

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

IV B. Tech I semester (JNTUH-R15) Experimental Aerodynamics Elective II

Prepared by

Shiva Prasad U, Assistant Professor, AE

1

UNIT-1 AERODYNAMIC EXPERIMENTS

Wind Tunnels

- Objective
 - Accurately simulate the fluid flow about atmospheric vehicles
 - Measure -Forces, moments, pressure, shear stress, heat transfer, flowfield (velocity, pressure, vorticity, temperature)

Low Speed Vehicles - M<.3 U_{∞} Gallilean Transformation Flight in atmosphere Scale =L Wind Tunnel - Model Scale = l **Stationary Walls** Issues Flow Quality - Uniformity and **Turbulence** Level U_{∞} Wind Tunnel Wall Interference **Reynolds Number Simulation** Re = $\frac{\rho U_{\infty} L}{\rho U_{\infty} \ell} \neq \frac{\rho U_{\infty} \ell}{\rho U_{\infty} \ell}$ μ μ

• Must Match Reynolds Number and Mach Number

Transonic Regime .7<M<1.2

$$Re = \frac{\rho U_{\infty} L}{\mu}$$
$$M = \frac{U_{\infty}}{c}$$

Must change fluid density and viscosity to match Re and M Cryogenic Wind Tunnels are **designed** for this reason

5

History Whirling Arm

Eiffel Tunnel

Wright Brothers

The Wright Brother's "Drift" Balance (top view)

Wind Tunnel Test Trend

Wind Tunnel Layout

- Closed Return
- Open Return
- Double Return
- Annular Return

Closed Return (open test section)

BUEING SUBSONIC WIND TUNNEL

Open Return Closed Test Section

Double Return

UNIVERSITY OF WASHINGTON AERONAUTICAL LABORATORY Kirsten Wind Tunnel

WIND TUNNELS OF NASA

Annular Wind Tunnel

Types of Wind Tunnels

- Subsonic
- Transonic
- Supersonic
- Hypersonic
- Cryogenic
- Specialty
 - Automobiles
 - Environmental- Icing, Buildings, etc.

Subsonic Wind Tunnels

40' x 80' and 80' x 120' NASA Ames

Fans for 40x80 and 80x120

40'x80'

80'x120;

12 foot Pressure Tunnel

12ft Pressure Wind Tunnel NASA Ames Research Center

iare

Access Mode

12-Foot Pressure Wind Tunnel: Specifications

Primary Use:

The facility is used primarily for high Reynolds number testing, including the development of high-lift systems for commercial transports and military aircraft, high angle-of-attack testing of maneuvering aircraft, and high Reynolds number research. Capability:

Mach Number: 0-0.52

Reynolds Number per foot: 0.1 - 12X106

Stagnation Pressure, PSIA: 2.0 - 90

Temperature Range: 540 ° - 610 ° R

Transonic Wind Tunnels

Transonic Wind Tunnels

Wall interference is a severe problem for transonic wind tunnels. Flow can "choke" Shock wave across the tunnel test section Two Solutions Porous Walls Movable Adaptive Walls

Fig. 1:1 Diagrammatic layout of closed-circuit, continuous flow, supersonic wind tunnel.

Fig. 1:2 Diagrammatic layout of intermittent blowdown tunnel.

Fig. 1:3 Diagrammatic layout of intermittent indraft wind tunnel.

Purdue University Aerospace Sciences Laboratory M=2.5 Supersonic Blowdown Wind Tunnel

Principle Operation Detonation Driven Shock Tunnel Set- up and wave plan:

Initial conditions:

- low pressure section: test gas air, about 25 kPa for tailored cond.
- deton. section: oxyhydrogen- helium/ argon mixtures, max. 7 MPa
- damping section: expansion volume; low initial pressures

NASA L-83-3,314

PRINCIPAL COMPONENTS OF THE NTF CIRCUIT

Cryogenic Wind Tunnels

The Cryogenic Ludwieg-Tube at Göttingen (KRG)

Tube	Diameter	0.8 m	Stag. press. (max.)	10 bar
Test Section	Length	130 m 12.5 bar 0.4 × 0.35 m ² 2.0 m 0.15 m	Temperature range	100 ta 300 K
	Load , press. (max.) Cross section Length Model chord (typ.)		Mach number range Reynolds no. (max.)	0.25 ta 0.95 60 · 10 ⁸
			Run 1m e	0.6 to 1.0 s

Adaptive wall test section

Automobile Wind Tunnels

Wind Tunnel Power Requirements Energy Ratio

$$(E.R.)_{t} = \frac{\text{Jet Energy}}{\sum \text{Circuit Losses}} = \frac{1/2 \rho_{0} U_{0}^{3} A_{0}}{\sum \text{Losses}} = \frac{q_{0} U_{0} A_{0}}{\eta P}$$

Subscript 0 refers to the test section P is the motor power

$$\eta_{-}$$
 is the fan efficiency

Wind Tunnel Circuit Elements

Losses

$$K = \frac{p_{t1} - p_{t2}}{q}$$
Local Pressure Loss Coefficient

$$K_{0} = \frac{p_{t1} - p_{t2}}{q_{0}} = K \frac{q}{q_{0}}$$
Pressure Loss Referred to Test Section

$$\Delta E = K_{0} 1 / 2 \rho_{0} U_{0}^{3} A_{0}$$
Section Energy Loss

$$(E.R.)_{t} = \frac{\text{Jet Energy}}{\sum \text{Circuit Losses}} = \frac{1 / 2 \rho_{0} U_{0}^{3} A_{0}}{\sum K_{0} 1 / 2 \rho_{0} U_{0}^{3} A_{0}} = \frac{1}{\sum K_{0}}$$

Closed Return Tunnel

Example - Closed Return Tunnel

	Section	Ко	% Total Loss
1	Test Section	.0093	5.1
2	Diffuser	.0391	21.3
3	Corner #1	.0460	25.0
4	Straight Section	.0026	1.4
5	Corner #2	.0460	25.0
6	Straight Section	.0020	1.1
7	Diffuser	.0160	8.9
8	Corner #3	.0087	4.7
9	Corner #4	.0087	4.7
10	Straight Section	.0002	.1
11	Contraction	.0048	2.7
	Total	.1834	100.0

$$(E.R.)_{t} = \frac{1}{\sum K_{0}} = \frac{1}{.1834} = 5.45$$

Example - Open Return Tunnel

	Section	Ко	% Total Loss
1	Inlet Including Screens	.021	14.0
2	Contraction and Test Section	.013	8.6
3	Diffuser	.080	53.4
4	Discharge at Outlet	.036	24.0
	Total	.150	100.0

$$(E.R.)_{t} = \frac{1}{\sum K_{0}} = \frac{1}{.150} = 6.67$$

Turbulence Management System

Stilling Section - Low speed and uniform flow

- Screens Reduce Turbulence [Reduces Eddy size for Faster Decay]
 - Used to obtain a uniform test section profile
 - Provide a flow resistance for more stable fan operation

Test Section

Test Section - Design criteria of Test Section Size and Speed Determine Rest of Tunnel Design

Test Section Reynolds Number Larger JET - Lower Speed - Less Power - More Expensive

Section Shape - Round-Elliptical, Square, Rectangular-Octagonal with flats for windowsmounting platforms Rectangular with filled corners Not usable but requies power

For Aerodynamics Testing 7x10 Height/Width Ratio

Test Section Length - L = (1 to 2)w

Corners

Low Speed Wind Tunnels-Detailed Design Unit 2

- Open-circuit or Straight through type.
 - Wright Brother's tunnel
 - simple & very efficient
 - small open-circuit tunnels are usually inside a building
 - large tunnels must be open to outside are susceptible to dust ect.
 - Open-circuit tunnels are very noisy & surrounded by high wind current

- Closed-Circuit or Return Type
 - Air is accelerated by the fan and flows through the tunnel
 - Turning vanes are installed to guide flow around the corner
 - The tunnel widens into a large settling chamber to decelerate the air; preventing a large build up of large boundary layer along the wall

- Single-Return Type
 - all wind tunnels discussed thus far have been singlereturn
- Double Return Type
 - divides the flow downstream of the test section and runs through two circuits, each with a driving fan.
 - The flow then joins as it enters the settling chamber & proceeds through a single test section

- Annular
 - An extension of the double-return concept
 - A return passage is located around the entire circumference of the wind tunnel outside the test section
 - This design was employed in the NACA variable density tunnel

- Spin Tunnel
 - Special type of annular tunnel employed at Langley Research Center for spin research.
 - Is mounted vertically with the fan drawing air upward
 - Models are introduced into free-flight conditions then vertical flow adjusted

- Original testing in wind tunnels was to a provide a means to determine lift & drag on airfoil shapes.
- Force Test
 - Force measurement requires a force to be exerted (lift & drag forces so termed force test)
 - The balance can measure only two forces: lift & drag

Six-Component Balance

- A more complete balance that can measure all six measures
 & moments about all three axes of the airplane
- Six component wind tunnel balance
 - this balance measures forces by use of strain gauges

- Pressure Tests
 - Insert tiny tubes into the model surface or airstream and connect them to a pressure measuring device
 - Liquid Manometer-pressure measuring device
 - Tiny hole (pressure taps) drilled into the top of the surface, series of tubes, water added & measured

- Lowered pressure over the wing surface reduced the pressure in the manometer tubes and draws the water level up to a high level
- The lower the pressure, the higher the water level goes
- Measuring the difference in water level will show the relative pressure difference

- Flow Patterns
 - Allow the streamlines of air flow to look at the body's aerodynamic properties
 - Tufting allows for the flow pattern visualization
 - Tufting –the attachment of small tufts of yarn to the surface
 - The tufts will show if flow is attached or separated to form a wake.

- Flow pattern
 - visualized by the use of smoke at the Embry-Riddle smoke tunnel
 - Smoke is generated by burning oil; then injected into into the airstream
 - Oil flow techniques can also be used to study flow patterns

High Speed Wind Tunnels

- Supersonic tunnels-1st developed in Germany, Busemann who also developed the swept-wing concept
- Early supersonic tunnels were the blow down type at Mach 1
- One of the most difficult conditions to create the flow at exactly Mach 1

Wind Tunnel Testing Problems

- Wall Effect
 - Walls are artificial boundaries that airplanes do not have
 - Upwash/downwash from walls, floors, ceiling
- Scale Effect
 - Small models have small forces making measurements inaccurate
 - Differences in Reynolds number between model and the full-scale model

Flight Testing

- Shakedown Tests
 - Basic flight qualities are determined
- Airplane's Performance
 - An exact determination of top speed, cruise speed, range, rate of climb, takeoff & landing distance
- Stability & Controllability
 - Exact degree of stability, handling qualities

Flight Testing

- Performance
 - Special instruments take measurements in test flights
- Pressure Measurements
 - Attaching pressure measuring devices to taps on the aircraft surface
- Flow visualization
 - Tufts similar to wind tunnel testing
 - Reveal poor aerodynamic characteristics

Unit 3 High Speed Tunnels and Low speed Balances

- **DH bearing pedestals** are designed for the following applications: Low speed balancing
- Checking of rotor balance at high speeds (operational speed)
- Dynamic straightening of flexible rotors
- Testing of material strength by operating rotors at over speed
- Rotor investigation in operational bearings.
- All these tasks can be performed in a single rotor set up. The most important features of these high-speed balancing systems are shown on the next page.

• Rigid bearing supports – Additional stiffness

Rigid bearing supports provide for greater stability, particularly at high speeds. A supplementary, remote controlled change-over facility enables the stiffness of the bearing pedestals to be varied, thus enabling rotor resonance frequencies to be passed through safely, and minimizing the risk of damaging the rotor or the balancing facility.

Balancing and overspeed testing under vacuum Due to the high windage effect of bladed rotors at high speeds and the associated power and temperature problems, balancing and overspeed testing takes place under vacuum conditions with a residual pressure of approx. 0.5 - 2 mbar.

• Explosion proof enclosure

To protect the surroundings from the dangers resulting from a total or partial explosion of the rotor, a variety of different solutions can be recommended:

Longstanding experience has shown that a walk-in tunnel design is most suitable, especially for medium or large facilities For rotors weighing up to 8 t, with outer diameters up to 1.7 m, an axially sliding vacuum chamber with integrated burst protection can be used. The movable part of the chamber is equipped with several steel liners, which act as burst protection. If the specimen bursts, the burst energy is absorbed by deformation elements in the foundation. A compact design enables the facility to be installed on the shop floor.

• Drive system

For high-speed balancing, overspeed testing and dynamic straightening of flexible rotors, either a three-phase servo motor with frequency converter or an infinitely variable DC motor with thyristor control can be used . Depending on the required speed range, a suitable transmission gear has to be installed. A so-called intermediate shaft constitutes the connection between the gear and the over-speed testing chamber. Rotors are coupled to this intermediate shaft by means of precision drive shafts.

Automatic Balance Calibration System

- Complete calibration (including installation, preparation of load schedule, load phase, full data reduction & balance removal) with 1000 loading points completed in about 3.5 hours.
- >0.1% accuracy preserved in any force combinations.
- Four safety loops ensure balance and machine integrity throughout the calibration.
- Calibration loads are applied exactly as in the wind tunnel for maximum calibration accuracy and reliability.
- Back-calculated errors can be displayed graphically in real time for quick evaluation.
- Inherent reliability and long term accuracy.
- Calibration of single piece and two shell balances up to 2.5" diameter.

Balances

• The balances are defined using aircraft design software (UGNX) and finite element software. The design is optimized according to customer-specified parameters (dimensions, loading and interfaces) and with respect to measurement requirements for sensitivity and stiffness.

• Balance Types:

- 6 component sting balance
- 1-5 component hinge moments balance
- 4-6 component fin balance
- Wing tip balance
- Half-model balance

Balances

General arrangement of A.R. g jet-flap model

• To illustrate various aspects of the test arrangement devised, it is convenient to discuss the specific model details, the air-bearing rig assembly, and the recording system, in turn.

Manual Procedure

- The normal running procedure was as follows.
- (a) The blowing pressure corresponding to the desired value of C, was set.
- (b) The wind-tunnel speed was set at the prescribed value, and the spring attachment bolts were adjusted to remove any yaw on the model-t due to asymmetric thrust or aerodynamic moment.
- (c) With positive damping, the model was manually forced by pulling cyclically on one of the wire/spring junctions until the amplitude was greater than + 6", when the model was carefully released and the recorder started.1 The run was continued until the oscillations had damped out completely or had reached a small, steady, residual amplitude.
Mechanical Design system balance

- Naturally, the problem of separating out the aerodynamic components of the yawing moment is eased if the inertia component can be cancelled, or very much reduced, and a simple angular accelerometer has been incorporated for this purpose.
- Strain-gauges on the leaf-springs are connected to give an output cancelling that obtained from the model yawing-moment balance due to the model inertia.
- The weights are adjusted wind-off to give approximate cancellation, leaving a small tare value which is measured at intervals to allow for drift due mainly to temperature.

Jet-flap model on forced oscillation rig

Measurement of Pressure, Velocity and Temperature

Unit 4

Introduction

- Pressure measurement is important in many fluid mechanics related applications.
- From appropriate pressure measurements velocity, aerodynamic forces and moments can be determined. Pressure is measured by the force acting on unit area.
- Measuring devices usually indicate differential pressure i.e. in relation with atmospheric pressure. This is called gauge pressure.
- The measured pressure may be positive or negative with reference to the atmospheric pressure .A negative gauge pressure is referred to as vacuum.

Pressure

Pressure measuring devices

- Liquid column manometers
- Pressure gauges with elastic sensing elements
- Pressure transducers
- Manometers for low absolute pressures
- Manometers for very high absolute pressures

Liquid column manometers

Inclined manometer

Inclined manometer

Mercury barometer

- Barometer is the device used to measure the atmospheric pressure.
- Mercury barometer consists essentially of a glass tube sealed at one end and mounted vertically in a bowl or cistern of mercury so that the open end of the tube is submerged below the surface of mercury in the cistern.

Principle of mercury barometer

Micro manometer

Mechanical manometers

- Bourdon tube
- Elastic diaphragms
- Corrugated diaphragms
- Capsules, Bellows

Lag in manometric systems

1 - model 2 - capillary tube 3 - connecting tube

4 - air space of sensing element of manometer

Wind tunnel model with the manometric system

Flow Visualization

UNIT-V

Introduction

- The visualization of complex flows has played a uniquely important role in the improvement of our understanding of fluid dynamic phenomena.
- Flow visualization has been used to verify existing physical principles and has led to the discovery of numerous flow phenomena.
- In addition to obtaining qualitative global pictures of the flow the possibility of acquiring quantitative measurements without introducing probes that invariably disturb the flow has provided the necessary incentive for development of a large number of visualization techniques.
- The role of flow visualization in experimental fluid-mechanical research has been appraised many times, and a number of reviews or comprehensive descriptions, either of the whole field or particular applications, are available.

- Flow abruptly leaves or returns to solid body (2D/3D phenomenon)
- Occurs along separation / attachment lines

 In 2D: separation and attachment points are critical points of tangential velocity

Topological Approach

 Work by Surana, Haller and others argue that flow separation is indeed a topological structure

• Superimposition of wall streamlines on oil flow patterns from experiment

- Kenwright's method: cell-wise pattern matching
 - Basic observation: separation / attachment lines present in two linear flow patterns

- Kenwright's method: cell-wise pattern matching
 - Idea: extract intersection of those lines with each cell in piecewise linear flow

positive time FTLE⁺ (attachment)

negative time FTLE⁻ (separation)

- General technique for synthesis of stochastic textures
- Texture is characterized by function *f*

 Spots of random intensity drawn and blended at random positions

• Shape of the spot determines nature of the texture

J. van Wijk, Spot Noise, Texture Synthesis for Data Visualization, ACM SIGGRAPH '91

 Spot function allows for local control over texture: maps data value (vector) to spot

J. van Wijk, Spot Noise, Texture Synthesis for Data Visualization, ACM SIGGRAPH '91

- Elliptical spots for visualizing 2D flows
 - Aligned with local flow direction
 - Long axis proportional to v(x)
 - Small axis proportional to 1/|v(x)
 - Orthogonal to flow direction (waves)

 Spot blending assumes local smoothness of underlying flow field

- Animated Spot Noise for steady flow visualization:
 - Spots as moving particles
 - Over (fixed) lifetime
 - Appears
 - Moves along flow
 - Decays
 - Insertion position
 - Insertion time
 - Max intensity

Enhanced Spot Noise

- Spot bending (high flow curvature)
- Account for convergence divergence
- Ensure constant surface for each spot
- Solution: locally integrate stream surface

W. de Leeuw, J. van Wijk, Enhanced Spot Noise for Vector Visualization, IEEE Visualization '95

Enhanced Spot Noise

- Further improvements
 - High-pass spot filtering to increase texture homogeneity (avoid large light/dark regions)

W. de Leeuw, J. van Wijk, Enhanced Spot Noise for Vector Visualization, IEEE Visualization '95

Enhanced Spot Noise

Results

W. de Leeuw, J. van Wijk, Enhanced Spot Noise for Vector Visualization, IEEE Visualization '95

Line Integral Convolution

Line Integral Convolution

- Aliasing problems induced by white noise input texture can be solved by applying low pass filter (blurring) in pre-processing
- Simple convolution kernel: box
- Special convolution kernels can be used to show flow direction (periodic motion)
- Normalization applied after convolution to preserve brightness and contrast

Line Integral Convolution

- Correlation of pixels along the flow
- No correlation orthogonal to the flow
- Resulting pictures are similar to visualizations achieved with oil film applied onto surface of embedded body in wind tunnel experiments

B. Cabral, C. Leedom, Imaging Vector Fields Using Line Integral Convolution, ACM SIGGRAPH '93

Line Integral Convolution

Results

Standard LIC

LIC

Results

LIC + color coded flow magnitude

LIC

Results

Results

- Exploit redundancy of streamlines covering many pixels
 - # streamlines is 2% of # pixels
- Use correlation between convolution coefficients
- Integrate flow using RK 45 + cubic interpolation
- 10x faster than standard LIC

D. Stalling, H.-C. Hege, Fast and Resolution Independent Line Integral Convolution, ACM SIGGRAPH '95

Enhanced LIC

- Improve contrast by iteratively taking last computed LIC texture as input for next iteration
- Combined with final high-pass filtering

A. Okada, D. L. Kao, Enhanced Line Integral Convolution and Feature Detection, IS & T / SPIE Electronics Imaging '97

Oriented LIC

Multifrequency LIC

Kiu & Banks, Vis96

 Change frequency of noise texture image based on flow properties (e.g speed)

Moving Textures

N. Max, B. Becker, Flow Visualization Using Moving Textures, Data Visualization Techniques, John Wiley & Sons, 1999

LEA

B. Jobard, G. Erlebacher, M. Y. Hussaini, Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization, IEEE TVCG 8(3), 2002

Image-Base Flow Visualization

J. Van Wijk, Image Based Flow Visualization, ACM SIGGRAPH 2002

IBFV

J. Van Wijk, Image Based Flow Visualization, ACM SIGGRAPH 2002

Unsteady LIC

H.-W. Shen, D. Kao, A New Line Integral Convolution Algorithm for Visualizing Time-Varying Flow Fields, IEEE TVCG 4(2), 1998

UW1666 RUN 2: R0002TP005.UPG ALPHAL= -0.004 PSI= 0.010 QA = 34.852 SPEEDWPH = 117.221 MACH = 0.16031 RE MAC = 1194732

Thank You