U		1.00			
2.30 4 b) from 1 t step			2.30	4 b) fi	om1	t step		
1x2					1x2			
					1x1			
					171			
1x1					1x1			
1 12.40 0.2 1.60			1	12.4	0 0.2	1.60		

Calculate the quantities of different items of the figure shown in below **SOAK PIT**

THANK YOU